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In all eukaryotic organisms, pre-mRNA splicing and alternative splicing processes play an essential role in regulating the flow
of information required to drive complex developmental and metabolic pathways. As a result, eukaryotic cells have developed a
very efficient macromolecular machinery, called the spliceosome, to correctly recognize the pre-mRNA sequences that need to be
inserted in a mature mRNA (exons) from those that should be removed (introns). In healthy individuals, alternative and constitutive
splicing processes function with a high degree of precision and fidelity in order to ensure the correct working of this machinery. In
recent years, however, medical research has shown that alterations at the splicing level play an increasingly important role in many
human hereditary diseases, neurodegenerative processes, and especially in cancer origin and progression. In this minireview, we
will focus on several genes whose association with cancer has been well established in previous studies, such as ATM, BRCAI/A2,
and NFI. In particular, our objective will be to provide an overview of the known mechanisms underlying activation/repression of
pseudoexons and pseudointrons; the possible utilization of these events as biomarkers of tumor staging/grading; and finally, the
treatment options for reversing pathologic splicing events.

1. Introduction

Starting from the first description of alternative splicing and
constitutive splicing processes in 1977 [1-3], the importance
of this process that guarantees the correct flow of information
from transcription to translation in eukaryotic cells has
continued to grow exponentially.

In particular, one major branch of research in this area
has the aim to investigate and characterize the cellular macro-
molecular machine (i.e., the spliceosome) that is physically
responsible for the cutting and joining of intronsexons by
catalyzing two transesterification reactions [4, 5] and the
mechanisms that ensure its fidelity [6]. As a result, research in
spliceosome composition and functioning has been comple-
mented by studies aiming to understand the sequences and
molecules that determine under which conditions a partic-
ular exon or intron is selectively recognized and included in

the mature transcript. Therefore, after the basic elements that
define introns and exons and are composed by donor and
acceptor splice sites plus the branch point sequence, there
was the discovery of enhancer and silencer elements that
can affect either positively or negatively the way these basic
elements are recognized by the spliceosome [7-9]. Usually,
enhancer and silencer elements are bound by members of the
SR and hnRNP protein families, respectively.

The recruitment of these proteins to specific sites is crucial
for their activity as depending on their position with respect
to the basic elements their roles can be antagonistic or, in
some case, agonistic [10, 11]. Global analyses of the ways these
factors cooperate and influence each other in shaping the
splicing process has only recently begun to shed light on how
they promote or hinder exon recognition in a co-ordinated
manner [12-14].



Rather unexpectedly, these studies have shown that SR
proteins interact not only with alternatively spliced exons but
also with constitutively spliced exons, and that their major
role consists in recruiting the splicing machinery to splice
sites [15, 16].

On the other hand, hnRNP proteins bind to nascent pre-
mRNA and influence splicing decision through a complex
and finely tuned network of protein/protein interactions. The
mechanisms of hnRNPs actions on splicing is generally less
defined than those of SR proteins [17].

In addition to these elements, we now also know that
splicing choices are affected by a myriad of other factors,
ranging from chromatin modifications [18, 19], transcrip-
tional factors [20], RNA secondary structure [21], short
noncoding RNAs [22, 23], and various cellular stresses [24].

In parallel to these mechanistic studies, another branch
of splicing research has also addressed the functional impor-
tance of alternative splicing processes in biological pathways
and in particular the way that alternative splicing isoforms of
proteins can acquire different or even antagonistic biological
properties [25, 26]. Because of this ability to expand the
proteome of cells, alternative splicing has represented a
very useful and powerful tool that allows cells to execute
the various expression programs which underlie many fun-
damental needs of higher organisms: from general needs
such as controlling normal development and tissue-specific
expression of proteins, to highly specialized processes such
as DNA damage response or microRNA biogenesis [27-33].
Moreover, the rearrangements that a pre-mRNA undergoes
during the splicing process are also advantageous in terms of
providing a longer half-life and better translational capacity,
something that has recently begun to be exploited by the
biotechnology industry [34].

Considering all these necessities and advantages, it is
therefore not surprising that the number of genes that are
subject to alternative splicing in eukaryotic organisms has
been steadily growing. Indeed, it was recently estimated that
more than 90% of mammalian protein coding genes can
produce at least one splicing-derived isoform expressed at
potentially significant biological levels [35].

The complexity of this system, however, also puts spliceo-
some functioning at risk of being impaired by the occur-
rence of single-point mutations in splicing regulatory ele-
ments, deletions/insertions, genomic rearrangements, and
alterations at the splicing factor expression level [36]. Any
of these alterations can result in a variety of aberrant splic-
ing outcomes that usually include aberrant exon skipping,
cryptic splice site selection, intron retention, and pseudoexon
activation [37, 38]. As expected, many of these changes can
lead directly to the occurrence of disease in humans, and it
has now been estimated that a sizable proportion of all gene
mutations leading to disease can be directly connected with
the presence of a splicing defect [7, 39].

Importantly, the introduction of novel technologies that
allow fast profiling of the transcriptome seems promising for
simplifying investigation of which genomic variability and
plasticity events allow cancer cells to tailor specific functional
units from the available exons of a gene. For example, recent
RNA sequencing of the breast cancer transcriptome has
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revealed many new splicing alterations that were not previ-
ously described. In particular, for example, it was reported
that 423 primary transcripts (derived from 377 genes) were
differentially spliced in triple-negative breast cancer samples
(generating 496 novel isoforms) [40]. By analyzing non-
triple-negative breast cancer samples, the same study found
that 270 and 460 primary transcripts (derived from 242 and
387 differentially spliced genes, resp.) generated 331 and 550
novel isoforms that were not present in normal breast tissue
[40].

2. Aberrant Splicing Events in Cancer Genes

It has become clear that in several human pathologies,
including cancer, the alternative splicing profile is aberrantly
modified in a specific manner and in ways that can favor the
growth and survival of cancer cells [41-44]. The generation of
these aberrant splicing profiles can occur in many ways, such
as through the re-expression of developmentally regulated
isoforms that had previously been shut off following early
developmental stages [45, 46], by affecting the splicing
profiles of genes that are implicated in tumor progression
[47, 48], or through other mechanisms that generally have
anti-apoptotic/metastatic consequences and that can affect
response to therapies [49, 50].

In addition, several studies have defined that cancer-
associated splicing alterations arise not only from mutations
in the cancer-related genes but derive also from variations in
the expression and/or activity of splicing regulatory factors
[51]. For example, it has been well established that the levels
of SR- and hnRNP-proteins undergo changes associated with
transformation and progression of cancers [44, 52]. Strik-
ingly, it has been recently reported that some members of the
SR protein family of splicing factors and other components
of the spliceosomal cellular machinery can actually act as
oncoproteins and play a direct role in promoting tumor origin
and progression [53-55] and that external stimuli such as
hypoxia can cause the aberrant redistribution of important
splicing factors such as Tra2 and promote the expression of
tumor-promoting splicing isoforms [56].

The case of Bcl-X (BCL2LI) gene, belonging to the
BclII family and implicated in the control of mitochondrial
breakdown during apoptosis, is emblematic of this concept.
For example, two splicing Bcl-X isoforms can arise from
the use of two alternative 5 splice sites within exon 2
and lead to the synthesis of a short apoptosis-promoting
protein (Bcl-XS) and to a long antiapoptotic form (Bcl-XL)
[57]. Different splicing factors, including Sam68, hnRNPA1,
SEF2/ASE, hnRNP F/H, hnRNP K, SAPI55, and SRp30c have
been found to be involved in the selection of the two
competing alternative 5 splice sites that give rise to these two
isoforms [58-61]. In addition, recent studies have shown that
the elongation and splicing-related factor TCERGI can bind
to the Bcl-X pre-mRNA and promote the proapoptotic Bcl-
XS 5' splice site in a promoter-dependent manner [62].

Finally, the production of the proapoptotic Bcl-XS splice
variant seems to be improved by the core (Y14 and eIF4A3)
and auxiliary (RNPSI, Acinus, and SAPI8) components of
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the exon junction complex (EJC) [63], suggesting that EJC-
associated components can regulate apoptosis at the alterna-
tive splicing level and represent a further level of vulnerability
of cancer.

Therefore, one of the most interesting research areas
in this field consists in the identification of cancer-specific
splice variants or the aberrant expression of splicing-affecting
proteins that could lead to their generation. Examples of
both these events, in fact, have already been shown to
occur in some individual types of cancer, such as breast and
ovarian cancer [64, 65]. Another interesting research area
in aberrant splicing events connected with tumors is the
occurrence of particular types of splicing defects that involve
the inclusion of “new” sequences (known as pseudoexons)
in the mature mRNA of cancer-related genes. Rather more
rarely, the opposite has also been shown to occur: the aberrant
recognition of intronic sequences (pseudointrons) within
normal exons. In this review, we have also decided to provide
particular attention to these events as they are probably more
common than previously considered and have not yet been
the subject of particular attention.

One of the reasons why these two events are particularly
interesting is that these types of defects are ideally suited for
novel therapeutic effector molecules that are based in RNA
biology. In the case of pseudoexons and pseudointrons, in
fact, the major advantage of targeting this type of inclusion
events is that the antisense oligonucleotides would be targeted
against normal intronic sequences and thus would not remain
bound to the mature mRNA (possibly to interfere with later
stages of RNA processing such as export/translation).

3. Pseudoexon Activation in Cancer

In the pre-mRNA splicing field, the term “pseudoexon”
has been introduced to describe exonic-like sequences that
are present within intronic regions but are ignored by the
spliceosomal machinery. A closer look at these sequences has
often provided a reason for their inability to be recognized
as normal exons: the presence of intrinsic defects in their
apparently viable donor and acceptor sites [66] or of silencer
elements [67-69] and the formation of inhibiting RNA
secondary structures [70-72].

From a functional point of view, in most cases of pseudo-
exon insertion, the presence of an extraneous exon within the
mature mRNA causes either the disruption of the transla-
tional reading frame or the insertion of novel amino acid
sequences following translation. As a result, the normal
biological properties of the resulting protein are very likely
disrupted, and this can be associated with the development
of disease.

Unfortunately, it is still quite hard to identify reliable
pseudoexon insertion events in human genes implicated
in cancers by just performing a general interrogation of
databases (matching 22719 ENSEMBL protein coding genes
versus 31057 entries of CanGEM Gene list) [73]. In fact, at
present, it is only possible to retrieve strong candidates for
alternative splicing events in protein coding genes (Table 1).
As expected, a similar situation was seen when pseudo-
genes were investigated (defined as genomic DNA sequences

similar to normal genes but nonfunctional, although some
can still be transcribed). In this case, inspection of 14775
pseudogenes returned a list of alternative splicing hits from
which it is not easy to distinguish real events in expressed
pseudogenes (Table 1).

More recently, some bioinformatic studies have tried to
extrapolate the presence of pseudoexons in cancer tissues by
developing new analysis methods of GeneChip gene expres-
sion array data [74, 75]. In this way, by comparing normal
cerebellum and medulloblastoma tumors, it was possible
to predict 811 significantly different expressed pseudoexons
(derived from 577 genes). In addition, when nonmetastatic
and metastatic medulloblastomas were compared, 13 pseu-
doexonic sequences were significantly expressed in a differen-
tial manner (derived from 8319 strong candidates). However,
itshould be noted that no experimental validation was carried
out to support these predictions. Therefore, presently, manual
annotations remain the most reliable system for identifying
real pseudoexons.

Fortunately, the scientific community has recently iden-
tified a certain number of cases where pseudoexon inclusion
has been validated in detail. For this reason, Table 2 reports all
the cryptic exons described in the literature that are localized
within genes whose expression was altered in cancer.

First of all, regarding the mechanisms underlying pseu-
doexon activation, it is interesting to note that these phe-
nomena are caused by inherited mutations resulting in the
insertion of intronic sequences in the mature mRNA [38].
In this respect, it is interesting to note that among the genes
presenting pseudoexon “awakening” directly associated with
cancer origin (Table 2), the creation of new splicing donor
(12 events) and acceptor (7 events) sites represents the more
frequent occurrence (48% and 28% of the listed events, resp.).
Some of the most paradigmatic examples of cancer genes such
as BRCAI, BRCA2, NF1, and ATM are included in these two
sets.

On the other hand, among pseudoexons described in
cancer-related genes (Table 3), the creation of 5 splice sites
and of 3’ splice sites comprise 55% and 15% of the listed
records, respectively. Moreover, pseudoexon insertion can
also be triggered by the deletion of nearby donor or acceptors
splice sites (4 events in both lists), highlighting the impor-
tance of the genetic milieu in splicing decisions.

A deeper look into the mechanisms underlying pseu-
doexon activation has revealed the involvement of hnRNPs in
regulation of these events. In particular, the partial inclusion
of a pseudoexon of NFI gene has been found to arise from
a novel intronic mutation ¢.31-279A>G intron 30, creating a
new acceptor splice site and activation of a cryptic 5" splice
site [76]. It has been found that both PTB and nPTB play
an active role in the pseudoexon splicing by repressing its
inclusion [76]. This finding is particularly interesting since it
further supports the hypothesis that PTB/nPTB might have a
general role in repressing weak exons and in particular most
of pseudoexons [77].

Another example of mutation causing pseudoexon acti-
vation consists in the creation of novel branch site (Table 2,
one event). This latter case is associated with a peculiar
mutation (IVS5 ds +232 G—A) that leads to pseudoexon
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TaBLE 1: Alternative splicing events detected in protein coding genes and pseudogenes implicated in cancer.

Alternative splicing event Protein coding genes CanGEM gene list (31057 entries) % cancer protein coding genes
Cassette exon (CE) 13506 11771 87

Intron retention (IR) 8190 6775 83
Alternative 3'ss (A3SS) 6701 5685 85
Alternative 5'ss (A5SS) 6624 5640 85
Alternative first exons (AFE) 8050 7136 89
Alternative last exons (ALE) 3631 3233 89

Mutually exclusive exons (MXE) 3376 3006 89
Alternative splicing event Pseudogenes CanGEM gene LIST (31057 entries) % cancer pseudogenes
Cassette exon (CE) 434 139 32

Intron retention (IR) 465 187 40
Alternative 3'ss (A3SS) 241 91 38
Alternative 5'ss (A5SS) 218 82 38
Alternative first exons (AFE) 91 27 30
Alternative last exons (ALE) 104 32 31

Mutually exclusive exons (MXE) 50 16 32

Homo sapiens genes (GRCh37.pl0) dataset (62252 total genes) was used to filter alternative splicing events in protein coding genes (22719 entries) and
pseudogenes (14775 entries) and verified their presence in the Cancer GEnome Mine database (31057 entries—CanGEM, http://www.cangem.org/).

TABLE 2: Pseudoexon insertion events directly involved in cancer pathology.

Gene name Description Entrez gene psselifigzz())n Activating mutation Reference
APC Adenomatosis polyposis coli 324 167 5'ss creation (78]
ATM Ataxia telangiectasia mutated 470 58 3'ss creation [79]
ATM 65 SRE deletion [80]
ATM 137 5'ss creation [81]
ATM 212 5'ss creation (82]
Breakpoint cluster region 613
BCR-ABL V-abl Abelson murine leukemia viral oncogene 25 42 Genomic rearrangement (83]
homolog 1 fusion
BCR-ABL 35 Unknown [84, 85]
BRCAI Breast cancer 1, early onset 672 66 3'ss creation [86]
BRCA2 Breast cancer 2, early onset 675 93 Downstream 3'ss deletion [87]
BRCA2 95 5'ss creation [88]
ESRI Estrogen receptor 1 3467 69 5'ss creation [89]
MSH2 Mut$ homolog fy;:ll"&cigzsr nonpolyposis 4436 75 S’ss creation [90]
Neurofibromin 1 (neurofibromatosis, von , .
NFI Recklinghausen disease, Watson disease) 4763 67/99 3'ss creation (1]
NFI1 70 5'ss creation [92]
NF1 107 5'ss creation [92]
NFI1 172 3'ss creation [93]
NFI1 58 3'ss creation [94]
NFI1 76 5'ss creation [94]
NFI 54 5'ss creation [95]
NFI 177 5'ss creation 92, 96,
97]

NF2 Neurofibromin 2 (bilateral acoustic neuroma) 4771 106 BP creation [98]
RBI Retinoblastoma 1 (including osteosarcoma) 5925 103 3'ss creation [99]
TSC2 Tuberous sclerosis 2 7249 89 5'ss creation [100]
WRN Werner syndrome 7486 106 5'ss creation [101]

WRN 69 3'ss creation [102]
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TABLE 3: Pseudoexons described in cancer-related genes.
Gene name Description Egnetrrlzz p:;i;étg()m Activating mutation Reference
ABCCS ATP-binding cassettrer; esrlrlll;—ef:r;nly C (CFTR MRP), 6833 76 5'ss creation [103]
ALDH7AI Aldehyde dehydrogenase 7 family, member Al 501 36 5'ss mutation [104]
CD40LG CD40 ligand (TNF superfamily, member 5, 959 59 5/ s creation [105]
hyper-IgM syndrome)
CEP290 Centrosomal protein 290 kDa 80184 128 5'ss creation [106,107]
CHM Choroideremia (Rab escort protein 1) 1121 98 3'ss creation [108]
COL4A3 Collagen, type IV, alpha 3 (Goodpasture antigen) 1285 74 3'ss creation [109]
COLIIAI Collagen, type XI, alpha 1 1301 50 5'ss creation [110]
CTD (carboxy-terminal domain, RNA
CTDPI polymerase II, polypeptide A) phosphatase, 9150 95 5'ss creation [111]
subunit 1
CYBB Cytochrome b-245, beta polypeptlde (chronic 1536 56 5/ s creation [112]
granulomatous disease)
CYBB 61 5'ss creation [113]
CYP17A1 Cytochrome P}Z)l(f{)’ypf :;:;3;117’ subfamily A, 1586 94 Upstream 5'ss mutation [114]
QDPR Quinoid dihydropteridine reductase 5860 152 5'ss creation [115]
DPYD Dihydropyrimidine dehydrogenase 1806 44 5'ss creation [116]
FBNI1 Fibrillin 1 2200 93 5'ss creation [117]
GHR Growth hormone receptor 2690 102 SRE deletion [118,119]
GUSB Glucuronidase, beta 2990 68 5'ss creation [120]
HADH Hydroxyacyl-coenzyme A dehydrogenase 3033 141 5'ss creation [103]
Hydroxyacyl-coenzyme A dehydrogenase
3-ketoacyl-coenzyme A thiolase 56 / .
HADHB enoyl-coenzyme A hydratase (trifunctional 3032 106 > ss creation 121]
protein), beta subunit
HSPG2 Heparan sulfate proteoglycan 2 3339 141 5'ss creation [103]
SWI
SMARCBI SNF related, matrix associated, actin dependent 6598 72 5'ss creation [122]
regulator of chromatin, subfamily b, member 1
ISCU Iron-sulfur cluster scaffold homolog (E. coli) 23479 1%60 3'ss creation [123-125]
SLCI4Al Solute carrier family 14 (urea transporter), .
(K) member 1 (Kidd blood group) 136 Internal 7 kb deletion [126]
MCCC2 Methylcrotonyl-coenzyme A carboxylase 2 (beta) 64087 64 SRE deletion [127]
MFGES Milk fat globule-EGF factor 8 protein 4240 102 SRE creation [128]
MLCI Megalencephalic leulfoencephalopathy with 23209 246 5/ s creation [129]
subcortical cysts 1
MTRR 5-methyltetrahydrofolate-homocysteine 4552 140 SRE creation [130]
methyltransferase reductase
GPRI43 G protein-coupled receptor 143 4935 165 3'ss creation [131]
OAT Ornithine aminotransferase (gyrate atrophy) 4942 142 5'ss creation [132]
OFDI Oral-facial-digital syndrome 1 8481 62 5'ss creation [133]
OoTC Ornithine carbamoyltransferase 5009 135 3'ss creation [134]
PCCA Pmplonyl'Coen;(‘{fyl;eg;gzboxylase’ alpha 5095 84 SRE creation [135]
PCCB Pmplonyl’Coerg)’l';npeel‘:‘ﬁszoxylase’ beta 5096 72 5'ss creation [135]
Phosphate regulating endopeptidase homolog, 50
PHEX X-linked (hypophosphatemia, vitamin D resistant 5251 100 5'ss creation [136]
rickets) 170
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TaBLE 3: Continued.
Gene name Description Egnetrrleezz pssglzlfi(()l;i()) N Activating mutation Reference
PKHDI Polycystic kidney and hepgtlc disease 1 5314 116 5'ss creation [137]
(autosomal recessive)
PMM?2 Phosphomannomutase 2 5373 66 3'ss creation [138]
PMM?2 123 5'ss creation [138,139]
PRPF31 PRP31 pre'mRNA(Spi‘;‘ziz?age )fador 31 homolog 26121 175 5'ss creation [140]
. Upstream 3'ss deletion
RHD Rh blood group, D antigen 6007 170 and SNP in int7 [141]
RYRI Ryanodine receptor 1 (skeletal) 6261 119 5'ss creation [142]
SLCI2A3 Solute carrier family 12 (sodium chloride 6559 238 5/ s creation [143]
transporters), member 3
USH2A Usher syndrome 2A (autosomal recessive, mild) 7399 152 5'ss creation [144]

inclusion in NF2 gene by creating a consensus branch point.
In particular, it has been found that the G>A transition,
occurring at position —18 from the acceptor site of NF2 IVS5,
works in combination with existing consensus splice acceptor
and donor sites and causes the formation of an extra exon 5a
in the NF2 gene that introduces a premature stop codon [98].

Finally, in spite of being lowly represented, gross genomic
rearrangements can bring together or expose splice site
sequences that would normally be very distant from each
other or absent form the original sequence (one event).

Pseudoexon activation can also be caused by mutations
that cause the creation/deletion of splicing regulatory ele-
ments (SREs, 6 events). Among these events, one of the most
representative examples of the complex regulatory networks
that can underlie pseudoexon insertion is represented by the
identification of an unusual splicing defect directly related
with neoplasia (Figure 1).

In the case of this particular event, a patient affected
by ataxia-telangiectasia was found to carry a 4 nt-deletion
(GTAA) within intron 20 of ATM gene [80]. This deletion,
termed intron-splicing processing element (ISPE), caused the
inclusion of a 65 nucleotide “cryptic exon” in the ATM mRNA
(Figure 1(a)). The mechanism through which this occurs has
been well characterized in recent studies.

In normal conditions, the repression of the 3'ss in the
wild-type pseudoexon sequence (ATM WT) was shown to be
a direct consequence of UlsnRNP binding in correspondence
to the ISPE sequence. The importance of this UlsnRNP
binding was twofold: first of all, to sterically hinder 3'ss recog-
nition by U2snRNP and secondly, to also inhibit binding of
the SRSF1 splice factor to the stem-loop sequence formed
by this pseudoexon (Figure 1(b)) [71, 72]. As a result, this
internal UlsnRNP binding event to the ISPE sequence causes
an unproductive U2snRNP association with the 3'ss that
results in the complete inhibition of pseudoexon inclusion
in normal conditions (Figure 1(b)). Following the deletion of
the GUAA motif observed in the patient, UlsnRNP binding
to the ISPE is relieved, and SRSFI is also free to bind to the
internal enhancer site that becomes available (Figure 1(c)).
Taken together, these two events result in efficient recruit-
ment of U2snRNP to the branchsite and a better recruitment
of UIsnRNP to the rather inefficient 5'gc splice site that lead

to efficient inclusion of the pseudoexon in the mature ATM
mRNA [72].

This example clearly shows the complexity of pseudoexon
activation events that relies on a variety of factors well beyond
the simple initial mutation (i.e., 5'ss or 3'ss creation), and that
can include the eventual presence of enhancer and silencer
elements within the cryptic exon or intro, RNA secondary
structures, and probably several other mechanisms that have
not yet been described in detail.

4. Pseudointron Activation in Cancer

Pseudointrons (PSIs) represent an intriguing set of intron-
like sequences localized within exons that can undergo
alternative splicing and that therefore can be included in or
excluded from the ORF within the final mRNA species.

Although the examples of pseudointrons reported in the
review are not associated with activating mutations, we have
included them because of the peculiarity of events insofar
that they do not represent simple intron retention events,
but rather alternatively spliced intraexonic sequences whose
behaviour can resemble that of introns under particular
circumstances (e.g., occurrence of previous splicing events
in the processed transcript). It is this regulated use of the
intraexonic splice sites that fits well with the idea that these
intraexonic splice site represent “false” introns, even in the
absence of genetic alterations.

In general, however, pseudointrons are less well described
compared withpseudoexons probably because of the diffi-
culty in detecting them using available technology (a situa-
tion that may well soon change for the better because of the
introduction of more sensitive and comprehensive technical
approaches such as RNA sequencing). At the moment, only
three examples of PSI have been characterized, and for at least
two of these pseudointrons there are data supporting their
relevance in the pathogenesis of cancer.

4.1. Fibronectin: IIICS-C5. Fibronectin (FN) is an extra-
cellular matrix protein whose functions range from cell
adhesion and migration to wound healing and oncogenic
transformation [145]. The functional complexity of FN is
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FIGURE 1: ATM pseudoexon activated in cancer. (a) Scheme of the ATM pseudoexon insertion caused by a 4 nt deletion (GUAA) occurring
1873 nt downstream from the donor splice site of ATM exon 20. The solid lines indicate introns. Dotted lines include the 65 nt-ATM
pseudoexon (gray box). The intron-splicing processing element (ISPE) complementary to Ul snRNA, the RNA component of the Ul small
nuclear ribonucleoprotein (snRNP), is underlined. (b) Schematic model of UlsnRNP mediated inhibition of pseudoexon insertion in normal
conditions. In this model, UlsnRNP binding to the ISPE blocks pseudoexon inclusion by inhibiting recruitment of U2snRNP to the 3'splice
site region and SRSF1 binding to the stem loop of the pseudoexon (shown as dotted lines). (c) In the case of the disease associated ATM
AGUAA deletion, the internal UlsnRNP binding site is no longer present due to the deletion of the ISPE. This leads to a more efficient
binding of SRSF1 to the enhancer site and stabilization of the U2snRNP interaction with the branch site and UlsnRNP with the 5'gc donor

site.

related to the structural diversity arising from cell type-
specific alternative splicing [146]. The fibronectin pre-mRNA
undergoes alternative splicing primarily at three sites: two
extra domain exons encoding extra structural repeats and
a region of nonhomologous sequence called the type-III
connecting segment (IIICS).

The IIICS domain is divided into three subdomains of
75 bp, 192 bp, and 93 bp, respectively, that can be alternatively
spliced, thus generating up to fivevariant mRNAs in humans
[147,148]. The subdomains of 75 bp and 93 bp encode for two
cell-specific binding sites, CSI (residues 1-25 of the IIICS),
and CS5 (residues 90-109 of the IIICS), respectively, that

interact with the integrin a4f1 with different affinity [149,
150]. Indeed, the CSI site has approximately 20-fold higher
affinity for integrins than the CS5 site [151].

Because of its intraexonic localization and splicing behav-
ior, the 93bp segment can be considered a pseudointron
(Figure 2(a)). Different tissue-specific and disease-associated
changes in the variants of the IIICS region have been reported
[152-154], and the CS5 pseudointron is upregulated in foetal
tissue and in adult liver [155].

For the purpose of this review, it is important to note
that alternative splicing of the IIICS-CS5 subdomain can
influence the onset and progression of cancers by affecting
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Fibronectin activities related to tissue organization and cell-
ECM interactions. In keeping with this hypothesis, in vitro
studies have shown that CS5 can modulate the spreading of
melanoma cells [151].

4.2. Acetylcholinesterase: AChE-R. Acetylcholinesterase is a
serine specific hydrolase that hydrolyzes acetylcholine, and
its main function is related to the clearance of the neuro-
transmitter from the synaptic cleft [156]. Nonetheless, the
observation that the expression of AChE is not limited to
cholinergic tissues has suggested the presence of additional
functions [157].

From the splicing process point of view, mammal AChE
has been shown to undergo alternative splicing resulting
in expression of 3 isoforms, called R (“readthrough”), H
(“hydrophobic”), and T/S (“tailed” or “synaptic”), that differ
in their subcellular localization, tissue distribution, and
developmental pattern of expression [158]. Whereas, AChE-
H or AChE-T is the most abundant and common isoforms,
the AChE-R expression is low and restricted in specific cell
lines, cell differentiation stage, or muscle development [159,
160].

Interestingly, the AChE-R mRNA arises by retention of
pseudointron4, that leads to generation of the E1-E2-E3-E4-
I4-E5 mRNA transcript (Figure 2(b)). Since pseudointron 4
includes a stop codon when it is included in mature RNA,

the resulting protein will be prematurely terminated by a C-
terminus translated from the 5 region of I4. This variant is
expected to remain monomeric [161].

In general, the AChE-R transcript can be coexpressed
with the AChE-T or AChE-H transcripts, and variations in
their relative levels seem to be important for modulation
of AChE functions, as well as for the pathogenesis of neu-
rological and autoimmune disorders [161, 162]. Intriguingly,
recent studies have found that AChE-R mRNA accumulates
in primary human astrocytomas, and that its presence is
correlated with their grade of aggressiveness [163]. In human
U87MG glioblastoma cells, it was found that AChE-R protein
variant can support proliferation of glioblastoma tumors by
forming a complex with the scaffold protein RACKI and
protein kinase Ce [164].

In addition, increased levels of an N-terminally extended
N-AChE-R isoform were detected in human testicular
tumors indicating that the generation of the AChE-R variant
can be associated with the utilization of an alternative
promoter in the transformed cells.

Finally, related functional studies have suggested that
both AChE-R variants (AChE-R and N-AChE-R) might be
crucial for increasing the cellular ATP levels and might
support selective metabolic advantages as well as genotoxic
resistance by altering p73 gene expression [165]. Although it is
not yet clear whether the AChE-R (as well as the other AChE
splicing variants) can be related directly to tumorigenesis,
the observed downregulation of all these splicing isoforms
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in colorectal carcinoma suggests a crucial role for tumor
development [166].

4.3. Thrombopoietin: THPO-3,THPO-5, and THPO-6. A
third example of pseudointron possibly implicated in cancer
pathogenesis is found within the Thrombopoietin (THPO)
gene. THPO is the most important cytokine for regulation of
platelet production, and its expression has also been reported
in skeletal muscle, ovary, testis, and central nervous system
(CNS) [167-169].

The THPO gene shows a complex pattern of alternative
splicing [170]; among the six splice variants that can be gener-
ated, three of them (THPO-3, THPO-5, and THPO-6) show
the peculiar alternative splicing of 116 nucleotides within
exon 6 (that can therefore be classified as a pseudointron)
(Figure 2(c)) [171].

Contrary to the Fibronectin IIICS-C5 and AchE-R pseu-
dointrons, the involvement in cancerogenesis of the vari-
ants deriving from the alternative splicing of the 116 nt
pseudointron is less characterized. Nonetheless, functional
studies have demonstrated that the protein translated from
mouse THPO-3 is not secreted efficiently [172-174]. These
results have suggested that THPO-3 might be implicated in
the fine regulation of THPO full-length levels and in the
modulation of several biological functions beyond throm-
bopoiesis. Interestingly, parallel studies have also shown an
altered expression pattern of the THPO-3, THPO-5, and
THPO-6 splicing variants in human carcinomas [175]. As a
result, these observations have led researchers to hypothesize
that alterations in alternative splicing of the 116 nt-THPO
pseudointron might be employed as biomarker of tumor
formation or progression [170].

In conclusion, although currently there are few examples
of pseudointron removal, at least three of these events have
been associated with different levels of cancerogenesis, rang-
ing from transformation to cancer progression. Therefore, it
is advisable that future high throughput screening analysis
should be able to better associate the alternative splicing
process of these pseudointrons with tumoral events. In
particular, with regard to their use as possible biomarkers of
transformation or of cancer staging/grading.

5. Therapeutic Outlooks

Regarding therapies, it is likely that all this information on
the importance of alternative splicing for tumor development
and progression may soon become extremely important for
the development of novel therapeutic effectors in the fight
against cancer [176,177]. Indeed, one of the reasons why these
defects are particularly interesting is the opportunity they
provide for RNA therapies and the chance to actually make
the jump from the bench to the bedside.

Currently, the field of RNA therapy is rapidly growing
especially in the inhibition of undesirable splice site choices
by the use of antisense oligos [178-180]. This technique,
pioneered by Dominski and Kole [181], is based on the use
of suitably modified antisense oligonucleotides that target
specific sequences within introns and exons and block the

recognition by their cellular binding factors. Therefore, they
are ideally suited to block unwanted splice sites that may
become activated following their creation or activation. It is
interesting that the role of using antisense strategies to reg-
ulate exon inclusion also occurs in physiological conditions.
An example of this is snoRNA HBII-52 in the regulation of
exon Vb inclusion in the serotonin receptor 2C [182].

To this moment, a few pilot studies aimed at inhibiting the
inclusion of a pseudoexon in patient cell lines have already
been reported. In particular, antisense oligonucleotides have
been used to target newly created 5’ or 3’ splice sites
deep within intronic regions of the NFI gene to restore the
normal splicing profile [91, 92]. Similar approaches have
also been successfully used to target deep intronic muta-
tions causing pseudoexon activation within BRCA2 intron
12 (¢.6937+594T>G) [88], ATM intron 11 (c.1236—405C>T)
[82], and ATM IVS19 (c.2639-384A>G) [79].

Recent advances in antisense-mediated exon skipping for
DMD suggest that not only the splice sites but also exonic
splicing enhancer sites or branch points might represent
potential targets for inducing pseudoexon skipping [183,
184], and that the action of ASOs might be potentiated by
coadministration of drugs, as shown for Duchenne muscular
dystrophy [185].

An intriguing variation on the theme of the antisense
oligonucleotides, successfully tested for inhibiting the 5'
splice site of Bcl-XL, might consist in the use of tailed
oligonucleotides containing a portion annealing to sequences
immediately upstream of the target donor splice site joined
to a nonhybridizing 5' tail that includes binding sites for the
hnRNP Al/A2 proteins [186].

In spite of being prominent, antisense technologies are
not the only possibility available for targeting these aberrant
splicing events. An alternative to antisense usage is the
development of siRNA molecules capable of targeting the
newly created system. In this manner, only the mRNAs
containing the pseudoexon might be selectively degraded
leaving any residual normal mRNA to be properly processed
[187]. The disadvantage of simply degrading the pseudoexon-
bearing transcript (rather than acting on the splicing event
itself) is that everything depends on the level of pseudoexon
inclusion (less than 100%) and on the status of the other allele
(i.e., whether it is normally expressed or not).

Finally, small molecule compounds might be also con-
sidered as possible therapeutic options in order to prevent
the recognition of pseudoexons or modulate the recognition
of pseudointrons. For example, it has been shown that
sodium butyrate, an histone deacetylase inhibitor known
to upregulate the expression of Htra2-betal and SC35, pro-
motes skipping of the pseudoexon activated by the CFTR
3849+10kbC>T mutation and can restore functional CFTR
channels [188]. In addition, the splicing of different NF1
skipped exons as a result of mutations in cis-acting sequences
has been restored with administration of the small molecule
kinetin [189].

More recently, a growing body of research indicates that
TALE nucleases (TALENS) have been used with great success
in a number of organisms to generate site-specific DNA
variations [190]. As a result, this approach is another good
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candidate for an innovative therapeutic anticancer strategy
for correction of deep intronic mutations that create novel
splice sites.

Of course, crossing the difficult gap between the bench
to the bedside will not be immediate even in the presence
of highly efficient therapeutic molecules, whether antisense
oligos, siRNAs, or others. Indeed, before any of these can
be used in humans to treat cancer, several additional factors
need to be considered. First of all, there is the development
of an efficient and safe carrier system to deliver these
compounds into the human body. Secondly, these systems
will need to be optimized in order to achieve the best balance
between successful delivery, intrinsic toxicity (if any), and
avoidance of undesired immune responses (in the case of
antisense oligos). Finally, even when all these achievements
are met, there will still be the need to optimize recurrent-
administration protocols to determine the uptake levels,
clearance, and accumulation in various tissues (this is an
often overlooked, since none of these methods will cause
permanent correction of mRNA splicing defects).

Nonetheless, the first results of this exciting news strategy
are available, and there is the distinct possibility that RNA-
based treatment of cancer may soon enter the application
stage.
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