
ABSTRACT: A strategy based on feedforward control for gust loads alleviation of a nonlinear aeroelastic model is considered. 

The model is representative of a typical wing section with a trailing-edge flap and with a polynomial nonlinearity in the 

structural model. The aerodynamics is given by thin aerofoil theory. First, the effects of structural nonlinearity in the dynamic 

response of the open-loop system are evaluated. Then, it is shown that the performance of the controller is greatly affected by 

the approximations made in the internal model of the controlled plant. To suppress gust-induced vibrations of an intrinsically 

nonlinear plant, the control performance is degraded when using a linear representation for the internal model. The control 

strategy performs well when including all nonlinearities in the model. 
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1 INTRODUCTION 

Time-domain analyses of highly flexible aerial vehicles 

encountering atmospheric turbulence are still expensive 

despite the increase in today’s computing power. The 

simulation costs become prohibitive when high-fidelity 

numerical models are introduced in an industrial environment 

with a very large number of simulations required. Parametric 

searches are performed to estimate the critical loads that the 

aircraft will encounter during the expected life cycle and these 

are used for structural sizing. Inaccuracies in the load 

estimates can jeopardise the entire project or result in a very 

conservative (and inefficient) design. 

Active control has the potential to increase aircraft 

performance (by reducing structural weight) and extend the 

flight envelope. The design of a gust-tolerant vehicle needs an 

accurate model to realistically simulate the non-linear 

interactions that dominate such aerial platforms. Nevertheless, 

the use of fairly large non-linear physics-based models 

introduces a complication in the design, synthesis, and testing 

of control strategies. 

Traditionally, model reduction techniques are used to 

generate a system of small size that is less expensive to solve 

than the original full order model. There are two approaches 

to model reduction. The first approach is based on system 

identification, where known inputs and measured outputs are 

used to create a model of the original system, which is treated 

as a black-box. These methods lack robustness and are limited 

by the amount of training data used to generate them, but have 

been applied successfully, see Ref. [1]. The second approach 

is based on a manipulation of the equations of the original 

system to make calculations more efficient. These methods 

are only limited by the approximations introduced in the 

model formulation, see Ref. [2]. 

With the previous paragraphs as background, to make 

progress in this research work, we explore the use of a 

nonlinear control strategy to control the gust-induced 

vibrations of a nonlinear aeroelastic model. The test case is for 

a typical wing section with structural nonlinearities, with the 

aerodynamics given by two-dimensional thin aerofoil theory. 

The future direction of this work is to expand the approach 

herein described to larger computational models by using the 

nonlinear model reduction of Ref. [2]. This would open up the 

possibility of investigating the performance of novel nonlinear 

control strategies applied to a smaller system that retains the 

most dominant nonlinear effects of the original full order 

model. 

The feedforward algorithm used herein is well-established 

in active control and is mainly used for linear systems [3]. In 

contrast to feedback control, feedforward control requires the 

knowledge of the disturbance signal; therefore it is more 

attractive for systems where the frequency of the disturbance 

signal is known. As one example, in helicopters the 

disturbance frequency is multiple integer of the blade passing 

frequency or, in cars, the engine noise frequency can be 

determined from the engine speed. The control force will be 

obtained by minimizing the error between the disturbance 

signal and the secondary force generated by the actuators. To 

achieve this, an estimate of the physical system, known as 

internal model, is required. If the internal model does not 

include the effect of nonlinearities and is only based on the 

information of the linear system, the performance of the 

control system is reduced and vibration suppression cannot be 

achieved. 

The paper continues with a formulation of the aeroelastic 

model used to model the dynamics of a typical wing section. 

A control strategy based on feedforward control is then 

described. The performance of the controller is illustrated on 

the aeroelastic model with and without the structural 

nonlinearities. Finally, conclusions are given. 

2 AEROELASTIC MODEL FORMULATION 

The coupled aeroelastic model follows the formulation 

presented in Ref. [2]. The aerofoil section shown in Fig. 1 has 

two degrees of freedom that define the motion about a 
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reference elastic axis (e.a.). The plunge deflection is denoted 

by  , positive downward, and   is the angle of attack about 

the elastic axis, positive with nose up. The motion is 

restrained by two springs,    and   , and is assumed to have a 

horizontal equilibrium position at       . Structural 

damping in both degrees of freedom is also included in the 

system. A trailing-edge flap, which is assumed massless in 

this study, is used in combination with an active control 

system to extend the stable flight region and for gust loads 

alleviation. 

 

Figure 1. Schematic of the typical wing section; the wind 

speed is from the right and horizontal 

 

Several options for the aerodynamics can be used. For an 

irrotational and incompressible two-dimensional flow, the 

aerodynamic model is given by the classical theory of 

Theodorsen. The total aerodynamic loads consist of 

contributions arising from the section motion (pitch and 

plunge), flap deflection, and the penetration into a gusty field. 

The aerodynamic loads due to an arbitrary input time-history 

are obtained through convolution against a kernel function. 

Since the assumption is of linear aerodynamics, the effects of 

the various influences on the aerodynamic forces and 

moments are added together to find the variation of the forces 

and moments in time for a given motion and gust. 

A detailed derivation of the aeroelastic model can be found in 

Ref. [4]. In this work, the structural nonlinearity in the 

stiffness terms is modelled using a polynomial form. The 

resulting coupled aeroelastic model is expressed in the form of 

a set of nonlinear ordinary differential equations. The system 

parameters, here not included for brevity, are chosen from 

Ref.  [5]. 

3 WORST-CASE GUST 

The aeroelastic response to a gust vertical disturbance is 

studied at 95% of the linear flutter speed. At this flight 

conditions, the pitch and plunge frequencies are close to each 

other, and will coalesce for increasing speed at the instability 

point (flutter). For the “one-minus-cosine” gust family, a 

parametric search was done to find the gust wavelength that 

causes the largest structural response. The response in the 

pitch degree of freedom (wing torsion) was taken as figure of 

merit. Once the gust wavelength that causes the largest pitch 

response is identified, the gust vertical velocity was increased 

in the range of 0.005 to 0.1 (normalized by the freestream 

speed) to evaluate the effect of the structural nonlinearity. 

Here, the cubic term of the pitch stiffness is chosen to be 3.0 

(hardening spring type). The time domain response of the 

typical wing section was then used to calculate the transfer 

function for each particular gust vertical velocity. 

4 FEEDFORWARD CONTROL 

 

Feedforward control is used to control the vibrations of the 

pitch and plunge modes. Here single-input-single-output 

control is considered. The transfer function of the physical 

system   is obtained from the above aeroelastic calculations 

and   is the adaptive filter or controller.  

 

Figure 2. Adaptive feedforward control 

 

In the block diagram in Fig. 2,   is the disturbance signal 

(gust vertical velocity in the aeroelastic model),   is the 

reference signal, r̂ is the filtered reference signal, and   is the 

vibration error signal. The objective is to design a control 

force   to minimize the vibration level   at the location on the 

wing. This vibration signal can be represented as 

 )()()()( nxnGwndny   (1) 

The coefficient of the controller is updated at each iteration n

to adjust the amplitude and phase of the reference signal   in 

order to cancel the disturbance   [6]. This requires an estimate 

of the internal modelĜ . The performance of the feedforward 

algorithm depends on the accuracy of the estimated internal 

model.  

 )()(ˆ)()1( nynrnwnw   (2) 

In Eq. (2),   is the convergence coefficient and for the linear 

model the maximum convergence rate is          . If the 

physical system is nonlinear, and the estimate of the internal 

model is based on the linear model, then the performance of 

the controller is reduced and the convergence of the algorithm 

is also affected. 

4.1 Linear Plant 

The transfer functions of the pitch and plunge motions are 

plotted in Figs. 2 and 3. A curve fitting technique in Matlab is 

used to obtain the transfer function of the physical model in 

the complex s-domain. The curve fitted technique is detailed 

in Ref. [7] for pole placement using feedback control. The 

curve fitted model is accurate near the pitch and plunge 

modes, around 1.5 to 2.5Hz. 

A Simulink model is built to control the pitch and plunge 

modes using the block diagram in Fig. 2. The internal model 

is obtained from the curve fitted model at the frequency of the 

pitch and plunge modes. A reference signal is 

generated                , where    is the frequency of 



pitch (2.52 Hz) or plunge (1.74 Hz) mode. The coefficient of 

the controller is updated to minimize the vibration at that 

particular frequency. The convergence rate is defined as 

        .   

 

 
 

Figure 2. Pitch mode: Receptance: physical model (blue solid 

line) and curve fitted model (red dashed line) 

 

 

Figure 3. Plunge mode: Receptance: physical model (blue 

solid line) and curvefitted model (red dashed line) 

 

Pitch control. The disturbance signal and the controlled 

response are shown in Fig. 4. The internal model is estimated 

to have the value of                   at the pitch 

frequency. It can be seen that the vibration level is minimized 

after 60 iterations. The real and imaginary part of the control 

force   required to cancel the vibrations are shown in Fig. 5. 

From Fig. 6, the real and imaginary parts of the filter 

coefficient are converged to              and    
         , respectively. 

 

 
 

(a) (b) 

 

Figure 4. Pitch control: (a) disturbance  , (b) controlled 

response   versus iteration 

 
Figure 5. Pitch control: real and imaginary part of the 

control force      

 
Figure 6. Pitch control: real and imaginary part of the filter 

coefficient )(nw  

 

Plunge control. Simulations were carried out to control the 

plunge mode at 1.74 Hz.  The internal model at that frequency 

is                     , and the convergence rate is 

chosen equal to         . 

The disturbance and the controlled plunge response are 

shown in Fig. 7. 



 
 

(a) (b) 

 

Figure 7. Plunge control: (a) disturbance  , (b) controlled 

response   versus iteration 

 

The response is controlled after 20 iteration. This is due to 

the accurate estimation of the physical model. The control 

force and the filter coefficient are also shown in Figs. 8 and 9. 

The coefficients of the filter are converged to           

and             , respectively. 

 
Figure 8. Plunge control: real and imaginary part of the 

control force      

 
Figure 9. Plunge control: real and imaginary part of the 

filter coefficient      
 

4.2 Nonlinear Plant 

 In this section, the physical system has nonlinear behavior 

and the performance of the control algorithm when the 

internal model is based on the linear model, in which the 

nonlinearities are neglected, will be compared with the case 

when the internal model is an accurate representation of the 

physical nonlinear model. 

The transfer functions are obtained for two degrees of 

freedom with different input amplitudes. By increasing the 

amplitude of the gust load, the nonlinearities in the response 

become more evident as shown in Figs. 10 and 11. This 

clearly demonstrates that nonlinearity has effect on the 

response and the performance of the control algorithm is 

affected. 

 
Figure 10. Nonlinear behavior for different input levels: 

transfer function represents the pitch mode 

 

 
Figure 11. Nonlinear behavior for different input levels: 

transfer function represents the plunge mode 

 

The receptances are curve fitted to obtain the transfer function 

in the s-domain to represent the physical model. There is a 

good agreement between the physical and the fitted model in 

the vicinity of the pitch and plunge modes, as can be seen 

from Figs. 12 and 13. 

Pitch control. Simulations were carried out to control the 

pitch mode using feedforward control. Two estimates of 

internal model are considered for comparison.  



Case1. The nonlinearity is neglected and    is based on the 

linear model. The value at the pitch frequency is        
    . 

Case2. The nonlinearity is included and    is based on the 

nonlinear model. The value at the pitch frequency is    
        . 
 

 

Figure 12. Nonlinear receptance for high input amplitude: 

physical model (blue solid line) and curve fitted model (red 

dashed line): location 

 

Figure 13. Nonlinear receptance for high input amplitude: 

physical model (blue solid line) and curve fitted model (red 

dashed line): location 

 

The results are compared for the two casesin Figs 14 to 16.  

The blue dashed line represents case 1, when the 

nonlinearities are ignored in the internal model and the red 

solid line represents case 2, when the nonlinear model is 

considered.  For case 2, the control algorithm converges faster 

and the vibration response is minimized with smaller number 

of iterations as shown in Figs. 14 and 15. The convergence of 

the controller gains as function of the iterations is shown in 

Fig. 16 for the linear and nonlinear cases. 

 

Figure 14. Pitch control: vibration response using linear (blue 

dashed line) and nonlinear model (red solid line) 

 

 

Figure 15. Pitch control force: linear (blue dashed line) and 

nonlinear model (red solid line) 

 

 

Figure 16. Pitch control: Filter coefficient for the linear (blue 

dashed line) and nonlinear model (red solid line) 

 

Plunge control. Similarly, we control the plunge mode, 

considering the two cases.  

Case1. Nonlinearity is neglected and    is based on the 

linear model. Its value at the pitch frequency is          
     . 



Case2. The nonlinearity is included and    is based on the 

nonlinear model. Its value at the pitch frequency is    
            . 

Again, the use of the nonlinear model results in a better 

performance and faster convergence for the plunge control 

compared to the linear model (Figs. 17 to 19). 

 

Figure 17. Plunge control: vibration response for the linear 

(blue dashed line) and nonlinear model (red solid line) 

 

Figure 18. Plunge control force: linear (blue dashed line) and 

nonlinear model (red solid line) 

 

Figure 19. Plunge control: Filter coefficient for the linear 

(blue dashed line) and nonlinear model (red solid line) 

 

5 CONCLUSIONS 

In this paper, a technique based on feedforward control is 

explored to alleviate the gust response of a nonlinear 

aeroelastic model. The model is representative of a typical 

wing section with a trailing-edge flap. The effects of structural 

nonlinearity, here modeled using a hardening-type spring in 

the torsional degree of freedom, are first explored in the 

dynamic response of the open-loop aeroelastic model. As the 

control strategy requires an approximate model of the plant to 

be controlled, the effects of structural nonlinearity are then 

evaluated for the closed-loop response. It is shown that the 

controller performance is greatly affected by the 

approximations made in the internal model. To suppress gust-

induced vibrations of an intrinsically nonlinear plant, the 

controller performance is degraded when using a linear 

representation for the internal plant. Directions for future 

work include the extension of the current strategy to a multi-

input multi-output aeroelastic model and different sources of 

nonlinearity in the coupled system. 
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