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Amino acid transfer to the fetus is dependent on several different factors. While these factors can be
understood in isolation, it is still not possible to predict the function of the system as a whole. In order to
do this an integrated approach is required which incorporates the interactions between the different
determinants of amino acid transfer. Computational modelling of amino acid transfer in the term human
placenta provides a mechanism by which this integrated approach can be delivered. Such a model would
be invaluable for understanding amino acid transfer in both normal and pathological pregnancies.

In order to develop a computational model it is necessary to determine all the biological factors which
are important contributors to net amino acid transfer and the ways in which they interact. For instance,
how different classes of amino acid transporter must interact to transfer amino acids across the placenta.
Mathematically, the kinetics of each type of transporter can be represented by separate equations that
describe their transfer rate as a non-linear function of amino acid concentrations. These equations can
then be combined in the model to predict the overall system behaviour. Testing these predictions
experimentally will demonstrate the strengths and weaknesses of the model, which can then be refined
with increasing complexity and retested in an iterative fashion.

In this way we hope to develop a functional computational model which will allow exploration of the
factors that determine amino acid transfer across the placenta. This model may also allow the devel-
opment of strategies to optimise placental transfer in pathologies associated with impaired amino acid
transfer such as fetal growth restriction.

� 2012 Published by IFPA and Elsevier Ltd.
1. Introduction

Placental amino acid transfer is essential for fetal growth. In
growth restricted fetuses amino acid transfer across the placenta is
reduced and in animal models amino acid transfer has been shown
to be decreased prior to the onset of fetal growth restriction,
emphasising its causal role [1,2]. It is therefore important to
understand the factors which determine amino acid transfer across
the placenta if we are to develop interventions and preventive
strategies to optimise fetal growth.

Placental amino acid transfer is dependent on multiple factors
including: amino acid transporter characteristics, flow and mixing
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of maternal and fetal blood, placental structure and the levels of
amino acids within the maternal, fetal and syncytiotrophoblast
compartments. However, the complex interactions between these
factors mean that the effect of all these determinants together
cannot be intuitively predicted [3]. This limits our ability to
understand how these factors contribute to net flux across the
placenta and which of these factors are most likely to be rate-
limiting for amino acid transfer and so for fetal growth. Here we
overview the concept of computational modelling as one way of
meeting this challenge.

This review will begin by outlining our approach to developing
a computational model. It will then consider the processes by which
amino acids are transported across the placenta in order to identify
those factors which are likely to be important components of
a computational model. Finally, our modelling approach will be dis-
cussed and its potential importance in understanding fetal growth.
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2. Modelling placental amino acid transfer

The aim of modelling placental amino acid transfer is to be able
to predict how changes in specific placental parameters affect
transfer of amino acids. To do this without becoming unnecessarily
complicated, the model must focus on the factors that are the
principle determinants of amino acid transfer in both normal and
pathological pregnancies. Factors which are necessary for amino
acid transfer, but which do not in practice become rate limiting, do
not need to be modelled. As it may not be immediately apparent
which factors are important and which are not, this needs to be
determined by modelling and experimental validation.

A full model will incorporate multiple determinants of amino
acid transport, for instance the different types of amino acid
transporters and blood flow through the maternal and fetal circu-
lations (Fig. 1). Before these determinants can be effectively
combined into one model it is necessary to demonstrate that these
factors can be modelled individually. We will begin by testing
simple scenarios and, only when this is successful, move on tomore
complex sequence. We have previously reported on modelling the
interaction of specific transporters with two amino acids [4]. This
provides an example of the simple scenarios onwhich a fuller, more
complex model could be based.

As the model develops, it should be able to make predictions
that can be tested experimentally. Where the model is able tomake
experimentally verifiable predictions more complex scenarios will
then be tested.Where themodel is not able tomake experimentally
verifiable predictions this suggests that our assumptions need to be
revisited. To develop a functional model, it will be necessary to have
a clear understanding of the factors of likely importance. These are
discussed below.

3. Membrane transport of amino acids

Amino acids are transported across the microvillous plasma
membrane (MVM) and the basal plasma membrane (BM) of the
placental syncytiotrophoblast (Fig. 1). Net transfer generally occurs
in thematernal to fetal direction, against the concentration gradient,
with the amino acid concentrations in fetal blood being significantly
higher than those in maternal blood [5], so the process must utilise
energy. Transport of amino acids across this exchange barrier
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Fig. 1. Amino acid transfer across the human placenta involves complex interactions. Amin
specificities and modes of action. Mathematically modelling these processes will explain h
involves multiple different membrane transport proteins, differen-
tially localised to the MVM and BM [3] (Fig. 1). Amino acid trans-
porters use three broad classes of transport mechanism:
accumulative transport, amino acid exchange and facilitated trans-
port [6]. These transporter classes fulfil different but interdependent
roles and no one class is sufficient for mediating the transport of all
the amino acids required by the fetus. Amino acids only diffuse very
slowly across biological membranes and understanding the amino
acid transporters must be central to any model.

Accumulative transporters mediate secondary active uptake of
amino acids into the cell driven by electrochemical gradients across
the plasma membrane. Accumulative transporters establish amino
acid gradients within the syncytiotrophoblast that drive the activity
of amino acid exchangers and facilitated transporters. As such they
are important on the MVM of the syncytiotrophoblast where they
mediate uptake of maternal amino acids. However, it is not clear
what role accumulative transporters play on the BM where they
will mediate uptake of fetal amino acids but not efflux to the fetus.
The only accumulative transporter that does have a clear role on the
BM is system XAG

� , which mediates uptake of fetal glutamate into
the placenta for metabolism.

Amino acid exchangers transport one amino acid across the
plasma membrane in exchange for another. This has the effect of
altering amino acid concentrations qualitatively without affecting
the osmolality of the cell [7]. Exchangers play an important role on
both the MVM and the BM and mediate the transfer of amino acids
not transported by either accumulative transporters on theMVM or
facilitated transporters on the BM. The activity of exchangers will
be determined by amino acid concentrations on both sides of the
plasma membrane. So the activity of other amino acid transporters
and the delivery of substrate by blood flow, which both affect
amino acid concentrations, are crucial to their function.

Facilitated transporters mediate bi-directional transport of
amino acids, with net transport occurring in the direction of the
concentration gradient. These transporters are thought to be
primarily localised to the BM where they mediate net efflux of
specific amino acids down the concentration gradient established
and maintained by transporters on the MVM [8]. As facilitated
transporters are dependent on the concentration gradient, their
activity depends on the amino acid concentrations both in the
placenta and in umbilical arterial blood.
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So for amino acids to cross the placenta in the maternal to fetal
direction, the MVM accumulative transporters and exchangers are
required to mediate uptake from the maternal circulation and the
BM facilitated transporters and exchangers are required to mediate
efflux to the fetal circulation. Transporters on either the MVM or
the BM may be rate-limiting [8]. The transport of particular amino
acids cannot be considered in isolation as the transport of any one
amino acid may affect that of others (Fig. 1). The effects on other
amino acids is first due to competitive inhibition (a function of both
concentration and KM) and secondly due to the effect on amino acid
concentrations on either side of the membrane.

In summary, transporter modelling needs to incorporate accu-
mulative, exchange and facilitated transporters, with appropriate
substrate specific affinities as well as relative activities. It must also
be able to address the interactions between transporters and the
way in which the actions of each transporter will alter the avail-
ability of amino acids for other transporters and hence their
activity.

4. Placental structure

One of the major determinants of transporter activity is
substrate concentration, both in the maternal and fetal circulations
and within the syncytiotrophoblast. Placental structure and blood
flow are important determinants of substrate concentrations at the
site of transport and will therefore make an important contribution
to transporter activity.

The normal human placenta is a fetal tissue which has a discoid
shape and is 20e25 cm in diameter, 2e3 cm thick at its centre and
weighing 400e500 g [9]. It is functionally divided into 10e40 units
called cotyledons or lobules [9]. Each lobule has its own maternal
blood supply and there is no mixing of maternal blood between
lobules or between the fetal and maternal circulations [9]. Within
each lobule maternal blood fills the intervillous space and directly
bathes the fetal villous trees which are perfused by the fetal
circulation.

The outer layer of the fetal villi is formed from a continuous
syncytiotrophoblast that constitutes the primary barrier between
the maternal and fetal circulations. Underlying the syncytio-
trophoblast is a layer of cytotrophoblast which covers about 44% of
the BM surface area at term [10]. The extent to which cytotropho-
blast participate in nutrient exchange is unclear. The stromal
interstitium between the syncytiotrophoblast BM and fetal capil-
lary endothelium is filled with protein matrix as well as some cells
including fibroblasts and macrophages. The final layer is the fetal
capillary endothelium. Although endothelial cells do express amino
acid transporters, it is likely that there is free diffusion of small
water soluble nutrients, such as amino acids (74e204 Da), through
capillary endothelial junctions. Free diffusion of small molecules is
suggested by the ability of proteins to diffuse into this space
(38800 Da) [11].

Three principle components of placental structure are likely to
be key determinants of amino acid transfer and therefore require
inclusion in the model. The first is size, as a larger placenta will
generally have a greater surface area for nutrient exchange and so
a greater transfer capacity. The second is theway inwhich placental
structure affects blood flow and mixing in the two circulations as
well as the relative alignment of the two systems which affects the
efficiency of transfer. The human placenta is thought to have
a multivillous system of maternal and fetal flow which allows for
relatively effective nutrient transfer [12]. This influences the
delivery of substrates to and from the transporting surfaces and
thus the amino acid gradients which determine transporter
activity. Thirdly, diffusion distances between the maternal and fetal
circulations may be important [13].
Once across the BM, the rate at which amino acids are able to
diffuse away will determine their gradients across the BM and thus
exchanger and facilitated transfer across this membrane. This rate
of diffusion between the external face of the BM and the fetal blood
will be determined by the permeability of the stromal interstitium
to amino acids, the junctions between endothelial cells and the
endothelial glycocalyx [14].

Placental structure will be represented in our model by
summary measures such as surface area of the exchange surfaces,
volumes of the compartments, and capillary length [4]. This
approach is favoured as it is considerably less complicated than
modelling three dimensional placental structure in its complexity
and summary measures can be determined experimentally using
morphometric techniques to allow the validation of the model [15].

5. Maternal blood supply

The maternal uterine circulation delivers the amino acids that
are transferred to the fetus by the placenta. Uterine blood flows
through spiral arteries into the placental intervillous space where,
as there is no maternal vasculature, it is in direct contact with fetal
villi. After mixing within the intervillous space, maternal blood
flows out through venous openings back into the uterine circula-
tion. The localisation and number of spiral arteries and veins
entering and leaving the placenta is not yet clear but will affect the
flow and mixing of blood within the intervillous space [9]. It is
likely that there are 30e40 spiral arteries per placenta, so one or
two per lobule [16]. The number and localisation of uterine arteries
and veins will determine blood flow within the lobule and clarifi-
cation of this aspect of placental anatomy is of particular relevance
to models of flow [17].

Blood entering the intervillous space must mix with the blood
already present and the extent to which mixing occurs will affect
the amino acid concentrations available for transport. It has been
hypothesised that poor mixing, in circumstances such as
preeclampsia, may impair transfer [16].

6. Fetaleplacental blood supply

Fetal blood is delivered to the placenta via the umbilical arteries
and nutrient enriched blood delivered back to the fetus by the
umbilical vein. Fetal arteries and veins branch across the surface of
the chorionic plate to, and from, each villous tree. Most placental
lobules will have one villous tree while larger ones may have
several [9].

Within the villous tree, stem and intermediate villi supply
terminal villi which are thought to mediate the majority of
exchange and form the greatest proportion of villi in the term
placenta [15]. The extent to which the stem and intermediate villi
participate in nutrient exchange is not clear but it is likely that such
transfer would be less efficient, with longer diffusion distances.

7. Amino acid metabolism

The concentration gradients which determine the rate of
transport of amino acids across MVM and the BM of the syncytio-
trophoblast are affected by metabolism. While maternal diet
provides the ultimate source of amino acids, the composition in
maternal plasma will be determined by the mother’s metabolism
[18]. Similarly, amino acid concentrations in the umbilical arterial
blood will be determined by fetal metabolism. Thus any change in
maternal or fetal metabolic status may affect placental transport of
amino acids.

Within the placenta there is inter-conversion of amino acids [19]
and they are also utilised for protein synthesis, intermediary



Table 1
Factors which affect amino acid concentrations in the maternal, syncytiotrophoblast
and fetal compartments.

Factor Effect on amino acid concentrations and
transporter activity

Maternal metabolism Determines uterine amino acid concentrations
which affects concentrations in the intervillous
space

Maternal spiral artery flow Affects the rate at which arterial blood is delivered
to the placenta and the rate at which amino acid
depleted blood is removed

Volume and structure of the
intervillous space

Determines how effectively amino acids from
arterial blood will mix and reach the sites of
transport on the MVM

MVM Transporters Changes amino acid concentrations in the
intervillous space and within the
syncytiotrophoblast

Syncytiotrophoblast volume
and surface area

Volume will determine the concentration change
due to the influx or efflux of a given amount of
amino acids. Surface area will constrain the
number of transporters which can be expressed

Placental metabolism Amino acid concentrations will be affected by
catabolism, anabolism, inter-conversion and flux
into and out of the placental protein pool

BM transporters Change amino acid concentrations within the
syncytiotrophoblast and in the fetal compartment

Volume of stoma Determines the concentration change due to the
delivery or removal of a given amount of amino
acids

Diffusion through
endothelial junctions

Affects the amino acid concentrations at the BM
and flux into the fetal capillary

Fetal capillary volume Will affect the rate blood flow, vascular resistance
as well as the concentration of delivered amino
acids

Fetal umbilical blood flow Determines the rate of delivery of umbilical
arterial blood and the rate at which transferred
amino acids across the placenta are removed from
the site of exchange

Fetal metabolism Determines umbilical arterial amino acid
concentrations which affect the concentrations at
the BM

Xext Xint

AX ext AX int

A A

Extracellular Membrane Intracellular

Fig. 2. Generic carrier model for amino acid transport. The amino acid is symbolized in
the schematic by A while X represents the transporter/carrier and AX denotes the
transporter-amino acid complex. Xext is on the extracellular face of the membrane and
Xint on the intracellular face. The arrows show the directions in which the fluxes can
occur. As drawn, the carrier model represents a facilitated transporter. An amino acid
exchanger is essentially the same except that the carrier can only ‘flip’ in the
membrane if bound to an amino acid. To go through a complete cycle an exchanger
must bind and transport an amino acid on one side of the membrane, and then an
amino acid on the other side of the membrane. For Naþ -dependent accumulative
transporters the model differs in that the AX can only form if Naþ also binds, the
membrane potential and low intracellular Naþ conferring the directionality of net
transfer.
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metabolism, energy production and biosynthetic pathways. Inter-
conversion of amino acids will alter the concentration gradients
of two different amino acids, the onewhich is broken down and the
one which is synthesised, while consumption will reduce the
concentration of amino acids available for transfer. The effects of
metabolism will particularly affect the activity of facilitated trans-
porters and exchangers whose activity is directly determined by
the concentration gradient.

Another metabolic influence on intracellular amino acid levels,
which has not yet been well characterised, is protein turnover.
Amino acids are both taken up into, and released from, the protein
pool and at steady state uptake will equal release. A sufficiently
high rate of protein turnover would buffer variations in maternal
amino acid supply.

8. Paracellular routes

There is clear physiological evidence that small solutes,
including amino acids, cross the placenta via a paracellular route
[20,21]. The anatomical nature of this route is uncertain and par-
acellular transfer may either occur via regions of syncytial damage
or via trans-syncytial channels [11,22]. Transfer of amino acids by
the paracellular route could occur by simple diffusion and, if
a pressure difference exists, by convection.

For both diffusion and convection, net transfer would be in the
fetal to maternal direction. In the case of diffusion this is due to the
fetal to maternal concentration gradient [5] and for convection the
fetal to maternal pressure gradient [23].

The electrical potential difference across the human placenta
(distinct from the transmembrane potential) could potentially
drive paracellular flux of charged amino acids. However, at term the
transmembrane potential is reported to be small and is unlikely to
be a major driver of diffusion [24,25].

Transfer by paracellular routes needs be incorporated into the
model using a diffusion coefficient based on experimental data for
paracellular markers of similar molecular size [21]. Transfer by
convection may also need to be considered but there are not
currentlygood estimates of themagnitudeof this phenomenon [23].

9. Our modelling approach

Of the factors discussed above the key elements that will be
most important in the model broadly fall into two categories, the
amino acid transporters (Fig. 1) and the factors that determine the
concentrations of amino acids to which the transporters are
exposed (Table 1).

Modelling the amino acid transporters together requires
modelling the individual transporters themselves and to model
how they interact. Since our initial models based on phenomeno-
logical Michaelis Menten kinetics [4], we have further developed
our models to make them more mechanistic (Fig. 2). We use
“carrier” type models, in which the amino acid needs to bind to
a transporter in order to cross the membrane. These models are
based on an abstract representation of the transporter in which
a number of different states are distinguished to describe all
possible conformational changes and binding configurations on
each side of the membrane [26,27]. The transporter can then
alternate between these states, as governed by binding and
mobility parameters, which gives rise to the specific transporter
behaviour. Mathematically this translates in a single equation for
the net amino acid flux as a function of amino acid concentrations
on each side of the membrane. We are testing these carrier models
in the laboratory using MVM vesicles which allow for a highly
controlled environment and for electrochemical gradients to be
easily manipulated across the plasma membrane [28,29].
Using these individual transporter models, a placental transfer
model can be developed in which the individual transporters work
together in an integrated way. At this point, elements of placental
structure begin to be incorporated into the transfer model as
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transporters must be located relative to placental compartments.
Wewill test thesemodels in the isolated perfused placenta, initially
with simple scenarios and then with increasing complexity. First
we will use a simple compartmental model, in which the maternal,
syncytiotrophoblast and fetal compartments are characterised by
their volume and surface area only [4]. The amino acid concen-
tration in each compartment can then change due to transfer
between compartments, which is governed by the transporter
equations described above, as well as in and out flows (Fig. 3).

While the compartments are initially assumed to be well mixed,
as a next step, modelling the factors which determine amino acid
concentrationswill involve analysis of bloodflow,mixing, convection
and diffusion of substrates through the maternal, syncytiotropho-
blast and fetal compartments. Here wewill be guided by established
work on blood flow through the intervillous space, modelled as
aporousmediumand integrate thiswithmodels for the fetal vascular
and capillary networks [17]. By conducting placental perfusion
experiments, and then conducting morophometric analysis on the
perfused lobules, we will test the validity of these flow models.

With any model a sensitivity analysis is essential to assess the
impact of measured parameters and the associated uncertainty on
model predictions. This can be accomplished by varying each of the
model parameters around the physiological level. The results of this
analysis will then indicate whether the uncertainty in specific
parameters can either be safely ignored or whether efforts should
be concentrated on measuring these parameters more precisely. In
addition this will also reveal which parameters are the most critical
determinants of transport within the model (Fig. 3).

Through a process of testing and retesting, we will identify
which of the placental parameters tested are important for the
model. When testing themodel in a normal placenta it is important
Fig. 3. The effect of increasing the Vmax of the MVM accumulative transporter (A) on
amino acid transfer to the fetal circulation in a simple model of placental amino acid
transfer. Increasing Vmax of the accumulative transporter (A) has a significant effect
below the Vmax of the other transporters (the exchanger (X) and facilitated transporter
(F)) which is indicated by the vertical dashed line. However, above the Vmax of the
other transporters the effect of increasing the accumulative transport Vmax diminishes
as the other transporters becomes limiting. In this model there are three amino acids
(AA; 1, 2 and 3) and three amino acid transporters, an accumulative transporter (A)
localised to the MVM which only transports AA1, an exchanger localised to both the
MVM and BM which transports all three amino acids (AA1, AA2 and AA3) and a facil-
itated transporter localised to the BM which only transports AA3. Transporter
modelling was based on carrier-mediated transporter models. For the simulation
above, blood flow was set as equal in the two circulations and arterial concentration of
all 3 amino acids was 100 mmol/l in the maternal circulation and 150 mmol/l in the fetal
circulation. All KM values are 100 mmol/l and the activity of the exchanger (Vmax mmol/
min/m2 surface area) and facilitated transporter are equal. The relative volumes of the
three compartments are based on those determined by morphometry [15].
to remember that a factor that is not rate limiting may become so in
a pathological pregnancy and vice versa. Oncewe have a full model,
it will be tested using highly characterised pregnancies to deter-
mine conformity to the predictive model. In these pregnancies we
will measure as many relevant parameters as possible including
umbilical arterial and venous plasma amino acid concentrations
and blood flows. All factors will be included in the model, except
umbilical venous amino acid concentration and we will determine
how effectively we can predict these through application of the
functional model. The model that we are currently developing is
based on parameters in term human placenta. This model would
not be expected to predict function at earlier points in gestation
where input parameters are likely to be different. However we
intend that the model framework should be applicable to earlier
points in gestation if the required input parameters (e.g. structure,
transporter expression and localisation) became available.

10. Implications

Modelling has significant potential to improve our under-
standing of placental amino acid transfer. Initially this will come
from the process of using the model to test our assumptions about
the processes involved. Then, once a functional model is estab-
lished, it will allow investigation of how the determinants of
transport interact and provide the basis for an integrated systems
biology understanding of placental amino acid transfer. It will allow
us to determine how each factor contributes to the process as
a whole and identify those factors which influence predictive
power of the model. This will be important, as it will help us to
predict which factors are rate limiting and to focus future research
on those factors which are most likely to cause fetal growth
abnormalities such as fetal growth restriction (FGR) or fetal
macrosomia.

There is currently no treatment for FGR other than iatrogenic
early delivery with attendant risks for both mother and baby. The
aim of developing a computational model of placental amino acid
transport is to be able to understand abnormalities in FGR preg-
nancies and other pregnancy pathologies. This may allow rapid
modelling of potential therapeutic strategies, prior to complex and
expensive testing in animal models or in human pregnancy.
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