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Active control methods have been applied to a number of practical problems in which it is
necessary to control a tonal disturbance. For example, the control of engine noise and vi-
bration in vehicles, propeller noise in aircraft and the vibration produced by reciprocating
machinery in many industrial systems. In such applications the steepest-descent algorithm has
been widely employed, in part due to its robustness to variations in the plant response. This
robustness, however, comes at the expense of a potentially slow convergence speed and this
may limit the performance in applications where the disturbance is non-stationary. To improve
the speed of convergence, an iterative least-squares algorithm can be employed, such as New-
ton’s algorithm. The convergence of these algorithms is less dependent on the potentially large
eigenvalue spread of a multichannel plant matrix and, therefore, can theoretically achieve more
rapid convergence. However, these algorithms are significantly less robust to plant response
variations and, therefore, their practical performance can be somewhat limited. Generalised
algorithms have been presented which combine steepest-descent and Newton’s method in or-
der to provide a fixed compromise between convergence and robustness. This paper presents
a method of adaptively combining steepest-descent and Newton’s method in order to achieve
both rapid convergence and robustness to plant response variations. The two algorithms are
combined into a single update equation in which a single mixing parameter facilitates a trade-
off between the two algorithms. A method of adapting this parameter to minimise the cost
function is presented and the performance of the proposed algorithm is assessed through a
series of simulations. The proposed combination algorithm is shown to improve the control
performance in the presence of plant response variations compared to both the steepest-descent
and Newton’s algorithms.

1. Introduction

The attenuation of noise and vibration is of significant importance in a wide variety of applica-
tions due to factors such as environmental impact, health and safety requirements and the commercial
success of noise producing products. In most applications, traditional passive control methods are
employed to attenuate noise and vibration; however, at low frequencies the performance of passive
control methods are limited by practical constraints such as their size and weight, for example. Un-
der these conditions active control methods become more suitable and consequently there has been a
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Figure 1: Block diagram of a multichannel tonal control system operating at a frequency of ω0.

variety of methods developed to control both noise [1] and vibration [2].
In many applications it is of interest to control specific tonal disturbances produced, for exam-

ple, by internal combustion engines, aircraft propellers, fans, and reciprocating machines. To achieve
such control when a number of acoustic or structural modes are excited it is necessary to employ mul-
tiple error sensors and control sources. Multichannel control of tonal disturbances has been success-
fully achieved using both feedforward [3] and feedback [4] control approaches and the relationship
between these two approaches has been highlighted by a number of authors [3, 5, 6, 7]. These com-
parisons aside, there is a general trade-off between the speed of convergence and the robustness of the
controller to variations in the system response and this becomes particularly sensitive in the case of
a multichannel control system. As a result of this trade-off, a number of different control algorithms
have been proposed, which range from the steepest-descent algorithm [8], which is relatively robust to
variations in the plant response, to Newton’s algorithm, which theoretically provides fast convergence
[9]. For example, Cabell and Fuller [10] propose an algorithm based on transformed signals called
the principle component least-mean-square (PC-LMS) algorithm which allows the convergence of the
individual principal components to be controlled and can thus be tuned to avoid some of the issues of
the steepest-descent and Newton’s methods.

This paper presents the development of a novel algorithm for the active control of a tonal dis-
turbance in a multichannel control system, as shown in Fig. 1, which adapts between steepest-descent
and Newton’s algorithms in order to achieve both rapid convergence and robust performance. In
section 2 the multichannel tonal control problem is outlined and the limitations of the conventional
steepest-descent and Newton’s algorithms with respect to convergence speed and robustness are re-
viewed. In section 3 a method of adaptively combining the steepest-descent and Newton’s algorithms
is presented and in section 4 the performance of this proposed algorithm is compared to the steepest-
descent and Newton’s algorithms through a series of simulations. Finally, conclusions are drawn in
Section 5.

2. Multichannel Tonal Control Problem

The multichannel tonal control problem is represented by the block diagram shown in Fig. 1.
The control system consists of L error sensors, which may be microphones in a noise control problem
or accelerometers in a vibration control problem, and M control actuators, which may be loudspeakers
in a noise control problem or shakers in a vibration control problem. The aim of the control system is
to adjust the amplitude and phase of the vector of control signals, u(ejω0Ts), at the control frequency
ω0 and sampled at a period of Ts seconds, in order to suppress the L disturbance signals, d(ejω0Ts).
The response between the control actuators and the error sensors is denoted by the L ×M matrix of
complex plant responses, G(ejω0Ts) and, therefore, in the steady state the complex error signals can
be expressed as

e(ejω0Ts) = d(ejω0Ts) +G(ejω0Ts)u(ejω0Ts). (1)

For the remainder of this paper the dependence on ω0Ts will be dropped for conciseness. The optimal
vector of control signals for this multichannel problem is dependent on the cost function to be min-
imised. In many applications we aim to minimise the cost function defined as the sum of the squared
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error signals, which is given by
J = eHe. (2)

If there are more error sensors than control actuators (L > M ) then the vector of optimal control
signals can be calculated as

uopt = −
[
GHG

]−1
GHd. (3)

From this equation it is clear that to directly calculate the optimal control signals requires advanced
knowledge of the vector of disturbance signals and, in general, this is not practically possible. There-
fore, in practice, the control signals are iteratively adjusted in order to minimise the quadratic cost
function given by eq. 2. Using a gradient descent approach the control signal vector can be iteratively
updated as

u(n+ 1) = u(n)− αCe(n), (4)

where n is the iteration index, α is the convergence coefficient and C is a complex matrix. The
update algorithm given by eq. 4 is derived by assuming that the error signals have reached their
steady state values before the next iteration is applied. In practice this means that the algorithm will
be very slow to converge and, therefore, it is common practice to compute the next iteration prior to
the steady state condition [4]. The algorithms presented and proposed below are thus updated at the
sampling frequency, 1/Ts Hz, and may therefore be referred to as Instantaneous Harmonic Control
(IHC) algorithms.

There are a number of different adaptation algorithms using the gradient descent approach given
by eq. 4, with the distinct difference generally being the definition of the complex matrix C. Using
the method of steepest-descent to minimise the quadratic cost function leads to C = GH and the
resulting steepest-descent update algorithm is given by

u(n+ 1) = u(n)− αGHe(n). (5)

Alternatively, the control signals can be updated at each iteration using an estimate of the exact least-
squares solution, given by eq. 3, and in this case C =

[
GHG

]−1
GH and the update equation is given

by
u(n+ 1) = u(n)− α

[
GHG

]−1
GHe(n). (6)

This will be referred to as Newton’s algorithm in the remainder of this paper.
The definition of the matrix C in the update algorithm will affect both the stability and conver-

gence properties of the algorithm. For example, the convergence of the steepest-descent algorithm
has been shown to converge in a series of modes, whose time constants are dependent on the eigen-
values of the Hessian matrix, which in the case of a perfect plant model is GHG [8]. If the eigenvalue
spread of this matrix is large, which it can be in a practical system, then the speed of the slow modes
of convergence may limit the practical performance of the controller. In such instances it may be de-
sirable to employ a controller whose convergence is less dependent on this eigenvalue spread and this
is achieved by Newton’s update algorithm given by eq. 6 [9]. In this case the steepest-descent update
is essentially pre-multiplied by the matrix

[
GHG

]−1 which compensates for the eigenvalue spread
and means that the time constants of the modes of convergence are all equal [9]. In practice, however,
the plant response matrix used in the control signal update equation will not be equal to the physical
plant matrix and pre-multiplying by

[
GHG

]−1 in Newton’s algorithm may cause significant amplifi-
cation in the components of the control signals corresponding to the smallest singular values [9]. This
means that Newton’s algorithm is significantly less robust to perturbations in the plant response than
the steepest-descent algorithm.

It is clear that the eigenvalue spread of the Hessian matrix limits the performance of the two
common gradient descent algorithms given by eqs. 5 and 6 in different ways. For instance, although
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the widely employed steepest-descent algorithm is robust to plant response variations, its speed of
convergence to the optimal solution is limited by the eigenvalue spread of the GHG matrix. Con-
versely, although the speed of convergence of Newton’s algorithm is not affected by this eigenvalue
spread and theoretically converges much more rapidly to the optimal solution, it is particularly sensi-
tive to variations in the plant response and, therefore, is practically difficult to implement. Therefore,
in the following section a novel algorithm is proposed which attempts to adaptively combine the
properties of these two common algorithms.

3. Combined Steepest-Descent and Newton’s Method Algorithm

To overcome the speed limitations of the steepest-descent algorithm and the robustness limita-
tions of Newton’s algorithm, we seek an update operator matrix, C, for the general gradient descent
update algorithm given in eq. 4, which combines the properties of the two algorithms. If the two
algorithms were implemented simultaneously, then their outputs could be combined adaptively using
the convex combination method defined by Ferrer et al [11] in the context of active noise control and
more generally by Arenas-Garcia et al [12]. However, this requires a significant increase in compu-
tational cost [11] and it is not clear whether combining the steepest-descent and Newton’s algorithms
is a convex optimisation under all conditions. For example, if the MIMO plant response, G, has a
large eigenvalue spread, then it is possible that the two algorithms will converge to different solutions
in practice and under this condition it is not currently clear how the convex combination method will
behave.

To avoid the additional computational cost and the unknown potential issues of the convex
combination method, we define a new time varying update operator which combines the Newton’s
and steepest-descent update operators as

C(n) = λ(n)αN

[
GHG

]−1
GH + (1− λ(n))αSDG

H ,

=
[
λ(n)

(
αN

[
GHG

]−1 − αSDI
)
+ αSDI

]
GH , (7)

where αN and αSD are the convergence coefficients for the Newton’s and steepest-descent algorithms
respectively and λ(n) is a time varying mixing parameter which allows the algorithm to operate as
either Newton’s or steepest-descent, or a combination of the two. Substituting eq. 7 into eq. 4 gives
the control signal update equation as

u(n+ 1) = u(n)−
[
λ(n)

(
αN

[
GHG

]−1 − αSDI
)
+ αSDI

]
GHe(n). (8)

If λ(n) = 1 this combined update algorithm reduces to Newton’s algorithm and if λ(n) = 0 it reduces
to the steepest-descent algorithm.

To implement the proposed combined update algorithm it is necessary devise a method to adapt
the mixing parameter to achieve the optimal performance. This may be achieved by defining λ as a
sigmoid function given by

λ(n) =
1

1 + e−a(n+1)
, (9)

which is bounded between 0 and 1 for real values of a and adapting a according to a gradient-descent
type algorithm to minimise the sum of the squared error signals. If a is adapted to minimise the
frequency domain cost function given by eq. 2 then it is a complex value and λ will no longer be
bounded between 0 and 1. However, if a is updated in the time domain then it is possible to employ
the sigmoid mixing parameter method as previously employed in [11] for the convex combination
algorithm.
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The cost function given by equation 2 can be written in the time domain as

J̃(n) = ẽ(n)T ẽ(n) (10)

where ẽ(n) is the time domain error signal which can be approximated in the steady state as

ẽ(n) = d̃(n) + 2ℜ
{
Gu(n)ejω0nTs

}
. (11)

Substituting for the frequency domain control signal vector using equation 8 gives the time domain
error signal vector as

ẽ(n) =d̃(n) + 2ℜ
{
G

[
u(n− 1)−

[
λ(n− 1)

(
αN

[
GHG

]−1 − αSDI
)
+ αSDI

]
· · ·

GHe(n− 1)
]
ejω0nTs

}
. (12)

Using equations 10 and 12 it is now possible to derive an update equation for the parameter a(n)
using the gradient descent approach. This can be written as

a(n+ 1) = a(n)− µa
∂J̃(n)

∂a(n)
= a(n)− µa

∂J̃(n)

∂λ(n− 1)

∂λ(n− 1)

∂a(n)
(13)

where µa is the convergence gain. The first differential term in equation 13 can be evaluated as

∂J̃(n)

∂λ(n− 1)
= 4ℜ

{
G

(
αN

[
GHG

]−1 − αSDI
)
GHe(n− 1)ejω0nTs

}T

ẽ(n), (14)

and the second differential can be evaluated as

∂λ(n− 1)

∂a(n)
= (1− λ(n− 1))λ(n− 1). (15)

The full update equation is thus given by substituting equations 14 and 15 into equation 13 to give

a(n+ 1) =a(n)− αaℜ
{
G

(
αN

[
GHG

]−1 − αSDI
)
GHe(n− 1)ejω0nTs

}T

· · ·

ẽ(n)(1− λ(n− 1))λ(n− 1) (16)

where αa is the convergence coefficient.
Although equation 16 could be implemented directly, the effective input to the adaptive update

algorithm, which is given by

ζ(n) = ℜ
{
G

(
αN

[
GHG

]−1 − αSDI
)
GHe(n− 1)ejω0nTs

}T

, (17)

will vary with time as it is dependent on the error signal vector which is being minimised. Therefore,
as in the conventional LMS algorithm it is prudent to normalise the update algorithm with respect to
the input signal power. For this multichannel case the power of the input signals can be estimated as

p(n) = γp(n− 1) + (1− γ)Diag
(
ζ(n)Tζ(n)

)
(18)

where Diag(.) denotes the diagonal elements of the matrix. The multichannel normalised update
algorithm can then be expressed as in [11] as

a(n+ 1) =a(n)− αaℜ
{
G

(
αN

[
GHG

]−1 − αSDI
)
GHe(n− 1)ejω0nTs

}T

· · ·

P(n)ẽ(n)(1− λ(n− 1))λ(n− 1), (19)
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where P(n) is the power normalisation matrix given by

P(n) =


1

p1(n)
0 · · · 0

0 1
p2(n)

...
... . . . 0
0 · · · 1

pL(n)

 , (20)

where pl(n) is the l-th element of the estimated power input vector given by equation 18.

4. Simulations

In order to compare the performance of the combined algorithm proposed in the previous section
to the performance of the conventional steepest-descent and Newton’s algorithms, a series of time-
domain simulations have been conducted. The simulated control system consists of nine error sensors
and five control actuators. The nominal plant response, G0, has been calculated from the responses
measured between five inertial actuators and 9 accelerometers mounted on an arbitrary steel structure.
The physical plant responses have been modelled using a bank of finite impulse response filters and
the nominal plant response model has been calculated at the control frequency of 103 Hz. The vector
of disturbance signals at the control frequency has also been calculated based on a model of the
response between an additional actuator mounted to the structure and the 9 accelerometers.

Initially, the performance of the steepest-descent and Newton’s algorithms has been simulated
for the case when the plant model is equal to the nominal plant response and the convergence coeffi-
cients, αSD and αN , have been defined to give the maximum convergence speed in both cases. The
thick lines in the two plots in Figure 2 show the convergence of the sum of the squared error signals
for the two algorithms and it is clear that, as expected, Newton’s algorithm converges to a better so-
lution more quickly and achieves 10 dB more attenuation. The difference in the performance of the
two algorithms, as discussed in Section 2, is due to the eigenvalue spread of the matrix, GHG. For
the considered plant response the eigenvalue spread is very large, at 5.3×106, and is characterised by
a single dominant eigenvalue. Based on the discussion presented in Section 2, it is expected that the
performance of the steepest-descent algorithm will be severely limited by the slow modes of conver-
gence. To demonstrate this, Figure 2 shows the convergence of the individual ‘modes’ of convergence
for the steepest-descent and Newton’s algorithms. From Figure 2a, which shows the results for the
steepest-descent algorithm, it can be seen that only the dominant mode is significantly attenuated,
whilst the second largest mode, which is enhanced by 1 dB, essentially limits the level of overall con-
trol. Conversely, from the results presented in Figure 2b for Newton’s algorithm, it can be seen that
the five convergent modes are all reduced with an approximately equal time constant and this allows
Newton’s algorithm to achieve a 10 dB improvement in the overall level of attenuation compared to
the steepest-descent algorithm.

From the results presented above it is clear that for the case when the plant model is equal to the
physical plant, Newton’s algorithm outperforms the steepest-descent algorithm. However, it is also
important to consider the effect of a perturbation in the plant response and, therefore, the behaviour of
the two algorithms has been simulated for the case when an error has been introduced into the plant
model such that the model is given by

G = G0 +∆, (21)

where G0 is the nominal plant response and ∆ is a complex matrix of normally distributed random
numbers. This perturbation matrix has been defined as

∆ = ϵ(∆R + j∆I), (22)
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(a) Steepest descent algorithm.
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(b) Newton’s algorithm.

Figure 2: The sum of the squared error signals, normalised by the sum of the squared disturbances
(thick line), and the individual ‘modes’ of convergence for the two conventional algorithms with a
perfect plant model (thin lines).

where ∆R and ∆I have been defined as matrices of normally distributed random numbers with zero
mean and a variance approximately equal to the real and imaginary parts of the elements of the nomi-
nal plant matrix G0 respectively, and ϵ is a scalar gain used to define the level of the perturbation. To
characterise the effects of random errors in the plant model, the average performance of the steepest-
descent and Newton’s algorithms has been calculated for 100 different random perturbation matrices
with ϵ = 0.1. The resulting performance of the steepest-descent and Newton’s algorithms with and
without errors in the plant model is shown in Figure 3.

From the black and red lines in this plot it can be seen that the introduced plant model error
does not affect the performance of the steepest-descent algorithm, however, it is clear from compar-
ing the blue and green lines that the plant model error causes Newton’s algorithm to diverge. This
is consistent with the discussion presented in Section 2, but it is also clear that despite this diver-
gence, Newton’s algorithm with plant modelling error initially converges to a better solution than the
steepest-descent algorithm. The purple line in Figure 3 shows the performance of the combination
algorithm defined by eq 8. The convergence coefficients αSD and αN are set to the same values as
when the two conventional algorithms are implemented independently. From the results presented in
Figure 3 it can be seen that the proposed combination algorithm converges to a steady state solution
which provides 5 dB more attenuation than the steepest-descent algorithm and does not diverge like
Newton’s algorithm.

5. Conclusions

Multichannel active control of tonal noise and vibration has been widely implemented in prac-
tice and the steepest-descent algorithm has proven to be a practically robust method of adapting the
control signals. However, the convergence of the steepest-descent algorithm is limited by the slow
modes of convergence which occur when the eigenvalue spread of the GHG matrix is large. This
dependence on the eigenvalue spread is avoided in Newton’s algorithm, however, this algorithm is
significantly more sensitive to errors in the plant response model.

To overcome the limitations of the two update algorithms and combine their positive attributes,
a new update algorithm is proposed with a time varying gradient-descent operator. This operator
combines the steepest-descent and Newton’s update operators via a mixing parameter, λ, such that
for λ = 1 the update algorithm is equal to the Newton’s algorithm and for λ = 0 it is equal to the
steepest-descent algorithm. A method of adapting this mixing parameter according to a gradient-
descent algorithm to minimise the sum of the squared error signals is proposed.
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Figure 3: The convergence of the sum of the squared error signals for the steepest-descent algorithm
with G = G0 (—) and G = G0 + ∆ averaged over 100 random plant error perturbations (—),
Newton’s algorithms with G = G0 (—) and G = G0 + ∆ averaged over 100 random plant error
perturbations (—), and the proposed combination algorithm with G = G0 + ∆ averaged over 100
random plant error perturbations (—).

The performance of the proposed algorithm has been evaluated through a series of simulations
in which a random plant modelling error has been introduced. Under these conditions the Newton’s
update algorithm leads to a divergence of the cost function, whereas the proposed algorithm is able to
increase the level of control compared to the steepest-descent algorithm whilst remaining stable.
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