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ANALYTICAL MODEL FOR THE PROPAGATION OF SMALL
DEBRIS OBJECTS AFTER A FRAGMENTATION EVENT

Francesca Letizia; Camilla Colombo] and Hugh G. Lewis!

Current debris evolutionary models usually neglect fragments smaller than 10 cm
in their predictions because of the high computational effort they add to the simu-
lation. However, also small fragments can be dangerous to operational satellites.
This work proposes an analytical approach to describe the evolution of a cloud of
small fragments generated by a collision in Low Earth Orbit. The proposed ap-
proach considers the cloud globally and derives analytically its evolution in terms
of density, under the effect of drag. As a result, the analytical approach allows the
representation of small fragments and noticeably reduces the computational time.

INTRODUCTION

Past space missions left in orbit a large number of non operational objects, whose size varies
from large rocket stages to sub-millimetre-size fragments. Radars are able to track objects larger
than 10 cm in Low Earth Orbit (LEO) and then collision avoidance manoeuvres can be implemented.
Small objects, on the other hand, are not trackable, so shields are adopted on spacecraft to protect
them from impacts. However, shields are effective only for fragments smaller than 1cm.! As a
result, a large population of space debris is too big for shields but too small to be tracked and poses
a risk to operational spacecraft’ as it may cause for spacecraft anomalies® or even more serious
damage to satellites.*

Therefore, it is important to characterise fragments, in particular their motion in orbit. Some
research on debris long-term evolution was conducted for the debris population down to 1cm>°
and 5cm,’ but most of recent studies neglect objects smaller than 10 cm because their number is so
large that the simulation of the debris environment would be extremely expensive in terms of com-
putational time and because the focus has been on the most dangerous impactors.* However, this
partial representation of space debris environment may result in an underestimation of the collision
risk for operational satellites. For this reason, an increasing effort is currently underway to update
debris studies by including small objects and to formulate simplified models able to provide quick
estimations of space debris evolution.®

Some debris models (e.g. SDM, DAMAGE, DELTA) are able to deal with small fragments group-
ing them into representative objects, from whose propagation it is possible to re-build the evolution
of small objects. For example, an effective technique to reduce the computational time is the method
proposed by Rossi et al.” where the fragment propagation is simplified in three ways:
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e only the most relevant perturbation, drag, is considered to study the fragment motion in LEO,

e the dynamics considered makes use of analytical expressions obtained by King-Hele'® to
describe the secular effect of aerodynamic drag,

e only some representative objects are propagated.

The debris population is divided into bins in altitude and object size and only one object per bin is
propagated. The result of the propagation is used to estimate how fragments move among the bins;
from this, together with the launch frequency and explosion and collision rates for each bin, the
evolution of the object number per bin is obtained. In this way, a cloud of more than 800 objects is
propagated for 100 years in less than 10s.!!

Kebschull et al.!>!3 have further developed and improved this approach, considering also active
debris removal, dividing debris objects into eccentricity bins and distinguishing between intact ob-
jects and fragments. Moreover, the parameters in the evolution equations were obtained through a
fitting process of the full numerical model LUCA; in this way, the output of the simplified model is
coherent with the full numerical one, but the simulation time is strongly reduced.

Similarly, Lewis et al.'* used the data generated by the numerical model DAMAGE to build the
simplified model CONCEPT, which is able to study the consequences of a single collision event.
Although the current implementation considers only objects larger than 10 cm, its approach can be
extended to smaller fragments. The background debris population is built from DAMAGE data and
stored in bins of altitude, right ascension and declination: for each bin the distribution of relevant
quantities (e.g. spatial density, collision probability, object type, mass, area, orbital parameters) is
stored. CONCEPT is then able to estimate candidates for collision and the most likely parameters
(i.e. mass, energy) for the fragmentation event. Here, DAMAGE is used again to generate the debris
cloud and to propagate the fragments; at each time step the distributions stored in the bins are
updated with the contribution from the new cloud, so that it is possible to assess the impact of the
simulated event on the global population. This method requires five minutes to propagate a typical
scenario for 200 years.

These two last examples rely on several runs of a full model, whose output is then stored and
used by the simplified model. This implies that if part of the full model changes (for example, the
breakup model), it should be run again to obtain updated parameters.

The present work proposes and evaluates the accuracy of a method that instead of integrating the
fragment trajectories, studies globally the fragment cloud formed after a collision. In particular, the
cloud density is the state variable of the method and its evolution is obtained analytically, following
the approach proposed by McInnes'> and used also to describe the motion of interplanetary dust,®
high area-to-mass ratio spacecraft'” and nano-satellite constellations. '8

Purely analytical models are not common for long-term debris modelling and usually they are
used for Geosynchronous Earth Orbit (GEO) objects, where drag is negligible and it is possible to
introduce an Hamiltonian formulation for the forces acting on the fragments.!%-2°

However, LEO is the most crucial region for space debris, because of the higher object density
and higher collision velocities compared to GEO;?"~?? an analytical model applicable in LEO and
able to follow small fragment motion can be a useful extension of existing models to increase the
accuracy in the prediction of the collision risk for operational spacecraft.



ANALYTICAL APPROACH

The algorithm behind the proposed analytical debris model can be represented as in the block
diagram in Figure 1, where four main building blocks are presented:

e abreak up model that generates the fragment properties (i.e. number, mass, area, speed) given
the energy of the collision;

e anumerical propagator to describe the evolution with time of the fragment orbital parameters
until the analytical propagation becomes applicable;

e a method to translate the information on the orbital parameters of each single fragments into
a continuous density function, useful to compute the collision risk associated with the cloud;

e an analytical propagator to describe the evolution with time of the cloud spatial density on the

long term.
Band Distribution
formation along an orbit
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Figure 1: Algorithm building blocks.

Breakup model

The model here adopted is the NASA breakup model.?*2* It was implemented considering non-
catastrophic collisions and only for fragments with size in the range 1 mm-8 cm, to avoid the dis-
continuities present in the model and to study how the distributions present in the NASA breakup
model influence the fragment dispersion. The choice of studying non-catastrophic collisions is also
driven by the recent observations that most of the recorded past collisions were non-catastrophic

Ol’lE:S.25

The number of fragments Ny larger than a characteristic length L. produced by a collision is
given by
Ny(Le) = 0.1(Me)* TP (Le) 1T (1)

where M., is the reference mass of the collision. For M., Johnson and Krisko?? indicate
M.[kg] = Mp[kglvc[km/s] ()

where M), is the projectile mass and v,. the collision velocity. The expression was then corrected by
Krisko?* as
M.[kg] = M,[kgl(v.[km/s])? 3)

and this last version is here used.” The NASA breakup model provides also the distributions of
area-to-mass ratio and velocity variation respectively as function of the characteristic length and the

*Krisko, Paula (2013), personal correspondence of June 10™, Sr. Scientist Specialist, Orbital Debris Modeling Lead,
JSC/JETS/Jacobs Tech



area-to-mass ratio. In this work a maximum ejection velocity is introduced, equal to 1.3 v, and the
ejection velocity direction is randomised.

The limits of the NASA breakup model, especially in the sub-centimetre range, are known: it is
based on a limited database, so it is not clear how representative the model is.20 For this reason, some
studies are ongoing to improve the model, adding more data points or introducing some physical
equation (e.g. the momentum conservation).”®27-?8 However, at the moment no better breakup
model is available and the NASA model can be considered as a standard as it is the most used in
space debris models?® (LEGEND, MASTER, DAMAGE). Moreover, the analytical method proposed
here does not rely on a specific breakup model: when an alternative model becomes available,
only the first block shown in Figure 1 will be changed and the other blocks will not require any
modification.

Numerical propagation

Immediately after the collision, the fragments form a dense cloud concentrated in the location
where the breakup occurred (Figure 2a): as each fragment has a slightly different energy, the cloud
is stretched along the orbit of the parent spacecraft. In addition, the Earth’s oblateness causes a
variation of the argument of periapsis w (Figure 2b) and of the longitude of the ascending node §2,
so that the cloud is finally spread into a band around the Earth (Figure 2¢). As a result, w, €2 and
the true anomaly v are randomised, usually after few months; starting from this point drag can be
considered as the dominant perturbation.’® The analytical method, which represents only the drag
effect, can be applied only from this moment, while numerical propagation is required to follow the
first phases of the cloud evolution.

(a) Ellipsoid (b) Toroid (c) Band

Figure 2: Phases of debris cloud evolution as classified by Jehn.°

The fragment orbital parameters are propagated numerically using Gauss’ equations:®' for the
Earth’s oblateness, only J> is considered as the transition to the band occurs in a short time. The
drag effect is computed through King-Hele’s expressions!? for eccentricity e lower than 0.2; no at-
mospheric rotation is considered; the maximum altitude below which drag is considered is 1000 km
and the propagation is stopped if the fragment perigee altitude is below 50 km. For the atmospheric
density p, an exponential model is used
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where h is the altitude, h. is the reference altitude where the reference density p.r and the scale
height H are defined. The reference values hyret, prer, H and are taken from Vallado3! and hy is set



as the altitude where the collision occurs and its value is kept constant for the whole simulation®.

The numerical propagation ends when the band is formed: this can be verified numerically com-
paring the distribution of the angles (v, w, £2) with a uniform distribution between — and 7 through
the Kolmogorov-Smirnov test.>> Another approach, which is the one used for the results shown in
the following, is to use one of the analytical expressions present in literature3>3433 to estimate the
time required for the band formation. In particular, Ashenberg™® estimated the time for band forma-
tion 7} as the maximum between the time of the dispersion of the longitude of the ascending node
Q) (T) and the one of the argument of periapsis w (1;,). They are expressed as

Ty, = max(Tq, T.,)

T = 3
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where
1 .
tan Bq = - tanicosu

5sin 27 cosu (6)

tan B, = ————————
P 14(2 — 3 sin? i)

and Rp is the Earth’s radius; a,4,u are respectively the semi-major axis, the inclination and the
longitude of the periapsis of the orbit where the fragmentation occurs; dv is the (average) variation of
the velocity due to the fragmentation event. The accuracy of these analytical expressions, compared
to the numerical estimation, was verified in a previous work.®

Position fitting

Once the band is formed, the information on the fragment positions is translated into a continuous
density function that will be the initial condition for the analytical method. In the previous version
of the model, the density function was built from the distribution of fragments in distance from
the Earth r or semi-major axis a, whereas here it is built on the probability of intercepting fragments
at a certain altitude. This figure is, in fact, the most important if the method is used to compute the
impact of the cloud on the collision risk for operational satellites and, as explained in the following
section, only one coordinate is considered.

The probability density for a cloud is built starting from the expression by McInnes and Colombo?’
describing the number density of objects along one orbit,

(1+ 62')2
. — , 7
nwi(v) (14 e;cosv)? )
where the density expression is selected such that n,;(v = 0) = 1. Equation 7 expresses the

condition that, as an object is slower close to the apogee, it spends more time in that region of space

*These settings are used also for the fully numerical simulation of the cloud evolution used to validate the analytical
approach. The approximation of constant Ay, prer, H can be relaxed; here it is kept for simplicity as the aim of the work
is to validate the analytical propagation compared to the numerical one.
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Figure 3: Comparison among three different distributions that may be used to describe the initial
condition: solid line refers to the probability density as defined in Equation 8, dashed line to the
semi-major axis distribution, dash-dot line to distance distribution. Each colour refers to a different
run of the break-up model.

and so there is higher probability of interception. Equation 7 can be easily expressed in terms of the
distance from the Earth r as
3 r2

= -, a3y 8
2a3(3e; +€?) ®)

ni(r)
where the density is rescaled so that the integral of the expression in Equation 8 between the perigee
and the apogee radius is equal to 1. In this way, it is possible to sum the contribution from each
fragment to obtain the probability density for the whole cloud n = ). n; (Figure 3).

Besides the connection with collision risk computation, this approach presents also an additional
advantage: the initial condition built in terms of probability density is much less dependent on the
single run of the break up model compared to the one built on the semi-major axis or on the distance.
The break-up model contains in itself some random values (e.g. to define the fragment distribution
in terms of ejection velocity) and so more runs are required to generate data with statistical meaning.
Figure 3 presents the comparison among possible initial conditions; three different runs of the break-
up model are presented, each one plotted in a different colour. It is possible to see that, in contrast
to the simple distribution in 7 (dash-dot line), the probability density (solid line) has only a limited
variation with the specific analysed run; moreover, the distribution in r tends to the probability
density if many cases are run and analysed together.

Analytical propagation

Once the initial fragment density is defined, the continuity equation is used to derive analyti-
cally the density evolution with time under the drag effect, following the approach developed by
McInnes'® and here summarised briefly.

Neglecting discontinuous events (sources, for example launches, and sinks, for example active



debris removal), the continuity equation can be written as
— +Vef =0; ©)]

where n is the fragment density and the term f is the vector field that causes the fragment position
to vary with time ¢.

The distance r is the only considered coordinate, so a spherical symmetry is assumed; as stated
before, this assumption and modelling only drag effect imply that the analytical propagation be-
comes applicable after the cloud has formed a band around the Earth. The vector field has then only
one component in the radial direction and it is written as

fr =ven(r,t). (10)
The drift velocity in the radial direction v, is obtained from the expression of drag acceleration

1CpA

5 g P (11)

ap =

where Cp is the drag coefficient of the fragment, which is assumed to be constant and equal to
2.2;31 A is the fragment cross-sectional area; M is the fragment mass; v is the fragment velocity
and p(r) is the atmosphere density, which depends on the distance from the Earth and is expressed
through the exponential model in Equation 4. Introducing, from McInnes,!8 the parameter ¢,

= Vi —Aprefexp (}}If) (12)

which collects all the terms that do not depend on r, and assuming that the fragment orbits are
circular, the final expression for v, is obtained

vy = —ey/T exp ( - f). (13)

Introducing the approximation

Vr =~ /Ry, Ry = Rg + Pyet, (14)

where R is the Earth’s radius and h,f is the altitude where the initial collision occurs as in Equa-
tion 4, and applying the method of characteristics, McInnes'® obtained an explicit expression for
the density evolution,

log {n(r,t)} = log {—er®?exp [—r/H]} '+
+ W{exp[r/H] + (e/Ru/H)t} (15)
where the function ¥ is obtained from the initial condition n(r,¢ = 0) and the characteristics z at

t=0
U(z) =log{n(r(z),0)} —log {r(z)er(z)}_l. (16)

Equation 15 provides a fully analytical expression to compute the effect of drag on the cloud and
the analytical propagation always acts on the cloud globally, not on the single fragments. Therefore,
in this case, the model is analytical in the sense that, once the initial density is known, the cloud



density at any time is immediately known, without any numerical integration of the fragment tra-
jectories, differently from previous models.>'>!# Moreover, Equation 16 shows that no particular
operation is needed on the function n(r, 0), providing large flexibility on the functions that can be
used to describe the initial condition. This means that the initial condition can be built easily starting
from different kind of fragmentation phenomena.

The parameter ¢, defined in Equation 12, is not constant for the whole cloud as the fragments
have different area-to-mass ratios, A/M. To improve the accuracy of the model, NV bins in area-to-
mass ratio are defined. For each bin, an average ¢; is assumed and the corresponding density n; is
obtained according to Equation 15; all the partial densities n; are summed to obtain the global cloud
density n.

COMPARISON WITH NUMERICAL PROPAGATION

The results here refer to a fragmentation generated by the non-catastrophic collision between
a spacecraft and a projectile of 100 g with a collision velocity of 1kms~!. The parent orbit of
the spacecraft is planar and circular, with altitude equal to 800 km.The collision generates 2397
fragments, whose area-to-mass ratios range from 0.0298 to 15.4 m? kg~! in the specific considered
run of the breakup model. In fact, all the following results refer to this single run of the NASA
break-up model as the study aims to compare and validate the analytical propagation against the

numerical propagation.

The fragments generated by the breakup model are divided into 10 A/M bins, each one con-
taining the same number of objects. Other definitions of the bins are possible (as for example
logarithmically spaced intervals) but the result in terms of global density of the cloud is almost
identical.

The band is formed after almost 64 days and then the analytical propagation is applied. Figure 4
shows the cloud density, obtained with the analytical method, at the band formation (Figure 4a),
and 1000 days later (Figure 4b). At the band formation, the Figure 4a indicates a distinct peak

0 days 1000 days

(a) (b)

Figure 4: Visualisation of cloud density at (a) the band formation and (b) after 1000 days. The
density n(r,t) is expressed in number of fragments in a spherical shell of radius r. The plot is not
in scale.
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Figure 5: Evolution of the cloud density as a function of time after the band formation, for a
fragmentation at 800 km.
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Figure 6: Absolute error in the cloud density as a function of time after the band formation, for a
fragmentation at 800 km.
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Figure 7: Evolution of the cloud density as a function of time after the band formation, for a
fragmentation at 800 km. The colours refer to different values of the area-to-mass ratio; dashed lines

indicate the result of the numerical propagation, solid lines the analytical one. Each bin contains the
same number of fragments.

(the red circle) in the cloud density at the altitude of the breakup. After 1000 days (Figure 4b)
drag has reduced the peak and also the number of fragments at low altitudes as the area below the

fragmentation altitude is almost completely black; the density at high altitude is, instead, almost
unchanged.

More in detail, Figure 5 shows the comparison between the numerical (in blue) and the analytical
(in red) propagation of the cloud probability density. The absolute error between the two curves is
shown in Figure 6: the maximum error occurs between 750 and 800 km where, locally, the relative
error reaches the value of 0.2. Globally, the analytical method is able to follow the cloud evolution

very well, catching both the reduction of the fragment number and the different effect of drag on
low and high altitude.

Figure 7 shows in detail the propagation of each A/M bin: the colours refer to different values
of the area-to-mass ratio; dashed lines indicate the result of the numerical propagation, solid lines
the analytical one. It is possible to observe that the analytical model performs quite well in all the
bins, even if its accuracy decreases for high A/M bins. This is due to the fact that high A/M bins
correspond to a high mean eccentricity, so the hypothesis of circular orbits, required to write v, as
in Equation 13, introduces a certain level of error. The issues associated with this hypothesis are

10



discussed in the following section, but it is interesting to observe here that the dependency of mean
eccentricity on the area-to-mass ratio is a product of how the velocity distribution is written in the
NASA break up model.??

The number of fragments at the band formation is equal to 1826, which means that 24% of
the fragments generated by the collision decay before the band formation. The analytical method
predicts that after 1000 days, 1478 are still in orbit, against the result of 1405 obtained with the
numerical integration: the relative error in the estimation of the fragment number is around 5%, so
the analytical method can be considered a good approximation. During the 1000 days, the altitude of
the density peak is reduced by 35% (Figure 8a); the peak location is basically unchanged (Figure 8b)
for the cloud globally, whereas it undergoes a large variation for fragments with high area to mass
ratio A/M. This is due to the fact, for the particular choice of the bin definition, the curves referring
to high A/M values are more flat and the altitude corresponding to the peak (that is the point with
the highest density) changes discontinuously.

Also the shape of the density function is affected by drag, which acts differently at low and high
altitude. For this reason, the fragment density is reduced by 33% at an altitude smaller or equal
to the parent altitude 800 km and only by 10% for higher altitudes. As the peak is reduced with
time, the band of altitudes that contains 68.27%* of the population increases its amplitude with time
(Figure 9).

Accuracy of the method

To estimate the accuracy of the method, the coefficient of determination R? is used,

RQ _ Zz (fz - 32)2’ 17)
> (i — y)?

that in statistics evaluates how the predictions of a model f; fit the observed data y; with average ¥;
R? close to 1 indicates that the model is able to represent the variation in the data. Here, the results
of the numerical propagation are treated as the observed data and the analytical method is the model
to be validated. The values of R? at four different times are shown in Table 1: R? is higher than 0.98
for the simulated time-span, so the analytical method shows a good agreement with the numerical
data. In particular, the value of R? after 1000 days from the band formation is equal to 0.9848;
using a single average value of A/M for the whole cloud would reduce this value to 0.9398.

Table 1: Coefficient of determination R? for the analytical method simulating a fragmentation at

800 km.
Days R?
0 1.000
333 | 0.989
666 | 0.988
1000 | 0.985

Computational time

Finally, it is interesting to compare the numerical and the analytical propagation also in terms of
computational time, as shown in Figure 10: the intervals reported in the diagram refer to the case

*This percentage is borrowed from the definition of normal distribution, where 68.27% of the values lie within one
standard deviation from the mean.
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Figure 8: Evolution of the density peak height and location for a fragmentation at 800 km. The
value of the peak height is normalised with the value at band formation. The colours refer to
different values of the area-to-mass ratio and in black the value for the cloud globally is reported.
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Figure 9: Evolution with time of the amplitude of the altitude band that contains 68.27% of the
population for a fragmentation at 800 km.
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shown in Figures 5-7, so the simulation of a cloud of initially 2397 fragments up to 1000 days after
the band formation.

Numerical

Analytical

| | | | | | |
0 20 40 60 80 100 120 140

Computational time [s]

I Breakup 1 Numerical prop.
Bl Fitting @@  Final prop.

Figure 10: Computational time for a PC with 8 CPUs at 3.40 GHz.

The measured computational times refer to a PC with 8 CPUs at 3.40 GHz and the code for the
numerical propagation is parallelised and written in Matlab. In both cases, the breakup model re-
quires less than 0.1 s to generate the cloud. For the analytical method, the main contribution is given
by the numerical propagation until the band formation (8.2 s), while the time for the final (analyti-
cal) propagation is negligible (0.027 s) and only 2.5 s are required to build the initial condition. On
the other hand, the full numerical propagation takes 130 s to simulate 1000 days, as the simulation
time for the numerical propagation depends on the number of fragments and the number of days.
For this reason, the analytical approach is an efficient tool to simulate different collision scenarios.

Range of applicability

The method applicability was tested varying the initial orbit of the impacted spacecraft, both in
inclination and in altitude.

Figure 11 shows the value of R? after 1000 days from the band formation for inclination ranging
from O to 90 degrees: the value is always around 0.98, so the method follows correctly the cloud
evolution for all the inclination values. The variation in R? is related to the fact that the ejection
velocity direction is random and it was not kept constant for the different simulations.

Figure 12 shows the value of R? after 1000 days, but for different orbit altitudes: here R? is set
equal to zero when it becomes negative as the meaning of null or negative values is that the model
does not explain the observed data. This happens for low altitudes and, in general, the method seems
to be applicable only for altitudes higher than 650 km. However, it should be observed that at high
altitude (>800 km) also solar radiation pressure should be considered, while here it is neglected also
in the full numerical case. The effect of solar radiation pressure and Jo was investigated at higher
altitudes'” and a future work will focus on including it in the debris cloud analytical model, so in
combination with drag.

Discussion on the effect of eccentricity

This section discusses the impact on the method accuracy of the assumptions made to obtain the
analytical solution in Equation 15. Two hypotheses were introduced: the fragments are on circular
orbits (Equation 13) and the distance of the fragments can be approximated with a fixed distance
in part of the expression for the radial velocity (Equation 14). The contribution of each hypothesis

13
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Figure 11: Accuracy of the method, measured by R? after 1000 days since the band formation, as a
function of the inclination of the orbit where the fragmentation occurs (with fixed altitude equal to
800 km).
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is studied in Figure 13, where the variation in the semi-major axis after one period due to drag is
plotted as a function of the semi-major axis. The plot is obtained considering that, starting from
the altitude where the fragmentation occurs (in this case 500km), it is possible to compute the
maximum eccentricity that a fragment can have, given the semi-major axis of its orbit. In fact,
all the fragments’ orbits must include the point of fragmentation, which, in the two extreme cases,
can be the apogee (Figure 13a) or the perigee (Figure 13b) of the fragment orbit. The maximum
eccentricity is then the one associated with one of these two extreme cases: the fragmentation
altitude is at the apogee for fragments with semi-major axis lower than the one of the parent orbit,
whereas the fragmentation altitude is at the perigee for fragments with semi-major axis higher than
the initial one. Knowing both the initial semi-major axis and the eccentricity, the decay of the
fragment in one period can be computed. In Figure 13 the vertical lines indicate the eccentricity
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Figure 13: Variation of the semi-major axis in one orbit as a function of the orbit semi-major axis
with different hypotheses for the integration, considering a fragmentation at 500 km. The vertical
lines refer to eccentricity values.

The solid lines refers to the integration of the different models updating at each time step the pa-
rameters of the atmosphere and considering the actual value of the fragment altitude; the dashed line,
instead, is obtained with the hypothesis that Ry, pg, H are computed according to the fragmentation
altitude and then kept constant for the whole simulation as explained in the method description.

The blue curve indicates the variation of the semi-major axis a obtained through numerical in-
tegration of Gauss’ equations for a and the eccentricity e. The blue dashed line is, therefore, the
reference curve that represents the results of the numerical propagation used to validate the analyti-
cal one.

The red curve is obtained through numerical integration of Gauss’ equations for a and the eccen-
tricity e, but assuming /r ~ /Ry : as shown in Figure 13, this hypothesis introduces a small but
acceptable error.
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The green curve represents the effect of the hypothesis e = 0 that is the integration only of

a
vy = —€ aexp(—ﬁ> (18)
and it is possible to observe that the fragment decay is underestimated, both at high and at low
altitude. This is due to the fact that neglecting the eccentricity in the exponential term corresponds
to applying an incorrect value of the density to compute the drag effect. In fact, using only the value
of the semi-major axis, the information on the passage with low perigee, given by the eccentricity,
is lost and the predicted decay is null.

For example, for a fragment with semi-major axis equal to Rg + 1000 km and corresponding
eccentricity equal to 0.007, Gauss’s equations estimate a reduction of the semi-major axis of 4.40 km
in 94 minutes. Introducing the approximation \/r ~ /Ry, the predicted decay is 4.24 km, so the
relative error is less than 4%. On the other end, with the hypothesis of circular orbit, the predicted
decay is almost zero (0.11 km) and so the effect of drag on the cloud is largely underestimated.

This effect is stronger at low altitude where a small variation in altitude results in a larger vari-
ation in density compared to what happens at higher altitude; in other words, at low altitudes the
eccentricity value above which the decay is strongly underestimated is lower than at high altitude.

One could expect drag to affect the eccentricity distribution in such a way that the average ec-
centricity is reduced with time because of the progressive circularisation of the orbits. Actually, as
shown in Figure 14, drag reduces the number of fragments, but especially those with low eccentric-
ity as they also have low semi-major axis. The fragments with high eccentricity instead also have
high energy and their decay is slow; their presence drives the average eccentricity to increase (for
example, in the case in Figure 14 from 0.05 to 0.08). This means that the error due to eccentricity
always increases with the simulation time.

Current work is aiming at including the eccentricity into the continuity equation, so that the
method could be improved also at low altitudes. In this case, a full analytical formulation is not pos-
sible, in particular to express the characteristics of the new system. However, they can be expressed
with known numerical functions that can be easily implemented and have a limited impact on the
computational time.

CONCLUSIONS

Obtaining a reliable picture of the future debris environment requires the inclusion of small frag-
ments (< 10 cm) in long-term projections. Given the large number of fragments, simplified models
have been studied to reduce the computational time required by simulations. In this work, an ana-
lytical method is proposed to obtain the evolution of a debris cloud generated by a collision.

The starting point for the method is the NASA breakup model, which provides the features of
the fragments generated by a non-catastrophic collision; only the fragments whose size is between
1mm and 8 cm were considered. The fragment orbital parameters were numerically propagated,
accounting for the effect of atmospheric drag and the Earth’s oblateness, until the distribution of the
fragments could be considered spherically symmetrical and drag was the most relevant perturba-
tion for fragment evolution. The information on fragment position was translated into a continuous
function, using the fragment density probability along the orbit. Starting from the initial condition
at the band formation, the evolution of the cloud density with time, under the effect of atmospheric
drag, was obtained through the continuity equation. Under the hypothesis of circular orbits and con-
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Figure 14: Evolution of the eccentricity distribution as a function of time, after the band formation,

for a fragmentation at 500 km.

sidering an exponential model for the atmosphere, it was possible to derive an analytical expression
for the fragment density as a function of time.

The method was validated through a comparison with the numerical propagation. For fragmen-
tations occurring at altitudes higher than 650 km, the analytical method shows good accuracy for
simulations up to 1000 days after the band closure, keeping the simulation time lower than 10% of
the computational time of the numerical propagation. At lower altitudes, the hypothesis of circular
orbits introduces a large error that suggests that eccentricity should be included in the analytical
propagation. Future work will further develop the proposed method, as the present results suggest
that the method may become an efficient tool to simulate a large array of collision scenarios. This
can help to better understand the fragments’ dynamics, to assess under which conditions a fragmen-
tation event is more dangerous to operational satellites and to identify orbiting objects that, in case
of fragmentation, are more likely to generate a debris cloud that can intersect other spacecraft and

pose a hazard.
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