Cognitive Architectures and Virtual Worlds:
Integrating ACT-R with the XNA Framework

Paul Smart*, Katia Sycara® and Christian Lebiere!
*Electronics & Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
iCarnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
TCorresponding author — ps02v@ecs.soton.ac.uk

Within the sciences of the mind, issues of material em-
bodiment and environmental embedding have emerged as
important areas of research attention over recent decades.
Embodiment and embedding are deemed to be important,
it is argued, because extra-neural resources may shape the
profile of brain-based processes, and, at least occasionally,
they may feature in the realization of what are referred to
as ‘environmentally extended cognitive systems’. This interest
in situated, embodied and extended cognition motivates the
development of cognitive computational models that can en-
gage in complex forms of perceptuo-motor processing within
highly dynamic and perceptually-rich environments. While the
ACT-R cognitive architecture is capable of supporting certain
forms of environmental interaction via a set of perceptuo-motor
modules, in the majority of cases these modules are used to
emulate the interaction seen with relatively simple devices,
such as computer keyboards and display screens. In this paper,
we show how ACT-R can be integrated with Microsoft’s XNA
Framework to support sophisticated forms of interaction with
3D virtual environments. The XNA Framework forms part of
Microsoft’s XNA Game Studio, which provides a managed
runtime environment that supports the process of video game
development. By demonstrating how ACT-R can be integrated
with the XNA Framework, we hope to show how ACT-R
agents could be embedded in a range of virtual 3D multi-
player game environments. This capability could be used to
support future research efforts associated with the development
of computational models of embodied, situated and extended
cognitive processes. This work builds on previous efforts to
integrate ACT-R agents within virtual environments, most
notably the work of Best and Lebiere [1] using the Unreal
Tournament game engine.

The approach we have adopted to support the integration of
ACT-R models with the XNA Framework relies on the use of
TCP sockets to support inter-process communication, as well
as the use of a custom .NET API (the ACT-R/XNA API) to
support the processing of requests made by ACT-R models to
retrieve game state information or engage in certain behaviors.
The ACT-R/XNA API provides a Connect () method that is
called during the initialization of the game. This method opens
up a TCP connection on a specified port and prepares the
XNA game for receiving instructions (or requests) from ACT-
R models. Once this connection is open, an ACT-R model,
which may be hosted on a separate machine, can post requests
to the game environment using Lisp-based TCP sockets (in this
configuration, the XNA game is playing the role of server, and
the individual ACT-R model is playing the role of a client).

(p move-left

=goal>
isa explore—-environment
current-task explore
task-status move-left

==>

+xna>
isa action
type "MOVELEFT")

Fig. 1. An example of a rule that uses the custom ‘xna’ module to post a
request to an XNA game. In this case, the rule is requesting that the camera
be moved to the left. This corresponds to a ‘strafe left’ action in video game
parlance.

The requests made by ACT-R models will typically relate
to the execution of actions that can be made by characters
in the game, such as directional movements. ACT-R models
can implement these requests by issuing simple commands,
such as ‘MOVEFORWARD’, ‘LOOKLEFT’, ‘MOVERIGHT’,
‘SHOOT", and so on. Typically, these requests will be gener-
ated by the interaction of production rules with specific ACT-R
modules, such as an ACT-R motor module. For the purposes
of this paper, we created a custom ACT-R module called ‘xna’
that ACT-R models can exploit in order to post requests to the
XNA game. An example of a rule that targets this module is
shown in Fig. 1.

When a request is received by the XNA game, it is
processed by the ACT-R/XNA API in order to either effect
changes in game state or retrieve information from the game
environment. Many of these requests involve the implementa-
tion of specific motor commands that result in changes to the
position or orientation of the game camera. These inevitably
result in changes to the visual scene: every movement will
entail a change in the relative size, position or visibility of
objects in the environment as they appear from the perspec-
tive of the ACT-R model that is controlling the camera. In
order to coordinate behavior with respect to objects in the
virtual environment, the XNA game needs to process the
current visual scene and build representations that can be
processed by ACT-R’s vision module (i.e., the game needs
to build representations that can be interpreted by ACT-R as
a set of visual location and visual object chunks, each of
which encodes the features of game objects that are visible
within the camera’s current field of view). This amounts to
providing ACT-R models with the ability to perceive objects
contained within the current visual scene. In order to realize


mailto:ps02v@ecs.soton.ac.uk

this capability, we first need to determine which objects are
contained within the camera’s viewing frustrum. We do this
by creating an instance of the XNA BoundingFrustrum
class and then determine whether the vectors encoding an
object’s position in 3D space are contained within the borders
of the bounding frustrum. The features (e.g., the apparent size
and position) of these ‘visible’ objects are then extracted with
the help of the XNA ViewPort.Project () method. This
enables us to obtain the 2D screen coordinates of 3D vectors
that encode, for example, the position of objects in the virtual
environment. Once the features of objects have been extracted,
they are returned to the ACT-R model in the form of a comma-
delimited string. The ACT-R model processes this string in
order to create a set of visual location (and corresponding
visual object) chunks. These are used to populate the model’s
visicon, and are thus made available for subsequent processing
via the ACT-R vision module. It should be noted that, in the
case of the current integration solution, ACT-R models are
required to make explicit (‘GETVISICON’) requests to the
game environment in order to update their visual representation
of the environment. An alternative (and more realistic) strategy
would be for the game environment to automatically update the
visicon following any change in the visual scene, for example,
after every change in camera position or orientation.

In order to test the integration solution, we created
a virtual environment consisting of a simple rectangular
room that was adorned with randomly generated picture
objects displaying simple geometric shapes. A screenshot
of the environment is shown in Fig. 2. The geometry for
all objects within the environment (i.e., the walls, floor,
pictures, etc.) was generated procedurally using the XNA
GraphicsDevice.DrawPrimitives () method. In ad-
dition, the content of the picture objects within the environment
was generated at runtime as part of the LoadContent stage
of the XNA game loop. This was achieved by using the .NET
managed code interface to GDI+ in order to dynamically create
XNA Texture2D objects that were then assigned to the
picture geometry. The environment contains a movable camera
that is initially situated centrally within the room. This is
the camera that is controlled by the ACT-R model. Using a
simple cognitive model, we tested each of the requests that
could be issued by the ACT-R agent to the game environment.
The game environment responded successfully to each of the
requests made by the ACT-R model, and the model was able to
create and attend to objects within the dynamically changing
visual scene. Given the focus of this initial study, we did
not attempt to develop models in which behavioral output
was coordinated with respect to visible objects (e.g., for the
purposes of engaging in approach or avoidance responses).
This is a potential target of future work.

In addition to closing the visuo-motor loop, there are
a number of other areas that could serve as the focus of
future work efforts. Firstly, it should be noted that the XNA
Framework lacks many of the features seen in high-end game
development environments, such as those used for the pro-
duction of so-called AAA (triple-A) games. This potentially
limits the applicability of the current solution and necessitates
a consideration of alternative 3D modeling/game development
environments. After evaluating a number of game development
environments, we suggest that the Unity game engine [2]
provides a compelling alternative to XNA in the context of

PO

Fig. 2. Screenshot of the virtual environment used for testing the ACT-R/XNA
integration solution. Picture objects are indicated by white borders.

the current work. The Unity game engine provides extensive
support for the development of visually-rich 3D scenes, and
its support for the C# language facilitates code migration
efforts for the ACT-R/XNA API. A second focus of attention
for future work concerns the communication protocol used to
support inter-process communication between XNA games and
ACT-R. The current solution relies on the use of a proprietary
message format; however, we suggest that future work should
aim to incorporate more generic solution strategies, such as
the one proposed by Hope et al [3] using JSON. Finally, the
current solution has been tested with a single ACT-R model.
Future work should aim to extend this capability to multiple
ACT-R models. This will provide the basis for future research
efforts that seek to use ACT-R for the purposes of investigat-
ing issues of embodiment, social interaction and inter-agent
communication within highly dynamic and perceptually-rich
virtual worlds.

ACKNOWLEDGEMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon.

REFERENCES

[1] B.J. Best and C. Lebiere, “Cognitive agents interacting in
real and virtual worlds,” in Cognition and Multi-Agent In-
teraction: From Cognitive Modeling to Social Interaction,
R. Sun, Ed. New York, New York, USA: Cambridge
University Press, 2006.

[2] “Unity - Game engine, tools and multiplatform,” URL:
http://unity3d.com/unity [accessed: 2014-07-13].

[3] R. M. Hope, M. J. Schoelles, and W. D. Gray, “Simpli-
fying the interaction between cognitive models and task
environments with the JSON Network Interface,” Behavior
Research Methods, in press.


http://unity3d.com/unity

