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The recent proposal of Romero-Isart et al. [1] to utilize the vortex lattice phases of superconducting
materials to prepare a lattice for ultra-cold atoms-based quantum emulators, raises the need to
create and control vortex lattices of different symmetries. Here we propose a mechanism by which
honeycomb, hexagonal, square, and kagomé vortex lattices could be created in superconducting
systems with multi-scale inter-vortex interaction. Multiple scales of the inter-vortex interaction can
be created and controlled in layered systems made of different superconducting material or with

differing interlayer spacing.

PACS numbers: 67.85.-d, 74.25.Uv,

To circumvent the limitations on classical computa-
tion, a growing effort to manipulate and control the be-
havior of ultracold atomic gases has led to these systems
being used as quantum simulators for a host of phe-
nomena in condensed matter physics [2, 3]. A focus of
quantum simulator investigations has been on building
Hubbard models by loading a gas of neutral atoms into
optical lattices and tuning the interaction between the
atoms [4, 5]. At present, great strides have been made
in cooling protocols [6-8]. But the main question, to as-
sess in such experiments whether the Hubbard model can
explain high-T, superconductivity, remains unanswered.

In order to address this question, better cooling
schemes which reduce the entropy of the quantum sim-
ulator are necessary [5]. Very recently, Romero-Isart et
al. [1] proposed placing ultracold atoms in a lattice poten-
tial generated by magnetic field of superconducting vor-
tices in type-2 superconductors and trapping the atoms
near the surface. This new approach aims to decrease the
inter-lattice site distance, making the required regimes
experimentally feasible [1, 9]. This possibility of a cru-
cially important application raises the need to create and
control vortex lattices of different symmetries. Although
in some exotic cases a square vortex lattice has been ob-
served [10, 11], the overwhelming majority of vortex lat-
tices in superconductors have hexagonal symmetry. In
order to create a vortex lattice of various symmetries for
quantum emulators, Romero-Isart et al. [1] proposed pin-
ning the vortices in arrays of etched holes/anti-dots [12].
While such vortex systems have been extensively investi-
gated in superconductivity both theoretically and exper-
imentally for various pinning array geometries [13-22],
Romero et al. [1] note that the anticipated challenges
to implementing the approach are high requirements for
perfection of the vortex lattice and possible variations
and field inhomogeneities in the anti-dot arrays. In fact,
the interest in self-assembly of kagomé and honeycomb
structures goes beyond the recent interest in vortex mat-

ter and is intensively studied in soft condensed matter
systems [23-26].

Here we propose an alternative approach involving
multi-component superconducting systems. Recently
there has been interest in superconductivity with sev-
eral scales of repulsive and attractive interaction. In
two-band superconductors it is possible to have a vor-
tex system where the short-range interactions are re-
pulsive while the long-range interactions are attractive
in regimes where one coherence length is shorter than
the magnetic field penetration length while the second
coherence length is larger, ie. & < A < & [27-
30]. The regime which was recently termed type-1.5
superconductivity in experimental works on MgBs [31-
33] and SroRuOy4 [34, 35]. The non-monotonic inter-
vortex interaction is also possible in electromagnetically
or proximity-effect coupled bilayers [27].

In the two-band superconductor the long-range inter-
vortex interaction energy is given by [27, 28, 36]

r r r
Einy = C%)Ko (X) - 01227TK0 (5—1> - 022K0 (5—2) .

The first term describes inter-vortex repulsion which
comes from magnetic and current-current interaction.
The second and third terms describes attractive inter-
actions from cores overlaps. The two contributions are
due to to coherence lengths.

In Ref. 37 it was proposed that in layered systems mul-
tiple repulsive length scales are possible when different
layers have different \;. For a straight and rigid vortex
line, the long-range interaction is then

Eing = ZCB%KO (%) - ZCf2wKo (é) (2

Such a system can have various cluster phases due
to multi-scale repulsive interactions [37]. Subsequently
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FIG. 1. Schematic picture of the magnetic field lines of a
vortex in a layered superconductor. Shaded (white) areas
are superconductor (insulator) layers with different thickness.
The flux spreads in the non-superconducting regions.

some of the phases obtained in simulations where the
vortices are treated as a point-particle [37] were also
obtained in simulations of a layered Ginzburg-Landau
model [38].

Here we point out that layered systems proposed in
Ref. 37, i.e. structures made of a combination of type-1
and type-2 superconductors with variable interlayer dis-
tances (see Fig. 1), could be used to create vortex lat-
tice of different symmetries. In what follows, we uti-
lize Langevin dynamics to study various states of vor-
tex matter in superconductors [39-42]. Often in systems
with multiple repulsive length scales various phases are
quite robust with respect to potential changes as long
as the potential preserves the distinct repulsive length
scales [43, 44]. Thus we use a phenomenological pairwise
potential with multiple length scales which has character-
istic features of the analytically known asymptotic form
Eq. (2) as well as included effect of demagnetization field
in the form of analytically known long-range power-law
repulsive inter-vortex force [45]. We demonstrate that
layered systems where such a potential can be realized
can be used to generate the four two-dimensional lattices:
hexagonal, honeycomb, square, and kagomé.

In Fig. 2, we illustrate two potentials that arise from
a phenomenological form

"  Mtanbla(r = §)] + 1}

r+ 9
(3)

that captures the essential multi-scale features of the
inter-vortex forces in a layered superconducting struc-
ture [37, 47], when the interaction can be approxi-
mated by pairwise forces between straight vortex lines.
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FIG. 2. Phenomenological potential that describes the multi-
scale inter-vortex interaction for straight rigid vortex lines in
layered system with different layer’s parameters. The solid
red curve gives rise to a honeycomb lattice at density [46]
p = 1.50, a hexagonal lattice at p = 2.25, and a square lattice
at p = 2.50, while for the dashed green line a kagomé lattice
is the ground state at a density of p = 2.50. [47].

The model features a short-range exponential repulsion,
intermediate-ranged exponential attraction, and a long-
range power-law repulsive behavior. The interplay be-
tween these different interactions results in a rich phase
diagram which go beyond the scope of this paper; we de-
fer a full discussion of its properties for future work [48].

In Fig. 3, we illustrate some of the ground state vor-
tex phases of the potentials shown in Fig. 2. The phases
were obtained using Langevin dynamics [40] simulations
of N, ~ 1000 to N, = 3000 vortices where the temper-
ature was slowly reduced to 7" = 0 (see Refs. 37 and 48
for additional details). For the solid red line of Fig. 2, we
obtain honeycomb, hexagonal, and square lattices at den-
sities [46] p = 1.50, 2.25, and 2.50, respectively. For the
dashed green curve, we obtain a perfect kagomé lattice
for p = 2.50. For the honeycomb, hexagonal and square
lattice results, we find little to no defects for the largest
system sizes studied. For the kagomé lattice results, we
achieve a defect-free lattice for 1020 vortices but observe
a kagomé lattice with defects for 2958 vortices which may
be a consequence of the simulated annealing rate. All
simulations were initialized with random configurations
and later compared with a perfect lattice. In the case of
the honeycomb and kagomé lattice results, we observed
a polycrystalline state which had higher energy than the
perfect lattice. To ensure that the perfect lattice was
the correct ground state, we prepared simualtions with
the ground state configuration at high temperature re-
peated the simulated annealing protocol, ending up with
a final configuration lower than the defect-filled case (see
Fig. 3(a,d) for lowest energy configurations).

In order to characterize the degree of perfection for
each phase, we first consider the radial distribution func-



FIG. 3. The final vortex configuration at the zero temperature
for (a) N, = 3024 and p = 1.50 (honeycomb lattice), (b)
N, = 2958 and p = 2.25 (hexagonal lattice), (¢) N, = 2958
and p = 2.50 (square lattice), and (d) N, = 1020 and p = 2.50
(kagomé lattice). Panels (a)-(c) correspond to the solid red
curve of Fig. 2, while panel (d) corresponds to the dashed
green curve.

tion (RDF),

N
1 v
9(r) = 2nrArpN, ;ni(r, Ar), (4)

where n;(r, Ar) is the number of particles in the shell
surrounding the i-th particle with radius r and thickness
Ar. For phases that form regular lattice structures, we
can offer a direct comparison with an ideal lattice, which
we illustrate in Fig. 4.

From g(r) we can define the i-th nearest neighbor (co-
ordination numbers) as

mi=2mp [ glryir, (5)
Ti—1

where 7;,_1 and r; are the minima surrounding the ith
peak in g(r). In Fig. 5, we show the coordination number
up to the 5th nearest neighbor for each of the lattices
shown above.

Next, we define the degree of perfection d = NLU >d;
for a lattice as

2,0
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FIG. 4. Comparison of the radial distribution function g(r)
of the vortex configurations shown in Fig. 3 with those of the
ideal geometry for (a) honeycomb, (b) hexagonal, (c) square,
and (d) kagomé lattices. The dashed blue line is the zero
temperature result after simulated annealing, and the solid
red line is the ideal result.

where d; is the degree of perfection for the jth vortex, n;
is the number of the nearest neighbors (i.e. the number of
the vortices within a circle of radius r. with the jth vortex
at its center, where 7. is the first minimum of the RDF),
0; is the angle between the two nearest neighbours, and
Operfect is the angle between the two nearest neighbours in
the perfect lattice. Note that by definition, d = 1 if there
are no defects in the lattice. For the square, hexagonal,
and honeycomb lattices Operfect = /2, /3, and 27/3,
respectively, while the kagomé lattice has two possible
angles: 7/3 and 27/3.

For the honeycomb lattice (panel (a) of Figs. 3, 4,
and 5), we find that the ordering of the vortices matches
the ideal result very well, with the degree of perfection
d =~ 1 for all simulations of N, = 1008 and N, = 3024
vortices. The peaks of the radial distribution function
closely match the ideal case, with broadening of the peaks
due to defects that increases as the separation between
the vortices increases. The coordination number is within
1% for all results.

For the hexagonal lattice [panel (b)], the ordering is
nearly perfect, with d ~ 1 and the radial distribution
function featuring nearly delta function peaks that match
with the ideal result. The coordination number calcula-
tion also remains within 1% of the ideal result up to ns
for simulations of N, = 2958 and for all coordination
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FIG. 5. Number of nearest neighbors n; up to the fifth-

nearest-neighbor for the (a) honeycomb (b) hexagonal, (c)
square, and (d) kagomé lattices of Fig. 3 with N, ~ 1000
(squares) and 3000 (circles) vortices. Here, n; is normalized
to the number of neighbors in a perfect lattice.

numbers we calculated for simulations of N, = 986 vor-
tices.

For the square lattice [panel (c)], the ordering is ex-
tremely good, with d = 0.990 and 0.989 for N, = 986
and 2958 vortices, respectively. The radial distribution
function features delta function peaks for the first eight
peaks before broadening begins to occur. In addition,
the number of nearest neighbors calculated is within 1%
of the ideal result for the first five neighbors.

For the kagomé lattice [panel (d)], the ordering is also
very good, with d = 0.999 and 0.946 for N, = 1020 and
2958, respectively. The radial distribution function of
the simulation result matches the perfect kagomé lattice
peaks very well. The coordination numbers are within
1% for both N, = 1020 and 2958 vortices.

In summary, the recent proposal [1] of realizing quan-
tum emulators by trapping ultra-cold atoms in the mag-
netic field of superconducting vortex lattice raises the
need to develop methods to create vortex lattices of vari-
ous symmetries. Here we propose layered systems where
vortex interaction is multi-scale (in particular the type-
1.5 systems) as the systems where in principle various
vortex lattice symmetries can be realized. The upper
layer may in particular be used to tune localization of
the field while lower layers and interlayer distances are
used to control lattice symmetry. Different temperature
dependencies of components in different layers can also be

used to manipulate the vortex lattice by controlling the
temperature. We support that proposal by simulation of
point-particle objects with phenomenological two-body
forces similar to long-range forces between straight and
rigid vortex lines. Next we plan to investigate it in the
layered Ginzburg-Landau model which also include the
effects of vortex bending and non-pairwise inter-vortex
forces (which can be especially important in type-1.5
regime [36]).
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