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Simulation of the phase diagram of magnetic vortices in two-dimensional
superconductors: Evidence for vortex chain formation
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We study the superconducting vortex states induced by the interplay of long-range Pearl repulsion
and short-range intervortex attraction using Langevin dynamics simulation. We show that at low
temperature the vortices form an ordered Abrikosov lattice both in low and high fields. The vortices
show distinctive modulated structures at intermediate fields depending on the effective intervortex
attraction: ordered vortex chain and Kogame-like vortex structures for weak attraction; bubble,
stripe and antibubble lattices for strong attraction. Moreover, in the regime of the chain state, the
vortices display structural transitions from chain to labyrinthine (or disordered chain) and/or to
disordered state depending on the strength of disorders.

PACS numbers: 74.25.Dw, 74.25.Uv

1. INTRODUCTION

Superconducting vortex states have proved to be a rich
and attractive research field. In 1954 Abrikosov solved
the Ginzburg-Landau (GL) equations in an applied mag-
netic field for the GL parameter £ > 1/ V2, and found
his famous vortex solution where the superconducting or-
der parameter contains a periodic lattice of zeros. This
leads to a new mixed Abrikosov vortex phase between
the Meissner state and the normal state [1]. In real su-
perconductors the equilibrium vortex structures are con-
trolled by the competition between vortex-vortex inter-
actions and vortex-disorder interactions [2]. As the dis-
orders become important, the ordered Abrikosov mixed
state will change into disordered liquid due to thermal
fluctuations, or into glass states due to pinning [3-5].

Strikingly, unconventional vortex pattern formation
was recently discovered in multiband type-II supercon-
ductors, such as MgBy [6] and SraRuO,4 [7] and iron-
pnictide materials [8, 9], where vortices display chain-
like (and/or stripelike) structures in low fields. Although
large amount of experimental and theoretical efforts in
this field has been made [10-18], the nature of the vortex
clustering in multiband superconductors is still an in-
tensely controversial issue now [17, 19-22]. In principle,
the vortex cluster formation means that there might ex-
ist some type of attraction between vortices in addition
to repulsion. This vortex attraction may have various
possible origins: (I) Twin boundaries can act as a source
of one-dimensional strong pinning and thus can produce
vortex chains or stripes [8]. (II) For the superconductors
with & ~ 1/4/2 such as Nb [4], the non-local electrody-
namics induced by the spatially varying order parameter
produces a relationship between supercurrents and vector
potential. This may result in an oscillating vortex-vortex

potential with attractive tail at larger distances [23]. (I-
IT) For moderately anisotropic superconductors like YB-
CO, it has been demonstrated that the field changes sign
in some local regions in the plane perpendicular to the
flux-line axis under a tilted magnetic field [24-26], leading
to intervortex attraction in those regions. (IV) For the
layered superconductors with very weak inter-layer cou-
pling, the Josephson Vortices (JV) will appear at much
lower field near H¢y [25]. The PV are attracted and
trapped by JV and thus form chains [27, 28]. Besides, for
layered superconductors, the intervortex attractions can
also be induced by thermal fluctuations [29, 30], or impu-
rities [31]. (V) For multiband or multicomponent super-
conductors, the intervortex interaction is determined by
the competition between the multiple fundamental length
scales in GL theory [12, 16, 19]: leads to attractive inter-
action at a long range; yet the repulsive interaction is still
dominating at a short range due to intercurrent and elec-
tromagnetic interaction. However, numerical simulations
reveal that the nonmonotonic interaction potential with
long-range attraction will result in the bubble-like rather
than stripe-like vortex ground state [32]. In presence of
the quenched disorders, vortices form metastable and dis-
ordered fragmental structures in practical superconduct-
ing systems. Thus, it is still a long-standing challenge to
understand the nature of vortex chain state, especially in
isotropic multiband or multicomponent superconductors.
In additional, the followed two questions are also open for
these chain-forming systems: (1) whether are there ad-
ditional new phases? (2) what are the effects of thermal
fluctuations or quenched disorders on vortex chain?

In fact, the above-mentioned experimental observa-
tions have given two important clues to study the physics
underlying vortex chain. First, it was shown that chain-
like vortex distributions are of long-range order both in



FIG. 1: (Color online) Vortex-vortex interaction force as func-
tion of the inter-vortex distance for different q. The magenta
dot line shows the limiting expression at large distances. The
limit at small distances is F*?(r) = 1/r, for r < A (not shown
here for simplicity).

anisotropic superconductors such as YBCO [26], and in
isotropic ones such as MgBsy [6]. This means that the
vortex interaction in a long range is of repulsive rather
than attractive for the formation of vortex chains. Here,
we consider the long-range Pearl repulsion as a candi-
date [33, 34]. Tt is produced by the stray field near
the surface outside the samples and should be impor-
tant for thin samples [25, 35]. Second, the chainlike
clustering structure of vortices in superconductors is in-
dicative of intervortex attraction. For multcomponent
or multiband superconductors, it has been found that
the London penetration length A can be comparable to
the coherence length £ at some material parameter s-
pace [13, 19]. In this case, the attraction due to the
overlapping of vortex cores (reducing the condensation
energy) becomes relevant in addition to the repulsion
(induced be current-current and electromagnetic interac-
tions). Based on these ideas, we propose a phenomeno-
logical intervortex interaction model with Pearl repulsion
and core-core attraction to study vortex states of chain-
forming systems by Langevin dynamics. We numerically
demonstrate that the vortices form ordered chains due to
the competing vortex-vortex interactions. Moreover, we
show the formation of other interesting structures such
as Kogame-like vortex domains depending on the mag-
nitude of field, bubble and stripe and antibubble lattices
on the effective intervortex attraction, and labyrinth on
the strength of disorders.

FIG. 2: (Color online) Static vortex configurations for dif-
ferent densities at zero temperature. Panel (a) shows the
low-density hexagonal lattice for B = 0.05Bc20. Panels (b)
and (c) show the ordered vortex chains for B = 0.15B¢20 and
the Kogamelike vortex structures for B = 0.22B.20, respec-
tively. Panel (d) shows the high-density hexagonal lattice for
B = 0.3Bc20.

2. SIMULATION

The overdamped Langevin equation of motion for a
vortex at position r; is [36]

dri
dt

N, N,
Fi = ZFVV(I‘i — I‘]‘) + ZFVP(I‘Z‘ — I'g) + FlT =1
J#i k

where F; is the total force acting on vortex i, F¥V and
FYP are the forces due to vortex-vortex and vortex-pin
interactions, FT is the thermal stochastic force, 7 is the
Bardeen-Stephen friction coefficient, N, is the number
of vortices, Ny, is the number of pinning centers and r},
is the position of the kth pinning center. The effective
interaction between two vortices separated by r (shown
in Fig. 1) is

a T r r 2 \/E r
BT R U Ut (‘5)]

where ¢ is the flux quantum, A = 2)?/s, s is the thick-
ness of the superconducting films, p is the vacuum per-
meability, H; and Y; are the Struve and Bessel function-
s, and r is the distance between vortices. The first three

FVV (r)



FIG. 3: (Color online) Time evolution of the formation of the ordered vortex chains, starting from a random disordered state,
as shown in (a), and the corresponding structure factors with B = 0.15B.20 and 7' = 0. The vortex configurations: (b) ¢t = 6,
(c) t =92, (d) t = 108, (e) t = 386. The corresponding structure factor S(k): (f) t =0, (g) t =6, (h) t =92, (i) ¢ = 108, and

(j) t = 386.

FIG. 4: (Color online) Static vortex configurations for ¢ = 0.27 at zero temperature for different densities: panel (a) ordered
low-field lattice for B = 0.03Bc20, panel (b) bubble lattice for B = 0.14B.20, (c) stripe lattice for B = 0.28 B.2o, panel (d)
antibubble lattice for B = 0.3Bc20, panel (e) ordered high-field lattice for B = 0.5Bc20.

terms show a long-range repulsion between the vortices
for thin samples [33, 37, 38]. The fourth term is the inter-
vortex attraction by considering the core-core attraction
Vattra ~ exp(—r/€)//r/€ at a larger distance (corre-
sponding to low magnetic fields in which vortex chains
were observed) [4]. The parameter ¢ reflects the relative
strength of attraction to repulsion. We employ periodic
boundary conditions and cut off the vortex-vortex inter-
action potential smoothly [39, 40]. A pinning center at
position rg exerts an attractive force on the vortex at po-
sition;: FYP(r;—r%) = — fou (ri/7p) exp(—(rir /7p)? )ik,
where f,, tunes the strength of this force and r, deter-
mines its range. We use fpy o< B% (1 — B/B2)&?/k? as
the core pinning [41], where k = A/§. The thermal fluctu-
ation force has properties (F;') = 0 and (F.* (t)FJT ) =
2nkgT6;;6(t —t') at a given temperature 7. We normal-
ize lengths by A, forces by fo = ¢3/(8mA%ug) and time
by 70 = An/fo. All quantities shown here are expressed
in these simulation units. The equation of motion is inte-
grated by an Euler scheme with a normalized time step of

At = 0.0005 [40]. The total number of vortices N, = 900
is used in the calculations. For larger systems, similar re-
sults are observed. We employ ¢ = 0.26 unless specified
otherwise, 7, = 0.15), & = 1000A, X\ = 200A, s = 40A,
and n = 1.4 x 1071"kg/s. The vortices are randomly
distributed for the initial vortex state.

3. VORTEX STATES AND VORTEX CHAIN
FORMATION AT ZERO TEMPERATURE

We first consider the static vortex configurations, il-
lustrated in Fig. 2, obtained at different vortex densities
for zero temperature. At low vortex densities, it can be
seen that the vortices form the hexagonal Abrikosov lat-
tice shown in Fig. 2(a). It is clear that this low-field
equilibrium structure is a direct result of the long-range
repulsive tail in our model system due to a large average
distance between vortices. For increasing vortex densi-
ty, the vortex system exhibits ordered vortex chains, as



seen in Fig. 2(b). The formation of vortex chain struc-
ture marks that the average vortex distance is in the
region of repulsive shoulder: the system energy is low-
ered by bringing vortices together on the shoulders and
thus reducing the number of nearest neighbors. With
further increasing density some vortices will move away
from lines and enter into the regions between lines be-
cause of the enhanced vortex-vortex interactions. This
leads to one novel type of vortex structure, domains with
Kogame lattice where each vortex has four neighboring
ones, as illustrated in Fig. 2(c). These Kogamelike pat-
terns persist up to B = 0.25B.3, when a high-density
ordered Abrikosov lattice occurs due to the dominating
short-range repulsion, as shown in Fig. 2(d).

We next focus on the formation of vortex chain. For
the sake of simplicity, we leave the evolution dynamics
of the Kogamelike vortex state to a future study. We
choose a random initial configuration for vortex posi-
tions. However, the final equilibrium vortex chain pat-
tern does not depend on the particular choice of the
initial configuration. Illustrated in Fig. 3 are the real
space images and the corresponding structure factors,
Sk) =] vazvl explik - r;]|>/N,, which are used to quan-
tify changes in the vortex structure at different times. It
can be seen that the time evolution is characterized by
three major stages: (i) appearance of homogeneously dis-
ordered configurations through the amplifications of the
initial fluctuations [Fig. 3(b)]; (ii) formation of disordered
chain domains [Fig. 3(c), (d)]; and (iii) slow relaxation
of disordered chains to smectic chains [Fig. 3(e)]. In the
first stage, the vortex motion is mainly controlled be the
strongly short-range repulsion. Thus, the vortices move
away from each other with a relatively fast speed, and
form homogeneous vortex structure. The corresponding
structure factors S(k) shows one central peak, indicating
the absence of ordering [Fig. 3(g)]. In the intermediate
stage, the long-range repulsion becomes important be-
cause of the increment of average distance between vor-
tices. The competition between intervortex repulsion and
attraction manifesties itself as the emergence of chainlike
domain structure. Correspondingly some weak peaks oc-
cur, which are definitely larger than the background, as
shown in Fig 3(h) and (i). In the final stage, the vortex
configuration is determined by the long-range repulsion.
In this case, the disordered chains become ordered with
a slow relaxation due to the weak vortex-vortex interac-
tions. The occurrence of two peaks in structure factors
is due to the smectic ordering of the chain structures
[Fig. 3(j)].

We then study the vortex states for a larger q (= 0.27),
corresponding to the minimum of the intervortex inter-
ation appears to be below zero level in Fig. 1. Fig. 4
shows the equilibrium vortex structures for different vor-
tex densities at zero temperature. For both low and
high vortex densities, the vortices form ordered lattice
due to the dominating intervortex repulsion (Fig. 4(a)

and Fig. 4(e)). While for intermediate vortex densi-
ties, the vortex system displays three kinds of ordered
vortex domain structures with increasing vortex densi-
ty: bubble (Fig. 4(b)), stripe (Fig. 4(c)) and antibub-
ble (Fig. 4(d)). It has been known that the formation
of these modulated structures originates from the com-
petition between short-range attraction and long-range
repulsion, observed in wide physical systems [42]. The
numerical vortex structures including vortex bubble and
stripe are in good agreement with the experimental ob-
servations in low- type II superconductors [4, 43]. Also,
for anisotropic superconductors, the theoretical calcula-
tion and analysis based on London theory and Lowrence-
Doniach theory has been shown that multiquanta vortex
lattices will occur through changing titling angles of mag-
netic fields (equivalent to changing the value of ¢ in this
simulation) [25]. This suggests that our model is useful
to study the vortex states for both low-x type II super-
conductors and anisotropic superconductors, in addition
to multiband or multicomponent superconductors [12].

4. EFFECTS OF FILM THICKNESS AND
DISORDERS ON VORTEX STATES

We next studied the effect of film thickness on vortex
states. In Fig. 5 we show the typical vortex structures for
various film thickness at fixed B and q. A decrement of
film thickness is equivalent to an increment of repulsion
between vortices, or to an decrement of attraction be-
tween vortices. Thus, with decreasing film thickness, the
vortex states change from intermediate-mixed states, i.e.,
ordered antibubbles (Fig. 5(a)), stripes (Fig. 5(b)) and
bubbles (Fig. 5(c)), to the Abrikosov lattice (Fig. 5(d)).
In other words, superconductors that are type-I or so-
called type-1.5 in bulk, show type-II behavior in thin
films since they have an effective x much larger than in
bulk[16, 34, 44]. That is, our simulations concur with the
Pearl theory[34].

We now consider the effects of thermal fluctuations
and pinning on vortex chain state. For relatively smal-
|l fluctuations, the vortex system shows ordered chains
due to dominating vortex-vortex interactions, as shown
in Fig. 6(a). As the fluctuations become large enough, the
vortex line structure will be completely destroyed, shown
in Fig. 6(b). On the other hand, the quenched disorder-
s in systems can also induce the structure changes from
ordered chains to disordered states. Clearly, this depend-
s on the competition between vortex elastic energy and
pinning energy. For a relative small pinning strength,
we find that vortices form a labyrinthine structure, see
Fig. 6(c). For strong vortex pinning, the vortex system
will be trapped into a long-lived metastable disordered s-
tate due to a longer relaxation time, see Fig. 6(d). These
simulations might explain why the disordered chains or
stripes were frequently observed [10, 11, 15], while the



FIG. 5: (Color online) Static vortex configurations for differ-
ent s for ¢ = 0.27 and B = 0.3B.20 at zero temperature: panel
(a) ordered bubbles for s = 0.215), panel (b) ordered stripes
for s = 0.21\, panel (c¢) ordered antibubbles for s = 0.2},
panel (d) ordered lattice for s = 0.05\.

ordered line state was seldom found in experiments.

5. PHASE DIAGRAM

We summarize the transitions between different vortex
states, identified by their structure factor S(k), as func-
tions of vortex density and temperature in the phase di-
agram displayed in Fig. 7. This is the main result in our
report. In the low-temperature regime, where thermal
fluctuations are weak, with increasing density the vortex
system shows low-density Abrikosov lattice (B < 0.1B2),
ordered chain state (B = 0.1 ~ 0.19B.2), Kogamelike
vortex state (B = 0.19 ~ 0.25B.3), and high-density
Abrikosov lattice (B 2 0.25B.2). The boundaries be-
tween these phases are the direct consequences of the
competition between long-range and short-range repul-
sion (or two characteristic length scales). In the high-
temperature regime, thermal fluctuations become impor-
tant. The vortex phases transit from ordered solid to
disordered liquid state with increasing temperature. The
phase boundaries result from the competition between
vortex elastic energy and thermal energy.

FIG. 6: (Color online) Effect of disorders on the configura-
tions of vortices (pink solid circles) at B = 0.15Bc20, including
thermal fluctuations: (a) T'= 0.1, (b) 7' = 0.7; and pinning
centers (green solid circles, N, = 10N,): (¢) fpv = 0.4, T =0,
(d) fov =4, T =0.
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FIG. 7: (Color online) Phase diagram of vortex matter as
function of B and T. The phases are hexagonally ordered vor-
tex lattice (I), ordered vortex chains (II), Kogamelike vortex
phase (III), and vortex liquid (IV).

6. SUMMARY

In conclusion, we propose a phenomenological vortex-
vortex interaction model with long-range Pearl repul-
sion and short-range attraction to study the vortex s-
tates of chain-forming vortex systems. We find a rich
phase diagram for the clean vortex system which includes
Abrikosov, ordered chain, Kogame and liquid phases. We



also find that the ordered vortex chain phase transits in-
to a disordered chain and disordered glass phases in the
presence of impurities. Besides, for enhanced intervortex
attraction, we show that the vortices form ordered lat-
tice both in low and high vortex densities, and bubble
and stripe and antibubble lattice at intermediate vortex
densities. Our results are in agreement with experiments.
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