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Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the
complex interactions of inherited and environmental components that define the developmental origins of a range of disorders.
The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA
methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment. Accordingly,
neonate methylomes contain molecular memory of the individual in utero experience. However, interindividual variation in
methylation can also be a consequence of DNA sequence polymorphisms that result in methylation quantitative trait loci
(methQTLs) and, potentially, the interaction between fixed genetic variation and environmental influences. We surveyed the
genotypes and DNA methylomes of 237 neonates and found 1423 punctuate regions of the methylome that were highly
variable across individuals, termed variably methylated regions (VMRs), against a backdrop of homogeneity. MethQTLs were
readily detected in neonatal methylomes, and genotype alone best explained ~25% of the VMRs. We found that the best
explanation for 75% of VMRs was the interaction of genotype with different in utero environments, including maternal
smoking, maternal depression, maternal BMI, infant birth weight, gestational age, and birth order. Our study sheds new light on
the complex relationship between biological inheritance as represented by genotype and individual prenatal experience and
suggests the importance of considering both fixed genetic variation and environmental factors in interpreting epigenetic
variation.

[Supplemental material is available for this article.]

The relationship between interindividual variation in the epi-
genome—especially DNA methylation—and disease risk is an area of

ship between prenatal environmental factors and epigenetic status
at birth.

intense research interest. Although the effect of fixed genetic vari-
ation on DNA methylation is apparent in studies of allele-specific
methylation and genomic imprinting, there is also emerging evi-
dence for environmental influences as a source of epigenomic var-
iation. Perinatal cohort studies offer a unique opportunity to explore
the origins of variation across the epigenome, and in particular the
extent to which fixed genetic variation can moderate the relation-
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Epidemiological data link disease risk directly to the in utero
environment (Roseboom et al. 2001; Gillman et al. 2003; Hillier
et al. 2007; Painter et al. 2008; Alisi et al. 2011; Sohi et al. 2011;
Dancause et al. 2012; Schwarze et al. 2012) or to birth outcomes as
a surrogate for the in utero environment (Barker et al. 1989; Hofman
etal. 2004; Boney et al. 2005; Bouhours-Nouet et al. 2008; Broekman
et al. 2009; Skilton et al. 2011). This phenomenon is often called
fetal programming and defines, in part, the developmental ori-
gins of health and disease (Bjornsson et al. 2004; Gluckman et al.
2008).

©2014Tehetal. Thisarticle, published in Genome Research, is available under a
Creative Commons License (Attribution 4.0 International), as described at http://
creativecommons.org/licenses/by/4.0.
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Gene X environment shapes neonate methylomes

Stable alterations to the epigenome are considered to be a pu-
tative molecular mechanism for fetal programming. Thus the envi-
ronmental epigenetic hypothesis (Seckl and Meaney 1993; Meaney
and Ferguson-Smith 2010) suggests that the in utero environment
affects the epigenome and that resulting epigenetic marks alter
physiology to affect later disease risk (Gluckman et al. 2009). Evi-
dence for this hypothesis derives from studies documenting the re-
lationship between specific DNA methylation marks, in utero envi-
ronments, and later phenotypes (Guo et al. 2008; Perera et al. 2009;
Pilsner etal. 2009, 2012; van der Kaay et al. 2009; Feinberg et al. 2010;
Kaminen-Ahola et al. 2010; Ollikainen et al. 2010; Fryer et al. 2011;
Hoyo et al. 2011; Tobi et al. 2011; Relton et al. 2012; Stunkel et al.
2012). For example, maternal carbohydrate intake in early pregnancy
and offspring adiposity at 9 yr of age associate with the DNA meth-
ylation level of the RXRA promoter in the umbilical cord (Godfrey
et al. 2011). There are examples of persistent, environmentally in-
duced DNA methylation states. For instance, variations in maternal
care alter the methylation of the glucocorticoid receptor gene pro-
moter in rats (Weaver et al. 2004), and differential methylation at this
same region is associated with childhood trauma in humans
(McGowan et al. 2009). Although many aspects of the epigenome
such as histone modification are likely to be involved, current evi-
dence concentrates mostly on DNA methylation.

Multiple epigenome-wide association studies (EWAS) within
birth cohorts have been initiated to search for epigenomic signa-
tures of early life environment that may influence later life phe-
notype (Ng et al. 2012; Michels et al. 2013; Mill and Heijmans
2013). However, at least some DNA methylation marks are speci-
fied by sequence context in cis (Brandeis et al. 1994; Lienert et al.
2011), precluding exclusive environmental regulation. In humans,
interindividual variation in DNA methylation could be wholly or
in part a consequence of nucleotide polymorphism, as local genetic
variants influence the propensity for methylation of neighboring
cytosines. These polymorphisms can be defined as methylation
quantitative trait loci (methQTLs). MethQTLs have been postulated
as a link between GWAS SNPs and phenotype (Liu et al. 2013).

Gibbs et al. (2010) showed methQTLs in human tissue in
studies of multiple human brain regions and found between 4% and
5% of the 27,000 CpG sites studied had methylation levels that were
significantly dependent on genotype (as measured in 537,411
SNPs). Although both cis (defined as the CpG and SNP pair being
within 1 Mb of the chromosomal region) and trans effects were
detected in this study, cis methQTLs were in massive abundance.
The average distance between a SNP and CpG pair that made up
a significant methQTL was 81 kb, but the peak enrichment across
the cis methQTLs was 45 bp. Zhang et al. (2010) examined human
cerebellum and found 9% of CpGs tested (748/8590) were within
methQTLs. Another study (Bell et al. 2011) detected 180 (1%)
methQTLs in the 22,290 CpGs and 3 million SNPs investigated
across 77 HapMap lymphoblastoid cell lines, five of which were also
reported by Gibbs et al. (2010). Most methQTLs were found in cis
and over short distances of <5 kb. Moreover, genotype at one
SNP associated with methylation at multiple neighboring CpGs, as
might be expected given the positional correlation previously noted
in methylation data (Eckhardt et al. 2006). Similar results were
obtained by Grundberg et al. (2013), who also discovered methQTLs
in adult adipose tissue acting in cis, which explains 19% of the
observed variance in methylation levels.

Ethnicity can be used as a proxy for genotype and has been
shown to influence the DNA methylome (Zhang et al. 2011).
African and European individuals have population-specific patterns
of DNA methylation at ~30% of CpGs measured. Methylation

levels at ~50% of these population-specific CpGs are explained by
divergence in allele frequencies at cis-acting SNPs between pop-
ulations (Fraser et al. 2012). Studies of methylation differences using
Mlumina InfiniumHumanMethylation450 BeadChip array data
from 133 lymphoblastoid cell lines from European and African
HapMap samples found that 13% of analyzed CpGs showed sig-
nificant methylation differences between the populations, >50% of
which were in methQTLs with local SNPs (Moen et al. 2013). CpGs
showing differential methylation levels across ethnicities are more
likely to be driven by genotype than other CpGs (Heyn et al. 2013).
Nevertheless, these studies also found that some methQTLs are
specific to one population with no correlation between genotype
and methylation in other populations, suggesting possible gene x
environment interactions.

Methylomes are more similar in related than unrelated indi-
viduals (Bjornsson et al. 2008), and concordance tracks degree of
relatedness; the methylomes of monozygotic twins are more closely
related than those of dizygotic twins (Kaminsky et al. 2009). Meth-
ylation profiles from three different tissues of twin neonates gen-
erated on the InfinjumHumanMethylation27K BeadChip only
clustered into twin pairs between 29% and 71% during unsupervised
analysis, suggesting nongenomic influences on the newborn
methylome (Gordon et al. 2012).

In this article, we focus on the examination of the relative
influences of genotypic, environmental, and gene X environment
interactive effects on the neonatal methylome. Recent studies
describe evidence for gene X environment interactions (G X E
effects) on DNA methylation. Yousefi et al. (2013) found that the
LEPR genotype interacted with maternal smoking to associate with
methylation of LEPR. A SNP within the IL4R gene combined with
methylation at a CpG site within the same gene predicts the risk of
childhood asthma (Soto-Ramirez et al. 2013). Moreover, Klengel
et al. (2013) found that interaction of the FKBP5 genotype and
early childhood trauma affects methylation of FKBPS intron 7,
FKBPS expression, and subsequent deregulation of glucocorticoid
receptor signaling. The proportions of interindividual variation in
methylomes that are driven by genotype, environment, or an in-
teraction of gene and environment (G X E) are currently unknown.
To clarify the relative influence of gene and in utero environment
on epigenetic status at birth, we studied the variation in genome-
wide DNA methylation patterns in umbilical cord samples from
237 Asian neonates using the InfiniumHumanMethylation450
BeadChip together with genotyping and extensive measures of in
utero environmental conditions. We report that genotype, and in
particular G X E interactions, explain substantial proportions of
interindividual variation in the methylome at birth.

Results

Ethnicity associates with the first components of genotype
but not DNA methylation

Umbilical cord tissue DNA from 237 individuals (131 Chinese, 72
Malay, 34 Indian) in the GUSTO birth cohort (Soh et al. 2013) were
interrogated on both Illumina OmniExpress + Exome genotyping
arrays and InfintumHumanMethylation450 BeadChip; 708,365
SNPs (from the 958,178 assayed) varied in genotype and 301,468
CpGs (from the 411,107 assayed) varied in methylation levels by
>5% across the 237 individuals under study (for study subject
characteristics, see Table 1). When the genotype data were subjected
to principal component analysis, the samples were cleanly sepa-
rated by ethnicity. The Indian subjects clustered away from Chinese

Genome Research 1065

www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on August 22, 2014 - Published by Cold Spring Harbor Laboratory Press

Teh et al.

Table 1. Ethnicity, sex, and in utero environmental exposures of subjects

Characteristic Time point Summary
Count (%) Mean * SD Range
ici 0

Etfgznhlicrl]teyséno. [%1) Questioned at first clinic 131 (57.81)

Malay visit and confirmed by 72 (30.38)

Indian genotype 34 (14.35)
Sex (no. [%]) 133 (56.12)

Male Delivery 104 (43.88)

Female
Maternal age (yr) Questioned at first clinic visit 30.13 £ 5.09 18-44
Birth weight (g) Delivery 3110 + 406 2010-4210
Gestational age (wk) Delivery 38.66 £ 1.2 35.14-41
Maternal depression score EPDS instrument at 26 wk 8.36 + 4.87 0-21
Maternal folate concentrations (ng/L) Serum at 26 wk 35.56 + 27.62 3.6-272
Maternal glucose tolerance OGTT_120 at 26 wk 6.29 +1.38 3.4-11.2
Maternal BMI (kg/m2) Measured at 26 wk 26.68 + 4.95 18.18-42.68
Maternal smoking (no. [%]) Questioned at 26 wk 10 (4.22)
Maternal vitamin B12 concentrations (pg/mL) Serum at 26 wk 216.63 +79.59 70-494
Maternal vitamin B6 concentrations (nmol/L) Serum at 26 wk 64.6 + 51.32 9-304.4
Maternal plasma pyridoxic acid (nmol/L) Serum at 26 wk 36.81 + 37.94 4-345.8
Maternal plasma magnesium (mg/L) Serum at 26 wk 19.17 £ 2.41 14.99-41.65
Maternal plasma iron (i.g/L) Serum at 26 wk 1179.56 + 793.42 374.52-9300.46
Maternal plasma ferritin (ng/mL) Serum at 26 wk 48.49 £17.55 13.6-137.8
Maternal plasma copper (u.g/L) Serum at 26 wk 2328.36 £ 393.9 1540.49-3795.27
Maternal plasma zinc (n.g/L) Serum at 26 wk 917.08 + 176.48 644.24-1871.5
Maternal plasma EPA (%) Serum at 26 wk 58.59 + 657.01 1.27-82.31
Maternal plasma DHA (%) Serum at 26 wk 155.08 + 653.59 24.18-329.31
Parity (no. [%]) Questioned at first clinic visit 99 (41.77)

and Malay subjects on principal component 1, and the Chinese
and Malay subjects separated on principal component 2 (Fig. 1A).
In contrast, when the DNA methylation data were subjected
to principal component analysis, the samples did not separate
well by ethnicity on components 1 or 2 (Fig. 1B). The methylation
and genotyping arrays do measure different subsets of the ge-
nome; however, each have probes in every coding gene in the
genome and so are broadly comparable. If methylation levels
were specified wholly by genotype, we would expect ethnicity to
drive the methylome in the same manner as observed for the
genotype.

Evidence for methQTLs

Methylation levels at the majority of CpGs in the neonate meth-
ylomes were very similar across individuals, with median absolute
deviation scores (MAD) <0.1. To identify regions with appreciable
interindividual variance that could reflect individual in utero ex-
perience or genotype, we defined interindividual variably meth-
ylated regions (VMRs) across the 237 individuals using a previously
published methodology (Ong and Holbrook 2014). This analysis
returned 1423 VMRs; these were found on every chromosome in
a manner roughly dependent on probe spacing (Supplemental
Table 1; Supplemental Fig. 1), although they tended toward north
shore (P = 1.77 X 10~*) and open sea (P = 9.11 X 10~'2) regions
(Supplemental Table 2).

The CpG with the highest MAD score within each VMR was
used to represent each of the 1423 VMRs and denoted as VMR-
CpGs. For each VMR-CpG, we compared methylation levels to SNP
genotype at all 708,365 heterologous positions by linear regression,
controlling for sex. Strong sex effects on the autosomes have pre-
viously been noted in InfiniumHumanMethylation450 BeadChip

data and are at least partially artifactual, driven by cross-reaction of
probes with the sex chromosomes (Chen et al. 2013).

The best-match (lowest P-value) SNP for each VMR-CpG was
retained. The final data set of 1423 CpG-SNP pairs showed a range
of associative P-values skewed toward the low end, suggestive of
methQTLs in the data set (Supplemental Fig. 2). P-values obtained
from the regression analysis were binned into 1000 equally spaced
bins. Distributions were defined as skewed if the first bin contained
more than the 708 P-values expected for each bin if P-values were
distributed evenly. Nine hundred sixty-six (68%) of the individual
VMR-CpGs had a skewed P-value distribution. In addition, 1037
(73%) had a -log;( P-value above 6.5, which is approximately the
background noise level seen across the genome (Fig. 2B,D,F).

Best-matched SNP and VMR-CpG pairs tended to be closely
colocated in cis

Twelve of the 1423 CpG-SNP pairs (<1%) included a SNP located
within the CpG that either creates or eliminates a CpG site. We
denoted these instances as “disrupting pairs.” Eight hundred
twenty-eight of the 1423 pairs (58%) included a SNP and CpG from
the same chromosome. We denoted these as “cis pairs.” The
remaining 583 pairs (41%) include a CpG and SNP located on dif-
ferent chromosomes and were denoted as “trans pairs.” The pro-
portion of cis pairs was much greater than expected by chance
(chance would predict pairs to be equally distributed across chro-
mosomes at ~4.5%) and tended to be more likely to come from
a skewed P-value distribution and to have higher R? values than the
trans pairs (Fig. 2A). The influence of a genotype operating in-
dependently of environmental context was undetectable for some
VMR-CpGs (e.g., Fig. 2B,C) and very clear for others (e.g., Fig. 2EG).
Even in a mid-range where methylation at the VMR-CpG was not
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Figure 1. (A) Unfiltered genotypes organize subjects by ethnicity. Principal
component 1 (x-axis) plotted against principal component 2 (y-axis) from
principal component analysis of genotypes for all 708,365 heterologous SNPs
across 237 subjects. Subjects are colored by self-reported ethnicity. (B) Un-
filtered methylomes do not organize subjects by ethnicity. Principal com-
ponent 1 (x-axis) plotted against principal component 2 (y-axis) for principal
component analysis of methylation levels at all 301,468 variable CpGs across
237 subjects. Subjects are colored by self-reported ethnicity.

strongly related to genotype on a scatter plot (e.g., Fig. 2E), there was
still a tendency for the best hit to be in cis (e.g., Fig. 2D).

Disrupting pairs had significantly stronger associations be-
tween genotype and methylation level than cis pairs, which in turn
had stronger associations than trans pairs (P = 7.3 X 107!'7 by
Kruskal-Wallis test) (Fig. 3). Within the cis pairs, there was a strong
inverse relationship for the strength of association between meth-
ylation levels and genotype, and the distance between the CpG and
SNP (P = 8.84 X 10~5). The mode was within 0-10 bp or 50-60 bp
without the disrupting pairs (Fig. 4). There seemed to be a contin-
uum of genotypic influence on methylation levels, with ~68%-
73% of the VMR-CpGs showing an appreciable association with
genotype. Defining a genuine methQTL would necessitate choosing
arbitrary cut-offs. However, the trans CpG-SNP pairs tended to be on
the lowest end of the distribution of association statistics and hence
were less likely to represent genuine methQTLs (Fig. 2A).

G x E models best explained variation in methylation at most
VMR-CpGs

The GUSTO study has ascertained multiple environmental mea-
sures that are known to influence or reflect the quality of the in
utero experience. We chose 19 parameters as surrogate measures of
the uterine environment (see Table 1) and examined whether
methylation at each of our 1423 VMR-CpGs was better explained by
genotype, environment, or G X E. We ran 39 regression models (see
Methods), including the best SNP hit from the previous methQTL
analysis, described above. For the G X E models, we tested all the

SNPs located on the same chromosome as the CpG, as well as the
best hit from the methQTL analysis. All models contained sex and
were compared using Akiake information coefficients (AICs).
Methylation levels at ~25% of the 1423 VMR-CpGs were best
explained by genotype alone, while the rest were best explained by
G X E models (Fig. SA). The models containing environment alone
were never the best explanation of methylation at the VMR-CpGs.
The information loss experienced between the two top models (A)
(Burnham and Anderson 2004) ranged from 0.0002-49.0 (calcu-
lated by delta in AICs). The genotype-only model tended to be
a “narrow winner”; i.e., the A was low in comparison to the A shown
by the cases where G X E was the best explanation (Fig. 5B). The
majority of best models showed an adjusted R? value above 0.12.
The distribution of adjusted R? values for the cases where G X E was
the best model was shifted slightly to the right compared with that
for the cases of genotype being the best model (Fig. 5C). When the
results were restricted to models without substantial support for
the next best model, with A > 2 (Fig. 5D), and an adjusted R?>0.4,
the proportion of VMR-CpGs for which genotype only was the best
model was still ~24%.

The VMR-CpGs that were best explained by genotype alone
tended to be in open seas (P = 1.38 X 107°), while VMR-CpGs
that were best explained by G X E tended to be both in open seas
(P = 2.12 X 107° and north shores of CpG islands (P = 0.012)
(Supplemental Table 2; Supplemental Fig. 1), consistent with pre-
vious observations (Feinberg et al. 2010). Once again the majority of
the SNPs in the best models were in cis with the VMR-CpGs (85%
for the winning G X E models and 78% for the G winning models).
When only models with high levels of support (A > 2 and adjusted
R? > 0.4) are included, only cis SNPs remain (Supplemental Fig. 3).

The G X E models allow for methylation associated with en-
vironment in each of the genotypic subgroups present but with
different slopes. However, we often saw that environment and
methylation were very closely associated in one genotype and less
so in the other two genotypes. To identify these CpG-VMRs, we
segregated the subjects by the genotype in the best G X E model
and ran regressions of methylation and the phenotype for the best
G X E model. Fifty VMR-CpGs were significant after Bonferroni
correction. Examples are shown in Figure 6.

Restricting subjects to one ethnicity reduced the impact
of genotype

The 491 VMR-CpGs with differential methylation for ethnicity have
significantly stronger associations with SNPs compared with all
other 930 CpGs (P=2.17 X 10~ ). We reasoned that the inclusion
of multiple ethnicities would increase the genotypic influence on
the methylome. We thus conducted an analysis including only the
131 Chinese subjects in our data set. In the Chinese-only subgroup,
we still found many methQTLs, but there was a subtle (downward)
shift to less significant associations for the majority of CpG-SNP
pairs (Supplemental Fig. 4A). The number of VMR-CpGs for which
the methylation was best explained by genotype alone decreased
slightly to 21% (Supplemental Fig. 4B).

CpGs with the most variation across samples are most likely to
be driven by genotype

We noted that the CpG MAD score across samples or the range of
methylation values across samples was related to the strength of
association between the CpG methylation values and the geno-
type of the best SNP (P = 3.54 X 107%%) (Fig. 7). Our 1423 VMR-
CpGs were chosen to lie within VMRs. This approach improves the
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number in the first bin. (E) Scatter plot of genotype (x-axis) against methylation (y-axis) for the top pair from the same VMR-CpGs as in D. (F) Manhattan plot
of CpG against all SNPs (x-axis) with —log; ¢ of the P-value (y-axis), as an example of VMR-CpG with high R? and a high number in the first bin. (G) Scatter plot

of genotype (x-axis) against methylation (y-axis) for the top pair from the same CpG as in F.

specificity of the analysis (Ong and Holbrook 2014). However, we
also picked a further 1500 CpGs that had the most extreme MAD
scores in the data set and that were not included in a VMR. Indeed,
within this set the genotype-driven model is a better explanation
for a higher proportion of the CpGs (Supplemental Fig. 5).

Discussion

We used DNA obtained from the umbilical cord at birth to provide
evidence for the influence of genotype on interindividual vari-
ability in DNA methylation. MethQTLs were readily apparent in
the methylome of neonates born at term with birth weights that
spanned the normal range from a community sample of preg-
nancies that were not selected or weighted for any particular out-
come. Our findings are consistent with a recent report (Gutierrez-
Arcelus et al. 2013) of 14,189-32,318 methQTLs (3%-7%) found
within Infinium450K data by searching the SNPs (genotype 2.5
million) in 5-kb flanking regions on either side of each CpG in
umbilical cord tissue and cord blood. However, Gutierrez-Arcelus
et al. (2013) did not describe any phenotypic or environmental
data on their subjects or attempt to show any environmental in-

fluence on methylation levels. In these ways, our studies differ in
aims and scope. We found that the effect of genotype on methyl-
ation was more pronounced in multiethnic populations but was
also apparent within the sample of homogeneous ethnicity (Fig. 5;
Supplemental Fig. 4B). Moreover, there was a strong relationship
between the range of methylation values and influence of genotype
(Fig. 7; Supplemental Fig. 5). There is recent evidence that epigenetic
states may serve to directly mediate the relation between certain
genetic polymorphisms and phenotype (McVicker et al. 2013). The
mechanism by which sequence polymorphism affects local CpG
methylation is unknown (assuming the SNP is not within the CpG,
a situation we have labeled disrupting pairs). However, the effect is
likely mediated by the sequence-specific binding of proteins and
alteration of chromatin factors that subsequently affects binding of
de novo methylases or demethylating mechanisms. A similar
mechanism has been evidenced for other epigenetic marks, recently
shown to be affected by polymorphism in a similar way to meth-
ylation (Otani et al. 2009; Kasowski et al. 2013; Kilpinen et al. 2013;
McVicker et al. 2013). A study of these other epigenomic marks in
a similar context to that we describe for DNA methylation would
be fascinating.
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Figure 3. The strength of association between genotype and methyl-
ation is strongest for disrupting pairs and weakest for trans pairs. Box plot
of —logyo of the P-value of the association between genotype and meth-
ylation levels at each VMR-CpG, for CpG-SNP pair categories disrupting
(SNP is within CpG), cis (SNP is on same chromosome as CpG), and trans
(SNP is on a different chromosome to the CpG).

Despite the evidence for genotypic influence independent of
environmental influences, we found that the majority of the VMR-
CpGs were best explained by the interaction of genotype and
maternal/fetal environment (Fig. 5). The environmental measures
selected for analysis included proxy factors such as birth weight
and gestational age, maternal smoking and depression, all of which
are known to influence a broad range of developmental outcomes.
Despite the importance of G X E models in explaining the majority
of VMR-CpGs, we failed to find VMR-CpGs that were best explained
by environmental conditions independently of genotype. This
finding emerged despite the considerable evidence for the effects
of environmental factors in pregnancy on both epigenetic states
(Barker et al. 1989; Roseboom et al. 2001; Gillman et al. 2003;
Hofman et al. 2004; Boney et al. 2005; Hillier et al. 2007; Bouhours-
Nouet et al. 2008; Painter et al. 2008; Broekman et al. 2009; Alisi
etal. 2011; Skilton et al. 2011; Sohi et al. 2011; Dancause et al. 2012;
Schwarze et al. 2012) and health outcomes (Godfrey et al. 2011).
Our data suggest that genotype exerts a moderating influence on
such environmental effects.

The regression models explained a high proportion of the
variance in methylation levels for a minority of the VMR-CpGs.
For most VMR-CpGs, the models explained only 10%-20% of the
variance (Fig. 5D). One reason why the models might fail to ex-
plain the majority of the variance for more VMR-CpGs is that the
association between methylation and a specific environmental
condition may only be apparent in one genotypic subgroup (Fig.
6). This observation is consistent with the emerging view that
genotype can determine the degree of environmentally induced
phenotypic plasticity (i.e., so-called “plasticity genes”) (Belsky
et al. 2009; Simons et al. 2011) and that epigenetic mechanisms
serve to maintain environmentally induced phenotypic variation
(Meaney and Ferguson-Smith 2010; Pujadas and Feinberg 2012).
This is a particularly important finding for studies of either pop-
ulation differences or the influence of environmental factors on
phenotypic outcomes. The finding of G X E interaction effects on
the epigenome suggests that the necessary level of interrogation
extends beyond simple EWAS analysis to include genotype. The
failure to include assessment of genotypic moderation of envi-
ronment-epigenome relations might result in an underestimation
of the potential for environmental impact among subpopulations.

Patel et al. (2013) show that candidate SNP and CpG loci with
marginal associations in GWAS and EWAS, respectively, can show
strong associations with disease (in this case type 2 diabetes) when
combined.

Another possible reason for the modest explanatory power of
certain models is that they are limited to only 19 proxy factors
related to the in utero environment and that only single individual
genotypic and environmental influences were examined within
the models. Models containing multiple SNPs (epistasis) or com-
bining different facets of environments may explain more of the
variance in DNA methylation. Moreover, the population under
study did not show extreme values in the environmental measures
(Table 1), and stronger effects may emerge with the study of high-
risk populations.

Cellular heterogeneity may also compromise our ability to
account for variance across the methylome. The umbilical cords
that we studied include a mixture of cell types. Recent studies in
blood suggest that some of the interindividual variation in meth-
ylation is accounted for by differences in cellular content (Lam et al.
2012; Liu et al. 2013). We were unable to separate the cell types
in the GUSTO umbilical cords as the tissues were frozen at collec-
tion. Our study involved only a subset of the SNPs in the genome,
which included the 1 million SNPs on the OmniExpress + Exome
arrays. Although missing SNPs could have accounted for ad-
ditional variance in the VMRs, the 1 million SNPs were distrib-
uted relatively evenly across the genome and represented
the majority of haploblocks. Finally, the CpG sites assessed by
InfinlumHumanMethylation450 BeadChip are biased toward
gene bodies and flanking regions, and therefore we did not cover
intergenic regions thoroughly.

Our analysis was intended to estimate the relative influences
of genotypic, environmental, and G X E interactive effects on
the neonatal methylome. The models should not be considered as
fully determinative of specific outcomes. Indeed, many of the
environmental factors considered here are interdependent. Parity
and maternal age, for example, are obviously correlated. Moreover,
potential sources of environmental influence, such as socioeco-
nomic status, were not considered. Similarly, the associations
shown in Figure 6 derive from models that did not control for
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Figure 4. Cis pairs tend toward short distances between the SNP
and CpG. Bar chart of —logqo of the P-value (y-axis) against the chro-
mosomal distance between the SNP and CpG (x-axis) for cis pairs
within 5 kb.
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(A) The majority of VMR-CpGs are best explained by G X E models. Pie chart showing the proportions of 1423 VMR-CpGs, which are best

explained by the genotype (G), environment, or interaction between gene and environment (G X E) regression models. (B) Genotype tends to be a narrow
winner. Stacked histogram of deltas between delta AICs for best and next-best model across 1423 VMR-CpGs. Each box is colored to denote the model
that best explained methylation levels at the VMR-CpG. (C) The models explain the range of variation at VMR-CpGs. Stacked histograms of adjusted R? of
the winning model across all 1423 VMR-CpGs. Each box is colored by the winning model. (D) The proportion of VMR-CpGs explained by G X E is stable as
model confidence increases. Pie chart showing the proportions of 210 VMR-CpGs that were best explained by the genotype, environment, or G X E
regression models with no substantial support for the next-best model (A > 2) and adjusted R? > 0.4.

potentially important covariates. In addition, due to the number of
predictive factors tested, it is difficult to ascribe significance to any
individual association; instead, we report the models that best
explain the variance in methylation values. Nevertheless our data
serve to underscore the importance of G X E interactions and
suggest that models of epigenetic variation should consider such
interactive influences.

Conclusions

To our knowledge, our report is the first attempt to quantify the
relative influence of genotype and environment, as well as their
interaction on the human epigenome. This quantification is
important as many reports compare DNA methylation to phe-
notype independently of genotype. Our results strongly suggest
that genotype is an essential factor in these relationships. In
particular, it is an important question to address in neonates
because the influence of prenatal environment on future disease
risk is intensely studied with respect to subsequent risk of illness.
Our findings suggest that such studies should include an assess-
ment of the degree to which environmental influences are mod-
erated by genotype.

Methods

Briefly, 244 umbilical cord samples from healthy babies who were
part of the GUSTO birth cohort study (Soh et al. 2013) were selected.
Subject characteristics can be found in Table 1. Genotyping was
performed on the Illumina OmniExpress + Exome array and pro-
cessed in a standard fashion. DNA methylation profiling was per-
formed on the InfiniumHumanMethylation450 BeadChip. Data
were processed as described previously (Pan et al. 2012). Sex chro-
mosome data were removed. A temporal batch effect was observed
and removed using empirical Bayes methodology (COMBAT)
(Johnson et al. 2007). All probes identified as cross-hybridizing in
either Chen etal. (2013) or Price et al. (2013) were removed from the
data set; 301,468 probes remained. (For detailed sample and data
acquisition, see Supplemental Material.)

Identification of interindividual CpGs

VMRs were detected as previously described (Ong and Holbrook
2014). A candidate VMR was defined as at least two spatially con-
tiguous probes within 1 kb of each other and with MAD values
greater than the 95th percentile. We expanded candidate regions to
contain more than two probes, as long as the distance between any
two neighboring probes within the region was not larger than 1 kb.
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Figure 7. VMR-CpGs with larger ranges of methylation values are more
likely to be MethQTLs. Scatter plot showing the range of methylation
values at each CpG across samples (x-axis) compared with the strength of
association between the VMR-CpG methylation values and the genotype
of the best SNP (y-axis).

For each VMR, the CpG with the highest MAD score was utilized as
the representative CpG. These 1423 CpGs were used as the data set
for subsequent analyses. In addition, the 1500 CpGs with the highest
MAD scores outside of VMRs were also captured for further analysis.

MethQTL analysis

Linear regression was performed for each of the 1423 VMR-CpGs,
against all heterologous SNPs identified on the genome-wide arrays.
For the purposes of these regressions, the genotype was coded as 1, 2,
or 3 and treated as continuous whereby the heterozygote represents
an intermediate state between the two homozygotes. In the model
analysis below, genotype is categorical. The regressions were ad-
justed for sex. For each of the 1423 VMR-CpGs, we selected the
CpG-SNP pair with the lowest P-value for further analysis. The
linear regression analysis was performed in R.

Model analysis

Methylation (Meth) at each CpG was subjected to the following
models [(1), (2), (3)], and models were compared using Akiake in-
formation coefficients (AIC) (Akaike 1973).

Genotype model: Meth ~ G +sex, (1)

where G is the best SNP from previous MethQTL analysis, treated
as a categorical variable.

Genotype model: Meth ~ Env; + sex, (2)

where Env; is the phenotype (i = 1-19) (for its corresponding
phenotype, see Table 1), which gave the lowest model AIC.

Genotype X environment model: Meth ~ G, + Env; + G2 X Env + sex,
3)

where Env; is the phenotype (i = 1-19) (for its corresponding phe-
notype, see Table 1), which gave the lowest model AIC, and G is the
SNP on the same chromosome as Meth, which gave the lowest model
AIC (also treated as a categorical variable).

The model with the lowest AIC was declared the “winner,” i.e.,
the model that best explained the Meth compared with the alter-
native models.

Akiake deltas were calculated as the difference between the AIC
for the best model and the AIC for the next best model (Burnham
and Anderson 2004).

phenotype was performed in each genotypic group. Bonferroni cor-
rection was performed for 2963 regressions that were run.

Genomic feature enrichment analysis

CpG island shores were defined as up to 2-kb regions from the
CpG island start or end as per convention (Irizarry et al. 2009). CpG
island shelves were next defined as another 2 kb from the shore
boundaries, as specified in the GenomeStudio Methylation Module
v1.8 User Guide from Illumina (Table 10) (http://supportres.
illumina.com/documents/myillumina/90666eaa-0c66-48b4-
8199-3be99b2b3ef9/genomestudio_methylation_v1.8_user_guide_
11319130_b.pdf). Open seas are regions that are not islands,
shores, or shelves. The TSS SwitchGear track in the UCSC Genome
Browser was used to delineate human promoters, and genomic
coordinates of human enhancers were obtained from the VISTA
enhancers track (Visel et al. 2007). For individual VMR lists, we
determined the total number of probes belonging to each of
the six genomic categories (CpG island, south shore, north shore,
south shelf, north shelf, and open sea) and also for a back-
ground list of 55,003 regions that are possible on the Infinium-
HumanMethylation450K BeadChip. The P-value for enrichment of
the region lists with each genomic category is computed by a
hypergeometric test (one-tailed).

Data access

The data from this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE53816 and GSE54445.
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