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Abstract: Intentional controlled islanding is an effective corrective approach to minimise the impact of 

cascading outages leading to large-area blackouts. This paper proposes a novel methodology, based on 

constrained spectral clustering, that is computationally very efficient and determines an islanding solution 

with minimal power flow disruption, while ensuring that each island contains only coherent generators. The 

proposed methodology also enables operators to constrain any branch, which must not be disconnected, to be 

excluded from the islanding solution. The methodology is tested using the dynamic models of the IEEE 39- 

and IEEE 118-bus test systems. Time-domain simulation results for different contingencies are used to 

demonstrate the effectiveness of the proposed methodology to minimise the impact of cascading outages 

leading to large-area blackouts. In addition, a realistically sized system (a reduced model of the Great Britain 

network with 815 buses) is used to evaluate the efficiency and accuracy of the methodology in large-scale 

networks. These simulations demonstrate that our methodology is more efficient, in a factor of 

approximately 10, and more accurate than another existing approach for minimal power flow disruption. 

 

Index Terms: Constrained spectral clustering, intentional controlled islanding, spectral graph theory, power 

flow disruption. 

1. Introduction 

Interconnected power systems are prone to cascading outages leading to large-area blackouts, and 

Intentional Controlled Islanding (ICI) has been proposed as an effective corrective control action [1, 2]. ICI 

is an adaptive control strategy for systems under emergency and in extremis states [1-5]. After a severe 
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contingency, ICI intentionally separates the bulk network into several self-sustaining electrically isolated 

islands. This adaptive control strategy is aimed to be used as a last resort only after instabilities have been 

detected, but before the system becomes uncontrollable [1, 2]. 

The ICI problem can be modelled as a constrained combinatorial optimization problem and its 

complexity increases exponentially with the size of the system [6-11]. Hence, determining an islanding 

solution in real-time, i.e., quickly enough to ensure effective islanding within a limited timeframe, is an 

extremely complex analytical and practical problem [12, 13]. 

The ICI methods aim to determine in real-time (a few seconds in practice [12]) a set of branches that 

must be disconnected across the network to create stable and sustainable islands [5-13]. When determining 

this set of lines, multiple constraints, such as generator coherency, load-generation balance, thermal limits, 

voltage and transient stability, should be considered. Since including all of these in the ICI problem may 

result in a very complex problem that could not be solvable in a limited timeframe, only a subset of 

constraints can be considered [13]. The exclusion of some constraints and the inherent characteristics of the 

system mean that additional corrective measures [1-5] are necessary to ensure that each island retains its 

stability and security margins in the post-islanding stage [5-13]. 

Among the aforementioned constraints, the generator coherency constraint, which is used as a practical 

substitution of the true transient stability constraint, is crucial for the success of the controlled separation, as 

it enhances the transient stability of the islands [8, 9, 14]. Hence, current approaches for ICI aim to split the 

system such that each island contains only coherent generator [5-13]. 

The existing ICI methods can be classified according to the objective function used. Two major classes 

are: a) minimal power imbalance, e.g., [5-11], and b) minimal power flow disruption, e.g., [12, 13, 15]. 

While methods for the former minimise the load-generation imbalance within the islands, approaches for the 

latter minimise the change of the power flow pattern following system islanding. 

Even though these approaches result in different islanding solutions, they both can be described as 

searching problems on graphs, which are generally NP-hard [16], and therefore there is no general 

polynomial time algorithm to find the optimal solution [17]. Hence, to rapidly determine an islanding 

solution, computationally more efficient algorithms that approximate the optimal solution must be used 

instead [8-10]. 
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In particular, solutions with minimal power flow disruption can be achieved using efficient graph 

theoretic techniques such as spectral clustering [18]. This technique uses the eigenvalues and eigenvectors of 

a matrix associated with a graph that represents the power system to determine splitting solutions within 

polynomial time [18]. Spectral clustering is used in [12] to determine islanding solutions with minimal power 

flow disruption. Even though this method is computationally efficient, it does not include the generator 

coherency constraint in the ICI problem. Failure to consider this vital constraint restricts the use of this 

approach [13]. 

More recently, a Spectral Clustering Controlled Islanding (SCCI) algorithm has been proposed in [13]. 

The SCCI algorithm minimises the power flow disruption, while ensuring that each island contains only 

coherent generators. However, an islanding solution can only be directly determined when the number of 

islands is two, i.e., the SCCI algorithm only finds a solution for the bisection case. This issue is resolved by 

applying recursive bisection [13]. Nevertheless, recursive bisection is a computationally demanding 

technique that requires the repeated eigendecomposition of a matrix associated with the graph. Recursive 

bisection can also affect the quality of the islanding solution [18-22]. 

This paper proposes a novel methodology, based on constrained spectral clustering, that is 

computationally more efficient. Our methodology directly determines an islanding solution with minimal 

power flow disruption for any given number of islands, while ensuring that each island contains only 

coherent generators. Additionally, it enables operators to constrain any branch to be excluded from the 

solution. The methodology solves an associated eigenproblem only once, even when multiple islands (larger 

than two) are to be created, and avoids iterative algorithms (e.g., k-means [18]). These advantages 

significantly improve the computational efficiency and the quality of the solution, particularly when dealing 

with large-scale systems. 

We test our methodology using dynamic models of the IEEE 39- and IEEE 118-bus test systems. Time-

domain simulation results are used to demonstrate the effectiveness of the methodology to minimise the 

impact of cascading outages leading to large-area blackouts. We also used a reduced Great Britain network 

with 815 nodes to demonstrate that our approach is computationally very efficient and determines, in all our 

simulations, a “good islanding solution”, meaning a solution with small power flow disruption relative to the 

size of the islands. 
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The paper is organised as follows. Section 2 presents the background material on spectral graph 

clustering, and introduces the ICI problem considered in this paper. Section 3 presents the proposed ICI 

methodology, and in Section 4 we study its effectiveness in preventing cascading outages leading to large-

area blackouts. Finally, Section 5 discusses the main strengths and limitations of the new ICI methodology, 

and Section 6 summarises the conclusions drawn from this study. 

2. Spectral Graph Clustering and Intentional Controlled Islanding 

This section presents the background of spectral graph clustering. Spectral clustering is a 

computationally efficient graph theoretic technique that can partition systems using the eigenvalues and 

eigenvectors of a matrix associated with the graph that represents the power system [18]. This section also 

explains the ICI problem for minimal power flow disruption, considering the generator coherency constraint, 

and introduces a quality index to measure the performance of our methodology. 

2.1 Spectral Graph Clustering 

2.1.1 Graph Theory Fundamentals 

A power system with n buses and m generators can be represented as a weighted and undirected graph 

( ), ,G V E ω= . The elements iv V∈ , 1,2, ,i n= K , and ije E V V∈ ⊂ × , , 1,2, ,i j n= K , denote the nodes and 

edges of G, respectively. The sets V and E represent the buses and branches of the system, respectively. Due 

to the nature of power systems, G can be assumed to be simple, i.e., no multiple edges and no loops exist. 

The number ( )ij ijw eω= , , 1,2, ,i j n= K , represents the weight factor associated with the edge ije E∈  

(active power flow). To accommodate network losses, the value of wij is calculated as follows: 

if ;
2

0 otherwise.

ij ji
ij

ij ji

P P
e Ew w

⎧ +
⎪ ∈= = ⎨
⎪
⎩

 (1) 

where Pij and Pji represent the active power flow in the branch from bus i to j, and from j to i, respectively. 

We define the subset GNV V⊂  of generation-nodes, with elements GN
i GNv V∈ , to represent the m 

generation-buses of the system. Therefore, the subset \LD GNV V V=  of load-nodes (where \ denotes the set-

theoretic difference and defines LDV  as the set of nodes in V that do not appear in GNV ), with elements 

LD
i LDv V∈ , is defined to represent the n m−  load-buses. For example, Fig. 1 shows the graph representation 
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of the IEEE 39-bus system. The black and the grey dots are the generation- and the load-nodes, respectively. 

We explain the subgraphs shown in Fig. 1 in more detail in Section 4.1. 
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Fig. 1. Results for the IEEE 39-bus system (a) Representation of the Voronoi diagrams in the graph (b) 

Islanding solution for the case r = 2. 

2.1.2 Graph Laplacian Matrices 

Laplacian matrices are used in graph theory to describe and study graphs [18]. There are two main types 

of Laplacian matrices: the unnormalised Laplacian matrix L and the normalised Laplacian matrix LN. These 

matrices are used in this paper to represent the active power flow in the branches of the system. 

The unnormalised Laplacian matrix L (used in [13]) of G is the n n×  matrix computed as follows [18]: 

[ ]
if ;

  if  and ;
0 otherwise.

i

ij ijij

d i j
w i j e

=⎧
⎪

= − ≠ ∈⎨
⎪
⎩

L E  (2) 

where di is the weighted degree of the node vi, which is defined as the total weight of the edges connected to 

that node [18]: 

1

n

i ij
j

d w
=

=∑ . (3) 

The matrix L can be written as    – =L D W , where D is a diagonal matrix with nonzero entries di, and W 

is the weighted adjacency matrix of G, i.e., the matrix whose ij-entry is ijw . 

The normalised Laplacian matrix of G is the n n×  matrix 1 2 1 2− −=NL D LD , that is, [18]: 
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[ ]
1 if ;

 if  and ;
otherwise.0

ij i j ijij

i j
w d d i j e

⎧ =
⎪

= − ≠ ∈⎨
⎪
⎩

NL E . (4) 

The matrix LN has the advantage of being scale-independent and, in particular, it allows the comparison 

of graphs with different weights [18-22]. 

2.1.3 Eigenvalues of the Laplacian Matrices 

Spectral clustering uses r eigenvectors of either L or LN to provide geometric coordinates for the nodes 

iv V∈  in r-dimensional Euclidean space rR  [18]. This so-called spectral embedding (see Fig. 2 for an 

example) is then used to cluster the data-points using a clustering algorithm for point clouds in rR , such as 

k-means [18]. We use the normalised Laplacian LN as a number of studies have shown that it offers superior 

performance compared to L on weighted networks [18-22]. Hence, we will use the eigenvectors 

2, , , r1ψ ψ ψK , associated with the smallest r eigenvalues 1 20 rν ν ν= ≤ ≤ ≤L  of the matrix LN [18]. In our 

methodology, the value of r is the number of islands to be created. This value corresponds to the number of 

identified coherent groups of generators [4-13], as current practices (e.g., [23, 24]) suggest that the number 

of islands should be equal to the number of coherent groups obtained after the severe disturbance. Note that, 

nevertheless, the proposed methodology can determine an islanding solution for any given number of 

islands. 

2.1.4 Spectral Embedding 

Spectral embedding refers to a representation of G in rR  using the eigenvectors 2, , , r1ψ ψ ψK  [18]. 

Ordering these eigenvectors as columns creates a matrix n r×∈X R  with rows xi, 1,2, ,i n= K . Then the 

vector xi represents the coordinates of the node iv V∈  in r-dimensional Euclidean space rR . 

To improve the quality of the solution, the vectors xi must be normalised to have length one before 

applying any clustering technique [19, 22]. Thus, we define 

: i
i

i

=
xy
x

, 1,2, ,i n= K . (5) 

The normalization (5) effectively projects the vectors xi to the unit (r–1)-dimensional sphere 

{ }1  such that 1r r
i i

− = ∈ =y yS R  and creates the matrix n r×∈Y R  with rows yi. 
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After computing the spectral embedding, the nodes iv V∈  can be seen as data-points xi in rR , or yi on 

1r−S . For example, we plot the vectors xi in Fig. 2(a) and the vectors yi in Fig. 2(b) for the spectral 

embedding of the IEEE 39-bus system when 2r = . 
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Fig. 2. IEEE 39-bus system (a) 2-dimensional spectral embedding in Euclidean space 2R  (b) Normalised 

vectors on the unit circle 1S . The numbers on the diagram correspond to node numbers. The red dots and the 

blue asterisks represent the generation- and load-nodes, respectively. 
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2.1.5 Representative Data-Points (Centroids) 

We define ⊂GNX X , and equivalently ⊂GNY Y , as the subset of data-points representing the m 

generation-nodes GN
i GNv V∈ . Observe that m= =GN GNX Y . We call these data-points centroids and denote 

them by GN
ix  and GN

iy  in rR  and on 1r−S , respectively. We explain the function of these centroids in 

Section 3. The advantages of using centroids are to: (i) satisfy the generator coherency constraint, (ii) 

accelerate the identification of a solution, and (iii) reduce the memory usage by reducing the order of a 

similarity matrix. For an illustration, Fig. 2 shows the centroids as red dots and the remaining data-points 

(representing load-nodes) as blue asterisks. 

2.1.6 Constrained Spectral Clustering 

Constrained spectral clustering is an extension of spectral clustering which allows two main types of 

constraints, Must-Link (ML-) and Cannot-Link (CL-) constraints, to be used [20, 21]. A ML-constraint 

between two nodes indicates that the pair of nodes must be clustered together, and a CL-constraint specifies 

that the pair of nodes cannot be assigned to the same cluster. We will only consider ML-constraints in this 

paper, to exclude branches that must not be disconnected from the islanding solutions, as it is considered that 

CL-constraints have less relevance for practical implementations. 

2.2 Intentional Controlled Islanding 

Fig. 3 presents the general concept of ICI [25, 26], which is associated with the blackout progress [27]. 

Following a severe disturbance on a healthy system at t = tdist (known as initiating event), the slow 

degradation of the power system commonly takes place [1, 2]. Although Remedial Actions (RA) may be 

implemented to minimise the outage propagation, they may fail to restore the system to a secure state, either 

because they are not sufficient or they may just not be timely and effectively implemented by operators. This 

typically causes the system to enter the fast speed cascading outages, triggering the uncontrolled 

disconnection of system components and causing large-area blackouts [1, 2]. 
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Fig. 3. Time-line showing the implementation of the methodology [26]. 

In this context, ICI aims to limit this fast speed cascading outages, by splitting the power system into 

several stable islands [28]. When the vulnerability analysis indicates the necessity to island at t = tnec,isl (when 

RA fail to minimise the impact of the initiating event), an islanding solution must be determined. To avoid 

any delay in the controlled islanding, it is important that the ICI method is computationally efficient to 

reduce the computational time [4]. Thus, after a short computational time, denoted as tcomp, an islanding 

solution must be determined to split the power system at the implementation time (timp), which must be 

before the system becomes uncontrollable. Post-islanding corrective actions (e.g., fast valving, load 

shedding, etc.) are expected to be undertaken, and stable islanded operation obtained [25]. 

2.2.1 Generator Coherency 

Groups of generators can lose synchronism after a severe disturbance [8, 14, 29]. Each of these 

dynamically coherent groups of generators must be separated into different islands to help the transient 

stability of the system when determining an islanding solution [12]. Therefore, when the coherent groups of 

generators, denoted by 1, ,GN GNrV V… , are identified after a severe disturbance, e.g., using approaches such as 

those described in [24, 29], our methodology will create islands such that each of these contains only 

coherent generators, as detailed below. 

2.2.2 Quality of the Islanding Solution and Objective Function 

Spectral clustering finds a cutset, that is, a subset of edges SE E⊂  whose removal splits the graph G 

into r disjoint subgraphs 1, , rG G…  [18]. Each subgraph corresponds to a node set 1, , rV V…  such that 

1 rV V V∪…∪ =  and i jV V∩ =∅  for all i ≠ j. An islanding solution consists in identifying an appropriate 

cutset that splits the power system into islands that are represented by the subgraphs 1, , rG G… . 
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We need a measure of the quality of an islanding solution (cutset) to evaluate the performance of the 

methodology. This can be done using the ratio between the cut and the volume of each subgraph (island). 

The cut of an island represented by a node set Vk is the sum of the edge-weights between the nodes in Vk 

and the nodes not in Vk, i.e., the sum of the edge-weights linking Vk with its complement kV  [18]: 

( )
,

,
i k j k

k k ij
v V v V

cut V V w
∈ ∈

= ∑ . (6) 

The cut measures the connectivity of an island, and in our case it corresponds to the power flow 

disruption if the island Vk is disconnected from the rest of the system. We then make this quantity relative to 

the size of the island, in the following sense. 

The volume of an island with node set Vk is the sum of the weighted-degrees of its nodes [18]: 

( )
i k

k i
v V

vol V d
∈

= ∑ . (7) 

The volume of an island represents the internal power flow of the island plus the cross-boundary flow. 

We can then define the quality of an island Vk as one minus the cut relative to its size: 

( )
( )
( )
,

1 k k
k

k

cut V V
V

vol V
φ = − . (8) 

The quantity ( )kVφ ranges from zero to one, and measures the connectivity of an island relative to its 

volume. For clustering purposes, the greater the value of ( )kVφ , the better the island is considered to be [30]. 

For example, ( ) 0.98kVφ = represents a poorly connected island (its cross-boundary flow represents 2% of its 

total internal power flow), and hence a better candidate for islanding than a better connected island with 

( ) 0.65kVφ = . Hence a large ( )kVφ  represents an island with small power flow disruption and large internal 

power flow. 

We define the overall quality of an islanding solution as the worst (minimum) quality of the islands it 

creates, i.e., ( )( )
1,2,...
min kk r

Vφ
=

. Therefore, the clustering objective function is 

( )( )
1 1,2,...,...
max min

r
kk rV V
Vφ

=
, (9) 

that is, finding the r-partition maximising the worst (minimum) quality among its islands. 

We require, in addition, that each island contains only coherent generators 

GNi iV V⊂ , (10) 
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that is, the ith island must contain the ith group of coherent generators. This overall formulation (9)-(10) 

reduces the possibility of overloading the branches in the created islands [14] and increases the probability 

that the generators in each island will remain in synchronism [12, 13]. 

Finally, we enable operators to exclude branches from the islanding solutions. To do so, we define a new 

subset CE E⊂  to represent branches that must not be disconnected, e.g., unavailable lines, lines that are 

important for the stability of the islands or lines without synchro-check relays (these devices are vital during 

the restoration process [12]). Excluding these branches amounts to impose the condition C SE E∩ =∅ , that 

is, to consider only partitions with cutsets ES not containing any excluded edges from EC. 

With these new sets of constraints, the problem that we attempt to solve can be formulated as finding: 

( )
( )1 ,..., 1,2,...,

,
min max

r

k k

V V k r
k

cut V V
vol V=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

subject to 
, and  GNi i C SV V E E⊂ ∩ =∅  

(11) 

Note that this type of min-max optimization problems (11) on graphs are related to Laplacian 

eigenvalues, and this is the key connection between islanding with respect to minimal power flow disruption 

and spectral clustering [18]. Indeed, finding an optimal solution of (11) is in general NP-hard, and spectral 

clustering provides an efficient method of finding solutions of a relaxation of (11) [30], i.e., it gives 

approximate solutions in polynomial time (details can be found in [18], and elsewhere in the vast literature of 

spectral clustering). The approximate and the optimal solution can be related via the so-called Cheeger 

inequality [22], and this is one of the main theoretical justifications of the spectral clustering methodology 

[18]. We compare in Section 4.1 the quality of our solution with the quality of the optimal solution that is 

defined by the theoretical lower bounds of the Cheeger inequality [22]. 

3. Proposed Islanding Methodology 

Our methodology aims to minimise the power flow disruption, while satisfying the generator coherency 

constraint and excluding the constrained branches from the islanding solution, i.e., our objective function is 

given by (11). As explained above, we use spectral clustering to approximate a solution in polynomial time 

(a few seconds in all our test cases) of this NP-hard problem. Fig. 4 shows the flowchart of the proposed 

methodology, which is based on the spectral clustering algorithm of [19]. We identify each step by an S 

(step) followed by a number and we use in each step the definitions provided in Section 2.1. 
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Step 1: Build the graph G using the power flow data computed at the moment of islanding (tnec,isl in Fig. 3). 

Step2: Identify edges ij Ce E∈  to be excluded from the cutset, and change their associated weight factor to 

the largest value in W (i.e., max (W)): 

( )for all , let ' 'ij ij jie E w w max∈ = =C W . (12) 

The changes in (12) create a new weighted adjacency matrix W’, which is then used to compute the matrix 

LN using (4). 

Step 3: Compute the eigenvectors 2, , , r1ψ ψ ψK  of LN. 

Step 4: Create the matrix n r×∈X R , and compute the spectral embedding (see Fig. 2(a) for an example). 

Step 5: Define the centroids GN
i ∈ GNx X  in rR    (e.g., the red dots in Fig. 2(a)). The remaining data-points 

\LD
i ∈ GNx X X  (e.g., the blue-asterisks in Fig. 2(a)) represent the load-nodes of G. 

S1: G = (V,E,ω)

S3: Compute the eigenvectors 
ψ1,ψ2,...,ψr by solving the 
eigenproblem LNψ = νψ

S4: Create the matrix X 
and compute the spectral 

embedding xi in ℝr

S7: Define the sets Y and YGN

S8: Create the matrix C by computing 
the spherical distance between the 
data-points yi

LD∈Y\YGN and the 
centroids yj

GN∈YGN

S9: Associate each data-point 
yi

LD∈Y\YGN with the nearest 
(with respect to the spherical 
distance) centroid yj

GN∈YGN

r-coherent 
groups of 
generators

VGN1,VGN2,...,VGNr

S10: Using the coherency information, 
group the “coherent” centroids 

yj
GN∈YGN and the associated data-

points yi
LD∈Y\YGN

Clusters

Start

Set  Ec

S2: Compute the new 
adjacency matrix W' 

and then the matrix LN 

Actual 
power 

flow data

S6: Normalize each vector 
xi to obtain yi on 𝕊r–1

S5: Define the sets X 
and XGN

 
Fig. 4. Flowchart of the proposed methodology. 

Step 6: Normalise the vectors i ∈x X  using (5) to compute the vectors yi which form the rows of a matrix 

n r×∈Y R . The vectors yi represent the nodes iv V∈  as data-points on 1r−S  (see Fig. 2(b) for an example). 

Step 7: Define the data-points GN
i ∈ GNy Y  on 1r−S  (the red-dots in Fig. 2(b)) as the centroids on 1r−S . 
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Step 8: Compute the distances cij between the data-points \LD
i ∈ GNy Y Y  and the centroids GN

j ∈ GNy Y  (the 

blue-asterisks and the red-dots in Fig. 2(b)). This creates a similarity matrix ( ): ijc=C . Note that the size of 

C is reduced to ( )n m m− × , and the advantages of this reduction are discussed in Section 4.4. 

Step 9: Associate each data-point \LD
i ∈ GNy Y Y  with the nearest centroid GN

j ∈ GNy Y . Mathematically, we 

identify the minimum value in the ith row of C. Hence each load-node LD
i LDv V∈  is grouped with one and 

only one generation-node GN
j GNv V∈ . For example, we found in Fig. 2(b) that data-points 28 and 29 are 

closer to the centroid marked as 38 than to any other centroid. Thus, the nodes v28, v29 are grouped with v38. 

When each load-node is associated with the closest generation-node, m disjoint subgraphs are obtained (see 

Fig. 1(a)). We define each of these subgraphs as the “domain of the generator for minimal power flow 

disruption”. This is a special case of a Voronoi diagram [31], which simply assigns each point to its closest 

centroid. In our methodology, each generator has a different domain and examples of generator domains are 

illustrated in Fig. 1(a) and explained in detail in Section 5. 

Step 10: Create the final clusters (islands) by grouping the domains of the coherent generation-nodes. This 

ensures that the generator coherency constraint is satisfied. For example, the coherent groups of generators in 

the IEEE 39 are { }1 30 37 38 39, , ,GNV v v v v=  and { }2 31 32 33 34 35 36, , , , ,GNV v v v v v v=  (Fig. 5), thus we obtain the 

islands shown in Fig. 1(b). 

4. Simulation Results 

This section presents the simulation results. We use the dynamic models of the IEEE 39- and IEEE 118-

bus test systems to demonstrate with time-domain simulations that the methodology can minimise the impact 

of cascading outages leading to blackouts. We also use a static model of a reduced Great Britain network 

with 815 buses to demonstrate the scalability of our methodology and to show that it is computationally more 

efficient and more accurate, in particular for large-scale networks, than the SCCI algorithm detailed in [13]. 

All time-domain simulations are performed in DIgSILENT PowerFactory [32], and the methodology has 

been implemented in MATLAB [33]. The times settings of the protective relays used in the simulations are 

carefully selected to show the desired oscillation mode, although, in practice, they may be shorter. 
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Additionally, instantaneous power flows are used for disconnecting overloaded lines. All times quoted are 

based upon simulations performed on a PC with 2.33 GHz double core CPU and 2 GB RAM. 

4.1 Test Case I: IEEE 39-Bus System 

We use the IEEE 39-bus system to illustrate our methodology in a small network. The data of this system 

and the controllers (Automatic Voltage Regulators and Power System Stabilisers only) can be found in [34]. 

Testing case description: We have increased the base load level by 25%, while maintaining the same power 

factor. This is done to stress the system and increase the likelihood of instability following a disturbance. 

This increment has been equally distributed among the generators G2–G7. The output power of the other 

generators remains the same. We then consider that at time t = 0 s, a three phase to ground solid fault occurs 

near bus 16 at line 16-17, and is cleared after local relays open the faulty line at t = 0.4 s. If no control action 

is undertaken, it can be observed in Fig. 5(a) that the system loses synchronism at about 2.8 s. Indeed, the 

software DIgSILENT PowerFactory [32] indicates out of step (pole slip) at t = 2.85 s. Then, due to the power 

oscillations and the line overloads caused by the disconnection of line 16-17, multiple lines are disconnected 

in cascade. Line 13-14 is disconnected at time t = 5.5 s. This then triggers the uncontrolled cascading outages 

of lines 4-5, 3-4, 5-8 and 6-7 at the times 6.2 s, 6.7 s, 7.1 s and 7.3 s, respectively. These cascading outages 

lead to the uncontrolled separation of the system into three islands, which are eventually affected by 

blackouts. Fig. 5(b) shows the frequency of the generators. As noticed, the system is partitioned into three 

groups, which are not balanced. Finally, Fig 5(c) illustrates that the voltage magnitudes at the system buses 

are considerably small, leading to a blackout of the system at about 7 s. 
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Fig. 5.  Results for the IEEE 39-bus system without islanding (a) Generator rotor angle (b) Generator speed 

(c) Voltage magnitudes. 

The loss of synchronism and the frequency of the generators are clear indicators that the system should 

be split [11]. Here we consider the necessity to partition the system at time t = 3 s. In practical 

implementations, this time depends on the vulnerability analysis performed following severe disturbances. 

We use our methodology to determine the most suitable islanding solution with respect to the actual power 

flow in the branches at t = 3 s. In the simulations presented for this test case, we assume that any 

transmission line can be included in the cutset, i.e.,   CE =∅ . We exclude transformers from the solution. 

Since two coherent groups are identified at t = 3 s, we define 2r =  and consider the spectral embedding 

into 2R  shown in Fig. 2(a). We then normalise the vectors xi in 2R , 1,2, ,39i = K , so they lie on the unit 

circle 1S  shown in Fig. 2(b). We then compute the distance between the vectors \LD
i ∈ GNy Y Y  (blue-

asterisks) and the centroids GN
j ∈ GNy Y  (red-dots). We use these distances to build the similarity matrix C, 

and each load-node   LD
i LDv V∈  is then grouped with the nearest generation-node   GN

j GNv V∈ . This preliminary 

grouping creates the “domain of each generator for minimal power flow disruption”, or Voronoi diagrams, 

shown in Fig. 1(a) in different background colours. 

Then, as the identified coherent groups of generators shown in Fig. 5 are { }1 30 37 38 39, , ,GNV v v v v=  and 

{ }2 31 32 33 34 35 36, , , , ,GNV v v v v v v= , the clusters in Fig. 1(a) containing coherent generation-nodes are grouped 

together to determine the islanding solution illustrated in Fig. 1(b). Table 1 shows the value of the cut (6), the 

volume (7) and the value of ( )kVφ  (8) of each island obtained. We conclude that the quality of the islanding 

solution (the minimum value of ( )kVφ  from all of the islands) is 99.84%. 

Table 1: Results islanding the IEEE 39-bus system into two islands 

Cutset Island Cut Volume ( )kVφ  
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No. (MW) (MW) (%) 

8,9 3,4 16,17, ,e e e  1 12 7383 99.84 
2 12 18605 99.94 

 

This solution was obtained in approximately 1.5 ms (tcomp = 0.0015 s) and thus the corresponding 

corrective controlled strategy was undertaken at t = 3.0015 s. Fig. 6 presents the dynamic simulation results 

with islanding. We can see that the blackout has been successfully avoided, and two stable islands are 

created with frequency at t = 15 s between 0.989 pu and 1.035 pu, and voltages between 0.895 pu and 

1.09 pu. Indeed, power flows computed in the post-islanding state demonstrate the feasibility of these results. 

Note that the machines are not equipped with governors. In practical implementations, control measures, 

such as fast valving, can be applied to decrease the frequency deviations. 

We now compare the quality of the islanding solution determined by the proposed methodology, which 

was found in few milliseconds, with the optimal solution, which cannot be found in general in polynomial 

time [18]. The theoretical lower bound (defined by the eigenvalue ν2/2 of LN [22]) establishes that the quality 

of the optimal solution (defined by the Cheeger inequality, see [22] for more details) is bounded to 99.87%, 

whereas the quality of our approximation was 99.84%. 
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Fig. 6.  Results for the IEEE 39-bus system with islanding (a) Generator rotor angle (b) Generator speed 

(c) Voltage magnitudes. 

4.2 Test Case II: IEEE 118-Bus System 

We now test the proposed methodology using the IEEE 118-bus system. The dynamic data of the 

generators can be found in [11], and they are selected according to the typical generator data in [35]. The 

generators have also been equipped with governors. The governor model is taken from the Standard Models 

library in DIgSILENT PowerFactory and is gov_TGOV1.BlkDef, a steam turbine governor [32]. We 

consider that any line can be included in the cutset ES, but transformers must be excluded from this. 

Testing case description: We consider that at time t = 0 s, a three phase to ground fault occurs near bus 25 

at line 23–25 and is cleared after local relays open the faulty line at 0.18 s. The swing trajectories obtained 

are shown in Fig. 7(a). It can be seen that within a short time after the fault is cleared, the generators are 

divided into two groups: { }10,12,25,26,31 and{ }46,49,54,59,61,65,66,69,80,87,89,100,103,111 . As it can 

be observed in Fig. 7(b)-(c), if the system is not split, the frequency of the generators in the first group 

considerably increases, the voltage magnitudes in major part of the network are significantly reduced, and, if 

no control actions are timely undertaken, the system quickly collapses. 
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Fig. 7.  Results for the IEEE 118-bus system without islanding (a) Generator rotor angle (b) Generator speed 

(c) Voltage magnitudes. 

In this case, the necessity to split the system is considered to be at 0.38 s. The islanding solution found 

by our methodology is illustrated in Fig. 8. Table 2 summarises the results of each island; the quality of this 

islanding solution is 99.65%. This solution was found in approximately 8.1 ms, and hence the islanding was 

undertaken at 0.3881 s. Fig. 9 shows the dynamic response of the power system in the post-islanding state. 

As notice, these results indicate that our methodology can effectively prevent the blackout. We can also see 

that two islands are successfully created with frequencies between 0.9987 pu and 1.0111 pu. Similar to the 

previous case, we use the power flows in the post-islanding state to check the feasibility of these results. It is 

important to mention that this test network has not been equipped with voltage regulators; thus, the voltage 

magnitudes shown in Fig. 9(c) are expected to be higher in the scenario where these controllers are used. 
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Fig. 8. Single line diagram of the IEEE 118-bus test system and proposed islanding solution. 

Table 2: Results islanding the IEEE 118-bus system into two islands 

Island 
No. 

Cut 
(MW) 

Volume 
(MW) 

( )kVφ  
(%) 

1 28 7961 99.65 
2 28 10193 99.73 

 

4.3 Test Case III: Reduced Great Britain Network 

We finally test the proposed methodology using a realistically sized power system, a static model of a 

reduced Great Britain network with 815 buses. Specifically, we study splitting into r islands for 2,3,4,5r = . 

These static simulations aim to demonstrate the scalability of our methodology, and to compare it with an 

existing SCCI algorithm [35]. Table 3 shows the total power flow disruption and the quality of each 

islanding solution, i.e., ( )( )
1,2,...
min kk r

Vφ
=

, using both the proposed methodology and the SCCI algorithm in [13]. 
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Fig. 9.  Results for the IEEE 118-bus system with islanding (a) Generator rotor angle (b) Generator speed 

(c) Voltage magnitudes. 

Table 3. Results and comparison using the Great Britain network 

No. of 
Islands 

Proposed Methodology Existing SCCI Algorithm 

Cut (MW) Quality  
(%) Cut (MW) Quality  

(%) 
2 1869 98.79 1869 98.79 
3 1895 98.72 2167 95.06 
4 3332 94.73 4204 93.69 
5 5333 96.95 6318 95.06 

 

As noticed, the results using our methodology are as good (when 2r = ) or significantly better (when 

3,4,5r = ). It is important to note that our methodology improves the accuracy of the results (measured as the 

ratio between the total power flow disruption difference and the power flow disruption using the existing 

technique) in 12.6%, 20.7% and 15.6% for the cases with r = 3, 4 and 5, respectively. 

4.4 Evaluating the Computational Efficiency of the Proposed Methodology 

We list in Table 4 the computational time of our methodology, and compare it with an implementation of 

the SCCI algorithm of [13]. Our methodology has the key advantage of solving the associated eigenproblem 
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only once, even when multiple islands are to be created, which considerably accelerates the determination of 

an islanding solution, particularly when dealing with large-scale power systems, and potentially increases the 

quality of the islanding solution [18-22]. 

Table 4. Computational time using both the proposed methodology and the existing SCCI algorithm 

(average runtime over 1000 instances with the same loading condition) 

Test System Runtime using the 
Proposed Methodology (s) 

Runtime using the 
existing SCCI Algorithm (s) 

IEEE 392 0.0014 0.0141 
IEEE 1182 0.0081 0.0455 

Great Britain-8152 1.1478 7.3884 
Great Britain-8153 1.1638 9.7664 
Great Britain-8154 1.1653 9.9415 
Great Britain-8155 1.1753 9.9901 

*The superscript indicates the number of created islands 
 

The runtime of our methodology is dominated by that of the eigendecomposition of a real symmetric 

n n×  matrix. Therefore, the theoretical computational complexity of our methodology is approximately 

O(n3) [21], although it can be reduced to O(n4/3) when utilising a sparse form of LN [15]. 

The key message is that our methodology is capable of determining an islanding solution in real-time 

even for large-scale power systems, as we can see in Table 4. In fact, our methodology reduces in a factor of 

approximately ten the computational time respect to the competing SCCI algorithm. Consequently, our 

methodology can meet the demand of real-time controlled islanding. 

5. Discussion 

The proposed ICI methodology can effectively prevent cascading outages leading to large-area blackouts 

by islanding the bulk network across the lines with reduced power flow following a severe disturbance, i.e., 

it can find an islanding solution with minimal power flow disruption. Even though the new approach has 

significantly improved the voltages at all the system buses for the IEEE 39- and IEEE 118-bus test systems 

(see Figs. 6 and 9) compared to the uncontrolled separation, additional research is required to include voltage 

stability constraints in the formulation. This further improvement can help ensure that the power system will 

successfully operate after islanding actions are undertaken. Additionally, post-islanding analyses and 

simulations are required in practical implementations of the new approach to evaluate its behaviour in these 

new cases. 
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The proposed ICI methodology can determine islanding solutions for any given number of islands, while 

ensuring that each island contains only coherent generators. Even though this approach enhances the 

transient stability of the islands [12], it cannot consider the location of the fault that has caused the loss of 

synchronism between the coherent groups of generators. Hence, additional investigations to consider the 

fault location could further improve the applicability of the new approach. 

In order to enhance the transient stability of the future islands, our approach has followed current 

practices, and has considered the generator coherency constraint in the formulation. However, further 

research is required to consider the true transient stability constraint. This remains an open, extensive and 

exciting area of research. 

Finally, the proposed ICI methodology has considered that the number of islands to be created is equal to 

the number of coherent groups of generators. Although this follows current practices, e.g., [23, 24], it would 

be interesting to further investigate the applicability of the methodology for different number of islands. This 

is of particular interest as the number of coherent groups is not a necessarily unique solution [19] due to 

changes in system operating condition and network configuration, and this will have consequences for the 

islands obtained, and their quality. 

6. Conclusions  

This paper proposes a novel methodology, based on constrained spectral clustering, that determines an 

islanding solution for minimal power flow disruption, while ensuring that each island contains only coherent 

generators. It also enables operators to constrain any branch to be excluded from the islanding solution. The 

proposed methodology uses the first r eigenvectors of a normalised Laplacian matrix associated with the 

graph that represents the power flow of the power system, and this approach improves the quality of the 

islanding solutions, compared to competing methods that use the unnormalised Laplacian matrix. 

The new methodology has the key advantage that it solves the associated eigenproblem only once, even 

when multiple islands are to be created. As we avoid recursive bisection, the methodology considerably 

accelerates the determination of an islanding solution and simultaneously improves its quality. Furthermore, 

our methodology defines the vectors representing the generation-nodes as centroids on the unit sphere in 

Euclidean space, and computes, just once, the distance only between the vectors representing load-nodes and 
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the centroids. This reduces the order of the similarity matrix and avoids the use of iterative approaches. 

These two features also contribute accelerating the determination of an islanding solution. 

The proposed methodology was tested and validated using dynamic models of the IEEE 39- and IEEE 

118-bus test systems. Time-domain simulation results are used to demonstrate that our methodology can 

minimise the impact of cascading outages leading to blackouts. We have also presented static simulations on 

a reduced Great Britain network with 815 buses to demonstrate the scalability of our methodology, to show 

that it meets the real-time requirements of islanding methods even for large-scale power systems, and to 

compare it with a competing algorithm. These simulations show that our methodology can be used with 

practical power systems to determine, in a limited timeframe, a good islanding solution, i.e., a solution with 

small power flow disruption relative to the power in each island, and any given number of islands. 

7. Acknowledgements 

The authors would like to thank all the anonymous reviewers for their many valuable suggestions during 

the reviewing process. The first and fifth authors would like to thank the Engineering and Physical Science 

Research Council (EPSRC) grants EP/E009735/1 in the U.K, and the Office of International Affairs and 

External Cooperation at the University of Costa Rica for their financial support. The second, third and fourth 

authors would like to acknowledge support by EPSRC grants EP/G059101/1 and EP/G060169/1. 

8. References 

[1] G. Andersson, P. Donalek, R. Farmer, et al., "Causes of the 2003 major grid blackouts in North America 
and Europe, and recommended means to improve system dynamic performance," IEEE Transactions on 
Power Systems, vol. 20, no. 4, p. 19221928, 2005. 

[2] P. Kundur and C. Taylor, "Blackout experiences and lessons, best practices for system dynamic 
performance, and the role of new technologies," IEEE Task Force Report2007. 

[3] V.E. Henner, "A network separation scheme for emergency control," Int. J. Electr. Power Energy Syst., 
vol. 2, no. 2, pp. 109–114, Apr. 1980. 

[4] M.M. Adibi, R.J. Kafka, S. Maram, and L.M. Mili, "On power system controlled separation," IEEE 
Transactions on Power Systems, vol. 21, no. 4, pp. 1894-1902, Nov. 2006. 

[5] H. You, V. Vittal, and Z. Yang, "Self-healing in power systems: an approach using islanding and rate of 
frequency decline-based load shedding," IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 174-
181, Feb. 2003. 

[6] K. Sun, D. Zheng, and Q. Lu, "Splitting strategies for islanding operation of large-scale power systems 
using OBDD-based methods," IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 912-923, May 
2003. 



 24 

[7] Q. Zhao, D. Zheng, J. Ma, and Q. Lu, "A study of system splitting strategies for island operation of 
power system: A two-phase method based on OBDDs," IEEE Transactions on Power Systems, vol. 18, 
no. 4, pp. 1556-1565, Nov. 2003. 

[8] H. You, V. Vittal, and X. Wang, "Slow coherency - Based islanding," IEEE Transactions on Power 
Systems, vol. 19, no. 1, pp. 483-491, Feb. 2004. 

[9] G. Xu and V. Vittal, "Slow coherency based cutset determination algorithm for large power systems," 
IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 877-884, May. 2010. 

[10] C. Wang, B.Zhang, Z. Hao, et al., "A novel real-time searching method for power system splitting 
boundary," IEEE Transactions on Power Systems, vol. 25, no. 4, pp. 1902-1909 Nov. 2010. 

[11] K. Sun, D. Zheng, and Q. Lu, "A simulation study of OBDD-based proper splitting strategies for power 
systems under consideration of transient stability," IEEE Transactions on Power Systems, vol. 20, no. 1, 
pp. 389-399, Feb. 2005. 

[12] L. Hao, G.W. Rosenwald, J. Jung, and C.C. Liu, "Strategic power infrastructure defense," Proceedings 
of the IEEE, vol. 93, no. 5, pp. 918-933, May 2005. 

[13] L. Ding, F. Gonzalez-Longatt, P. Wall, and V. Terzija, "Two-step spectral clustering controlled 
islanding algorithm," IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 75-84, Feb. 2013. 

[14] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics Stability and Control. West 
Sussex: John Wiley & Sons, 2008. 

[15] A. Peiravi and R. Ildarabadi, "Comparison of computational requirements for spectral and kernel k-
means bisection of power system," Australian J. of Basic and Applied Sciences, vol. 3, no.3, pp. 2366-
2388, 2009. 

[16] T. Leighton and S. Rao, "Multicommodity max-flow min-cut theorems and their use in designing 
approximation algorithms," Journal of the ACM, vol. vol. 46, no. 6, pp. 787-832, Nov. 1999. 

[17] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. San Francisco, CA: Freeman, 1979. 

[18] U. Von Luxburg, "A tutorial on spectral clustering," Statistics and Computing, vol. 17, no. 4, pp. 395-
416, Dec. 2007. 

[19] A.Y. Ng, M.I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," Advances in 
Neural Information Processing Systems, vol. 2, pp. 849-856, 2002. 

[20] X. Wang and I. Davidson, "Flexible constrained spectral clustering," in 16th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (KDD 2010), Washington DC, 
USA, 2010, pp. 563-572. 

[21] X. Wang, B. Qian, and I. Davidson, "On constrained spectral clustering and its applications," Data 
Mining and Knowledge Discovery, pp. 1-29, Sep. 2012. 

[22] J.R. Lee, S.O. Gharan, and L. Trevisan, "Multi-way spectral partitioning and higher-order Cheeger 
inequalities," in 44th symposium on Theory of Computing, 2012, pp. 1117-1130. 

[23] R. Franco, C. Sena, G.N. Taranto, and A. Giusto, "Using synchrophasors for controlled islanding—A 
prospective application for the Uruguayan power system," IEEE Transactions on Power Systems, vol. 
28, no. 2, pp. 2016-2024, May 2013. 



 25 

[24] M.A.M. Ariff and B.C. Pal, "Coherency identification in interconnected power system — An 
independent component analysis approach," IEEE Transactions on Power Systems, vol. 28, no. 2, May 
2013. 

[25] V. Terzija, P. Wall, J. Quirós-Tortós, S. Norris, and J. Bialek, "Preventing cascading outages by 
intentional controlled islanding " in IEEE PES General Meeting, Vancouver, 2013. 

[26] J. Quirós-Tortós, M. Panteli, V. Terzija, and P. Crossley, "On evaluating the performance of intentional 
controlled islanding schemes," in IEEE PES General Meeting, Vancouver, 2013, pp. 1-6. 

[27] P. Pourbeik, P. Kundur, and C.W. Taylor, "The anatomy of a power grid blackout - Root causes and 
dynamics of recent major blackouts," IEEE Power & Energy Magazine, vol. 4, no. 5, pp. 22-29, Sept.-
Oct. 2006. 

[28] J. Quirós-Tortós and V. Terzija, "Controlled islanding strategy considering power system restoration 
constraints," in IEEE PES General Meeting, San Diego, 2012, pp. 1-8. 

[29] C. Juarez, A.R.  Messina, R. Castellanos, and G. Espinosa-Perez, "Characterization of Multi-Machine 
System Behavior using a Hierarchical Trajectory Cluster Analysis," IEEE Transactions on Power 
Systems, vol. 26, no. 3, pp. 972-981, Aug. 2011. 

[30] R. Sánchez-García, M. Fennelly, S. Norris, et al., "Hierarchical clustering of power grids," IEEE 
Transactions on Power Systems, vol. in press, pp. 1-9, 2014. 

[31] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessellations: Concepts and Applications of 
Voronoi Diagrams, 2nd ed. England: John Wiley & Sons, 2000. 

[32] DIgSILENT PowerFactory, ed. Heinrich-Hertz-Straße, Germany. 

[33] MATLAB R2010a: Natick, Massachusetts: The MathWorks Inc., 2010. 

[34] IEEE PES PSDPC SCS. (2013, Oct.). Power System Test Cases. Available: 
http://www.sel.eesc.usp.br/ieee/ 

[35] P.M. Anderson and A.A. Fouad, Power System Control and Stability, 2nd ed. New York: IEEE Press, 
2003. 

 


