The University of Southampton
University of Southampton Institutional Repository

Neural Network Survival Analysis for Personal Loan Data

Baesens, Bart, Van Gestel, Tony, Stepanova, Maria, Van den Poel, D. and Vanthienen, Jan (2005) Neural Network Survival Analysis for Personal Loan Data Journal of the Operational Research Society, 59, (9), pp. 1089-1098. (doi:10.1057/palgrave.jors.2601990).

Record type: Article


Traditionally, credit scoring aimed at distinguishing good payers from bad payers at the time of the application. The timing when customers default is also interesting to investigate since it can provide the bank with the ability to do profit scoring. Analysing when customers default is typically tackled using survival analysis. In this paper, we discuss and contrast statistical and neural network approaches for survival analysis. Compared to the proportional hazards model, neural networks may offer an interesting alternative because of their universal approximation property and the fact that no baseline hazard assumption is needed.
Several neural network survival analysis models are discussed and evaluated according to their way of dealing with censored observations, time-varying inputs, the monotonicity of the generated survival curves and their scalability. In the experimental, we contrast the performance of a neural network survival analysis model with that of the proportional hazards model for predicting both loan default and early repayment using data from a U.K. financial institution.

Full text not available from this repository.

More information

Published date: 2005
Keywords: credit scoring, survival analysis, neural networks


Local EPrints ID: 36752
ISSN: 0160-5682
PURE UUID: 2e7cdefc-827f-468d-b020-eb5137dc112f

Catalogue record

Date deposited: 23 May 2006
Last modified: 17 Jul 2017 15:43

Export record



Author: Bart Baesens
Author: Tony Van Gestel
Author: Maria Stepanova
Author: D. Van den Poel
Author: Jan Vanthienen

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.