
Transform-both-sides nonlinear models for in vitro pharmacokinetic

experiments

A. H. M. Mahbub Latif and Steven G. Gilmour
Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka–1000, Bangladesh

and
Southampton Statistical Sciences Research Institute & Institute for Life Sciences

University of Southampton, Highfield, Southampton, SO17 1BJ, UK

June 27, 2014

Abstract

Transform-both-sides (TBS) nonlinear models have proved useful in many experimental applica-
tions including those in pharmaceutical sciences and biochemistry. The maximum likelihood (ML)
method is commonly used to fit TBS nonlinear models, where the regression and transformation
parameters are estimated simultaneously. In this paper, an analysis of variance (anova) based
method is described in detail for estimating TBS nonlinear models from randomized experiments.
It estimates the transformation parameter from the full treatment model and then the regression
parameters are estimated conditionally on this estimate of the transformation parameter. The
anova method is computationally simpler compared with the ML method of estimation and allows
a more natural separation of different sources of lack of fit. Simulation studies show that the anova
method can provide unbiased estimators of complex TBS nonlinear models, such as TBS random
coefficient nonlinear regression (RCNLR) models and TBS fixed coefficient nonlinear regression
(FCNLR) models with random block effects.

Keywords: Nonlinear mixed effects model, pure error and lack of fit, random block effects

1 Introduction

In many pharmacokinetic experiments, the main goal is to identify enzymes that are related to the
metabolic process of the substrate of interest.1 Such experiments are conducted at the very early stages
of the drug development process. Since most of the enzymes that are involved in drug metabolism
are located in the liver, human liver microsomes (HLMs) are used in these in vitro experiments.2

Experimental runs are conducted for each HLM at different levels of substrate concentration and
the response, the initial rate of reaction, is measured from each experimental run. The relationship
between such a response and the substrate concentration is usually nonlinear and so it is assessed from
the size of the nonlinear regression parameters.

In such pharmacokinetic experiments, the Michaelis-Menten model, with an additive normal error
term, is widely assumed to model the effect of substrate concentration on the rate of reaction for
each HLM. To accommodate HLM to HLM variation in the analysis, HLMs could be assumed to be
either a fixed or a random treatment factor depending on the objective of the experiment and also
on the study design considered. However, considering the HLM as a fixed treatment factor restricts
the interpretation of the model parameters only to the HLMs used in the experiment, which would
have very little use in pharmacokinetic studies. On the other hand, if HLM is considered as a random
treatment factor in the model, it is often possible to make interpretations of the model parameters
over a population of HLMs. In particular, it is assumed that variation in the nonlinear relationship
between HLMs is random.

To model the rate of reaction as a function of random HLM and fixed substrate concentration,
nonlinear mixed effects models can be used. The maximum likelihood (ML) method of estimation for
a nonlinear mixed effects model depends on normal distributional assumptions regarding the random
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effects and error terms. The classical assumptions regarding errors might not be satisfied in practice
and a transformation of the response can be used in order to adjust a skewed and/or heteroskedastic
error distribution to improve the approximation. For linear fixed effects models, the technique of
transforming only the response has been widely used for many years either to stabilize the error
variance or to simplify the regression function.3 Since most nonlinear regression models are derived
from theoretical arguments, the regression parameters have scientific interpretations, which might be
altered if only the response is transformed. Transforming both the response and regression function
with the same transformation keeps the interpretation of the regression parameters the same as on the
original scale.4 However, transforming both sides of the regression model increases the complexity of
model fitting compared with transforming only the response. The transformations that are commonly
used in statistical analysis may contain parameter(s), which either could be assumed as known or
need to be estimated from the data at hand. A detailed discussion of the ML approach for fitting
the transform-both-sides (TBS) fixed coefficient nonlinear regression (FCNLR) model can be found
in Carroll and Ruppert’s book5. Oberg and Davidian6 extended Carroll and Ruppert’s approach to
the analysis of TBS random coefficient nonlinear regression (RCNLR) models, see also Gilberg et al.7

Note that we are transforming both the response and the entire nonlinear regression function, and not
just the regressors as in a fractional polynomial model.

Blocking, or local control, is one of the important tools of design of experiments, which is used
to reduce the impact of experimental error on estimating treatment effects. Blocking can be useful
in pharmacokinetic studies because there are situations where the experimental equipment might
not allow the intended number of runs to be made at the same time, so that runs are made in
batches. Usually estimating the block effects is not the main goal of the study, it is only used to
compare treatments between homogeneous units. Ogliari and Andrade8 analyzed longitudinal data
using nonlinear models in randomized block designs.

Though in this paper we discuss the analysis of pharmacokinetic experiments, the proposed method
can also be used for other randomized experiments. In all published applications of TBS models, the
corresponding transformation parameter is estimated by maximizing the likelihood function corre-
sponding to the TBS nonlinear model - similar to the other parameters of the model. This approach
does not use the fact that the transformation parameter only deals with the distribution of the error
terms and has no connection to the nonlinear model under investigation. In this paper, we will discuss
a method for estimating the transformation parameter by considering an appropriate full treatment
model, which corresponds to the randomization used in the experiment. The remaining parameters
of the nonlinear model are estimated conditionally after transforming both sides of the nonlinear
model with the estimate of the transformation parameter. We will also discuss the advantages of this
approach over estimating all the parameters simultaneously, using some simulation studies.

In Section 2 the TBS-FCNLR model is described and the usual ML estimation procedure is briefly
discussed and the new analysis of variance (anova) based method is described. The anova method
for the TBS-RCNLR model and the TBS-FCNLR model with random block effects are described in
Section 3 and Section 4, respectively. A number of simulation studies are reported in Section 5 for
comparing the ML and anova methods, and also for assessing the performance of the anova method
in estimating the parameters of complex TBS nonlinear models.

2 Transform-both-sides nonlinear fixed effects models

The main goal of this paper is to develop a methodology for analysing enzyme kinetic and other
TBS-RCNLR models for in-vitro pharmacokinetic studies using HLMs. In this section, we consider
experiments on a single HLM and discuss the method for the TBS-FCNLR model, which will be
extended for the mixed effects model in Section 3. Let n be the number of available experimental
units and assume that we will use R experimental conditions (treatments) x1, . . . , xR. We also assume
that at least two treatments have more than one replicate and let nr be the number of experimental
units assigned to treatment xr, where

∑
r nr = n. Assume that the design is completely randomized.

Let yi(r) denote the response measured from the ith experimental unit (i = 1, . . . , n), where the

subscript “i(r)” indicates that the treatment xr was assigned to the ith experimental unit. We use
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this notation, following Hinkelmann et al.10, to emphasis the link between the design and the model,
and allow easier extension to more complex designs. For notational convenience, we drop “r” from
the subscript in the following sections, i.e. yi = yi(r).

We assume the following nonlinear regression model for describing the relationship between the
response and the treatment randomly assigned to the ith experimental unit

η(yi) = f(xr;θ), (1)

where η(·) is some measure of location, θ is the p-dimensional vector of regression parameters to be
estimated and the regression function f(·) is assumed to be nonlinear in at least one of the parameters
θ. The least squares (LS) method of estimation is often used to fit a model of the type (1) if the
classical assumptions (i.e. independent and identical distributions, constant variance, etc.) regarding
the additive error terms ε′ are satisfied, so that

yi = f(xr;θ) + ε′i. (2)

Moreover, if the errors are normally distributed, the ML method of estimation can be used to estimate
the parameters and, for the model of type (2), the LS and ML methods are equivalent. The theory
of estimation and inference for nonlinear regression models are well developed and for a detailed
theoretical treatment see Seber and Wild11, for example. Most of the standard statistical software
packages (e.g. R, SAS, Stata, GenStat) have user-friendly routines for fitting nonlinear fixed effects
models and a comparison of the performance of the existing software in fitting nonlinear mixed effects
model can be found in Plan et al.12.

If the classical assumptions regarding the errors cannot be assumed to be satisfied, a transformation
technique can be used with the expectation that the transformed data will provide more reliable
inferences. After transforming both sides of the nonlinear regression model (1) and assuming an
additive error on the appropriate scale, the resulting model becomes

h(yi, λ) = h
(
f(xr;θ), λ

)
+ εi, (3)

where h(y, λ) is a family of transformations of y and λ is known as the transformation parameter,
which may be a scalar or vector. The model (3) is known as the TBS-FCNLR model and has been
in the statistics literature for many years.4 After the transformation, it is expected that the errors
(εi) are independent and identically normally distributed with zero mean and a constant variance σ2,
i.e. they satisfy the classical assumptions regarding the errors. In this paper, the Box-Cox family of
transformations3,

h(y, λ) =

{
(yλ − 1)/λ if λ 6= 0;
log y if λ = 0,

(4)

is used for the TBS nonlinear regression modelling, where y > 0. The main objectives of considering
Box-Cox transformation in the analysis are to remove the skewness in response and also to remove
the dependence of the standard deviation of response on its mean. The size of the error variance
could be important because large error variance is required to remove the skewness, whereas Box-
Cox transformation can remove the dependency of standard deviation of the response on its mean
irrespective of the size of the error variance.9 Note that the methods described in the following sections
can also be defined for other families of transformations.

2.1 The ML method of estimation

In this section, the commonly used ML method is briefly reviewed in the context of the TBS-FCNLR
model (3). Assume that the transformed response zi = h(yi, λ) follows a normal distribution with mean
h(f(xr;θ), λ) and constant variance σ2. The probability density function (pdf) of the response on the
original scale yi = h−1(zi, λ) can be obtained by multiplying the Jacobian yλ−1i of the transformation
Zi → Yi with the pdf of the transformed response h(yi, λ). The log-likelihood function of y1, . . . , yn
can be expressed as

lm(θ, λ) = −n log

[
σ̂(θ, λ)

ỹλ−1

]
− n

2
, (5)
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where ỹ = exp(
∑

i log yi/n) and the maximum likelihood estimator (MLE) of σ2 is σ̂2(θ, λ) =

(1/n)
∑

i

(
h(yi, λ) − h

(
fr, λ

))2
, where fr = f(xr;θ) is defined for notational simplicity. The MLEs

θ̂m and λ̂m can be obtained by maximizing the log-likelihood function lm(θ, λ), i.e. (θ̂m, λ̂m)′ =
arg maxθ,λ lm(θ, λ), which is equivalent to minimizing

n σ̂2(θ, λ)

ỹ2(λ−1)
=
∑
i

(
h(yi, λ)− h(fr, λ)

ỹλ−1

)2

=
∑
i

e2i (xr,θ, λ), (6)

for θ and λ simultaneously, where ei(xr,θ, λ) is known as the pseudo-regression function.5

It is convenient to use a regression routine available in statistical software (e.g. the nls function
in R) instead of a general optimization routine in fitting a regression model because, for the latter,
the user needs to write the function to be optimized. Since nonlinear regression routines in standard
statistical software do not allow the response to depend on a parameter, the TBS-FCNLR model (3)
cannot be fitted directly. To overcome this, Carroll and Ruppert5 suggested using a dummy response
Di with all of its values being zero and regress it on the pseudo-regression function ei(xr,θ, λ), which
is defined in equation (6), to obtain the MLEs θ̂m and λ̂m. This approach cannot find the MLE of
the error variance σ2, however, but the MLE σ̂2 can be obtained from σ̂2(θ̂m, λ̂m). The corresponding
restricted maximum likelihood (REML) estimator of σ2 is σ̃2 = n σ̂2(θ̂m, λ̂m)/(n − p − 1), where
(n−p−1) is the number of degrees of freedom associated with the residual sum of squares. A detailed
discussion of the ML method for estimating the TBS Michaelis-Menten fixed effects model can be
found in Ruppert et al.19

2.1.1 Estimates of standard errors

The standard errors of the parameter estimates of the TBS-FCNLR model (3) can be obtained in
several ways and a good discussion of different methods can be found in Carroll and Ruppert5. Two
methods are compared in this paper using a simulation study: (i) standard errors obtained from
the pseudo-regression analysis (“ML(a)”) and (ii) standard errors obtained by a parametric bootstrap
approach (“ML(boot)”). For the “ML(boot)” method, a random sample of residuals ε̂?1, . . . , ε̂

?
n is drawn

from N (0, σ̂2) and the model z?i = h
(
f(xr; θ̂m), λ̂m

)
+ ε̂?i is used to generate response y?i = h−1(z?i , λ̂m)

for the bootstrap sample. The ML estimates θ̂?m and λ̂?m can be obtained using y?i as the response. This
procedure is repeated a large number of times to obtain the sampling distributions of the estimates
θ̂m and λ̂m and, hence, the corresponding standard errors.

2.2 The anova method of estimation

The ML method, described in the previous section, simultaneously estimates both the regression and
transformation parameters of the TBS-FCNLR model, which leads to more difficult convergence issues
compared with fitting untransformed nonlinear models. Some of these are due to there being a ridge
of near-maximal solutions with wrong values of θ being compensated for by wrong values of λ. In
this section a new method, which we call the anova method, for estimating the parameters of the
TBS-FCNLR model (3) is described.

2.2.1 Estimation of the transformation parameter

The anova method separates the estimation of the transformation parameter from the specific nonlinear
model assumed. The variance structure follows that given by the analysis of variance determined by
the randomization of the experiment and the transformation parameter is estimated to make the
additivity assumption required for analysis of variance plausible. Then the regression parameters are
estimated given the estimated transformation parameter and the variance structure. The role of the
transformation parameter λ in a TBS-FCNLR model (3) is to select an appropriate scale for the
response so that the distribution of the transformed response has constant variance and is at least
approximately normal.
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To describe the anova method of estimation, assume the following full treatment model for the
transformed response corresponding to the ith experimental unit

h(yi, λ) = µr(x) + δi, (7)

where the ith experimental unit is assigned to the rth treatment, µr(x) is the mean function of the
transformed response corresponding to the rth treatment and the error term corresponding to the
ith experimental unit, δi, is assumed to be independent and normally distributed with mean 0 and
constant variance σ2e . The complete randomization procedure involved in the experiment leads to
an analysis based on such a linear model - see Hinkelmann et al.10 for details. The TBS-FCNLR
model (3) is a submodel of the full treatment model (7) with µr(x) = h(fr, λ).

The full treatment model (7) depends only on treatment-unit additivity and normality, and not on
the nonlinear model assumed for describing the relationship between the response and the treatments.
The full treatment model is commonly written as

h(yi, λ) = µ+ τr + δi, (8)

where µ is the overall mean and τr is the fixed effect of the rth treatment. Model (8) is linear in
the parameters, which in this case have closed form estimates, depending only on the treatments
and the transformed response. The goal of considering the full treatment model for the transformed
response is to estimate the transformation parameter and the error variance (pure error) with minimal
assumptions, i.e. the treatment parameters of model (8) are nuisance parameters at this stage.

Since the regression parameters involved in model (8) can be expressed as functions of the treat-
ments and the response, the corresponding log-likelihood function is lb(λ), which is similar to (5) with
σ̂2(θ, λ) replaced by

σ̂2e(λ) =
1

n

∑
i

(
h(yi, λ)− µ̂r(x)

)2
, (9)

which is the MLE of σ2e for a given λ, where µ̂r(x) is obtained directly from the one-way anova linear
model (8), given λ. The MLE λ̂a = arg maxλ lb(λ) can also be obtained as λ̂a = arg minλ{σ̂e(λ)/ỹλ−1}.
Since the error mean square or the likelihood function can be expressed as a function of λ only, a one-
dimensional grid search can be used to obtain λ̂a. The REML estimator of σ2e is σ̃2e = n σ̂2e(λ̂a)/(n−R),
where (n−R) is the error degrees of freedom in this case. This method of estimating the transformation
parameter is identical to that of Box and Cox3 described for analyzing linear models when transforming
only the response.

2.2.2 Estimation of the regression parameters

The transformation parameter deals with selecting the appropriate scale for the response that leads
to the distribution of the response having approximately constant variance and normality. Once the
appropriate scale for the response is selected, the TBS-FCNLR model for the response measured on
the scale defined by λ̂a can be expressed as

h(yi, λ̂a) = h
(
f(xr,θ), λ̂a

)
+ εi, (10)

where θ is the parameter vector to be estimated and the error terms are assumed to be normally
distributed with zero mean and a constant variance σ2. As Box and Cox3 suggested in the con-
text of linear models, the transformation parameter is being treated as known in the TBS nonlinear
model (10).

The log-likelihood function and error mean square for the model (10) are lm(θ, λ̂a) and σ̂2(θ, λ̂a),
respectively. The MLE θ̂a can be obtained by maximizing the log-likelihood function lm(θ, λ̂a) or

minimizing the error mean square σ̂2(θ, λ̂a)/ỹ
λ̂a−1. Model (10) can be fitted using a nonlinear regres-

sion routine, treating the transformation parameter as known. The definition of a pseudo-regression
function is not required. Fitting model (10) is computationally simpler than fitting model (3) because
the inclusion of the transformation parameter not only adds a dimension to the optimisation required
but also in many cases gives a likelihood surface with ridge-like features.
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2.2.3 Estimation of standard errors

For the anova method of estimating parameters of TBS-FCNLR model (3), the method described in
Section 2.2.1 is used to estimate the transformation parameter λ. A number of methods are available
in the literature for estimating the standard error of the MLE λ̂a,

13 the simplest way being from
the information matrix corresponding to the log-likelihood function lb(λ) evaluated at the MLE λ̂a.
Atkinson and Lawrance14 discussed a method of calculating the standard error of λ̂a using the full
information matrix of the linear full treatment model, similar to (7), evaluated at the mean transformed
response. The nonlinear regression routine of any standard statistical software can be used to fit the
TBS-FCNLR model with known transformation parameter (10) and can provide reliable estimates of
error variance and standard errors of the estimates of the regression parameters θ̂a. We label this
method as “anova(a)” for obtaining standard errors of λ̂a and θ̂a. The standard errors of θ̂a and λ̂a
can also be obtained using a bootstrap method, which is similar to that we described for the ML
approach in Section 2.1.1. In this case, the random samples of residuals are generated from N (0, σ̂2e)
and, hence, the responses are obtained.

The anova method estimates the regression parameters conditionally, for a given value of the trans-
formation parameter. On the other hand, the ML method estimates the regression and transformation
parameters simultaneously. However, use of the estimate λ̂ in making inference about the regression
parameters remains an issue for both the methods, so that the interpretation of the regression pa-
rameters is conditional on λ̂ in either case. In the case of linear models with transformed responses,
Bikel and Doksum15 showed that treating the estimates of the transformation parameter as known
can inflate the asymptotic variance of the linear regression parameter estimates compared with what
standard linear theory provides. In response to this criticism, Hinkley and Runger16 stated that the
results of Bikel and Docksum15 have little significance in practical applications even though they are
mathematically correct. They argued that the regression parameters have no meaning without a par-
ticular scale and parameter estimates at different scales are not comparable. For the anova method,
we follow Hinkley and Runger16 and fix the transformation parameter λ at some value for estimating
the standard errors of regression parameter estimates, i.e. we are interested in SE(θ̂|λ̂).

2.2.4 Separation of lack of fit from pure error

Given our assumptions, the size of the lack of fit compared with pure error can be used to examine
the validity of the assumed model. If the model fits the data well, then it is expected that the lack of
fit sum of squares will not be much larger than the pure error sum of squares. The methods described
in Draper and Smith17 for separating lack of fit from pure error can be used with both the ML and
anova methods in the context of the TBS nonlinear model (3). The ratio of the lack of fit and pure
error mean squares is commonly used as the test statistic for examining the significance of the lack of
fit. The test statistic follows a central F-distribution if there is no lack of fit - see Seber and Wild11

for details.
A second method can be defined only for the anova method. The residual sum of squares of the

full treatment model (7) corresponds to the pure error sum of squares, whereas the residual sum of
squares of the TBS nonlinear model (10) corresponds to the sum of pure error and lack of fit sums of
squares. The lack of fit sum of squares can be obtained by subtracting the residual sum of squares of
the full treatment model (7) from the residual sum of squares of the TBS nonlinear model (10). Since
the TBS-FCNLR (10) is a special case of the full treatment model (7), the difference of the likelihood
functions corresponding to these two models can be used to assess the size of the lack of fit. Since
the full treatment model is used to estimate the pure error, the anova method provides more natural
definitions of pure error and lack of fit of the assumed nonlinear model form than the ML method for
which the nonlinear predictor can be computed using an incorrect λ, i.e. using ML a wrong nonlinear
functional model form can be compensated for by a wrong scaling of the responses. Thus the anova
method gives less ambiguous model selection than the usual ML method.
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2.3 Example: TBS-FCNLR model

As an example, the Puromycin data set18, is analyzed to compare the ML and anova methods,
described in Sections 2.1 and 2.2, in fitting a TBS-FCNLR model. The data were obtained from an
experiment in which the velocity of an enzymatic reaction was measured in counts/min2 at 6 different
substrate concentration levels with and without treating the enzyme by Puromycin. Two experiments
are conducted at each of the 6 substrate concentrations. The goal of the original experiment was to
examine whether the introduction of Puromycin affects the velocity of the reaction, which requires
the analysis of both the treated and untreated data simultaneously. To compare the ML and anova
methods in fitting TBS-FCNLR model, only the data from the runs treated by Puromycin are analyzed
here and we assume that each measurement is from a different experimental unit (though this is unclear
from the description given).

As in the original analysis of the Puromycin data, the Michaelis-Menten equation

f(xr;θ) =
V xr
K + xr

(11)

is assumed to model the relationship between the velocity and the substrate concentration, where
θ = (V,K)′ and the parameters V and K represent the maximal rate of velocity and the substrate
concentration corresponding to the half-maximal velocity, respectively.

The analyses of the Puromycin data using the Michaelis-Menten (M-M) model, described in Bates
and Watts18, and the TBS Michaelis-Menten model are shown in Table 1. The large value of the
F-statistic for lack of fit indicates that the ordinary Michaelis-Menten model does not fit the data well
(p-value < .0001), whereas the TBS Michaelis-Menten model fits the data reasonably well (p-value
> .2). The estimates of the parameters and the corresponding standard errors are similar for both
the ML and anova methods of estimation.

Table 1: Analysis of Puromycin Data18 using Michaelis-Menten fixed effects model

Estimates and standard errors (SEs) Lack of fit

Methods V̂ SE(V̂ ) K̂ SE(K̂) λ̂ SE(λ̂) F value

M-M 212.68 6.95 .064 .008 – – 147.75
ML 218.03 4.74 .075 .009 2.08 .79 1.52
anova 217.77 4.53 .074 .008 1.99 .47 1.15

3 TBS models with random nonlinear regression coefficients

Nonlinear mixed effects models are widely used for analyzing repeated measures data. Davidian
and Giltinan20 discussed their estimation and inference, and Pinheiro and Bates21 discussed the
computational details in the context of using the R package nlme22. The theory of nonlinear mixed
effects models is based on normality assumptions about the errors and random effects of the model.
Similar to the fixed effects models, violations of the assumptions regarding random effects can be
overcome by transforming the data.23 For linear mixed effects models, Gurka et al.24 discussed the
methods for analyzing models for transformation of only the response. Little has been published on
the transformation of nonlinear mixed effects models and in the following, a method for analyzing
TBS-RCNLR models is described.

3.1 The model

In this section, the TBS-RCNLR model is introduced in the context of the pharmacokinetic study
described in Section 1. Suppose we have S HLMs (randomly selected from a population of HLMs) and
R levels of substrate concentration. A subset of these R×S combinations of the HLMs and substrate
concentrations constitute the treatments. Suppose the intention is to conduct n experimental runs
and treatments are assigned to runs at random, so that the experimental unit is a run.
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Let yi = yi(rs) be the response measured from the ith experimental unit (i = 1, . . . , n) which was

randomly assigned the treatment that is a combination of the rth substrate concentration level xr and
sth HLM (r = 1, . . . , R; s = 1, . . . , S). As before, assume that at least two treatments are replicated
and let nrs be the number of replications of the treatment corresponding to the concentration level
xr and the sth HLM, where

∑
r,s nrs = n. The usual form of error terms cannot be assumed if the

response is modeled on its original scale. We assume that errors and random effects are normally
distributed after transformation.

Consider the following TBS-RCNLR model for the response corresponding to the ith experimental
unit

h(yi(rs), λ) = h
(
f(xr;θs), λ

)
+ εi, θs = Asβ + bs, (12)

where θs denotes the p-dimensional parameter vector corresponding to the sth HLM, εi denotes the
random error term, bh denotes a p-dimensional vector of random effects, As is the p× q dimensional
indicator variable matrix corresponding to the sth HLM, and β denotes the q-dimensional vector
of population fixed effects. It is assumed that bs ∼ Np(0,Σ(α)), εi ∼ N (0, σ2), bs and εi are
independent, and α is the vector of parameters which completely specifies the variance-covariance
matrix Σ.

3.2 The ML method of estimation : TBS-RCNLR

In this section, we briefly review the ML method for fitting the TBS-RCNLR model (12). To write the
likelihood function, we first divide all the responses y1, . . . , yn into S independent vectors y1, . . . ,yS ,
where ys is the response vector of order n·s (=

∑
r nrs) corresponding to the sth HLM and

∑
s n·s = n.

Let xs be the vector of concentration levels corresponding to the experimental units of the response
vector ys. According to model (12), given the random effects bs, the transformed response zs =
h(ys, λ) follows an n·s-dimensional normal distribution with mean vector µs = (h(f(x; θs), λ))x∈xs

and covariance matrix σ2V, where V can be expressed as a function of α, β, and σ2.
The marginal density function of the transformed response vector zs can be obtained by integrating

out the random effects term as

gz(zs) =

∫
· · ·
∫
gz|b(zs | bs) gb(bs) dbs1 · · · dbsp, (13)

where gz|b(·) and gb(·) are probability density functions corresponding to Nn·s(µs, σ
2V) and Np(0,σ),

respectively. The multi-dimensional integration is often nonlinear in the random effects and is very
complicated to solve analytically. A number of approaches are available in the literature for approx-
imating multi-dimensional integration of this type, two of the most popular methods being Taylor
series approximation25 and Laplace’s approximation26;27.

The marginal distribution of the response vector ys can be obtained by multiplying the Jacobian
of the transformation Zs → Ys with the approximate expression of (13). In this case the likelihood
function is l(β,α, λ) =

∏S
s=1 gy(ys), where gy(·) is the pdf of ys. The MLE of the population regression

parameter β, parameters involved in the random effects α, and the transformation parameter λ can
be obtained simultaneously by optimizing l(β,α, λ).

Gilberg et al.7 suggested a ML method for fitting TBS-RCNLR model, which has two steps. In
the first step, initial estimates of the regression and transformation parameters are obtained using a
pseudo-regression model. In the second step the nonlinear model is approximated to obtain the corre-
sponding linear model using the approach suggested by Lindstrom and Bates25 and this step provides
the estimate of the random effects terms. These two steps are iterated until the procedure converges.
Oberg and Davidian6 suggested a method that uses the Laplace transformation for approximating
the corresponding log-likelihood function of the transformed response. Both of these approaches are
computationally very intensive.

3.3 The anova method of estimation : TBS-RCNLR

The anova method, described in Section 2.2 for the TBS-FCNLR model, can be extended to the
TBS-RCNLR model (12) by considering an appropriate full treatment model. In the following sec-
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tions, methods for estimating the transformation parameter λ, population regression parameter β and
variance components are described.

3.3.1 Estimation of the transformation parameter

To estimate the transformation parameter λ, consider the following full treatment model for the
transformed response corresponding to the ith experimental unit

h(yi(rs), λ) = µrs(x) + δi,

where µrs is the mean of the transformed response corresponding to the treatment that is obtained
from the combination of the substrate concentration level xr and HLM s, the errors are assumed to
be independent and δi ∼ N (0, σ2e). In this case, the mean function µrs depends on the levels of two
factors, substrate concentration level and HLM, so we can parameterize the mean function µrs as

µrs(x) = µ+ τrs, (14)

where µ is the overall mean and τrs is the effect of the treatment associated with the sth HLM and rth

concentration level. The regression parameters of the full treatment model do not have any significance
other than contributing to the estimation of transformation parameter λ. We treat all the factors of
the full treatment model as if they are fixed and we use the model form in (14). The ML estimator λ̂a
can be obtained by maximizing the corresponding log-likelihood function, and the details of obtaining
the MLE λ̂a and the corresponding standard errors are described in Section 2.2.

3.3.2 Estimation of the regression parameters and variance components

Using the MLE λ̂a of the transformation parameter in the TBS-RCNLR model (12), the resulting
model becomes

h(yi, λ̂a) = h(f(xr;θs), λ̂a) + εi, θs = Asβ + bs, (15)

where the parameters to be estimated are the population regression parameters and variance compo-
nents. The likelihood function corresponding to model (15) can be obtained as described in Section
3.2. In this case, the response vector corresponding to the sth HLM zs = h(ys, λ̂a) follows a multi-
variate normal distribution with mean vector µs = (h(f(x; θs), λ̂a))x∈xs and covariance matrix σ2V.
The likelihood function is simpler than that of the model (12) because the transformation parameter
is considered as known. Model (15) is similar to the standard nonlinear mixed effects model which can
be fit using the methods described in the books of Davidian and Giltinan20, and Pinheiro and Bates21

using standard software, e.g. the nlme function of R, although this might not be the best.12 The anova
method requires more than one replication of at least one of the treatments under investigation for
estimating the transformation parameter.

3.3.3 Example: TBS-RCNLR

As an example of TBS-RCNLR model, the Phenacetin O-Deethylation (POD) data set, which was first
analysed by Belle et al.1, is used in this section. One of the objectives of their study was to identify
cytochrome P450 (CYP) enzymes that catalyze POD. The CYP enzymes are important because they
play a vital role in the metabolism of drugs. In the study, 19 HLMs and four concentration levels of
POD are selected, and each combination of HLM and concentration level are replicated three times.
Belle et al.1 used the HLM-specific Michaelis-Menten equation f(x,θs) = Vs x/(Ks + x) to analyse
the data in the original paper. The transform-both-sides Michaelis-Menten mixed effects model

h(yi(rs), λ) = h
(
Vs xr/(Ks + xr), λ

)
+ εi,

is considered for modelling the rate of reaction yi(rs) measured from the ith experiment that corresponds

to the sth HLM and rth level of concentration, where θs = (log Vs, logKs)
′ = (V,K)′+bs and compared

to the model defined in (7), As = I2 and β = (V,K)′ are used. Assume that bs ∼ N2(0,Σ), where
Σ = diag{σ2V , σ2K}. Using the anova method of estimation, the estimate and the corresponding
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standard error of the transformation parameter are λ̂ = 0.475 and SE(λ̂) = 0.054, respectively. The
estimates of the population regression parameters (V,K)′ and the random effects (σ2V , σ

2
K)′ given the

transformation parameter λ0 ∈ {1, 0, λ̂} are shown in Table 2. The estimates and corresponding
standard errors are found to be similar for the three cases of Box-Cox transformation considered:
λ0 = 1 (no transformation), λ0 = 0 (transform-both-sides by log transformation), and λ0 = λ̂ = 0.475
(transform-both-sides by MLE of transformation parameter). Figure 1 shows a comparison between
standardized residuals of the fitted TBS Michaelis-Menten mixed effects models with transformation
parameters 1, 0, and 0.475, respectively. The Q-Q normal plot shows that the standardized residuals
of the model corresponding to the MLE of the transformation parameter (i.e. λ̂ = 0.475) is closer to
the standard normal distribution than that of obtained from the TBS models with no transformation
(i.e. λ = 1) and log-transformation (i.e. λ = 0).

Table 2: Analysis of Phenacetin O-Deethylation data1 using ordinary and transform-both-sides
Michaelis-Menten mixed effects models.

Models V̂ SE(V̂ ) K̂ SE(K̂) σ̂V σ̂K λ0
Model-1 6.991 0.116 3.192 0.189 0.498 0.778 1.000
Model-2 6.915 0.128 2.899 0.157 0.556 0.661 0.000
Model-3 6.946 0.123 3.006 0.168 0.532 0.709 0.475

Figure 1: Q-Q normal plot of standardized residuals obtained from transform-both-sides Michaelis-
Menten mixed effects models with transformation parameter λ0 ∈ {1, 0, 0.475}.
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4 TBS nonlinear models with random block effects

In this section the methods of analyzing TBS nonlinear models are discussed when the experiments
are conducted in blocks.

4.1 TBS-FCNLR models

The method of analyzing TBS-FCNLR model, discussed in Sections 2.1 and 2.2, is now extended
by incorporating blocking in the experimental setup. Consider an experimental scenario, in which
pre-specified groups of treatments x1, . . . , xR are randomly allocated to blocks and, within each block,
treatments are randomly allocated to runs. Assume that there are J blocks and each block has b runs.
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If b < R then the design is called an incomplete block design, which is most often used in applications.
In this case, the total number of experimental units is n = bJ .

Let yji(r) be the response corresponding to the ith experimental unit in the jth block, which was

randomly allocated to the rth treatment. Consider the model for the transformed response

h(yji(r), λ) = h
(
f(xr;θ), λ

)
+Bj + εji, (16)

where εji is the random error term corresponding to the ith experimental unit in the jth block and
Bj is the random block effect corresponding to the jth block. It is assumed that εji ∼ N (0, σ2),
Bj ∼ N (0, σ2b ) and εij and Bj are independent. The goal is to estimate the regression parameter θ
and the variance components σ2 and σ2b . To our knowledge, analysis of models of the type (16) has
not been discussed in the literature in the context of nonlinear models.

4.1.1 The anova method of estimation

As in previous sections, a full treatment model is assumed in the anova method for estimating the
transformation parameter, i.e.

h(yji(r), λ) = µr(x) + βj + δji, (17)

where µr(x) denotes the mean function corresponding to the rth concentration level, βj denotes the
fixed effect of the jth block, and random error terms δji are assumed to be normally distributed with
zero mean and constant variance σ2e . For a given value of λ, the analysis of model (17) follows the
usual analysis for an incomplete block design.10;28;29 The MLE λ̂a is the estimator that maximizes the
likelihood function corresponding to model (17) and hence the estimate of the pure error mean square
σ̂2e can also be obtained.

Using the MLE λ̂a, the TBS nonlinear regression model with random block effects (16) becomes

h(yji(r), λ̂a) = h
(
f(xr;θ), λ̂a

)
+Bj + εji, (18)

where the regression parameters θ, and variance components σ2b and σ2 are the parameters of interest.
To write down the likelihood function, we use the fact that responses within each block are correlated
and responses between blocks are independent. Let yj = (yj1, . . . , yjb)

′ be the vector of responses
corresponding to the jth block and assume that the yj ’s are independent, j = 1, . . . , J . Following

the assumptions of the model (16), h(yj , λ) ∼ Nb
(
h(µj , λ̂a), σ

2Σj

)
, where Σj = Ib(σ

2 + σ2b )/σ
2 +

Jb(σ
2
b/σ

2), Ib is an identity matrix of order b, Jb is a b-dimensional square matrix of 1’s, µj =(
f(x1j ;θ), . . . , f(xbj ;θ)

)′
and {x1j , . . . , xbj} is the set of concentration levels assigned to b plots of the

jth block.
The MLEs of the regression parameters and variance components can be obtained by maximizing

the likelihood function corresponding to model (18). The generalized nonlinear least squares method
of estimation can be used. Models of type (18) can be fitted using statistical software, e.g. the gnls

function in R.

5 Simulation studies

In this section, we discuss the results of some simulation studies for examining the performance of the
methods described in Sections 2–4. For the TBS-FCNLR model, described in Sections 2.1–2.2, we will
show the comparison between the ML method and the anova method. The performance of the anova
method is reported for fitting the TBS-RCNLR model and TBS-FCNLR model with random block
effects.

5.1 TBS-FCNLR model

The Michaelis-Menten equation (11) is used in the simulation study. The response corresponding to
the ith experimental unit, which is assigned to the concentration level xr, is modeled as

yi(r) = h−1
(
h
(
f(xr;θ), λ

)
+ εi

)
, (19)
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where f(xr,θ) = V xr/(K + xr), errors are assumed to be independent and ε ∼ N (0, σ2). We used
V = 5, K = 3, and σ = .1 for simulating responses from model (19). Simulation results are examined
for different values of the true transformation parameter λ ∈ [−1, 2] and also for different sets of
concentration levels, i.e. different designs.

Table 3 reports the average bias and standard deviation (SD) of the estimates V̂ , K̂, λ̂, and σ̂,
computed from 2000 simulated samples. In this case, 10 replications of the design X1 = {1, 3, 5, 7, 9}
are considered in the simulation, i.e. the total number of experimental units used is n = 50. The
results show that all the parameter estimates are almost unbiased in the sense that the bias is found
to be no more than 1/10 of the corresponding standard deviation and we will use this definition of
unbiasedness in interpreting the remainder of the simulation study. We note that the bias is higher
for λ = −1 as was also found by Ruppert et al..19 The variability of the estimates V̂ and K̂ tend
to decrease as the true value of the transformation parameter increases. On the other hand, the
variability of the estimates λ̂ and σ̂ do not depend on the true value of λ. On comparing the anova
and ML methods, the standard deviations are found to be equal up to two decimal places for each λ
value. The percentage of simulations which converged is also given and the anova method is found to
be more stable in this regard compared with the ML method, especially when the true transformation
parameter is around zero. Similar results are obtained from the simulations with 5 replications of
the design X1, but these are not shown. This shows that the separation of the estimation of the
transformation parameter from the estimation of the nonlinear location parameters does indeed have
the expected benefit of improving the stability of estimation.

Table 3: Bias and standard deviation (SD) of the Michaelis-Menten fixed effects model parameters
for the ML and anova methods of estimation. 2000 simulations are used with true parameter values
V = 5, K = 3, σ = 0.1, and λ ∈ [−1, 2]. The design X1 = (1, 3, 5, 7, 9) and n = 50 are used.

Bias (SD)

λ Method V̂ K̂ λ̂ σ̂ %Converged

2.0 ML .0004 (.0301) .0008 (.0561) -.0163 (.2685) .0014 (.0277) 100
anova .0005 (.0302) .0009 (.0563) -.0326 (.2743) -.0011 (.0275) 100

1.5 ML .0009 (.0496) .0018 (.0882) -.0256 (.2726) .0006 (.0278) 100
anova .0010 (.0497) .0019 (.0884) -.0325 (.2743) -.0011 (.0275) 100

1.0 ML .0017 (.0783) .0033 (.1302) -.0362 (.2746) -.0004 (.0279) 100
anova .0017 (.0783) .0033 (.1301) -.0322 (.2742) -.0010 (.0276) 100

0.5 ML .0028 (.1201) .0051 (.1797) -.0343 (.2694) -.0003 (.0274) 97
anova .0026 (.1203) .0047 (.1799) -.0314 (.2734) -.0010 (.0277) 100

0.0 ML .0034 (.1883) .0064 (.2424) -.0587 (.2838) -.0023 (.0285) 91
anova .0041 (.1876) .0063 (.2414) -.0293 (.2711) -.0008 (.0277) 99

-0.5 ML .0062 (.3079) .0086 (.3341) -.0509 (.2555) -.0021 (.0263) 99
anova .0095 (.3084) .0105 (.3348) -.0193 (.2585) -.0001 (.0270) 100

-1.0 ML .0288 (.5395) .0243 (.5073) .0059 (.2074) .0020 (.0244) 93
anova .0398 (.5420) .0324 (.5094) .0292 (.2095) .0035 (.0248) 93

The pseudo-regression based and bootstrap methods of obtaining standard errors are described
in Section 2.1.1 and Section 2.2.3 for the ML and the anova method, respectively. The comparisons
between these are reported in Table 4, where the estimates are computed from 2000 simulations using
model (19). For the bootstrap method, 500 bootstrap samples are generated from each simulated sam-
ple to obtain the standard errors of the estimates. The same values of the regression parameters, error
variance, and the design are considered in this case but results are reported only for λ ∈ {0.5, 1, 1.5}
because the bootstrap method requires more computational time. The methods of estimating standard
errors are compared using the ratio of the average standard error (AvgSE) to the standard deviation
(SD) of the estimates, RE = AvgSE/SD. For a method that correctly estimates the standard error,
the RE value will be close to unity. The results show that the bootstrap approach outperforms the
pseudo-regression based method in most cases for both the ML and anova methods. On average, a
large number of experimental units and a small value of the transformation parameter lead to more
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reliable estimates of the standard errors. If the pseudo-regression based method is considered, the ML
method outperforms the anova method for the estimates V̂ and K̂, but the anova method performs
better than the ML method for the estimates λ̂. On average, the ML and the anova methods perform
equally well if the bootstrap approach is used for estimating the standard errors of the estimates.

Table 4: Ratio of the average estimated SE to SD (RE=AvgSE/SD) of the Michaelis-Menten fixed
effects model parameters for the ML and anova methods of estimation. 2,000 simulations are used with
true parameter values V = 5, K = 3, σ = 0.1, and λ = {1.5, 1.0, 0.5}. The design X1 = {1, 3, 5, 7, 9}
and n = {25, 50} are used.

RE(V̂ ) RE(K̂) RE(λ̂)
n λ Method (a) (boot) (a) (boot) (a) (boot)

25 1.5 ML 0.962 0.984 0.942 0.965 1.317 1.014
anova 0.910 1.006 0.886 0.987 0.847 1.021

1.0 ML 0.982 1.011 0.964 0.996 1.291 1.013
anova 0.937 1.020 0.916 1.009 0.837 1.004

0.5 ML 0.965 0.996 0.914 0.950 1.232 0.981
anova 0.939 1.009 0.895 0.976 0.826 0.991

50 1.5 ML 1.004 1.014 0.997 1.008 1.375 1.009
anova 0.985 1.027 0.976 1.021 0.933 1.014

1.0 ML 0.995 1.006 0.976 0.989 1.361 1.001
anova 0.980 1.019 0.959 1.002 0.920 1.003

0.5 ML 0.981 0.992 0.970 0.983 1.388 1.026
anova 0.964 0.996 0.954 0.994 0.923 1.006

5.2 TBS-RCNLR model

As an example of the TBS-RCNLR model, we simulate the pharmacokinetic study described at the
beginning of Section 3.1. The relationship between the treatment corresponding to the sth HLM and
substrate concentration xr, is modelled as

f(xr;θs) =
Vs xr

Ks + xr
, θs = (log Vs, logKs)

′ = (V,K)′ + bs,

where θs and bs are the parameter vector and random effects, respectively, corresponding to the sth

HLM. It is assumed that bs ∼ N2(0,Σ), where Σ = diag{σ2V , σ2K}. This model is similar to the
nonlinear model considered in Section 3.3.3.

The response corresponding to the ith experimental unit, which is associated with the sth HLM
and concentration level xr, is generated from

yi(rs) = h−1
(
h
(
f(xr;θs), λ

)
+ εi

)
,

where error terms εi ∼ N (0, σ2). In this case λ = −1 does not give higher biases than other values,
although we do not know why. The parameter values used in the simulations are V = K = 1,
σV = σK = 0.1, σ = 0.02, and λ ∈ [−1, 2].

Table 5 shows the average bias and standard deviation of the estimates of the regression parameters,
variance components and transformation parameter from 2000 simulations. In this case, 10 HLMs and
substrate concentration levels X1 = {1, 3, 5, 7, 9} are used to simulate the data and each treatment
is replicated 10 times, i.e. 500 experimental units are used in the simulation. The bias and standard
deviation corresponding to λ̂ are similar to the anova method for the TBS-FCNLR model (see Table
3), because in both cases the treatment model is considered for estimating the parameter. All the
parameter estimates are almost unbiased. The pattern of the estimates of regression parameters and
variance components remains the same for different values of the transformation parameter.

The effects of using different numbers of HLMs, replications, and concentration levels for the
estimate of bias and SD are summarized in Table 6. In this case, all the combinations of the designs
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Table 5: Bias and SD of the parameter estimates of TBS Michaelis-Menten mixed effects model. True
values of the parameters used for the simulation are V = 1, K = 1, σV = 0.1, σK = 0.1, and σ = 0.02.
The design X1 = {1, 3, 5, 7, 9} and 10 HLMs are used with 10 replications.

Bias (SD)

λ V̂ K̂ σ̂V σ̂K λ̂

2.0 .0067 (.0326) .0028 (.0368) -.0073 (.0234) -.0076 (.0292) -.0120 (.1399)
1.5 .0066 (.0325) .0037 (.0348) -.0072 (.0233) -.0079 (.0275) -.0113 (.1418)
1.0 .0066 (.0325) .0044 (.0336) -.0072 (.0232) -.0075 (.0261) -.0111 (.1425)
0.5 .0066 (.0325) .0049 (.0330) -.0071 (.0233) -.0069 (.0249) -.0110 (.1428)
0.0 .0067 (.0325) .0053 (.0326) -.0071 (.0233) -.0067 (.0244) -.0110 (.1431)

-0.5 .0067 (.0324) .0053 (.0324) -.0071 (.0233) -.0065 (.0241) -.0110 (.1430)
-1.0 .0067 (.0324) .0054 (.0323) -.0071 (.0232) -.0064 (.0239) -.0110 (.1430)

{X1, X2, X3}, the number of HLMs S ∈ {5, 10} and the number of replications {5, 10} are used, where
X2 = {1, 3, 6, 9} and X3 = {1, 5, 9}, and the results based on 2000 simulations are shown only for
λ = 0.5. All the estimates are found to be almost unbiased with respect to the size of the corresponding
standard deviations. Increasing the number of HLMs reduces the variability of the estimates of the
regression parameters and random effects more than if the number of replications is increased. The
accuracy of the estimate λ̂ depends on the number of experimental units per treatment used in the
experiment, large numbers of experimental units provide more accurate estimates. In simulation, we
found that increasing the number of HLMs improves the accuracy of the SD(V̂ ) and SD(K̂), but
increasing the number of replications only improves the accuracy of SD(λ̂).

Table 6: Bias and SD of the parameter estimates of TBS Michaelis-Menten mixed effects model. True
values of the parameters used for the simulation are V = 1, K = 1, σV = 0.1, σK = 0.1, σ = 0.02,
and λ = 0.5. Three designs X1 = {1, 3, 5, 7, 9}, X2 = {1, 3, 6, 9} and X3 = {1, 5, 9} are used for the
simulations.

Bias (SD)

Design S/n·s V̂ K̂ σ̂V σ̂K λ̂

X1 5/5 .0071 (.0452) .0019 (.0488) -.0138 (.0320) -.0129 (.0350) -.0251 (.3106)
5/10 .0044 (.0457) .0076 (.0466) -.0162 (.0314) -.0153 (.0331) -.0141 (.2055)
10/5 .0049 (.0331) .0033 (.0343) -.0065 (.0235) -.0082 (.0268) -.0158 (.2160)
10/10 .0066 (.0325) .0049 (.0330) -.0071 (.0233) -.0069 (.0249) -.0110 (.1428)

X2 5/5 .0043 (.0447) .0032 (.0494) -.0145 (.0311) -.0123 (.0350) -.0280 (.3171)
5/10 .0063 (.0464) .0041 (.0454) -.0139 (.0330) -.0146 (.0332) -.0140 (.2115)
10/5 .0035 (.0324) .0026 (.0341) -.0067 (.0229) -.0081 (.0258) -.0074 (.2234)
10/10 .0045 (.0317) .0046 (.0331) -.0067 (.0227) -.0085 (.0245) -.0066 (.1461)

X3 5/5 .0052 (.0457) .0029 (.0492) -.0152 (.0317) -.0121 (.0359) -.0245 (.3398)
5/10 .0055 (.0455) .0024 (.0457) -.0142 (.0318) -.0153 (.0339) -.0149 (.2169)
10/5 .0044 (.0321) .0031 (.0348) -.0063 (.0230) -.0078 (.0266) -.0148 (.2421)
10/10 .0045 (.0315) .0042 (.0329) -.0068 (.0237) -.0085 (.0246) -.0055 (.1556)

5.3 TBS-FCNLR model with random block effects

The response corresponding to the ith experimental unit, in the jth block, which is assigned the rth

concentration level, can be generated from the model

yji(r) = h−1
(
h
(
f(xr;θ), λ

)
+Bj + εji

)
, (20)

where, similar to (11), the Michaelis-Menten equation f(x;θ) = V x/(K + x) is considered as the
nonlinear function, the random block effect is Bj ∼ N (0, σ2b ) and error terms are εji ∼ N (0, σ2).
We assume that Bj and εji are independent. For the simulation, we have considered a balanced
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incomplete block design in which 30 experimental units are arranged in 10 blocks and each block has
3 runs. True values of the parameters used in the simulation are V = 5, K = 3, σb = 0.8, σ = 0.02,
and X1 = {1, 3, 5, 7, 9}.

Table 7 shows the average bias, SD and ratio of the average SE to SD of the parameter estimates,
computed from 2000 simulations. All the estimates are found to be almost unbiased with respect to
the size of the corresponding standard deviation. The size of the variability does not depend on the
true value of λ for the estimates σ̂b and λ̂.

Table 7: Bias, SD and ratio of average SE to SD of the parameter estimates of the TBS Michaelis-
Menten fixed effects model with random blocks. True values of the parameters used in the simulation
are V = 5, K = 3, σ = .02, σb = .08. The design X1 = {1, 3, 5, 7, 9} and 10 blocks each has 3 plots
are used.

Bias (SD) [RE]

λ V̂ K̂ σ̂b λ̂

2.0 -.0001 (.0106) [.898] -.0005 (.0276) [.900] .0043 (.0259) -.0011 (.1832) [.674]
1.5 .0007 (.0172) [.871] .0016 (.0473) [.874] .0026 (.0271) -.0047 (.1910) [.644]
1.0 .0006 (.0259) [.925] .0019 (.0720) [.863] .0001 (.0253) -.0113 (.1885) [.650]
0.5 .0012 (.0560) [.960] .0004 (.0829) [.874] -.0014 (.0254) -.0135 (.1961) [.622]
0.0 .0051 (.1420) [.954] .0008 (.0792) [.969] -.0020 (.0243) -.0133 (.1858) [.659]
-0.5 .0121 (.3235) [.939] .0048 (.1709) [.948] -.0020 (.0241) -.0080 (.1828) [.665]
-1.0 .0746 (.7164) [.913] .0459 (.4522) [.910] -.0021 (.0232) -.0068 (.1710) [.679]

6 Conclusion

The results show that both the ML and anova methods estimate the regression and transformation
parameters with very small bias compared with the corresponding standard deviations. For the TBS
nonlinear model, accurate estimation of the standard errors of regression parameter estimates is an
issue, but the bootstrap method can estimate the standard error more precisely compared with the
pseudo-regression based approach, for both the ML and anova methods. The anova method is found
to be more stable compared to the ML method in some situations.

The anova method is not only computationally simpler than the ML method, but also can provide
unbiased estimators of the parameters. Estimates of the regression parameters depend on the number
of factor levels used, whereas the estimation of the transformation parameter depends on the number
of replications used in the experiment.

Estimation of pharmacokinetic models is often problematic and one of the reasons is that we often
do not make most use of the benefits implied by the structure of a well-designed experiment. Indeed,
the standard analysis of experimental data is identical to that which would be performed were the
data obtained from an observational study. The methods described here are very easy to use and have
the potential to give experimenters more reliable conclusions from their data analysis. Of course, the
methods described here can only be applied to replicated experiments. However, in such cases, they
perform very well and we recommend them for practical use.
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