
The Static Bicycle Relocation Problem

with Demand Intervals

Güneş Erdoğan

School of Management, University of Southampton, Highfield, Southampton, SO17 1BJ

Email: G.Erdogan@soton.ac.uk

Gilbert Laporte

Canada Research Chair in Distribution Management, HEC Montréal, 3000 chemin de la

Côte-Sainte-Catherine, Montreal, Canada H3T 2A7 Email: gilbert.laporte@cirrelt.ca

Roberto Wolfler Calvo

LIPN, Université Paris 13, Paris, France Email: Roberto.Wolfler@lipn.univ-paris13.fr

Abstract

This study introduces the Static Bicycle Relocation Problem with Demand
Intervals (SBRP-DI), a variant of the One Commodity Pickup and Deliv-
ery Traveling Salesman Problem (1-PDTSP). In the SBRP-DI, the stations
are required to have an inventory of bicycles lying between given lower and
upper bounds and initially have an inventory which does not necessarily lie
between these bounds. The problem consists of redistributing the bicycles
among the stations, using a single capacitated vehicle, so that the bounding
constraints are satisfied and the repositioning cost is minimized. The real-
world application of this problem arises in rebalancing operations for shared
bicycle systems. The repositioning subproblem associated with a fixed route
is shown to be a minimum cost network problem, even in the presence of han-
dling costs. An integer programming formulation for the SBRP-DI are pre-
sented, together with valid inequalities adapted from constraints derived in
the context of other routing problems and a Benders decomposition scheme.
Computational results for instances adapted from the 1-PDTSP are provided
for two branch-and-cut algorithms, the first one for the full formulation, and
the second one with the Benders decomposition.

Keywords: traveling salesman; pickup and delivery; branch-and-cut

Preprint submitted to European Journal of Operational Research April 3, 2014

1. Introduction

The Static Bicycle Relocation Problem with Demand Intervals (SBRP-DI)
is defined on a complete directed graph G = (V,A), where V = {0, . . . , n}
is the set of vertices and A is the set of arcs. Vertex 0 is called the depot
while the remaining vertices are called stations. Associated with each vertex
i ∈ V , are three parameters (li, bi, ui) corresponding respectively to the lower
bound, the current supply, and the upper bound of the feasible amount of
a commodity at the vertex. With each arc (i, j) ∈ A is associated a travel
cost tij, and the cost associated with the handling of a bicycle is denoted as
h. A vehicle of capacity Q leaves the depot, performs a tour visiting each
vertex at most once to perform a pickup or a delivery, and returns to the
depot. At the end of the tour, the resulting inventory at every vertex i must
lie within the interval [li, ui]. The objective is to minimize the total travel
and handling cost.

The SBRP-DI is a variant of the One-Commodity Pickup and Delivery
Traveling Salesman Problem (1-PDTSP) studied by [10, 11], in which a single
capacitated vehicle visits customers to pick up and deliver the same commod-
ity. In addition to the demand intervals, there are a number of features of the
SBRP-DI that differentiate it from the 1-PDTSP. Firstly, the tour may not
visit all vertices. Secondly, the commodity cannot flow through the depot.
Lastly, a handling cost h is added to the routing cost per every commodity
unit handled. The demand intervals introduce a degree of flexibility associ-
ated with transshipment vertices, i.e. vertices i ∈ V for which li ≤ bi ≤ ui. A
transshipment vertex may or may not be visited, which may help decrease the
cost of routing by supplying or demanding commodities as required. Notably,
the Swapping Problem (SP) introduced by Anily and Hassin [2] also involves
pickups and deliveries with transshipment vertices and multiple commodi-
ties. Branch-and-cut algorithms for the SP were developed by Bordenave
et al. [4, 6] and by [8]. Bordenave et al. [5] have also developed construction
and improvement heuristics for the SP.

Real-world applications of the SBRP-DI arise in shared bicycle systems,
which have attracted the attention of several groups of researchers in re-
cent years. These have been studied from several perspectives: evaluating
the mobility patterns of users, determining the number and location of sta-
tions, maximizing user satisfaction, and minimizing the cost of relocating

1

the bicycles. The study by Raviv, Tzur, and Forma [15] categorizes the
bicycle relocation problems as static and dynamic, which occur when the
system activity level is low and high, respectively. The authors study the
Static Repositioning Problem (SRP), in which the objective is to minimize a
convex nonlinear function representing user dissatisfaction, and present four
integer programming formulations for the SRP, together with computational
results.

Research on shared vehicle systems is becoming increasingly widespread.
Static Stations Balancing Problem is studied in [3], and a 9.5-approximation
algorithm is provided for this problem. Another closely related problem
is that of [7], where a bicycle station can be visited more than once for a
pickup or a delivery. The authors provide a branch-and-cut algorithm as
well as a tabu search algorithm for this problem. A variable neighborhood
search algorithm for balancing bicycle sharing systems is designed in [14].
An interesting study by Schuijbroek et al. [16] employs queuing analysis
to determine service level requirements at each bike sharing station, and to
solve the resulting vehicle routing problem. A recent study [12] analyzes the
equilibrium network design problem of shared-vehicle systems and presents
a bi-level, mixed-integer program.

Most of the problems cited above are based on a single demand or supply
value for every customer, which restricts the vehicle to picking or delivering a
preset number of commodities. The SBRP-DI is therefore more general, and
empirically more difficult, because these values must lie within an interval.
It is a special case of the models presented in [15] since these authors use
a convex user dissatisfaction function which can be set to zero inside the
interval and to infinity outside it. Let us define the deficit of station i as
di = max{li − bi, 0} and its excess as ei = max{bi − ui, 0}. Transforming an
instance of the SBRP-DI into one of the 1-PDTSP by setting the demand
(supply) of a station to be equal to its deficit (excess) may yield an infeasible
instance since the sum of the demands may not be equal to the sum of
supplies.

In this study, we provide two exact algorithms for the SBRP-DI. To gain a
better insight into the SBRP-DI, we first study the subproblem of computing
pickup and delivery quantities when the vehicle route is fixed. We show
that this subproblem is a minimum cost network flow problem (MCNFP),
whether the handling cost h = 0 or not. We also present a model for the
general problem consisting of simultaneously determining the vehicle route
as well as the pickup and delivery quantities. We develop a standard branch-

2

and-cut algorithm as well as a Benders decomposition based branch-and-cut
algorithm, and we present computational results for both cases.

The remainder of this paper is organized as follows. In Section 2, we study
the subproblem corresponding to a fixed route, without and with handling
cost. In Section 3 we present an integer linear programming formulation for
the SBRP-DI based on our findings in Section 2, as well as valid inequali-
ties we have adapted from the routing literature. A Benders decomposition
scheme for the integer linear programming formulation is provided in Section
4, together with a unified branch-and-cut algorithm capable of handling both
algorithms. This is followed by computational results in Section 5, and by
conclusions in Section 6.

2. The Fixed Route Subproblem

We first focus on the subproblem of determining the pickup and delivery
amounts when the vehicle route is fixed. For the sake of simplicity, we assume
that the vertices are numbered in the order they are visited. The two cases
for which h = 0 and h ≥ 0 will be treated separately.

2.1. The fixed route subproblem with no commodity handling cost

The fixed route subproblem without handling cost is called the SBRP-
DIF and is defined on an auxiliary graph Ĝ = (V̂ , Â). Denote the set of
vertices by V̂ = V̂1 ∪ V̂2, with V̂1 = V and V̂2 = {n + 1}. The supply of
vertex i ∈ V̂1 is b̂i = bi, and b̂n+1 = −∑

i∈V bi. Denote the set of arcs by

Â = Â1 ∪ Â2, where Â1 and Â2 are constructed as follows. For every vertex
i ∈ V̂1 \ {0, n}, insert an arc (i, i+1) into Â1, with cost 0, lower bound 0 and
upper bound Q. These arcs represent the number of units transported to
the next vertex. We also insert two arcs (0, 1) and (n, 0) into Â1, with cost
0, lower bound 0 and upper bounds min{b0, Q} and Q, respectively. These
arcs represent number of units leaving and entering the depot. The flow on
the arc (0, 1) is also bounded above by the supply at the depot, in order to
avoid commodities from flowing through the depot. For every vertex i ∈ V̂1,
insert an arc (i, n+1) into Â2, with cost 0, lower bound li and upper bound
ui. This arc represents the final amount of the commodity left at vertex i.
Define the set of arcs leaving vertex i as δ+(i), and the set of arcs entering
vertex i as δ−(i). Let zij denote the commodity flow on arc (i, j). We write
z(S) to denote the sum of the z variables in arc set S, i.e. z(S) =

∑
(i,j)∈S zij .

We then have to solve

3

Figure 1: Instance of the SBRP-DIF

(SBRP-DIF) z(δ+(i))− z(δ−(i)) = b̂i (i ∈ V̂) (1)

li ≤ zij ≤ ui ((i, j) ∈ Â2) (2)

0 ≤ z01 ≤ min{b0, Q} (3)

0 ≤ zij ≤ Q ((i, j) ∈ Â1 \ {(0, 1)}). (4)

Figure 1 depicts an instance of the SBRP-DIF. Using an enhanced capac-
ity scaling algorithm, together with the fact that the number of arcs is O(n),
the problem stated above can be solved in O(n2logn2) time [1].

2.2. The fixed route subproblem with commodity handling cost

The fixed route subproblem with handling cost is called the SBRP-DIHF
and is defined on an auxiliary graph Ḡ = (V̄ , Ā). Denote the set of vertices

4

by V̄ = V̄1 ∪ V̄2 ∪ V̄3, with V̄1 = V and V̄3 = {2n + 2}. We construct V̄2 by
including a vertex for every vertex i ∈ V , where the copy of vertex i in V̄2

is n + 1 + i. Set the supply of vertex i ∈ V̄1 as b̄i = bi and the demand of
vertex n+ 1 + i ∈ V̄2 as b̄n+1+i = −bi. Let b̄2n+2 = 0. Denote the set of arcs
Ā = Ā1 ∪ Ā2 ∪ Ā3, where Ā1, Ā2, and Ā3 are constructed as follows. For
vertices i ∈ V̄1\{0, n}, insert an arc (i, i+1) into Ā1, with cost 0, lower bound
0 and upper bound Q. These arcs represent the number of units transported
to the next vertex. We also insert two arcs (0, 1) and (n, 0) into Ā1, with cost
h, lower bound 0 and upper bound min{b0, Q} and Q, respectively. These
arcs represent the commodity amounts carried out of and into the depot,
respectively, and also account for the handling cost at the depot. Note that
the flow on the arc (0, 1) is also bounded above by the supply at the depot in
order to avoid commodities from flowing through the depot. For every vertex
in V̄1, insert an arc (i, n+1+i) into Ā2, with cost 0, lower bound li and upper
bound ui. These arcs represent the amount of commodity units left at vertex
i after the visit of the vehicle. For every vertex in V2\{n+1}, insert two arcs
(n+ 1 + i, 2n+ 2) and (2n+ 2, n+ 1 + i) into Ā3, with cost h, lower bound
0 and upper bound Q. For vertex n + 1, also insert two arcs (n+ 1, 2n+ 2)
and (2n+ 2, n+ 1) into Ā3, with cost 0, lower bound 0 and upper bound Q.
These arcs represent the number of units unloaded and loaded at vertex i,
respectively. Note that the handling cost at the depot has been modeled in
a different way from that of the other vertices, since handling occurs twice
at the depot, once in the beginning and once in the end of the tour. Let us
define Ā

′
3 = Ā3∪{(0, 1), (n, 0)} as the set of arcs with a positive cost, for the

sake of simplicity. The resulting formulation for this subproblem is then

(SBRP-DIFH) minimize
∑

(i,j)∈Ā′
3

h zij (5)

subject to z(δ+(i))− z(δ−(i)) = b̄i (i ∈ V̄) (6)

li ≤ zij ≤ ui ((i, j) ∈ Ā2) (7)

0 ≤ z01 ≤ min{b0, Q} (8)

0 ≤ zij ≤ Q ((i, j) ∈ Ā \ Ā2 ∪ {(0, 1)}). (9)

Figure 2 depicts an instance of the SBRP-DIHF. As in the case of SBRP-
DIHF, this problem can be solved in O(n2logn2) time [1].

5

Figure 2: Instance of the SBRP-DIHF.

3. Integer Programming Formulation and Valid Inequalities for the
General Problem

We now construct an integer programming formulation for SBRP-DI
based on the minimum cost network flow formulation for the SBRP-DIHF
presented in Section 2. Although it is possible to construct two different
models, based on both network flow formulations, we opt to use the SBRP-
DIHF model of Section 2.2 since it can handle both cases. To improve the
lower bounds yielded by the relaxation of the formulation, we first strengthen
the capacity constraints (17) using the implications of integrality. We next
adapt the clique cluster inequalities for the 1-PDTSP [11] to the SBRP-
DIH. Finally, we adapt the arc-vertex inequalities, the strong connectivity
constraints, and the strong 2-matching inequalities from the Covering Tour
Problem (CTP) [9], the similarity of which enables us to adapt its valid in-
equalities. The proofs of validity of these constraints are identical for both
problems.

6

3.1. Formulation

Before presenting the formulation, we redefine Ā1 as Ā1 = {(i, j) : i, j ∈
V, i �= j}. With this new definition, the circuits on which the pickup and
delivery decisions were considered in Section 2 become cliques, and we can in-
corporate routing decisions to the model. Also define the vehicle requirement
of a subset S ⊂ V as r(S) = max{⌈∑i∈S(bi − ui)/Q

⌉
,
⌈∑

i∈S(li − bi)/Q
⌉}.

Denote the mandatory vertices as T̄ = {i ∈ V̄1 : i = 0 or di > 0 or ei > 0}.
Let xij be equal to 1 is the vehicle travels from vertex i to j, and 0 other-
wise. We write x(S) to denote the sum of the x variables in arc set S, i.e.
x(S) =

∑
(i,j)∈S xij . Finally, let yi be equal to 1 if vertex i is visited, and 0

otherwise. The formulation is

(SBRP-DIH) minimize
∑

(i,j)∈Ā1

tijxij +
∑

(i,j)∈Ā′
3

h zij (10)

subject to x(δ+(i)) = yi (i ∈ V̄1) (11)

x(δ−(i)) = yi (i ∈ V̄1) (12)

x(δ+(S)) ≥ r(S) (S ⊂ V̄1) (13)

x(δ−(S)) ≥ r(S) (S ⊂ V̄1) (14)

z(δ+(i))− z(δ−(i)) = b̄i (i ∈ V̄) (15)

z0j ≤ min{b0, Q}xij ((0, j) ∈ Ā1) (16)

zij ≤ Qxij ((i, j) ∈ Ā1 : i �= 0) (17)

li ≤ zij ≤ ui ((i, j) ∈ Ā2) (18)

zij ≤ Qyi ((i, j) ∈ Ā3) (19)

xij = 0 or 1 ((i, j) ∈ Ā) (20)

yi = 0 or 1 (i ∈ V̄1 \ T̄) (21)

yi = 1 (i ∈ T̄) (22)

zij ≥ 0 ((i, j) ∈ Ā). (23)

Equalities (11) set the outflow of a vertex to 1 if it is visited, and to 0
otherwise. Similarly, Equalities (12) set the inflow of a vertex to 1 if it is
visited, and to 0 otherwise. Inequalities (13) and (14) are the connectivity
constraints which define the minimum outdegree and indegree of a subset of
vertices as a function of the capacity requirements. Equalities (15) enforce

7

the flow conservation conditions. Constraints (16) and (17) are capacity
constraints, which restrict the flow of commodities on an arc to the capacity
of the vehicle. Constraints (18) ensure that the demand interval requirements
are met. Constraints (19) forbid loading and unloading operations at a vertex
if it is not visited. Constraints (20) and (21) are integrality constraints.
Constraints (22) force the depot, the vertices with positive deficits, and the
vertices with positive excesses to be visited. Finally, constraints (23) are
non-negativity constraints.

3.2. Implications of integrality

We now strengthen the capacity constraints (16) and (17) by using co-
efficients which imply that a vehicle leaving a vertex should have sufficient
capacity to pick up the excess of the vertex if it has an excess, or to deliver
the deficit of the vertex if it has a deficit. Let αij denote the upper bound
on zij :

αij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q (i, j �= 0 and bi ≥ li and bj ≤ uj)

Q+ bi − li (i, j �= 0 and bi < li and bj ≤ uj)

Q+ uj − bj (i, j �= 0 and bi ≥ li and bj > uj)

min{Q+ bi − li, Q+ uj − bj} (i, j �= 0 and bi < li and bj > uj)

min{b0, Q} (i = 0 and bj ≤ uj)

min{b0, Q+ uj − bj} (i = 0 and bj > uj)

min{u0, Q} (j = 0).

With this definition of αij, we can unify and strengthen (16) and (17) as

zij ≤ αijxij ((i, j) ∈ Ā1). (24)

3.3. Clique cluster inequalities

Clique cluster inequalities are an adaptation of the rank inequalities for
the Stable Set Problem. Hernández-Pérez and Salazar-González [11] have
adapted the clique inequalities to the 1-PDTSP by considering subsets of
vertices W1, ...,Wm satisfying the following conditions: 1) all subsets inter-
sect at a single vertex v: (Wk ∩Wl = {v}, 1 ≤ k < l ≤ m); 2) the capacity
requirement of any subset does not exceed the vehicle capacity (r(Wk) ≤ 1,
1 ≤ k ≤ m); 3) the capacity requirement of the union of any two subsets

8

exceeds the vehicle capacity (r(Wk ∪ Wl) ≥ 2, 1 ≤ k < l ≤ m). By con-
struction of the customer subsets, only customers in one subset Wk can be
visited consecutively, implying x(δ+(Wk)) = 1. The remaining subsets Wl

must satisfy x(δ+(Wl)) ≥ 2. Summing up the inequality and the following
inequalities we obtain

m∑
k=1

x(δ+(Wk)) ≥ 2m− 1. (25)

We emphasize that the transshipment vertices are an exception, since
they do not exist in 1-PDTSP, and their existence may result in r(Wk) = 0
or r(Wk \{v} = 0. To handle this exception, we modify the second condition
as follows: 2) the capacity requirement of any customer subset is exactly one,
even when the intersection vertex is deleted (r(Wk) = 1 and r(Wk \{v}) = 1,
1 ≤ k ≤ m).

3.4. Arc-vertex constraints

Proposition 1. The inequalities

xij ≤ yi ((i, j) ∈ Ā1) (26)

and

xij ≤ yj ((i, j) ∈ Ā1) (27)

are valid for SBRP-DIH.

3.5. Strong connectivity constraints

Proposition 2. The following inequalities are valid for SBRP-DIH:

∑
i∈S,j∈V̄1\S

xij ≥ 1 (S ⊂ V̄1 : 2 ≤ |S| ≤ |V̄1| − 2, T̄ \ S �= ∅, S ∩ T̄ �= ∅). (28)

We refer the reader to the study by [9] for a proof of Proposition 2.

9

3.6. Strong 2-matching constraints

Proposition 3. The following inequalities are valid for SBRP-DIH:

∑
i,j∈H:i �=j

xij +
∑

(i,j)∈A′
(xij + xji) ≤

∑
i∈H

yi +
1

2
(|A′| − 1), (29)

for all H ⊂ V̄1 and A′ ⊂ Ā1 satisfying
(i) |{i, j} ∩H| = 1 ((i, j) ∈ A′),
(ii) {i, j} ∩ {k, l} = ∅ ((i, j) �= (k, l) ∈ A′),
(iii) |A′| ≥ 3 and odd.

We refer the reader to the study by [9] for a proof of Proposition 3. To
identify the violated strong 2-matching constraints, we use the heuristic of
Padberg and Rinaldi [13].

4. Exact algorithms

In this section we present the details of a Benders decomposition scheme,
and a unified branch-and-cut algorithm to solve the full formulations as well
as the master problem of the Benders decomposition.

4.1. Benders Decomposition Scheme

The formulation SBRP-DIH includes a MCNFP as a subproblem, which
allows us to apply Benders decomposition. To this end, we remove the flow
variables zij along with the associated constraints, and we add an auxiliary
variable to construct the master problem.

(MP) minimize
∑

(i,j)∈Ā1

tijxij + w (30)

subject to x(δ+(i)) = yi (i ∈ V̄1) (31)

x(δ−(i)) = yi (i ∈ V̄1) (32)

x(δ+(S)) ≥ r(S) (S ⊂ V̄1) (33)

x(δ−(S)) ≥ r(S) (S ⊂ V̄1) (34)

xij = 0 or 1 ((i, j) ∈ Ā) (35)

yi = 0 or 1 (i ∈ V̄1 \ T̄) (36)

10

yi = 1 (i ∈ T̄) (37)

w ≥ 0. (38)

The slave problem is constructed by fixing the xij and yi variables to an
optimal solution of the MP. For the sake of simplicity, let c̄ij = h if (i, j) ∈ Ā

′
3,

and 0 otherwise. The resulting slave problem is given below:

(SP) minimize
∑

(i,j)∈Ā
c̄ijzij (39)

subject to z(δ+(i))− z(δ−(i)) = b̄i (i ∈ V̄), (40)

zij ≤ αijx
∗
ij ((i, j) ∈ Ā1), (41)

zij ≥ li ((i, j) ∈ Ā2) (42)

zij ≤ ui ((i, j) ∈ Ā2) (43)

zij ≤ Qy∗i ((i, j) ∈ Ā3) (44)

zij ≥ 0 ((i, j) ∈ Ā). (45)

The next step is to construct the dual of the slave problem whose solution
will yield valid inequalities. Let us associate the dual variable sets v1, ..., v5

with constraints sets (40) – (44) of the SP. The dual slave problem is then

(DSP) maximize
∑
i∈V̄

b̄iv
1
i +

∑
(i,j)∈Ā1

αijx
∗
ijv

2
ij +

∑
(i,j)∈Ā2

(liv
3
ij + uiv

4
ij) +

∑
(i,j)∈Ā3

Qy∗i v
5
ij

(46)

subject to v1i − v1j + v2ij ≤ c̄ij ((i, j) ∈ Ā1) (47)

v1i − v1j + v3ij + v4ij ≤ c̄ij ((i, j) ∈ Ā2) (48)

v1i − v1j + v5ij ≤ c̄ij ((i, j) ∈ Ā3) (49)

v1 unrestricted, v2, v4, v5 ≤ 0, v3 ≥ 0. (50)

If the optimal solution value of the DSP is strictly greater than that of
the auxiliary variable w∗, we add an optimality cut of the following form to
the MP, using the optimal solution v∗ of the DSP:

11

w ≥
∑
i∈V̄

b̄iv
1
i
∗
+

∑
(i,j)∈Ā1

αijxijv
2
ij
∗
+

∑
(i,j)∈Ā2

(liv
3
ij
∗
+uiv

4
ij
∗
)+

∑
(i,j)∈Ā3

Qyiv
5
ij
∗
. (51)

Note that these inequalities are required only when h > 0. If the DSP is
unbounded, we add a feasibility cut of the following form to the MP, using
the unbounded ray v∗:

∑
i∈V̄

b̄iv
1
i
∗
+

∑
(i,j)∈Ā1

αijv
2
ij
∗
xij +

∑
(i,j)∈Ā2

(liv
3
ij
∗
+ ui(v

4
ij)

∗) +
∑

(i,j)∈Ā3

Qv5ij
∗
yi ≤ 0.

(52)
The feasibility cuts can also be upgraded to yield the rounded Benders

inequalities:

∑
(i,j)∈Ā1

αijv
2
ij
∗�xij +

∑
(i,j)∈Ā3

Qv5ij
∗�yi ≤
−

∑
i∈V̄

b̄iv
1
i
∗ −

∑
(i,j)∈Ā2

(liv
3
ij
∗ − uiv

4
ij
∗
)�.

(53)

4.2. A Unified Branch-and-Cut Algorithm

Our unified branch-and-cut algorithm, capable of handling both SBRP-
DIH and MP, can be summarized as follows.

Step 1 (Root node). Construct a subproblem consisting of the initial
formulation and insert this subproblem in a list.
Step 2 (Node selection). If the list is empty, stop. Else select and remove
a subproblem from the list.
Step 3 (Subproblem solution). Solve the subproblem. If the objective
function value is less than the best lower bound, go to Step 2.
Step 4 (Constraint generation). Identify violated members of the arc-
vertex constraints, strong connectivity constraints, strong 2-matching con-
straints, clique cluster inequalities, and add them to the subproblem. For
MP, also solve DSP and identify violated feasibility cuts and optimality cuts.
If at least one constraint is generated, go to Step 3.
Step 5 (Integrality check). If the solution is integer, update the best
known solution, and go to Step 2.

12

Step 6 (Branching). Construct two subproblems by branching on a binary
fractional variable. Add the subproblems to the list and go to Step 2.

To separate the connectivity constraints (13), (14), and the clique clus-
ter inequalities (25), we have used the separation algorithms described in
Hernández-Pérez and Salazar-González [11]. To identify the violated strong
2-matching inequalities, we have used the heuristic of [13].

5. Computational Results

We have implemented the branch-and-cut algorithm using C++ and the
Callable Library of CPLEX 12.1 on the IRIDIS 3 computing cluster having
Intel Nehalem nodes with two 4-core processors and 22 GB RAM. We have
adapted a subset of the 1-PDTSP instances provided by [11], which are avail-
able at http://hhperez.webs.ull.es/PDsite/. Note that these instances
associate a negative quantity with a vertex to denote a demand, and a pos-
itive quantity to denote a supply. We have assumed all our vertices to have
an identical lower bound p, and an identical upper bound q. Given the set
of supply and demand values b

′
i, we have set p = −mini∈V {b′i}, and used the

following rule to determine the current supply of vertex i:

bi =

⎧⎪⎨
⎪⎩

b
′
i + q (b

′
i > 0)

p + b
′
i (b

′
i < 0)

(p + q)/2� (b
′
i = 0).

This choice of p ensures that bi ≥ 0, di = −b
′
i if b

′
i < 0, and ei = b

′
i if b

′
i > 0,

for all i ∈ V . Consequently, our parameter for experimentation becomes q,
which is constrained to be at least equal to p. We have experimented with
q−p ∈ {1, 2, 3, 4, 5}, h = 0 and h ≥ 0. As h grows, the SBRP-DIH instances
behave increasingly similar to q− p = 0, since extra handling is discouraged.
We have observed that the CPU time requirement is almost identical for
relatively small values of h and h = 0, and we only report results for h = 0.
We have adapted 240 instances, which yielded 1200 instances when combined
with the range of q − p. Table 1 provides results for |V | = 30. Tables 2 and
3 present the results for |V | = 40 and |V | = 50, respectively. The column
“Name” refers to ten instances that share it, e.g. row n30q10 corresponds
to average results on 10 instances. The detailed results are available upon
request from the first author.

13

We first present computational results corresponding to the branch-and-
cut algorithm used in the solution of SBRP-DIH. When |V | = 30, all in-
stances are solved optimally within six minutes. Table 1 shows that the
problem becomes easier as q − p increases. This is due to the fact that ver-
tices with a deficit can absorb more units, vertices with an excess can supply
more, and transshipment vertices have a larger degree of freedom in both
directions. Table 1 also shows that solution quality also improves when q−p
becomes larger. This is reflected by the column “gain” which reports the
decrease in the objective function with respect to the base case “q− p = 0”.
When |V | = 40, all instances are also solved optimally within 12 minutes.
Table 2 and Table 3 report the average CPU times in seconds to solve in-
stances with q−p = 0 and q−p = 10 for |V | = 30 and |V | = 40, respectively.
These tables demonstrate the behavior of the algorithm when the instance
at hand is closest to the 1-PDTSP (q − p = 0), and when it is closest to
the TSP (q − p = 10). When |V | = 50, it is not always possible to solve
the problem optimally within two hours of computing time, and our algo-
rithm successfully solves 367 out of 400 instances. The hardest instances are
those with low vehicle capacities, and the maximum observed optimality gap
is 6.39%. In Table 4, we report the average gaps with respect to the best
known lower bound generated by the branch-and-cut algorithm. It can be
observed that the average gaps are less than 1% over all instances, and the
average computing times are below 40 minutes.

Table 1: Computational results for SBRP-DIH, |V | = 30
q – p = 1 q – p = 2 q – p = 3 q – p = 4 q – p = 5

Name n Q CPU Gain CPU Gain CPU Gain CPU Gain CPU Gain
n30q10 30 10 8.49 6.22% 3.55 8.60% 16.24 10.18% 8.41 11.08% 35.86 11.93%
n30q15 30 15 8.45 4.76% 7.94 6.93% 4.85 7.91% 5.59 8.47% 6.21 9.22%
n30q20 30 20 4.31 2.22% 9.90 2.93% 4.19 3.62% 4.30 4.07% 2.42 4.54%
n30q25 30 25 2.51 0.99% 1.75 5.18% 2.18 6.10% 1.13 6.74% 0.89 7.38%
n30q30 30 30 3.65 0.93% 2.00 3.11% 2.67 3.65% 1.71 4.17% 1.12 4.56%
n30q35 30 35 1.00 1.09% 1.62 1.79% 1.66 2.05% 0.85 2.68% 1.73 3.00%
n30q40 30 40 1.45 0.64% 2.01 1.33% 1.73 1.58% 0.87 2.25% 1.60 2.39%
n30q45 30 45 1.45 0.37% 1.87 1.04% 1.19 1.21% 0.64 1.79% 0.91 1.89%
Average 3.91 2.15% 3.83 3.86% 4.34 4.54% 2.94 5.16% 6.34 5.61%

The results obtained by solving MP improve upon those of SBRP-DIH in
general. CPU times for |V | = 30 presented in Table 4 show the superiority
of MP over SBRP-DIH. The only exception is a single instance for q−p = 5,
for which CPLEX struggled to find the integer optimal solution for about 40
minutes. The same behavior is observed for |V | = 40, where MP is solved 4.5

14

Table 2: CPU times for SBRP-DIH for q − p = 0 and q − p = 10, |V | = 30
Name n Q q–p=0 q–p=10
n30q10 30 10 57.39 0.54
n30q15 30 15 223.45 4.08
n30q20 30 20 324.50 0.60
n30q25 30 25 134.34 0.58
n30q30 30 30 9.73 0.73
n30q35 30 35 10.38 0.50
n30q40 30 40 5.06 0.51
n30q45 30 45 2.41 0.52

Average: 95.91 1.01

Table 3: CPU times for SBRP-DIH for q − p = 0 and q − p = 10, |V | = 40
Name n Q q–p=0 q–p=10
n40q10 40 10 3094.85 2.81
n40q15 40 15 1068.95 3.37
n40q20 40 20 384.35 2.30
n40q25 40 25 309.33 2.24
n40q30 40 30 13.73 1.94
n40q35 40 35 8.79 1.74
n40q40 40 40 4.00 1.64
n40q45 40 45 4.54 1.69

Average: 611.07 2.22

Table 4: Computational results for SBRP-DIH, |V | = 50
q – p = 1 q – p = 2 q – p = 3 q – p = 4 q – p = 5

Name n Q Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU
n50q10 50 10 1.4% 4726.9 0.4% 2805.4 0.5% 2399.7 0.5% 2332.7 0.0% 336.4
n50q15 50 15 0.9% 2674.1 0.2% 3399.2 0.2% 2907.1 0.1% 2446.7 0.3% 3120.9
n50q20 50 20 0.5% 1354.7 0.1% 1925.7 0.0% 1669.1 0.7% 2403.7 0.2% 1686.8
n50q25 50 25 0.0% 355.4 0.0% 364.6 0.0% 104.9 0.0% 186.8 0.0% 111.1
n50q30 50 30 0.0% 113.4 0.0% 98.6 0.0% 68.7 0.0% 80.8 0.0% 74.1
n50q35 50 35 0.0% 161.3 0.0% 37.0 0.0% 44.5 0.0% 34.9 0.0% 27.7
n50q40 50 40 0.0% 153.5 0.0% 41.4 0.0% 32.5 0.0% 15.4 0.0% 20.5
n50q45 50 45 0.0% 28.8 0.0% 25.6 0.0% 14.3 0.0% 13.6 0.0% 21.7
Average 0.35% 1196.03 0.10% 1087.19 0.09% 905.10 0.17% 939.34 0.06% 674.90

15

times faster than SBRP-DIH on average. Similar to the analysis of SBRP-
DIH, Table 5 and Table 6 report the average CPU times in seconds to solve
instances with q−p = 0 and q−p = 10 for |V | = 30 and |V | = 40, respectively.
These tables demonstrate the behavior of the algorithm when the instance
at hand is closest to the 1-PDTSP (q − p = 0), and when it is closest to
the TSP (q − p = 10). The computational reach of both formulations seems
to be |V | = 50, with MP being solved 1.5 times faster than SBRP-DIH
on average, and 14 more instances being successfully solved to optimality
within two hours of CPU time. Table 7 provides computational results for
|V | = 50. Note that in spite of a better performance in terms of CPU time,
MP struggles to find good initial solutions for larger instances with relatively
low values of q − p, resulting in higher gaps as observed for |V | = 50 and
q − p = 2.

Table 5: CPU times for MP, |V | = 30
Name n Q q–p=0 q–p=10
n30q10 30 10 34.85 0.26
n30q15 30 15 38.23 0.74
n30q20 30 20 21.94 0.28
n30q25 30 25 1.42 0.20
n30q30 30 30 1.11 0.23
n30q35 30 35 0.74 0.21
n30q40 30 40 1.00 0.22
n30q45 30 45 0.62 0.23

Average: 12.49 0.30

Table 6: CPU times for MP, |V | = 40
Name n Q q–p=0 q–p=10
n40q10 40 10 1109.70 1.28
n40q15 40 15 25.37 1.16
n40q20 40 20 7.63 0.74
n40q25 40 25 6.66 0.69
n40q30 40 30 1.42 0.44
n40q35 40 35 0.95 0.47
n40q40 40 40 0.97 0.43
n40q45 40 45 1.24 0.52

Average: 144.24 0.72

16

Table 7: Computational results for MP, |V | = 50
q – p = 1 q – p = 2 q – p = 3 q – p = 4 q – p = 5

Name n Q Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU
n50q10 50 10 0.8% 3674.11 1.4% 3274.31 0.9% 2498.76 0.3% 2704.61 0.0% 139.50
n50q15 50 15 1.0% 1876.86 0.1% 1950.06 0.2% 1316.63 0.1% 1291.37 0.1% 1339.25
n50q20 50 20 0.0% 288.05 0.0% 245.04 0.0% 332.51 0.0% 826.50 0.0% 702.80
n50q25 50 25 0.0% 42.59 0.0% 38.94 0.0% 30.67 0.0% 27.01 0.0% 21.15
n50q30 50 30 0.0% 13.16 0.0% 19.84 0.0% 22.06 0.0% 13.07 0.0% 10.89
n50q35 50 35 0.0% 13.78 0.0% 9.18 0.0% 8.25 0.0% 5.79 0.0% 4.25
n50q40 50 40 0.0% 24.49 0.0% 12.32 0.0% 5.75 0.0% 4.89 0.0% 3.42
n50q45 50 45 0.0% 12.82 0.0% 4.99 0.0% 3.22 0.0% 3.60 0.0% 3.12
Average 0.22% 743.23 0.19% 694.34 0.14% 527.23 0.06% 609.60 0.01% 278.05

6. Conclusions

We have introduced, modeled, and solved the SBRP-DI, a variant of the
1-PDTSP encountered in the repositioning of bicycles in public sharing sys-
tems. We have first studied the subproblem arising when the vehicle route
is fixed, and we have showed it to be a MCNFP, whether the handling cost
is zero or not. Based on the network flow formulation, we have developed an
integer programming formulation. We have imported valid inequalities from
the routing literature, and we have developed a branch-and-cut algorithm
as well as a Benders decomposition scheme. We have described a unified
branch-and-cut algorithm capable of handling both the full model and the
master problem of the Benders decomposition. We have also presented com-
putational results for instances adapted from 1-PDTSP. SBRP-DI is observed
to be easier than 1-PDTSP, due to the flexibility provided by the demand
intervals. The branch-and-cut algorithm is capable of solving instances with
up to 50 vertices by either formulation. However, the Benders based formu-
lation and algorithm yield much shorter computation times and can solve
more instances.

Acknowledgments: This study was partially supported by Centre for Op-
erational Research, Management Science and Information Systems (CORM-
SIS) based within the University of Southampton, and by the Canadian Nat-
ural Sciences and Engineering Research Council under grant 39682-10. This
support is gratefully acknowledged. Thanks are due to the two anonymous
referees for their valuable comments.

17

References

[1] Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, New York.

[2] Anily, S., R. Hassin. 1992. The swapping problem. Networks 22 419–
433.

[3] Benchimol, M., P. Benchimol, B. Chappert, A.D.L. Taille, F. Laroche,
F. Meunier, L. Robinet. 2012. Balancing the stations of a self service
“bike hire” system. RAIRO Operations Research. Forthcoming.

[4] Bordenave, C., M. Gendreau, G. Laporte. 2009. A branch-and-cut al-
gorithm for the non-preemptive swapping problem. Naval Research Lo-
gistics 56 478–486.

[5] Bordenave, C., M. Gendreau, G. Laporte. 2010. Heuristics for the mixed
swapping problem. Computers & Operations Research 37 108–114.

[6] Bordenave, C., M. Gendreau, G. Laporte. 2012. A branch-and-cut algo-
rithm for the preemptive swapping problem. Networks 59 387–399.

[7] Chemla, D., F. Meunier, R. Wolfler Calvo. 2013. Bike sharing system:
solving the static rebalancing problem. Discrete Optimization 10 120–
146.

[8] Erdoğan, G., J.-F. Cordeau, G. Laporte. 2010. A branch-and-cut algo-
rithm for the non-preemptive capacitated swapping problem. Discrete
Applied Mathematics 158 1599–1614.

[9] Gendreau, M., G. Laporte, F. Semet. 1997. The covering tour problem.
Operations Research 45 568–576.

[10] Hernández-Pérez, H., J.-J. Salazar-González. 2004. A branch-and-cut
algorithm for a traveling salesman problem with pickup and delivery.
Discrete Applied Mathematics 145 126–139.

[11] Hernández-Pérez, H., J.-J. Salazar-González. 2007. The one-commodity
pickup-and-delivery traveling salesman problem: Inequalities and algo-
rithms. Networks 50 258–272.

18

[12] Nair, R., E. Miller-Hooks. 2014. Equilibrium network design of shared-
vehicle systems. European Journal of Operational Research 235(1) 47 –
61.

[13] Padberg, M.W., G. Rinaldi. 1990. Facet identification for the symmetric
traveling salesman polytope. Mathematical Programming 47 219–257.

[14] Rainer-Harbach, M., P. Papazek, B. Hu, G. R. Raidl. 2013. Balanc-
ing bicycle sharing systems: A variable neighborhood search approach.
M. Middendorf, C. Blum, eds., Evolutionary Computation in Combi-
natorial Optimization, Lecture Notes in Computer Science, vol. 7832.
Springer Berlin Heidelberg, 121–132.

[15] Raviv, T., M. Tzur, I. A. Forma. 2013. Static repositioning in a bike-
sharing system: models and solution approaches. EURO Journal on
Transportation and Logistics 2(3) 187–229.

[16] Schuijbroek, J., R. Hampshire, W.-J. van Hoeve. 2013. Inventory rebal-
ancing and vehicle routing in bike sharing systems. Tech. Rep. 1491,
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
15213.

19

