The University of Southampton
University of Southampton Institutional Repository

Multi-decadal variability of sea surface temperature and phytoplankton in the subpolar North Atlantic: insights from observation and model

Multi-decadal variability of sea surface temperature and phytoplankton in the subpolar North Atlantic: insights from observation and model
Multi-decadal variability of sea surface temperature and phytoplankton in the subpolar North Atlantic: insights from observation and model
This thesis investigates the physical controls of variability in phytoplankton abundance in the subpolar North Atlantic. A multi-decadal set of monthly SST data (HadISST1) is used to identify the dominant variability in the SST annual cycle during the period 1870-2009. Long-term variability in phytoplankton abundance is examined using data from the in situ Continuous Plankton Recorder (CPR) observations for 1946-2007. Physical factors that determine the strength of the annual phytoplankton bloom are identified using a state-of-the-art coupled physical and biogeochemical model. Mixed layer depth (MLD) in particular is examined because of its importance in controlling the growth of phytoplankton through determining the distribution of light and nutrients in the water column.

Multi-decadal variability is observed in the amplitude of the SST annual cycle, though the variability is inconsistent across the subpolar basin. The leading EOF modes of seasonal SSTs reveal that about 70% of the observed variability is explained by the seasonal variation of the strength and action centers of the dominant climatic indices (e.g. NAO). Phytoplankton abundance in the eastern shelf region shows variability similar to SST on decadal scales. However, phytoplankton abundance in the subpolar basin is less influenced by SST and is more sensitive to changes in stratification and MLD.

The northeastern subpolar basin is examined in more detail because it is a region where the model simulates observations reasonably well. The hypothesis tested is that the timing and characteristics of the MLD shoaling determines the timing, duration and strength of the following spring phytoplankton bloom. The results show that there are two contrasting scenarios in MLD development and bloom strength. Years with early and lengthy MLD shoaling are characterised by repeated short episodes of vertical mixing when stratification is disturbed, and have a weak and continuous spring bloom as a result. Years with late and rapid MLD shoaling have intense but short spring phytoplankton blooms. MLD influences the growth of zooplankton indirectly, which also modulates the spring phytoplankton bloom. The occurrence of early MLD shoaling in the late winter coincides with a prevalence of atmospheric blocking events (high pressure features) in the northeastern subpolar.
Mao, Chongyuan
afa7344c-fd81-41a0-8425-20779bd364fd
Mao, Chongyuan
afa7344c-fd81-41a0-8425-20779bd364fd
Holliday, N.P.
358b0b33-f30b-44fd-a193-88365bbf2c79

Mao, Chongyuan (2013) Multi-decadal variability of sea surface temperature and phytoplankton in the subpolar North Atlantic: insights from observation and model. University of Southampton, Ocean and Earth Science, Doctoral Thesis, 258pp.

Record type: Thesis (Doctoral)

Abstract

This thesis investigates the physical controls of variability in phytoplankton abundance in the subpolar North Atlantic. A multi-decadal set of monthly SST data (HadISST1) is used to identify the dominant variability in the SST annual cycle during the period 1870-2009. Long-term variability in phytoplankton abundance is examined using data from the in situ Continuous Plankton Recorder (CPR) observations for 1946-2007. Physical factors that determine the strength of the annual phytoplankton bloom are identified using a state-of-the-art coupled physical and biogeochemical model. Mixed layer depth (MLD) in particular is examined because of its importance in controlling the growth of phytoplankton through determining the distribution of light and nutrients in the water column.

Multi-decadal variability is observed in the amplitude of the SST annual cycle, though the variability is inconsistent across the subpolar basin. The leading EOF modes of seasonal SSTs reveal that about 70% of the observed variability is explained by the seasonal variation of the strength and action centers of the dominant climatic indices (e.g. NAO). Phytoplankton abundance in the eastern shelf region shows variability similar to SST on decadal scales. However, phytoplankton abundance in the subpolar basin is less influenced by SST and is more sensitive to changes in stratification and MLD.

The northeastern subpolar basin is examined in more detail because it is a region where the model simulates observations reasonably well. The hypothesis tested is that the timing and characteristics of the MLD shoaling determines the timing, duration and strength of the following spring phytoplankton bloom. The results show that there are two contrasting scenarios in MLD development and bloom strength. Years with early and lengthy MLD shoaling are characterised by repeated short episodes of vertical mixing when stratification is disturbed, and have a weak and continuous spring bloom as a result. Years with late and rapid MLD shoaling have intense but short spring phytoplankton blooms. MLD influences the growth of zooplankton indirectly, which also modulates the spring phytoplankton bloom. The occurrence of early MLD shoaling in the late winter coincides with a prevalence of atmospheric blocking events (high pressure features) in the northeastern subpolar.

Text
Mao, Chongyuan_PhD_Thesis_14.pdf - Other
Download (31MB)

More information

Published date: November 2013
Organisations: University of Southampton, Ocean and Earth Science

Identifiers

Local EPrints ID: 367216
URI: http://eprints.soton.ac.uk/id/eprint/367216
PURE UUID: fa22b64f-dcb0-4572-9c0d-d5ba7885c6ed

Catalogue record

Date deposited: 30 Jul 2014 12:58
Last modified: 14 Mar 2024 17:26

Export record

Contributors

Author: Chongyuan Mao
Thesis advisor: N.P. Holliday

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×