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The Earth is surrounded by inoperative objects created by past space missions; as the orbital speed is very high, 

the impact with a very small fragment, down to 1 cm, can be catastrophic for operating satellites. Therefore, it is 

important to assess the collision risk due to space debris; this requires a reliable picture of the debris environment 

and a deep understanding of its evolution. In this work, an analytical approach is used to describe the evolution of a 

debris cloud created by a collision in Low Earth Orbit. In contrast to traditional approaches, which follow the 

trajectory of single fragments, here the cloud behaviour is studied globally. This reduces the computational time 

needed to estimate the consequence of a collision and allows simulating several what-if scenarios to understand 

which objects, in case of fragmentation, are more likely to pose an hazard to operational spacecraft. The NASA 

break-up model is used to describe fragments dispersion in terms of characteristic length, area-to-mass ratio and 

velocity. From the velocity distribution the fragment spatial dispersion is derived, through an estimation of the time 

after which the fragments create a band around the Earth. The cloud density is expressed by a distribution function 

that depends only on altitude and that is set as initial condition for the orbit propagation. Based on an analytical 

approach proposed in the literature for interplanetary dust and spacecraft swarms, the fragment cloud evolution in 

time is derived through the continuity equation. In this application, the continuity equation describes the variation of 

debris density considering Earth’s gravity and atmospheric drag. The cloud evolution is compared to the numerical 

integration to assess the method’s accuracy. The proposed approach proves to be very promising as it is able to 

capture the main phenomena undergoing the evolution of the semi-major axis distribution. The applicability limits 

are discussed and the main areas for the method improvement are identified. 

 

 

I. INTRODUCTION 

Space debris is gaining increasing interest by 

space agencies as it is now clear how its uncontrolled 

growth could interfere with the exploitation of space, 

which, on the other hand, has become essential to 

everyday life 
1
. Obtaining a reliable picture of space 

debris environment and understanding the evolution 

of its orbits are two key-elements to evaluate the 

consequent risk, to analyse possible mitigation 

strategies and to suggest future policies. 

 

The prediction of the motion of space debris is 

quite complex. The objects produced by explosions 

and collisions, which represent around 60% of the 

total debris population
 2 1

, have larger area-to-mass 

ratios than common satellites, so the fragments are 

highly affected by the perturbative forces whose 

intensity depends on the cross-sectional area, such as 

atmospheric drag and solar radiation pressure
 3
. While 

such perturbing accelerations are sometime neglected 

when dealing with satellite motion, they are essential 

to describe space debris evolution. This means that, 

while satellite trajectories can be studied using the 

analytical expression of the two body problem, the 

analysis of space debris evolution is done using 

numerical propagation to consider the perturbation 

effect on each fragment. Moreover, shape, mass and 

velocity of a fragment generated by a collision or an 

explosion can be predicted only with high level of 

uncertainty, so statistical methods (e.g., Monte Carlo 

method) are required to obtain reliable results
 1
. 
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For these reasons, the simulation of debris population 

evolution or of the consequence of a fragmentation 

event can be quite demanding in term of computational 

time. Semi-analytical methods can be used to accelerate 

the computation. Given the uncertainty introduced by 

the mentioned sources, it is unnecessary to compute the 

fragment trajectories to very high precision, especially 

as it requires very long simulation time. Instead, it is 

possible simplify the model to obtain a faster code, 

which allows the simulation of a large array of cases 

and so a deeper insight of the on-going phenomena. The 

simplification of the propagation is achieved in three 

ways: 

 considering only the most relevant perturbations; 

 reducing the number of objects that are actually 

propagated 

 using semi-analytical expression to describe the 

effect of perturbations. 

 

For example, Rossi et al.
 4
 consider only drag and the 

semi-major axis a and the eccentricity e variations are 

computed through the analytical expressions derived by 

King-Hele
 5
. The whole debris population is divided into 

bins of altitude and object size; the number of objects in 

each bin is used as state variable. Its variation is 

computed considering the collision/explosion rate for 

each bin and only one representative element per bin is 

propagated forward in time to consider the effect of 

drag on the cloud. Their results are in good agreement 

with numerical results in Low Earth Orbit (LEO) and 

the method is able to propagate a cloud of more than 

800 objects for 100 years in less than 10 s  
6
. Here, semi-

analytical methods are used only in the propagation 

phase as average equations of the dynamics are 

numerically integrated rather than the full dynamics. 

Moreover, the fundamental unit of the model is still the 

single fragment so this kind of methods can be 

classified as semi-analytical. 

 

A more radical analytical approach is proposed by 

Valk et al. 
7
: the authors write a Hamiltonian formulation 

for the dynamics of space debris under the effect of 

gravity potential, luni-solar perturbation, and solar 

radiation pressure 
8
. Drag is not considered, as it is not a 

conservative force, so this model is not applicable for 

LEO, but it allows a fast evaluation of the debris 

population in Geosynchronous Earth Orbit (GEO) 

region over several hundreds of years. 

 

Similarly, Izzo
 9
 proposes a method that describes the 

debris population globally through the definition of 

some density functions. In the examples shown
 9, 10

 the 

propagation of the population is performed by studying 

how the density functions in the argument of the 

periapsis ω and in the longitude of the ascending node 

Ω change under the effect of the Earth's oblateness. Also 

in this case drag is not considered, the method is more 

suited to describe the GEO region. 

 

However, LEO can be considered as the most crucial 

area for space debris study. First of all, the density of 

fragments is much higher in LEO than in GEO and in 

some regions, e.g. synchronous orbits, it is likely to be 

very close to the critical value for cascading 
11

, that is the 

density is so high that the collisions among fragments 

create much more new objects than the ones that are 

removed by air drag. Secondly, the International Space 

Station (ISS) is in LEO and its protection from space 

debris is essential both for the presence of astronauts 

and for the delicate experiments, which need to be 

interrupted in case of collision avoidance manoeuvre 
12

. 

Finally, the relative velocity is much higher in LEO than 

in GEO and so collisions tend to be more dangerous 
13

. 

 

This work evaluates the applicability of an analytical 

method to describe debris motion in Low Earth Orbits. 

The central idea of the approach is to consider the cloud 

of fragments generated by a collision globally, as a fluid 

with continuous properties. The state variable of the 

system is the cloud density, whose evolution with time, 

under the effect of the Earth's gravity and perturbations, 

is obtained through the continuity equation. This 

approach was applied to describe the evolution of 

orbital debris population
 14

, whereas it proved to be 

effective in describing the motion of interplanetary 

dust 
15

, high area to mass ratio spacecraft 
16

 and nano-

satellites constellation. 
17

 

 

The proposed method requires some simplifying 

assumption, but the reduced accuracy in predicting the 

exact position of each fragment is compensated by a 

more flexible and fast model, that could enable new 

analysis on the debris population evolution. 

 

II. ANALYTICAL APPROACH 

The aim of this work is to develop an analytical 

method to describe the evolution of the fragment cloud 

formed by a collision in space. The algorithm to achieve 

this goal requires the following building blocks, 

represented in Fig. 1 and described in this section:  

 a breakup model, to generate the fragments and their 

characteristics (i.e., size, mass, velocity) depending 

on the energy of the collision; 

 a model to identify and describe the position of the 

fragments in the phase when the analytical method 

becomes applicable (i.e., initial condition for the 

analytical method); 

 a block to transform the information on the fragment 

positions into a continuous density function; 

 an analytical formulation (i.e., the continuity 

equation) to describe the evolution of the cloud 

density with time.
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Fig. 1: Algorithm building blocks 

 

Breakup model 

A breakup model translates the initial conditions of 

an explosion or a collision into the characterisation of 

the generated fragments, in terms of number, size, mass, 

ballistic coefficient and velocity variation
 18 19

. These 

parameters, which depend on the energy involved in the 

fragmentation event and the nature of the event (i.e., 

collision or explosion), are required to simulate the 

fragment cloud evolution under the effect of gravity and 

perturbation forces.  

 

The breakup model adopted in most of the tools for 

characterising the global evolution of space debris 

(ORDEM, EVOLVE, MASTER, DAMAGE
 20

) is the NASA 

breakup model, developed by Johnson
  18

 and Krisko 
21

 

and here applied.  

The model is here implemented considering non-

catastrophic collisions and only the fragments whose 

size is in the range 1 mm – 8 cm, to avoid the 

discontinuities present in the model and study how the 

distributions present in the NASA breakup model 

influence the fragment dispersion. The maximum 

ejection velocity is set equal to 1.3 vc, where vc is the 

collision velocity; the ejection velocity direction is 

random. 

 

Numerical propagation and band formation 

Once the fragments are generated and their 

characteristics defined, the orbital parameters for each 

fragment orbit are obtained starting from the 

information on the position and velocity of the 

fragments. The orbital parameters are propagated 

numerically using Gauss' equations to compute the 

effect of atmospheric drag and the Earth's oblateness 
22

. 

 

Drag effect is estimated using an exponential density 

model  

 exp
ref

ref

h h

H
 

 
  

 
 [1] 

 

where the reference values ρref and H depend on href and 

are from Vallado
 22

. In the present work, href is set as the 

altitude where the collision occurs and its value is kept 

constant for the whole simulation; no atmospheric 

rotation is considered and the maximum altitude below 

which drag is considered is 1000 km. The variation of 

orbital parameters due to drag is computed with the 

expressions derived by King-Hele
 5
 for eccentricity e 

values between 0.02 and 0.2. Below 0.02 singularities 

appear, so the fragments whose eccentricity is lower 

than this threshold are not considered in the propagation 

or the propagation is stopped. The propagation is 

stopped also when the perigee altitude hp is below 50 

km as, in this case, the fragment is re-entering through 

the atmosphere. 

 

Earth's oblateness is included in terms of the long 

term effect of the zonal harmonic J2 on the orbital 

parameters. The implementation of higher order 

harmonics is not required as the oblateness of the Earth 

is relevant only for the transition of the cloud shape 

from a ring to a band around the Earth, which occurs in 

a period of some months (depending on the parent orbit 

parameters). Once the band is formed, the argument of 

periapsis ω, the longitude of the ascending node Ω and 

the true anomaly ν are randomised in the cloud and so it 

is not necessary to compute their evolution under the 

effect of the Earth’s oblateness.  

 

The fragment orbital parameters are propagated 

numerically with semi-analytical methods until they 

form a band around the Earth, under the effect of Earth's 

gravity and oblateness 
23

. When the band is formed, the 

fragment density depends on the distance from Earth 

only, while the angles ω, Ω, ν are randomised; in these 

condition, in fact, it is possible to apply the equations 

developed by McInnes 
17

 to describe cloud evolution. 

We are currently working on including also the 

dependence on ω and Ω in the density, so that the 

analytical method will be able to describe the cloud 

evolution starting from only a few revolutions around 

the Earth. 

 

In literature some analytical expressions to estimate 

the time required to the fragments to form a band 

around the Earth are proposed
 24, 25, 26

: they allow 

computing the band formation period starting from the 

orbital parameters of the initial orbit and so they can be 

used to define a criterion to stop the numerical 

propagation. However, all these formulations rely on the 

hypothesis that apsidal and nodal dispersion is complete 

when the faster fragment, in terms of apsidal/nodal rate, 

encounters the slowest one. Actually, as explained by 
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Jehn
 23

, when the fastest particle meets the slowest one, 

the fragments are not still uniformly distributed in ω and 

Ω and so their state cannot be described only as a 

function of the distance r. As a result, the analytical tend 

to underestimate the required time. 

 

Therefore, a multiplication factor is introduced. This 

was computed comparing the distribution of the angles 

(ω, Ω, ν) with a uniform distribution between -π and π, 

through the Kolmogorov-Smirnov test 
26

: the band is 

considered formed at the time when the hypothesis of 

uniform distribution becomes acceptable. In the 

following results the formulation by Ashenberg 
26

 is used 

 
2

2 3
3 (7cos cos sin cos sin )E

T
R

J i i u v
a



  
 



 

with 

 
1

tan tan cos
7

i u   

where RE is the Earth’s radius, a is the semi-major axis, 

i is the inclination, u is the longitude of the periaspis,  

v is the (average) variation of the velocity due to the 

fragmentation event; a multiplication factor of 2 is 

applied. 

 

Position fitting 

Once the band is formed, the numerical integration 

is stopped and the information on the fragment orbital 

parameters has to be converted in a continuous function 

that describes the fragment density and that will be used 

as initial condition for the analytical propagation. 

 

The position fitting is performed through the 

parametric approach, where it is assumed that the 

functional form of the fitting function is known and 

only some parameters need to be calculated 
26

. Some 

standard distribution functions were tested and their 

fitness was evaluated through the quantile-quantile plot 

(Fig.2) and the Kolmogorov-Smirnov statistic, which 

measures the maximum distance between the empirical 

cumulative distribution function of the (simulation) data 

and the cumulative distribution function used to fit the 

data (Fig.3). 

 

In particular, the latter approach allows quantifying 

the fitness of all the tested distribution functions as 

summarised in Table 1 and so it provides a criterion to 

rank them; as a result, the algorithm is able to choose 

the best function for each application. 

 

 
Fig.2: Quantile-quantile plot of the generalised extreme 

value in case of a fragmentation event at 800 km 

 

 
Fig.3: Empirical cumulative distribution function 

plotted against the generalised extreme value 

cumulative distribution function 

 

 

Distribution KS Distribution KS 

Birbaum-

Saunders 
0.1038 Log-normal 0.0990 

Extreme value 0.2373 Nagakami 0.1546 

Gamma 0.1225 Normal 0.1688 

Generalised 

extreme value 
0.0632 Rayleigh 0.1986 

Inverse 

gaussian 
0.1022 Rician 0.1984 

Logistic 0.1368 
T location 

scale 
0.1404 

Log-logistic 0.0804 Weibull 0.1511 

Table 1. Value of the Kolmogorov-Smirnov statistic for 

the tested distribution functions 
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The function used to fit the semi-major axis 

distribution is the generalised extreme value, whose 

cumulative distribution function is 

 

1

( ; , , ) exp 1 ,
x

F x


   


 
    

     
   

 

 

where   is the location parameter,   is the scale 

parameter, which indicates how spread the distribution 

is, and   is the shape parameter, which indicates if the 

distribution is symmetric or not. 

 

 

 

Analytical propagation 

Once the initial fragment density is defined, the 

continuity equation is used to analytically derive the 

evolution of density n with time and altitude. 

 

The continuity equation can be written as 

 
n

n n
t

 
  


f  [2] 

and at the moment, no discontinuous events are 

considered, so 0n n   ; the term  f  models the 

continuous phenomena and in this case drag is 

considered, following the approach developed by 

McInnes 
17

. 

 

A spherically symmetrical initial condition is 

considered and the drift velocity in the radial direction 

vr depends only on drag effect. The radial velocity vr is 

obtained starting from the expression of drag 

acceleration 

 21
( )

2

D

D

c A
a r v

M
  [3] 

where cD is the drag coefficient of the fragment, which 

is supposed to be constant and equal to 2.2
 22

; A is the 

fragment cross-sectional area; M is the fragment mass; v 

is the fragment velocity and ρ(r) is the atmosphere 

density, which depends on the distance from the Earth. 

The term ρ(r) is expressed through the exponential 

model in Equation [1] and the parameter   is 

introduced 

 exp
refD

ref

hA

M H

c
 

 
  

 
. 

Applying the method of characteristics, McInnes 
17 

obtains an explicit expression for the density evolution  
5/2 1log{ ( , )} log{ exp[ / ]}

{exp[ / ] ( / ) }.H

n r t r r H

r H R H t





   

 
 [4] 

where the function   is obtained from the initial 

distribution  , 0n r t    

 
2 1

1 5/2

( ) log{ ( ,0)} log{ ( )}

log{ ( log )} log{ ( log ) }

rz n r r v r

n H z z H z





  

  
 [5] 

with the independent variable exp[ / ]z r H . 

 

Here, three important observations should be done. 

Firstly, Equation [4] provides a fully analytical 

expression to compute the effect of drag on the cloud 

and the analytical propagation always acts on the cloud 

globally, not on the single fragments. Secondly, 

Equation [5] shows that the initial fragment density can 

be described with any explicit function, as no particular 

operation is done on the function  , 0n r t  .  

Finally, it is important to observe that in this 

formulation the shape of the initial condition is used 

only as a starting point for the analytical method, which 

is able to modify the function shape to follow the 

evolution of cloud. To demonstrate this point, let’s 

consider to model the initial condition with a normal 

distribution 

 
2( ,0) exp[ ( ) ]m mn r n r r    

and to write explicitly the expression of n(r,t) given by 

Equation [4] 

 
2

5/2

( , ) exp ln exp

ln

1

exp

ex

.

p

H

m m

H

m

H

Rr
n r t n H t r

H H

Rr
H t r

H H

Rr
t

H H

 





     
               

   
          

 
 

 





 [6] 

  

Introducing 

  

 ln exp
HRr

z H t
H H


  

      

 

the Equation [6] becomes 

 
5/2

2( )
exp

ex
[ ]

p[ ( ) ]
/

m m

z
n z r

z
n

H
z     [7] 

and one can observe that the shape of the initial 

condition 
2exp[ ( ) ]m mn z r   is modified by the factor 

5/2

exp ]/[

z

z H
 that depends on the dynamics of the 

problem. 
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III. PRELIMINARY RESULTS 

 

The method described in Section II is implemented 

and compared to the traditional numerical integration of 

the trajectory of each fragment. 

 

The parent orbit before the collision is here 

considered to be circular and planar; its altitude is set to 

800 km as it is the altitude where the density of space 

debris is the highest 
11

. 

 

A non-catastrophic collision is here considered, with 

projectile mass equal to 100 g and collision velocity of 1 

km/s: the collision generates more than 2000 fragments 

whose orbital parameters are numerically propagated up 

to band formation, set at a number of orbits double of 

the value predicted by Ashenberg 
26

. The numerical 

propagation was performed in Keplerian elements by 

means of Gauss' equations averaged on the orbital 

period 
22

. When the band is formed, the distribution of 

the semi-major axis a is used to build the initial 

condition for the fragment density in terms of altitude. 

 

 
Fig. 4: Diagram of nominal orbit and different circular 

approximations: perigee radius rp, apogee radius ra, 

semi major axis a. In this example the eccentricity e 

is equal to 0.2. 

 

Since the analytical method assumes that the orbits 

are circular, choosing the semi-major axis as 

independent variable allows saving the information on 

the orbit energy. 

 

If, instead, the initial condition was built from the 

fragment positions, this would imply that the analytical 

method approximates the actual orbit family with 

circular ones using as a reference radius the distance 

measured at the time of band formation; if the 

eccentricity is very low, the error introduced is low; 

however, as the eccentricity increases, the difference in 

energy becomes noticeable. 

 

In Fig. 4 the comparison between the actual orbit 

and different circular approximations is shown. If the 

value of the perigee rp is used, the obtained circular 

orbit (light grey curve) is much lower in altitude than 

the actual one, so the effect of drag will be much 

amplified; on the other hand, using the radius at the 

apogee ra (dark grey curve) the decay due to atmosphere 

is underestimated. As the particles are slower close to 

the apogee, if the distance of the fragments at a specific 

time is registered, it is likely that more fragments are 

close to the apogee
 28

. The semi-major axis provides an 

average value for the radius and it also allows saving the 

information on the orbit energy. For this reason, the 

value of semi-major axis is used and compared both to 

the actual distribution of fragment distance and semi-

major axis. 

Single area-to-mass ratio 

Fig. 5 shows the comparison between the numerical and 

the analytical method in terms of semi-major axis 

distribution at different times; the numbers above each 

plot indicate the number of days since the band 

formation.  

 
Fig. 5: Evolution of the cloud density in term of semi-

major axis a. The numbers above each graph 

indicate the number of days since the band 

formation. The solid line represents the results of the 

analytical method, the dashed line the fit of the 

distribution obtained with the numerical 

propagation. 
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The histograms represent the distribution of fragments 

according to the numerical propagation and the density 

of fragments at the time j in the k
th

 bin is computed as 

 
,

,

j k

j k

k tot

N
n

h N
  

where Nj,k is the number of fragment at a specific 

altitude divided by the total number of fragment at the 

band formation Ntot and the width of the altitude bins hk. 

The solid curve represents the distribution obtained with 

the analytical method, as in Equation [4], and the 

dashed curve represents the fit of the numerical results 

done with the best fitting distribution function (i.e., the 

generalised extreme value) used to set the initial 

condition for the analytical method. In this case, it is 

assumed that all the fragments have the same area-to-

mass ratio, which is equal to 0.5 m
2
/kg. 

 

The first observation is that the numerical fit (dashed 

curve) is not able to follow the actual evolution of the 

cloud. This is because the shape of the fragment 

distribution changes with time and fitting with the same 

distribution function (in this case the generalised 

extreme value) does not capture this change; for 

example, it is possible to note that the Kolmogorov-

Smirnov statistic increases with time, going from 

0.0234 at the band formation to a maximum of 0.0439 

after 600 days (Fig. 6). On the other hand, the analytical 

curve changes with time as the continuity equation does 

not act on the parameters of the fitting function, but it 

modifies the function shape as explained in Section II. 

 

It is also possible to observe that the analytical 

propagation is able to represent the two main 

undergoing phenomena: the reduction of the fragment 

number and the shift of the peak toward higher altitude. 

 

 
Fig. 6: Evolution of the Kolmogorov-Smirnov statistic 

for the fit of the numerical data 

 

 
Fig. 7 Evolution of fragment density as computed by the 

analytical model 

 

The height of the peak is well captured by the analytical 

method, while the shift of its location is over predicted. 

This is due to the shape of the initial condition and so 

the results may be probably improved using a better 

fitting for the initial condition. This is also visible in 

Fig. 7 that shows the history of the density obtained 

with the analytical model. 

 

The comparison between the numerical and the 

analytical propagation can be done observing also the 

histograms obtained with the two methods and their 

difference. 

 

In Fig. 8 the dark grey histograms refer to the 

numerical propagation and the light grey are 

representative of the analytical method; the histograms 

at the bottom express the difference between the two. 

From the graph at the time of band formation one can 

observe the initial error due to the incorrect 

representation of the peak, whose altitude is 

underestimated of around 12%. 

 

The error is computed as 

 1

1

ˆ ˆ

err ,

ˆ

m

k k

k

i m

k

k

a n

n











 

Where â  and n̂  represent, respectively, the histogram 

estimation of the analytical and the numerical 

propagation so that ˆ
ka  and ˆ

kn  are the values of density 

in the k
th

 bin and m is the total number of bins.  

The error erri is equal to 0.1472 at the band 

formation and grows up to 0.3105 after 1000 days; at 

this time the error is mainly due to the overestimation of 

particles at high altitude (>1000 km). 
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This behaviour can be explained observing the 

relationship between eccentricity e and semi-major axis 

a presented in Fig. 9: the fragments with large semi-

major axis have also large eccentricity values, so the 

altitude of perigee is lower than 1000 km and drag 

affects the fragment while they are close to the perigee, 

reducing the energy and so the semi-major axis of the 

orbit. However, in the analytical method the orbits are 

approximated with circular orbit whose radius is equal 

to the semi-major axis; as the semi-major axis of these 

fragments is well above 1000 km, no drag effect is 

computed. Modelling the dependence of the semi-major 

axis on the eccentricity will improve the results. This 

will be done in a future work. 

 
Fig. 8 Comparison between the actual distribution of 

fragment semi-major axis (dark grey histograms) 

and the one obtained with the analytical method 

(light grey histograms); the histogram at the bottom 

represents their difference. The numbers above each 

graph indicate the number of days after the band 

formation. 

 
Fig. 9: Eccentricity e values plotted against semi-major 

axis a at different times of cloud evolution 

 

If the initial condition built on the distribution of the 

semi-major axis is used to predict the distribution of the 

fragment altitude the results are less accurate: as shown 

in Fig. 10, the initial condition (solid curve) is not able 

to correctly represent the initial distribution, as the peak 

height is not captured; during the cloud evolution the 

two methods agree on the reduction of the fragment 

number, but the distribution obtained are quite different. 

Also in this case, modelling the effect of eccentricity 

distribution can improve the results. 

 

 
Fig. 10: Evolution of the cloud density in term of 

distance r. The numbers above each graph indicate 

the number of days since the band formation. The 

solid line represents the results of analytical method, 

the dashed line the fit of the distribution obtained 

with the numerical propagation. 
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Multiple values of area-to-mass ratio 

If the complete NASA model is used, the cloud is 

formed by fragments with different values of area-to-

mass ratio. If the analytical propagation is obtained 

using an average value for the area-to-mass ratio, the 

method is not accurate enough to describe the cloud 

evolution. 

An alternative approach consists in defining n bins 

in area-to-mass ratio (currently 5n  ) and treating each 

bin with a single (average on the bin) area-to-mass ratio 

value and then summing the resulting density curves. As 

shown in Fig. 11, the method is able to deal also with 

multiple values of area-to-mass ratio. 

 

 
Fig. 11 Evolution of the cloud density in term of semi-

major axis a. The numbers above each graph 

indicate the number days since the band formation. 

Multiple values of area-to-mass ratio are considered.  

 

 

Computational time 

The numerical and the analytical method can be 

compared in terms of the computational time required to 

simulate a certain period of cloud evolution. The result 

of the comparison is shown in Fig. 12: a cloud of 8000 

fragments was studied for 1500 days after the 

fragmentation event and the measured times refer to a 

machine with 8 CPUs at 3.40 GHz.  

 

The breakup model requires only 0.1 s to generate 

the cloud; this is required in both numerical and 

analytical approaches. Then, the numerical propagation 

up to band formation lasts around 500 s and it is evident 

that this is the main contribution for the computational 

time of the analytical method.  

 

 
Fig. 12: Computational time in seconds on a machine 

with 8 CPUs at 3.40 GHz 

 

In fact, in the analytical approach, the curve fitting 

takes 2.5 s, whereas the computational time of the 

propagation with the continuity equation is negligible. 

On the other hand, if the semi-analytical numerical 

method is used, the simulation of the cloud evolution 

after the band formation requires more than 3000 s. 

Moreover, the computational time of numerical 

propagation depends on the length of the simulation and 

the number of fragments, while the time for the 

analytical propagation is always negligible.  

 

This suggests that the analytical method can enable 

many analyses on the debris population, for example 

simulating several collisions to understand under which 

conditions the risk for operating satellites is higher and 

which objects are more dangerous if involved in a 

fragmentation event. This will be shown in a future 

work. 

 

IV. CONCLUSIONS 

 

The study of the consequences of a collision 

between objects in space is a complex task because of 

the large number of produced fragments and the 

relevance of perturbing forces, which are usually 

neglected when dealing with satellite motion.  

 

In this work, an analytical approach to model 

fragmentation events in space is developed. The 

proposed method shifts the focus from the computation 

of the single fragment trajectories to the study of the 

global evolution of the fragment cloud. The starting 

point for the method is a standard fragmentation model, 

which provides the main features of the fragments 

generated by the collision; the fragment orbital 

parameters are numerically propagated until their 

distribution is spherically symmetrical and it depends 

only on the distance from the Earth. Then, a continuous 

function in introduced to describe the fragment density, 

basically considering the fragment cloud as a fluid with 

continuous properties. The evolution of the cloud 

density with time is obtained through the continuity 
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equation; it is then possible to derive an analytical 

expression for the fragment density as a function of 

time. 

The current preliminary implementation of the 

method shows already some interesting and promising 

results as it is able to model the main changes in the 

fragment semi-major axis distribution under the effect 

of drag. This approach can be therefore applied to 

model collisions in Low Earth Orbit up to 1000 km, 

where drag is the main perturbing force, which is an 

extremely important area for space exploitation. 

 

Improving how the eccentricity and area-to-mass 

ratio are treated will increase the accuracy of the 

method, making it a suitable model for dealing with 

space debris risk estimation. This will be implemented 

in a future work. 

In fact, as the proposed approach allows a 

remarkable reduction of the computational time to 

simulate the consequence of a collision, it can enable 

new analysis on the debris population; for example it 

can be used to test several different fragmentation 

scenarios to assess the stability and the criticality of the 

current debris population. 
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