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Abstract

Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of
their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on
the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase
the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not
rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel.
By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69%
(n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance
sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size
is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to
turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical
models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which
swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with
rudimentary wings an edge during the evolution of glide performance.
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Introduction

Feathers are a key adaptation that distinguishes bird wings [1–3]

from wings of other flying animals such as bats [4] and insects [5].

Articulated overlapping feathers uniquely enable birds to morph

their wings continuously from fully extended to completely folded,

to optimize the shape for high aerodynamic performance [6].

Wing morphing enables common swifts (Apus apus L.) to glide up to

60% further and 100% longer [7]. Among birds, swifts stand out

because they spend almost their entire lives aloft: swifts not only

migrate, they also hunt insects, scoop water, mate, and even roost

in flight. Their extremely aerial lifestyle drives swifts to conserve

energy by alternating flapping bouts with many low-drag glides

[7]. These glides resemble those of sailplanes, because soaring

birds and pilots have similar performance objectives when they

exploit thermals and updrafts in the atmosphere to fly more

effectively cross-country [8]. Sailplanes have extremely smooth

wings and fuselages in order not to perturb the laminar airflow

over the surface and thereby minimize drag. The wing surface

architecture of swifts and sailplanes are, however, different as night

and day. The overlapping centimeter-scale feathers consist of a

central rachis with an anterior and posterior vane of barbs. The

barbs branch out into distal barbules with micrometer-scale

hooklets that connect to the flanges of proximal barbules – a

function similar to that of Velcro [3]. As a result, the wing surface

is porous at the micro scale, and leaks a small amount of air from

the lower to the upper surface [9], potentially affecting friction

drag [10]. At the macro scale the protruding feather rachis,

together with the valleys created by the overlap between primary

feathers [11], make the hand wing of swifts corrugated with a

roughness height of 1–2% (Fig. 1A–C). In stark contrast, well-

designed sailplane wings have a roughness height of 0.0001% or

less in order to prolong laminar airflow for exceptionally long

glides [12]. It is unclear how swifts, which are among the most

aerodynamically refined birds [7,13,14], glide so well with hand

wings that are a factor 10,000 rougher than high-performance

sailplane wings.

The aerodynamic impact of feather roughness depends on the

roughness height relative to the thickness of the layer of air that

sticks to, and flows over, the wing – the boundary layer [10,15,16].

When boundary layer thickness and roughness height are similar,

the air can become disturbed to the point that it transitions from

laminar to turbulent flow [10,16]. The boundary layer thickness d
depends on the chord length L and speed Uof the wing via

Reynolds number. The wing’s Reynolds number

Re = 68,0006U6L represents the ratio of inertial to viscous forces

in the boundary layer [16] (in which 68,000 is the inverse of the

kinematic viscosity of air). Re<24,000 is close to the swift’s most

efficient glide speed (U<10 ms21; L<0.036 m; [7,14]). Using a

flat plate approximation (d/L = 5Re20.5<0.03; [10]), we estimate

that boundary layer thickness is 3% of the chord length at the

trailing edge. Because surface roughness of the swift hand wing is

1–2% it may disturb the airflow to the point that it becomes

turbulent [10,16]. Surface roughness elements that force the flow

to become turbulent are called ‘turbulators’ [16]. Experiments

with model pigeon wings (Re = 60,000–100,000) have shown that
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turbulators made of sandpaper can increase lift and decrease drag

by reducing laminar flow separation [1]. Roughness effects have

also been suggested to influence force measurements on real versus

model hummingbird wings [17]. A study of laminar-turbulent

transition on the rough upper surface of a non-porous 3D-printed

hummingbird wing, at 10u angle of attack, suggests that the

boundary layer flow is transitional and turbulent at Re~15,000
[18].

The detailed shape of a turbulator matters [19–21]. If we ignore

the amplifying effect of periodicity [20], the ridges on swift wings

resemble simple strip turbulators, small rectangular surface

protrusions, which are more effective than sandpaper [20]. The

effectiveness of a turbulator can be determined more precisely by

calculating its roughness Reynolds number, defined as Rek = Re6k/

L, where k is the roughness height [22]. The minimum values of

Rekfor which strip turbulators initiate turbulence range from 80 to

170, as measured at Re = 100,000 for various roughness heights,

strip locations, and airfoils [23]. This critical Rekrange was

confirmed by [24] with a value of Rek = 110 at Re = 100,000 and by

[25], who found Rek = 70–130 for Re = 150,000. The effectiveness

of these thin strips is demonstrated by model airplanes soaring in

the atmosphere under conditions similar to swifts [26]. Swifts

typically glide at a Reynolds number range of 12,000–77,000 [7],

resulting in Rek.120–770 for k/L.1%. Therefore, the swift hand

wing should have sufficient aerodynamic roughness to initiate

turbulence at all biologically relevant airspeeds. The extent of

laminar flow in the thin boundary layer over feathered bird wings

is, however, unknown. An understanding of how feather roughness

affects laminar flow at low Reynolds numbers is also applicable to

hair-covered mammal wings with protruding arm, hand, and

finger bones [4,27], and to scale-covered flying reptile bodies [28].

Materials and Methods

Wing roughness measurements
The wings were separated from naturally deceased birds,

frozen, and freeze dried, after which matched pairs were glued

together to form a continuous wing surface [7]. Of 15 wing pairs

we selected three with particularly well-preserved wing and feather

condition: fully extended at 5u sweep angle and swept back at 30u
and 50u (n = 3 birds, by combining all three wing sweeps).

Whereas the overall condition of the wings was very good, the

epoxy joint at the centerline introduced some roughness and

ruffled coverts at the wing root. We measured the chord-wise

position and height of roughness on the upper wing surface (Fig. 2)

of swift wings with 5u, 30u and 50u sweep using a custom 3D laser-

line scan setup. The laser sheet was created perpendicular to the

wing surface with a green laser pen (532 nm wavelength) and a

two-lens system: A negative cylindrical lens to create a sheet, and a

perpendicular positive spherical lens to create a thin waist. The

projected line was imaged with a camera (Nikon J1; 10–30 mm

Nikkor lens) at approx. 30u off-normal to avoid occlusion. We

calibrated the scan setup using a metal ruler with known vertical

and horizontal distances (approx. 65 mm field of view) located at

the beam waist (resolution: 65 mm/3872 pixels <0.017 mm/

pixel). To reconstruct the surface contour of prepared wings, the

projected line was photographed at each spanwise station (Fig. 2A–

C, sub panels: i–iii). The stations where distributed symmetrically

with a constant spacing of 10 mm for all three wings, which

corresponds to the following number of spanwise stations per wing:

37 at 5u sweep; 31 at 30u sweep; and 23 at 50u sweep. For each

wing the suite of scanned chordwise contour lines were used to

interpolate the 3D surface in the spanwise direction (Fig. 2A–C);

std,0.05 mm (n = 3; we repeated the scan three times). To

quantify the roughness of the wing we first removed the large-scale

curvature as follows: the leading and trailing edge of the upper

surface contour were assigned the same height by rotating each

cross-sectional image. We then fitted the mean-chord line of a

NACA 4-series airfoil through the upper surface contour, with an

additional quartic term to capture leading edge curvature (we

found this airfoil-based fit worked better than polynomial, Fourier,

or circular fits). The roughness distributions (Fig. 2A–C) were then

calculated relative to this smoothed airfoil-like mean shape.

Figure 1. Detection of boundary layer transition to turbulence on swift wings with an amplified stethoscope [30]. (A) Similarly to other
birds, swift hand wings are built up by overlapping primary feathers that make the upper surface corrugated. (B) When broad-spectrum turbulent
noise was detected with the stethoscope, a photo of the transition location (grey arrow) was made (Movie S1). (C) Spectrogram of a snippet of Movie
S1 showing laminar (L) – turbulent (T) transition over the hand wing at maximal lift-drag ratio. (D) Spectrogram of transition at maximum lift (Movie
S2). (E) Lift – angle of attack curve corresponding to transition measurements in (C) at 9u and in (D) at 13.5u, when the wing is partially stalled. White
and colored circles are transition measurement points; grey line indicates equilibrium lift during straight glide at 10 ms21; cross indicates wing stall.
doi:10.1371/journal.pone.0099901.g001
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Wind tunnel measurements
In 2005 we used the Delft low-turbulence wind tunnel to study

the aerodynamics of swift wings. We performed laminar-turbulent

transition measurements, flow visualization, and lift and drag

measurements, of which the visualization and forces have been

described earlier [7]. The wind tunnel has a turbulence level of

0.025% at 40 ms21 and 0.015% at 20 ms21; for details and

references see [7]. We measured boundary-layer laminar-turbu-

lent transition locations on the upper surface of 3 wing pairs, with

5u, 30u, and 50u sweep, for all combinations of wind speeds (5–

25 ms21 in 5 ms21 increments) and angles of attack (0u–18u with

4.5u increments) relevant for gliding swifts. For wind speed and

angle of attack combinations at which swift wings stalled or

deformed dramatically, transition measurements were impossible

[7]. To test the effect of the primary-feather-like roughness on the

extent of laminar flow, we built two model wings, one with and

one without roughness. The wings are made out of carefully

selected C-grain balsa wood strengthened by a carbon fiber spar

and have a chord of 38.1 mm and a span of 360.0 mm. We

approximated the airfoil of the swift hand wing using a thin airfoil

with a small nose radius and sharp trailing edge; the maximal

thickness was 2.8% (at 12.6–32.6% chord). To add camber we

dried the wings in an oven after soaking them in water and fixing

them on a circular mold using a bandage. The resulting camber

was circular with a height of 4.5% chord at 50% chord. Swift

roughness was simulated using a stack of thin strips of tape with a

thickness of 0.05 mm each (TrimLine, ModelTechnics). Transi-

tion of the flow from laminar to turbulent was measured using an

amplified stethoscope [29,30] (Fig. 1B; Fig. S1).

We selected the stethoscope technique because it is particular

effective for scanning transition location over the compliant,

absorbent, heat sensitive and reflective rachises, barbs and

barbules. The unique advantage of a stethoscope is that it can

easily accommodate deformation by traversing the stethoscope by

hand. Oil visualization is problematic because the porous wing

absorbs fluorescent oil, as demonstrated by the dramatic effect of

oil spills on bird feathers. Hot-wire probes are very sensitive to

touch, and feather barbules and barbs smolder at the elevated

operating temperatures (hence feather fletching is shaped using hot

wires). Feathers also absorb the smoke drops used for particle

image velocimetry (PIV), and are reflective (Fig. 1A), which

deteriorates optical resolution in the approximately 1 mm thin

boundary layer of swift wings.

The stethoscope can detect the signature broad-spectrum noise

of turbulent pressure fluctuations and distinguish it from tonal

noise and the silence of laminar flow (Fig. 1C,D). The stethoscope

system consisted of a custom head (Fig S1A,B) mounted on a Brüel

& Kjaer (B&K) microphone system, the latter comprising a

microphone model 4134 (no 2060204), a preamplifier model 2619

(no. 805038), and power supply model 2801; the B&K system was

connected to a Geloso amplifier system model G.1/2030. Timmer

[31] verified that this system has an accuracy of 0.5–1.0% chord

length for an airfoil with a chord length of 0.25 m, by direct

comparison with infrared transition measurements in the same

wind tunnel. This relative accuracy translates into a spatial

accuracy of about 1.3–2.5 mm, which is 1–2 stethoscope

diameters (Fig. S1) and represents an uncertainty of 3.5–7%

chord length for the average swift wing in this study (36 mm wing

chord: averaged for 5u, 30u, and 50u sweep). To illustrate how the

stethoscope works we recorded two demonstration sequences

(carried out faster than the actual measurement to keep the videos

short). During the actual experiments, the stethoscope was kept

stationary with respect to the wing.

The demonstration videos (Movie S1 and S2) were recorded

with a JVC GR-DVL9700 digital video camera (recording to

MiniDV-tapes). The MiniDV signal was converted to an avi file

with Pinnacle V9 using the ‘Intel-Ligos Indeo Interactive 5_0

(IV50)’ video codec. The audio channel of these movies was used

to calculate the spectrograms in Fig. 1C,D with the MATLAB

spectrogram function using a Hamming window. Finally, the

movies were converted to AVI using the MPEG-4 video codec and

PCM (32 bit; 44100 Hz; 2822 kbps) audio codec of AVS4YOU

Video Editor (version 6.2.1.222).

Figure 2. Spanwise transition occurs aft of prominent feather roughness at maximal glide performance. (A, B, C) The primary feathers
of the hand wing give a roughness of 1–2% chord length (iii) distal (red line: transition; translucent area: turbulent flow). The arm wing is smoothened
by greater primary coverts at the wrist (ii) and greater secondary coverts and marginal coverts proximal (i). Transition occurs well behind the most
prominent feather roughness on the hand wing at 4.5u angle of attack. This angle maximizes glide distance and flight duration at the speed and
sweep combinations in a, b and c. Both the scanned surface contour (raw) and the fitted surface contour (60% transparent overlay) are shown (D, E,
F). For low angles of attack, transition is most prominent near the centerline, due to imperfections in the glued joint between the left and right wing
and corresponding coverts. Laminar flow decreases with increasing angle of attack. The star indicates the distribution at 9u and 10 ms21. This
distribution is closest to 8.5u and 8 ms21, at which the swift flies furthest and longest according to our lift and drag measurements [7]. Asymmetries
in the distribution reflect shape asymmetry. (LE: leading edge; TE: trailing edge).
doi:10.1371/journal.pone.0099901.g002
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Transition measurement procedure
The stethoscope was traversed along the surface of the wing

from the leading edge towards the trailing edge until the sound

changed into a broad-spectrum signal, which indicates transition

to turbulent flow (see Fig. 1C,D and Movie S1 and S2). A

photograph of each transition point on the wing, indicated by the

tip of the stethoscope, was captured with a digital single lens reflex

camera (NIKON D100 with AF Zoom-Nikkor 35–70 mm f/3.3–

4.5 N, mounted on a tripod) focused on the top surface of the wing

(Fig. 1B). All wings were spanwise sampled with an average

spacing of about 7% wingspan to measure the chordwise transition

distribution. All transition locations were photographed except for

wing regions in which the boundary layer was either fully laminar

or fully turbulent; these regions were recorded directly in the lab

journal noting the photograph numbers that enclosed these

regions. For 5u sweep, the average number of transition points

recorded for the fully photographed sets is 16 (minimum 11,

maximum 19), giving an average spacing between spanwise

transition points of 6% wingspan. For 30u sweep the average

number of transition points recorded for the fully photographed

sets is 14 (minimum 11, maximum 18), giving an average spacing

between points of 7% of the wingspan. For 50u sweep the average

number of points for the fully photographed sets was 13 (minimum

9, maximum 18), giving an average spacing of 8% of the wingspan.

In some cases, we also found a distinct tone (1010 Hz) that

initiates upstream of the transition point, illustrated in Fig. 1C.

The most parsimonious explanation of that tone (not audible

without stethoscope) is Tollmien-Schlichting instability, which

initiates transition to turbulence by aggregating vorticity in a wave

with an acoustic signature [10,16]. The latter sound is routinely

detected by microphones in the boundary layer [32,33]. The

smallest unstable wavelength lmin of Tollmien-Schlichting insta-

bility is lmin/L = 6d/L<0.18 for a flat plate [10]. This value is

similar to the measured value l/L = U/fL = 0.28 (f = 1010 Hz at

U = 10 ms21 and L = 0.036 m). The predicted and measured

wavelengths are of the same order of magnitude, and similar to the

wing corrugation wavelength of roughly 0.1 chord length

(Fig. 2A,C).

Transition data processing
A custom program (scripted in MATLAB) was used to locate

both wingtips, the tip of the stethoscope, and the leading and

trailing edge at the spanwise location of the stethoscope. In concert

with the logbook data, this resulted in spanwise distributions of

laminar-turbulent transition location (shown in Fig. 2). The total

laminar area (Fig. 3) was determined by integrating the transition

location along the span (Fig. 2). We assumed that the leading edge

corrugation induced the first perturbation and measured transition

length with respect to it (Fig. 3D). We averaged ReL,trans over

wingspan and speed and excluded fully laminar stations for which

it cannot be calculated. We determined Laminar area of the wings

at the angles of attack that correspond to performance maxima by

using linear interpolation, as follows. First the force and transition

measurements for each wing and speed combination were linearly

interpolated for angles of attack ranging from 21u to 20u (with

steps of 0.1u) and speeds ranging from 5 ms21 to 25 ms21 (with

steps of 0.1 ms21). Points of the interpolation matrix that lay

outside the measured range were not taken into account for

further analysis. Using the interpolated force data we determined

the angle of attack corresponding to equilibrium (straight glides)

and maximal energy efficiency (turning glides) as a function of

speed for each wing [7]. For these angle of attack – speed

combinations, laminar area was linearly interpolated between the

closest laminar area measurements (Fig. 3). The average extent

and standard deviation of laminar flow area, at maximum glide

performance, was first calculated for every sweep across speeds.

Next, we calculated the Euclidian norm of the std of these means,

and their respective std, across sweep.

MATLAB versions 2008a–2012b were used to process data and

generate figures between 2010 and 2013.

Results and Discussion

We measured laminar-turbulent transition over preserved swift

wings in a low-turbulence wind tunnel, under conditions that

replicate gliding flight (Re = 12,000–67,000). Using the stetho-

scope, we mapped the spanwise distribution of laminar flow

(Fig. 2). At the speed (5 to 20 ms21), sweep (5u–50u), and angle of

attack combinations for which our lift and drag measurements [7]

predict maximal glide distance and flight duration, we find that

transition occurs well behind the turbulators on the hand wing.

Transition is sensitive to small disturbances, such as differences in

wing shape and preparation, which is reflected by the asymmetries

in the distribution. The laminar area that we measured over

freeze-dried swift wings represents therefore a reasonable under-

estimate for living swifts [7,14]. To obtain an overview of the

extent of laminar flow we integrate laminar area for all sweeps,

speeds, and angles of attack (Fig. 3A–C). Such an integral

representation for a whole wing averages over spanwise variation,

which, in combination with the accuracy of the stethoscope,

Figure 3. Increase of angle of attack and glide speed reduce the extent of laminar flow. (A,B,C) Transition remains aft of the most
prominent feather roughness at angles of attack #9u. Laminar area in % corresponds to the span-averaged transition location: (A) 5u swept wings up
to 15 ms21 (black dot), the star shows interpolated laminar area for maximal glide performance at 8.5u and 8 ms21; (B) 30u swept wings up to
20 ms21 (red dot); (C) 50u swept wings up to 25 ms21 (blue dot). The 20 and 25 ms21 curves overlap in (C); LE: leading edge; TE: trailing edge. (D) The
Reynolds number based on transition length (Ltrans) behind the leading edge is similar to the transition length behind an effective turbulator on a flat
plate at 0u, for which Kraemer [34] found: ReL,trans = 20,000. (black: 5u; red: 30u; blue: 50u sweep).
doi:10.1371/journal.pone.0099901.g003
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enables us to analyze the extent of laminar flow over the wing. The

stethoscope can determine transition location with an accuracy of

3.5–7% of the average chord length (Methods). The perturbation

caused by the thin tube can project transition in the boundary

layer slightly forward [31], which reduces laminar flow. The

measured fraction of laminar flow area shows that transition

border moves toward the leading edge with increasing angle of

attack and speed (plots in Fig. 3), in accord with boundary layer

Figure 4. Simulated swift-like roughness extends laminar flow over model swift wings at Reynolds 12,000–24,000. (A) Fully extended
swift wings are to a good approximation elliptical (n = 3; [7]), not unlike the Supermarine Spitfire. (B) Simulated 1.3% roughness of the swift hand
wing using a distribution of thin tape stacks of various widths and heights similar to the roughness distribution in Fig. 2A, panel iii. The roughness is
drawn to scale, with the y-axis expanded by a factor of 10 to reveal the shape of the actual roughness distribution on the model wing shown in (C)
(cut at the symmetry plane for layout purposes). (D–G) Laminar area over the model wing, based on measurements at 4 equidistant stations that
exclude the wingtip, for Re 12,000–48,000 (at higher speeds we did not measure transition at maximal incidence). Laminar flow is reduced by swift-
like roughness at Reynolds numbers that correspond with glides beyond cruising speed. (Dashed line, roughness; continues line, smooth).
doi:10.1371/journal.pone.0099901.g004

Figure 5. Swift-like roughness decreases drag below Reynolds 24,000 and increases drag beyond, during straight glides. Force
measurements for actual swift wing are shown in gray at Re 12,000 (A), 24,000 (B), and 36,000 (C). The dots represent 0u, 4u.5u, 9u, 13.5u and 18u angle
of attack, at which the laminar area has been determined (18u represents stall and is therefore not visible in A, B for model wings). The green curve
corresponds to straight equilibrium glide conditions at that particular Reynolds number. (Dashed line, roughness; continues line, smooth).
doi:10.1371/journal.pone.0099901.g005
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theory [10,16]. Our measurements on swift wings show that

transition to turbulence occurs at airspeeds as low as 5 ms21,

Re = 12,000, similar to 3D-printed hummingbird wings at 10u
angle of attack [18]. The extent of laminar flow is, however, larger

on real swift wings: approximately K chord, or more, at angles of

attack up to 9u (n = 3; by combining results for 5u, 30u, and 50u
sweep).

For airplanes large and small, the effect of surface roughness is

to force the transition border forward on the wing [12,26].

Turbulence occurs at a distance behind the turbulator, Ltrans,

which the flow needs to transition into turbulence [16] (see Fig.

S2). This distance between turbulator and transition point has

been measured by Kraemer [34] for a flat plate at zero angle of

attack at Re = 10,000–100,000 (based on full chord length). This Re

range overlaps with the low Reynolds regime of swifts. For this

range Kraemer found that the minimum Reynolds number based

on transition length Ltrans is approximately constant for fully

effective turbulators: ReL,trans = 68,0006U6Ltrans = 20,000 (Fig.

S2). This transition length is only 2% of the Reynolds number

of a generic sailplane gliding at its optimal speed Re = 1,000,000

(U = 30 ms21; L = 0.5 m; [12]). Transition length is therefore

insignificant compared to chord for sailplanes – which is why

sailplane design centers around transition delay [12]. In contrast,

ReL,trans is similar to the chord Re<22,000 for swifts gliding at their

optimal glide speed (U<9 ms21; L = 0.036 m). We calculate

transition length for swift wings with respect to the wings’ leading

edge (close to the first bump) and find a transition length similar to

Kraemer’s 20,000 for a flat plate with a fully effective turbulator,

Fig. 3D. Because the Reynolds number of swifts is low, the

transition length is large compared to wing chord, which results in

a laminar-flow wing despite feather roughness. This presumably

enables swifts to exploit both the low friction drag of extensive

laminar flow [10,12,16,26] and the good stall characteristics [7] of

low Reynolds number airfoils with turbulators [23–26,35,36].

To explore how swift-like roughness might influence laminar

flow, and whether this improves performance, we tested models of

fully extended hand wings (Fig. 4A) with and without turbulators.

The roughness (Fig. 2A, panel iii) is simulated using stacks of

0.05 mm tape with a maximum height of 1.3% chord length

(Fig. 4B, C). Swift-like roughness reduces laminar flow over model

wings at Reynolds numbers beyond 24,000, Fig. 4F,G. Such a

reduction is expected for Reynolds numbers closer to 100,000 [23–

26,35,36]. Reynolds numbers beyond 24,000 are attained beyond

cruise speeds of 10 ms21 [7], since Re = 2,400 U for extended

wings. In contrast, swift-like roughness promotes laminar flow

during cruise at Re 24,000 down to 12,000. To determine how

these differences in laminar flow area correspond with perfor-

mance, we measured lift and drag using the same method

published earlier for swift wings [7]. The lift and drag compare

reasonably well with those of the fully extended swift wing, Fig. 5,

when the lift coefficients are close to the values that are required

for lift-weight equilibrium during straight glides [7]. The model

wing with swift-like roughness has lower drag at Re 12,000–24,000

for lift coefficients close to equilibrium. For faster glides at Re

24,000 and up, roughness results in more drag. Reynolds number

depends, however, not only on speed, but also on altitude. Swifts

roost at altitudes of 1,500 m and flap glide at airspeeds of 9 ms21

(over their wing) that minimize energy loss [7]. At 1,500 m

altitude, Reynolds number falls to Re = 61,0006U6L for typical

values of pressure and temperature lapse rate in the Standard

Atmosphere, corresponding to Re 19,000. Swifts and swallows

flying at even lower Reynolds numbers might benefit more from

wing roughness. At higher Reynolds numbers, Re 24,000–48,000,

swift-like roughness reduces laminar area and increases drag for lift

coefficients close to equilibrium gliding. At these higher Reynolds

numbers swifts typically sweep their wings backward to reduce

drag [7]. The roughness measurement for swift wings (Fig. 2)

suggests this reduces roughness height somewhat, which could be

beneficial. The model wing measurements also suggest that swifts

attain laminar flow over rough wings.

By interpolating laminar area for sweep, speed, and angle of

attack combinations (Fig. 3) at which our lift and drag

measurements predict minimal energy loss [7], we determined

that the average extent of laminar flow over swift wings is 69%

chord length (std 13%; n = 3) over 5u, 30u, and 50u sweep (Fig. 6A).

At maximum turn performance (maximum turn angle per meter

altitude loss) we find similarly that the average extent of laminar

flow over swift wings is 48% chord length (std 11%; n = 3) over 5u,
30u, and 50u sweep (Fig. 6B). The pooled averages (three different

wing pairs (n = 3) prepared at three different sweeps) show that, at

maximum glide performance, laminar area extends beyond the

most-perturbing feather valleys and ridges for a range of sweeps

and speeds. At minimal energy loss during straight flight, which

swifts achieve with fully extended wings gliding close to 9 ms21

[7,14], we find that transition occurs at L chord length (n = 1; 5u
sweep). This value is close to the average value of 67% (std 13%;

n = 3) for efficient straight gliding across speeds. Taking the

measurement uncertainty of 3.5–7% into account, the extent of

laminar flow over aerodynamically rough wings, across speeds and

wing sweeps at maximum glide performance, can compete with

NASA’s smooth laminar flow wings [37,38] and high-performance

sailplanes [12]. The rough swift wings analyzed here can generate

laminar flow because the flow needs the distance from the leading

to the trailing edge (wing chord) to develop into turbulence. This

transit allows for unexpected degrees of freedom at the level of

surface architecture. Thus small birds, such as swifts and swallows,

can afford thicker protruding rachis, which are stiffer and stronger,

without sacrificing aerodynamics. This aerodynamic niche at low

Reynolds numbers might have provided small birds an evolution-

ary window to generate laminar flow and glide well despite their

rudimentary wing surface architectures. This window is also

Figure 6. Angles of attack that minimize energy loss corre-
spond with transition beyond K chord length. (ave 69% and std
13% for 5u, 30u, and 50u sweep combined) These angles of attack are
inferred by calculating energy loss based on measured lift and drag [7].
(A) Laminar area for maximal glide distance and flight duration during
straight flight. Fully extended wings (green) minimize energy loss up to
,10 ms21, but at higher speeds swept-back wings (blue, red) excel.
The green star corresponds to a laminar area close to L chord length
(n = 1 wing pair) at minimal energy loss [7]. (B) Laminar area for
maximum turn angle, which requires high lift to limit height loss, is
about K chord length (ave 48% and std 11% for 5u, 30u, and 50u sweep
combined). Fully extended wings (green) generate more lift, but at
speeds beyond ,15 ms21 only swept wings (blue) can bear the load
[7].
doi:10.1371/journal.pone.0099901.g006
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available for the design of swift-sized micro air vehicles [39] that

do not depend on the high-Reynolds-number paradigm – smooth

surfaces – for efficiency.

Supporting Information

Figure S1 Stethoscope dimensions. Dimensions of the

stethoscope [29,30] we used to listen to, and record, turbulent

pressure fluctuations in the boundary layer. (A) The stethoscope

consists of a 1.35 mm OD tube connected to a small acoustic

chamber with a microphone. (B) Detailed sketch of the stethoscope

showing its main dimensions (courtesy of Stefan Bernardy).

(JPG)

Figure S2 Transition on a flat plate at low Reynolds
number. The Reynolds number based on transition length

behind a wire turbulator on a flat plate as a function of chord

Reynolds number, strip location, and strip thickness; adapted from

Kraemer [34]. These results for a flat plate at zero angle of attack

show that the minimum Reynolds number based on transition

length behind the wire Ltrans = Xtr–Xk is 20,000 for chord based

Reynolds numbers ranging from 10,000 to 100,000. The figure

was scanned from Schlichting [16]. The Reynolds numbers

corresponding to fully turbulent flow are highlighted in Adobe

Illustrator (CS6); these points have been digitized using ImageJ

(Java Version 1.6.0_20 (32-bit)). The digitized points were used to

calculate the average critical Reynolds number based on

roughness height for the thick (Rek = 430; std = 110) and thin

(Rek = 350; std = 60) wire. The results for the wire located at the

leading edge (points a and g) were ignored because the values are

difficult to obtain accurately; for points f and h no measurements

have been reported in [16].

(JPG)

Movie S1 Laminar-turbulent transition at maximum
lift-drag ratio. Video demonstration of the detection of laminar-

turbulent transition with the stethoscope on a fully extended swift

wing at 10 ms21 attaining maximum lift to drag ratio. At some

wing sections, a distinct tone can be heard at a frequency of about

1010 Hz.

(WMV)

Movie S2 Laminar-turbulent transition at maximum
lift. Video demonstration of the detection of laminar-turbulent

transition with the stethoscope on a fully extended swift wing at

10 ms21 attaining maximum lift coefficient. At maximum lift the

wing was partly stalled, resulting in light vibration, which

complicated the use of the stethoscope. If the wing hits the

stethoscope it can move a feather, which requires care during

actual measurements. The original position of the feather was

typically recovered by resetting the angle of attack and speed to

zero and, if needed, careful preening of the feathers, and starting

over.

(WMV)
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