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Algorithms for Appliance Usage Prediction

by Ngoc Cuong Truong

Demand-Side Management (DSM) is one of the key elements of future Smart Electricity

Grids. DSM involves mechanisms to reduce or shift the consumption of electricity in an

attempt to minimise peaks. By so doing it is possible to avoid using expensive peaking

plants that are also highly carbon emitting. A key challenge in DSM, however, is the

need to predict energy usage from specific home appliances accurately so that consumers

can be notified to shift or reduce the use of high energy-consuming appliances. In some

cases, such notifications may be also need to be given at very short notice. Hence, to

solve the appliance usage prediction problem, in this thesis we develop novel algorithms

that take into account both users’ daily practices (by taking advantage of the cyclic

nature of routine activities) and the inter–dependency between the usage of multiple

appliances (i.e., the user’s typical consumption patterns). We propose two prediction

algorithms to satisfy the needs for fast prediction and high accuracy respectively: i) a

rule-based approach, EGH-H, for scenarios in which notifications need to be given at

short notice, to find significant patterns in the use of appliances that can capture the

user’s behaviour (or habits), ii) a graphical–model based approach, GM-PMA (Graphical

Model for Prediction in Multiple Appliances) for scenarios that require high prediction

accuracy. We demonstrate through extensive empirical evaluations on real–world data

from a prominent database of home energy usage that GM-PMA outperforms existing

methods by up to 41%, and the runtime of EGH-H is 100 times lower on average, than

that of other benchmark algorithms, while maintaining competitive prediction accuracy.

Moreover, we demonstrate the use of appliance usage prediction algorithms in the con-

text of demand–side management by proposing an Intelligent Demand Responses (IDR)

mechanism, where an agent uses Logistic Inference to learn the user’s preferences, and

hence provides the best personalised suggestions to the user. We use simulations to

evaluate IDR on a number of user types, and show that, by using IDR, users are likely

to improve their savings significantly.
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Chapter 1

Introduction

Countries around the world currently face two main greatest challenges: reducing carbon

emissions and securing sustainable energy supplies (US Department of Energy, 2003;

Department of Energy & Climate Change, 2009a). With current trends relating to the

increase of energy use year on year, the world demand is predicted to increase by more

than 90% by 2035, and the share of fossil fuels in the world’s energy mix falls from

82% to 76% in 2035 (International Energy Agency, 2013). It is therefore necessary to

investigate methods to improve the energy infrastructure to meet this growing demand

without causing irreversible damage to the environment.

In an effort to mitigate the adverse effects of climate change, many countries have

committed to transition to a low carbon economy. Specifically, the UK has legislated

that carbon emissions should be reduced by 80% by 2050 (compared to their 1990

baseline) (Department of Energy & Climate Change, 2009b). To meet this target, a

key aim is to improve energy efficiency through the use of two main sources: heating

living spaces and (about 13% of all UK CO2 emissions) and transportation sector (about

22% of all UK CO2 emissions) (Department of Energy & Climate Change, 2009b). In

particular, more efficient heating technologies such as air or ground source heat pumps

powered by electricity will be used rather than using natural gas or oil (MacKay, 2007).

Within the transport section, ultra-low carbon vehicles will become widespread. As a

result, the demand for electricity will be increased dramatically. To meet this electricity

demand, there is a need to increase low-carbon electricity generators which use renewable

resources such as wind and solar into electricity networks.

Meeting this increased demand for electricity presents a major challenge to existing

electricity grids that need to maintain the perfect balance between supply and demand.

More specifically, the electricity distributed from a relatively small number of large

fossil fuel burning power stations to millions of consumers, and the central operation

on this original electricity grid is based on the idea that supply must always follows

demand. This balance is very crucial in operating an electricity system. To guarantee

1



2 Chapter 1 Introduction

the balance between the demand and supply, the supply-side must be varied in real-

time (by adjusting the output of generators such as voltage and frequency across the

grid) to match the demand-side requirements. Maintaining this regime where supply

follows demand has several negative implications. First, the generation of electricity is

likely to be inefficient. In particular, to satisfy peak demand at specific times of the day

on a daily basis, a number of additional generators are required to generate power at

short notice (i.e., spinning reserve). This requirement of additional generators results

in the real cost of generating electricity to vary widely throughout the day, while, on

the other hand, the electricity price charged to consumers is typically much cheaper. As

a result, the whole operational process is inefficient. Second, there will be significant

losses within the transmission and distribution networks due to ageing infrastructure

(e.g., 40-year old power stations). Third, with the increasing penetration of renewable

energy generation embedded in the distribution network (e.g., community wind turbines,

or solar panels on houses), the generation of electricity may become more unpredictable

and unmanageable. As a consequence, flows on the distribution network will also be

more uncertain. To address such issues, investment costs to reinforce the current grid

infrastructure can be huge and infeasible. Instead, fundamental operation of the grid

might need to be redesigned to increase efficiency between supply and demand within

the grid.

To increase electricity efficiency within the grid, the demand-side will need to be managed

to adapt to the available supply. This control regime is termed ‘demand follows supply’.

Indeed, the idea of controlling loads and generators to respond to network constraints

and price signals have been highlighted for a number of reasons (Schweppe et al., 1989).

First, peaks in demand can be ‘flattened’ and this, in turn, reduces the need to operate

costly and carbon intensive peaking power plants. In the long term, this flattening allows

cheaper cost to the consumers, and more economically viable for businesses that require

greater supply reliability and flexibility. Second, the grid operators can be flexible and

quickly recover if there are any unforeseen events (e.g., the unavailability of renewable

energy sources).

This drive for demand-side management (DSM) is one of the key elements of the vision

of ‘smart grid’, whereby energy demand can be controlled using incentives and automa-

tion. Research has shown that even small shifts in peak demand can have significant

impacts on savings for consumers (Spees and Lave, 2008). In more detail, the smart

grid is described by the US Department of Energy (US Department of Energy, 2003) as

“a fully automated power delivery network that monitors and controls every customer

and node, ensuring a two-way flow of electricity and information between the power

plant and the appliance, and all points in between. Its distributed intelligence, cou-

pled with broadband communications and automated control systems, enables real-time

market transactions and seamless interfaces among people, buildings, industrial plants,

generation facilities, and the electric network”. Consequently, smart grids intelligently
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integrate the actions of all participants in the system to deliver reliable, low carbon

electricity. Moreover, smart grids use smart metering technology, which is set to open

up a range of new services to consumers to allow greater choices and control over their

energy usage. These meters will also provide more accurate bills, support faster and

easier supplier switching, and allow suppliers to offer a greater range of tariff packages

and services, as well as facilitating the control of appliances within the home. In par-

ticular, in the domestic sector, the UK Government has already committed to ensuring

that smart meters for both electricity and gas are in all homes (47 millions meters in 26

million properties) by 2020 (Department of Energy & Climate Change, 2009a). More

specifically, an investment of 8.6 billion pounds will be spent in replacing some 47 million

gas and electricity meters, which are expected to deliver total benefits of 14.6 billion over

the next 20 years (compared to 2009 level) (Department of Energy & Climate Change,

2009a). Similar commitment has also been shown in the US in which twenty-eight US

utilities are committed to rolling out smart meters to their customers in the next few

years (Department of Energy & Climate Change, 2009a).

At the domestic level, figures show that domestic electricity consumption accounts for

approximately 27% of worldwide electricity consumption (International Energy Agency,

2008). Moreover in the UK in 2009, domestic electricity usage accounted for approxi-

mately 24% of the country’s overall electricity consumption (Department of Energy &

Climate Change, 2010). Particularly, deferrable loads1 already accounted for approxi-

mately 20% of the domestic electricity usage, and is likely to grow due to the increased

electrification of space and water heating (MacKay, 2007; Department of Energy & Cli-

mate Change, 2009b). Hence, it is expected that DSM will have a major impact on CO2

emissions and overall generation costs, as minimising peaks in consumption reduces the

need for expensive peaking plants that can be also be highly carbon intensive. More im-

portantly, DSM is enhanced by the concept of the future smart home in which advanced

automation systems and appliances such as lighting, heating, key electronic devices and

services can be remotely controlled, monitored and accessed to manage electricity use

in order to maximise users’ comfort and savings while avoiding peaks on the grid. For

example, a smart home can control lighting, temperature, multi-media, turn on central

heating at the economical periods that are most comfortable for the home’s users. We

discuss DSM methods to manage electricity demand at a large scale in the following

section.

1.1 Agent-based Demand Side Management

The scenario we study in this thesis involves some of the operations of a future ‘smart’

home (see Figure 1.1). In particular, within this home, electricity is supplied by both dis-

tant generators (e.g., delivering electricity over transmission and distribution networks),

1The use of the appliances that can be delayed/shifted.
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and local energy sources through domestic micro-generation based on low-carbon re-

sources such as solar panels or wind turbines, and micro-storage (such as a battery)

where electricity is stored and can be re-used to maximise the electricity usage from

intermittent sources (e.g., wind or solar).

In addition, individual home devices will be monitored by sensors allowing for intelligent

home automation (e.g., lights can be turned off if no one is at home, or the electric heaters

could be scheduled to turn off when the price of electricity is high). Moreover, home

automation systems (e.g., Samsung Smart Home Appliances,2 Microsoft Hohm,3 Intel

Home Dashboard Concept4) will provide sensors to control home appliances and monitor

local weather conditions in order to optimise heating and electricity usage.

Figure 1.1: An example of smart home model. (source: http://www.digikey.com)

Now, the advent of the smart grid with two way information flows will potentially allow

smart homes to automatically manage loads via the smart meter in reaction to grid con-

ditions.5 In particular, based on the real–time carbon intensity (see Figure 1.2) or the

real–time price of electricity, grid operators may send signals to the smart meter in the

smart home in order to curtail demand or coordinate the flow of electricity (Ramchurn

et al., 2011a). Theoretically, if the price of electricity (or CO2) is high on the wholesale

energy market, the utilities would motivate smart homes to reduce or shift their con-

sumption loads. In more detail, consumers may be charged more for using electricity

at peak hours using tariffs such as time-of-use (TOU) (e.g., Economy 7, Economy 10 in

the UK), or real-time pricing (RTP) (e.g., the GridWise Project6). Home devices may

2http://www.samsung.com/uk/home-appliances/.
3www.microsoft-hohm.com.
4http://www.intel.com/p/en US/embedded/applications/energy/energy-management.
5We describe the smart meter in more detail in Section 2.1.1.
6See more details at http://gridwise.pnl.gov/.
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Figure 1.2: An example of a display of real-time carbon intensity in the UK (source:
http://realtimecarbon.org/).

also be directly controlled using signals from the grid (e.g., the frequency of AC power).

For example, air conditioners may be automatically turned off at peak time, or storage

heaters may be turned on at night using radio signals (Faruqui and George, 2005). Such

techniques assume that providing more automation and incentives to consumers helps

them manage the use of appliances more efficiently. However, this assumption is chal-

lenged by the two main problems: i) the signals from the grid are typically too complex

for the average user to take any meaningful action as a result (Schweppe et al., 1989);

ii) consumers need to perform complex calculations in order to obtain an optimal plan

(e.g., schedule their appliance runs or activities according to a real-time price profile)

that maximises their savings (Costanza et al., 2014).

Against this background, a set of agent–based demand–side management (ADSM) tech-

niques have been proposed to address these challenges (Vytelingum et al., 2011; Ygge

and Akkermans, 1999; Ramchurn et al., 2011a; Kashif et al., 2011). In particular, these

methods involve deploying autonomous–software agents in smart meters in the home,

acting on behalf of the user. By taking into account the real time carbon content/cost
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of electricity, the agent can schedule appliance usage on behalf of the user in order to

minimise peak demand. However, in so doing, it is also essential to take into account

the user’s preferences as well as the user’s typical consumption patterns (e.g., the use of

washing machine implies the use of the clothes dryer) (or the inter–dependencies between

appliance usage) in the home when scheduling loads (Rodden et al., 2013; Alan et al.,

2014; Fischer et al., 2013). However, these recent ADSM techniques simplify the user’s

preferences in the optimisation of the scheduling plan to an arbitrarily weighted function

of cost and comfort variables. Thus, such scheduling methods may not be acceptable

to users as the plans are not compatible with their everyday routine. For example,

suppose that a user prefers to use the washing machine on weekends when she/he has

time to take clothes out to dry and iron them. As a consequence, she/he would not

accept a suggestion to use the washing machine on a week day, even though it may

be cheaper to do so. Moreover, demand–side management algorithms generally ignore

inter–dependencies between the usage of different appliances (see Section 2.1.2 for more

details). For instance, a user might use the dishwasher and the oven on the same day,

or prefers to turn on the TV whenever she/he starts cooking. To produce rescheduling

suggestions that meet a user’s preferences (and therefore more likely to be acceptable),

it is crucial to forecast their appliance usage by capturing both the user’s habits (or

behaviour) and the inter–dependencies between appliances. Taking such forecasts into

account, an agent would be able to empower the users to make informed energy reduction

decisions by providing more personalised recommendations on how to use appliances to

reduce cost and CO2 emissions. We discuss the appliance usage prediction problem in

the next section.

1.2 The Appliance Usage Prediction Problem

This section describes the challenges of the appliance usage prediction problem in the

smart home, which is considered as a key building block to improve the efficiency of

agent-based DSM techniques in real–world deployments. By solving the appliance pre-

diction problem, the agent can forecast which appliances are likely to be used, and when

they are likely to be used at a certain point during a day in the future. Taking such

forecasts into account, the agent can optimise the future plan (e.g., a day ahead, or a

week ahead) for appliance usage based on minimising electricity costs (or CO2) and the

user’s preferences. In addition, the agent can also provide personally meaningful sugges-

tions to the user to maximise their savings (i.e., money). More importantly, in order to

forecast appliance usage accurately, appliance usage prediction algorithms need to take

into account both the human routine activities (e.g., a particular user might prefer using

their washing machine on weekend and watching TV in the evening during weekdays)

and the inter–dependencies between appliances (e.g., the use of washing machine implies

the use of dryers, and the use of ovens and microwaves implies the use of dish washers).
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To date, modelling inter-dependencies between appliances has been approached using

mainly two different techniques: i) a rule-based method based on Frequent Episodes

Discovery; ii) Temporal Point Processes which is a stochastic process composed of a

time-series of binary events (Daley and Vere-Jones, 2003).7 However, as we will show

later in Chapter 6, by not considering human routines, these approaches do not perform

well on real-world datasets of energy consumption from homes.

In contrast, methods for human behaviour prediction have been developed for many

applications such as activity recognition, location prediction and human presence pre-

diction (González et al., 2008; McInerney et al., 2013; Tominaga et al., 2012). These

algorithms consider the pattern of human routines but have not been specifically mod-

elled complex inter-dependencies between the usage of different appliances within a

typical home. For example, location prediction has to deal with only one data stream,

while a key difference is that in our domain of application there are multiple concurrent

data streams, one per appliance.8

Furthermore, to deploy the appliance usage prediction algorithms in a real–world ap-

plication, the prediction accuracy is one of the most important factors to help users to

trust the system. Without this trust, users would ignore intelligent features such as

personalised recommendations from the system. One example of such loss of trust is the

deployment of the Nest thermostat (Yang and Newman, 2013), which features an at-

tractive wall-mounted device as well as smart phone and web-based control capabilities.

The Nest device utilises such machine learning and sensing technology to learn users’

comfort and maximise energy savings as well as convenience and enjoyable interaction.

Field trial studies of the Nest thermostat in real houses show that users are not satisfied

with the device mainly due to the inability to accurately learn and predict users’ comfort

and scheduling of the thermostat usage.

Against this background, the goal of this thesis is to address the aforementioned chal-

lenges of the appliance usage prediction problem. Moreover, we also develop an Intel-

ligent Demand Response mechanism (see Chapter 7); a simulated scenario that makes

use of the appliance usage prediction algorithms we develop, to demonstrate the process

of maximising monetary savings and comfort for the user (or home’s users). In the next

section, we provide our research requirements for this prediction problem.

1.3 Research Requirements

An algorithm for appliance usage prediction has to satisfy the following broad require-

ments:

7Related work for modelling inter-dependencies algorithms will be described in Chapter 2.2.
8We discuss related work for prediction human routine in Section 2.3.
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1. Human routine behaviour: it is important to be able to model user routines,

taking into account the use of appliances on specific days of the week or times of

the day, in order to make more accurate predictions.

2. Ability to learn inter–dependencies between appliances: as discussed above,

consumers may use multiple appliances in temporal sequences that reflect inter-

dependencies between the appliance usage activities. Hence, our algorithms need

to be able to model such temporal inter–dependencies accurately.

3. Prediction accuracy: given models of appliance usage and human routines, it

is important to develop methods to learn to predict the usage of appliances with

high accuracy in order to avoid annoying the user with pointless suggestions to

shift or reduce appliance usage in the future.

4. Computational efficiency: algorithms for appliance usage prediction should be

able to return predictions at short notice in the case where users need to be notified

to shift or reduce consumption in real-time.

In the next section, we discuss our contributions against these requirements.

1.4 Research Contributions

Given the requirements described in Section 1.3, our research aim is to develop the al-

gorithms to tackle the appliance usage prediction problem. In so doing, we contribute

to the state–of–the–art and meet all four requirements by developing a number of novel

appliance usage prediction algorithms. More specifically, we propose novel algorithms

to predict the usage of appliances that take into account both daily practices of users

and the inter–dependency between their usage of different appliances. Our algorithms

take advantage of the cyclic nature of routine activities (González et al., 2008). These

contributions are summarised in Table 1.1. Moreover, we identify a trade–off between

prediction accuracy and computational cost, and hence propose two algorithms that

satisfy the needs for fast prediction and high accuracy respectively. In more detail, to

generate predictions of appliance usage in limited time, we develop EGH-H, a rule–based

method to find significant patterns in the energy consumption activities that can capture

the user’s behaviour. In particular, we build a model that models the cyclic behaviour

of the users and hence use the Episode Generation Hidden Markov Model (EGH) (Lax-

man et al., 2008) to efficiently capture the patterns that form the inter–dependency

between the usage of the appliances. To provide more accurate predictions, we pro-

pose a graphical–model based approach, GM-PMA. In particular, we use the Dirichlet

Process Mixture (DPM) model to identify a set of latent classes that represent sets of be-

haviour of the user (e.g., working days, holidays, weekends), conditioning on the weekly

periodicities of routine behaviour. These latent classes are never directly observed, and
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can capture the inter–dependencies between appliance usage at different times of the

day. We empirically evaluate EGH and GM-PMA and benchmark them against other

comparable algorithms on two real–world datasets: the FigureEnergy dataset (Costanza

et al., 2012), and the REDD dataset (Kolter and Johnson, 2011), and show that our

approach outperforms them significantly.

Furthermore, we study a particular application of our algorithm to improve demand–

side management. In more detail, we simulate a scenario within the home in which

an agent can assist the user to optimise their savings and comfort using our appliance

usage prediction algorithm. By taking into account real–time energy costs, the agent can

suggest the deferment of some energy consumption activities to minimise overall cost

while minimising discomfort. Crucially, the agent can learn to provide more meaningful

suggestions by learning from the reaction of the user to previous deferment suggestions.

Thus, this thesis advances the state–of–the–art as follows:

∙ We propose GM-PMA, the first, graphical model based, algorithm that can model

both human behaviour and appliance usage inter–dependencies to efficiently pre-

dict the usage of electrical appliances in the home. Moreover, considering the

trade-off between computational cost and accuracy of prediction, we also propose

EGH-H, a faster, rule–based, algorithm that can integrate cyclic human behaviours

and capture inter–dependency of patterns over activity streams.

∙ We demonstrate through extensive empirical evaluation, using real–world data

from the FigureEnergy dataset and the REDD dataset, that GM-PMA outper-

forms existing algorithms by up to 41% in terms of prediction accuracy. We also

show that the runtime of EGH-H is typically 100 times faster than that of the

benchmarks.

∙ We propose an Intelligent Demand Response (IDR) mechanism that an agent uses

to assist the user to improve their savings and comfort, by using an appliance

usage prediction algorithm. In addition, we simulate different user behaviours and

demonstrate that the agent can learn a user’s preferences from their responses to

the agent’s suggestions. We empirically evaluate the performance of IDR with a

number of different simulated user behaviour, and show that, by using IDR, users

are likely to improve their savings significantly.

The work up until now has led to following contributions to the literature:

∙ Truong, Ngoc Cuong, McInerney, James, Tran-Thanh, Long, Costanza, Enrico

and Ramchurn, Sarvapali D. (2013) Forecasting Multi-Appliance Usage for Smart

Home Energy Management. In, Proceeding IJCAI’13 Proceedings of the Twenty-

Third international joint conference on Artificial Intelligence, pages 2908-2914,

Beijing, China.
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EGH-H GM-PMA

Human routine behaviour ++ ++(*)

Ability to learn inter–dependencies between appliances ++ ++(*)

Prediction accuracy + ++(*)

Computational efficiency ++(*) +

Table 1.1: An overview of our contributions in terms of the research requirements in
the appliance usage prediction problem. The symbols have the following meaning: ‘+’
(‘++’) means that the requirement is (strongly) satisfied. In addition, ‘(*)’ indicates
the best performance of the row. On the other hand, ‘-’ means the requirement is not

satisfied.

∙ Truong, Ngoc Cuong, Tran-Thanh, Long, Costanza, Enrico and Ramchurn, Sarva-

pali D. (2013) Towards Appliance Usage Prediction for Home Energy Management.

In Proceedings of the fourth international conference on Future energy systems,

pages 287-288, ACM, 2013.

∙ Truong, Ngoc Cuong, Tran-Thanh, Long, Costanza, Enrico and Ramchurn, D.

Sarvapali (2013) Activity Prediction for Agent-based Home Energy Management.

In, Agent Technologies for Energy Systems (ATES 2013).

∙ Truong, Ngoc Cuong, Tran-Thanh, Long, Costanza, Enrico and Ramchurn, Sar-

vapali D. (2012) Predicting energy consumption activities for home energy man-

agement. At Agent Technologies for Energy Systems (ATES 2012), Valencia, ES.

∙ Truong, Ngoc Cuong, McInerney, James, Tran-Thanh, Long, Costanza, Enrico

and Ramchurn, Sarvapali D. (2014) Algorithms for Appliance Usage Prediction.

In, Journal of Artificial Intelligence Research (JAIR) 2014 (under review).

1.5 Report Outline

The remainder of this thesis is organised as follows:

∙ Chapter 2 discusses the vision of the smart grid, and the problem of managing

demand in the future smart home. First, we discuss the agent-based demand-side

management as a key technique to improve efficiency significantly in DSM as well

as managing even thousands of smart homes at large scale. Second, we provides

related work for modelling and predicting inter-dependencies between appliances

(or events) in temporal data. In particular, we describe two main approaches that

can be used to model the inter-dependencies between appliances: a temporal point

process technique, and a rule-based method based on Frequent Episode Discov-

ery. These algorithms will be used as benchmarks later in Chapter 6. Then, we

discuss existing work on predicting human routines in general. Lastly, we provide

general knowledge and techniques for probabilistic graphical models that we will

use throughout this thesis.
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∙ Chapter 3 describes our appliance usage prediction models, and the real–world

dataset that we use for evaluation. First, we mathematically model the appliance

usage problem. Second, we describe two real–world datasets, and provide methods

for data preparation before evaluation.

∙ Chapter 4 describes our rule-based algorithm, EGH-H, that is applicable for scenar-

ios in which notifications need to be generated in a short time. First, we describe

the inter-dependency model between appliance usage. Second, we provide the

human routine model that takes into account human routine behaviours. Third,

we describe the mixture model to improve the prediction performance. Last, we

provide the appliance usage prediction to forecast the future appliance usage.

∙ Chapter 5 describes our graphical model based algorithm, GM-PMA, that meets

research requirements 1 to 3 but trade–off computational efficiency in order to

provide more accurate predictions of appliance usage than EGH-H. First, we pro-

vide the clustering inter-dependency model to identify the behaviour of any given

observation. Second, we describe how to use Gibbs sampling inference to estimate

the parameters of the model. Last, the appliance usage prediction is provided

based on marginalisation from unknown variables.

∙ Chapter 6 shows empirical evaluations for our algorithms, comparing other bench-

marks. First, we give the settings set up for the experiments. Second, we describe

all the benchmark algorithms. Third, we provide the evaluation metrics to mea-

sure the performance of the algorithms. Fourth, we evaluate our algorithms with

a synthetic dataset. Last, we empirically evaluate the prediction accuracy and the

runtime of all algorithms on the real-world datasets.

∙ Chapter 7 proposes an Intelligent Demand Response (IDR), a simulated scenario,

to make use of our appliance usage prediction algorithms. First, we provide the

IDR’s mechanism in more detail. Second, we describe how to simulate human

responses to suggestions. Third, we discuss the agent to optimise personalised

suggestions to the users. Fourth, we describe logistic inference which is used to

learn user’s preferences based on user’s responses. Last, we empirically evaluate

the IDR mechanism using the real-world dataset.

∙ Chapter 8 summarises the key outcomes of this thesis and the conclusions that can

be drawn from each chapter. We also discuss theoretical and practical implications

of our work.





Chapter 2

Literature Review

In this chapter, we provide an accounted background research related to this thesis, and

the necessary theory in developing the algorithms presented in Chapters 3, 4 and 5. Sec-

tion 2.1 describes a vision of the smart grid with a focus on demand–side management

of domestic consumption, discusses the demand–side management challenges that might

raise in future smart homes and reviews related work that has been proposed to address

some of these challenges. Section 2.2 discusses existing algorithms for prediction from

inter–dependent data streams, by elaborating on two main approaches for modelling and

predicting the inter–dependencies between activities: i) Temporal Point Processes, and

ii) a rule-based method based on Frequent Episode Discovery framework. Section 2.3

provides related techniques for modelling and predicting human routine behaviour. Sec-

tion 2.4 provides background of probabilistic graphical models, describes Hidden Markov

Models and some approximate inference techniques that are used for discussion in de-

veloping our algorithms in Chapter 4 and 5. Finally, Section 2.5 summarises the key

concepts described in this chapter and justifies the techniques that are built upon within

this thesis.

2.1 The Smart Grid

As discussed in Chapter 1, many countries have committed to transition to a low car-

bon economy. In particular, the UK has legislated to achieve an 80% reduction of CO2

emissions by 2050 (Department of Energy & Climate Change, 2009a). To achieve such

ambitious targets, current electricity grids will have to be modernised in order to cope

with increasing demand and intermittent generation from renewable energy sources.1

However, a wholesale hardware upgrade would just be too costly. Given this, the smart

1Detailed motivation has been discussed in Chapter 1.

13
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grid has been proposed to offer a prospect of cost-effective and more efficient manage-

ment of the energy infrastructure. In particular, the US Department of Energy (2003)

describes a smart grid as:

A fully automated power delivery network that monitors and controls ev-

ery customer and node, ensuring a two-way flow of electricity and information

between the power plant and the appliance, and all points in between. Its

distributed intelligence, coupled with broadband communications and auto-

mated control systems, enables real-time market transactions and seamless

interfaces among people, buildings, industrial plants, generation facilities,

and the electric network.

Note, here, the particular focus on automation and interfaces that will create opportuni-

ties for a new range of services to intelligently coordinate the actions of all participants

(e.g., consumers, devices, suppliers) in the system and, by so doing, specifically allow for

autonomous demand response (i.e., the management of demand in relation to the pre-

vailing supply conditions). Furthermore, with two-way flows of real–time information on

the grid network, the smart grid promotes interaction between suppliers and consumers.

The suppliers can: i) provide dynamic tariffs that reflect the costs (and carbon content)

of generation; ii) or reward consumers for using more electricity at times when there is a

lot of electricity output generated from renewable sources. This transparent information

also allows the electricity network operators to improve the management of electricity

use by having a better coordination between supply and demand.

In more detail, the Department of Energy & Climate Change (2009a) defines four key

principles underlying such a smart grid as follows:

∙ Observable: provides a wide range of real–time operational statistics such as the

condition of equipment and technical information in both the transmission network

and distribution network.

∙ Controllable: provide better management and optimisation between demand and

supply on a large scale as well as incorporating the use of intermittent renewable

generation sources.

∙ Automated: include a number of autonomously intelligent features that will be

able to make certain automatic demand response decisions. It may also be able to

reconfigure its settings in response to power fluctuations or outages.

∙ Fully integrated: fully adapted to existing electricity systems and compatible

with other new devices such as smart home appliances.

Now, the intelligence implied by such definitions of the smart grid tend to naturally

relate to the concept of the smart home, in which key appliances and services can be
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Figure 2.1: A ‘Liberty’ smart meter manufactured by Secure Meters UK Ltd.

remotely monitored and controlled through the smart meter in order to optimise the

management of electricity use to maximise the user’s comfort and savings in the home

while avoiding peaks on the grid. Hence, we next discuss the use of the smart meters in

more detail in Section 2.1.1. The key principles of the smart grid will underpin demand–

side management (DSM) in which electricity use can be monitored and adapted in order

to minimise peaks on the grid by either remotely controlling appliances or incentivising

customers to shift/reduce their consumption at certain times. We discuss DSM in more

detail in Section 2.1.2.

2.1.1 Smart Meters

Central to the vision of the smart grid is the deployment of smart meters that promise to

allow greater control over electricity use for consumers. A smart meter (see Figure 2.1)

is an electronic device that records power or energy consumption in intervals of an hour

or less and communicate via a network back to the utility for monitoring and billing

purposes (The Climate Group, 2008). In the UK, smart meters typically collect energy

consumption data at half-hourly intervals and transmit this data to the utility (Smart

Metering Design Group, 2011). Some countries have already committed to roll out

smart meters to consumers’ homes. For example, the UK Government has committed to

ensuring that 47M smart meters will be installed in 26M homes by 2020 (Department of

Energy & Climate Change, 2009a). In the US, twenty-eight US utilities have committed

to rolling out smart meters to their customers in the next few years (Department of

Energy & Climate Change, 2009a).
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Figure 2.2: The AlertMe’s meter reading kits.

In more detail, smart meters consist of two parts: a metering module, and a com-

munication module. The metering module involves measuring, monitoring, and storing

energy (or electricity) consumption data at specified intervals. Apart from meter reading

products that are installed by the utility operators, there are several existing off-the-

shelf products available for the in-home monitoring such as Plogg,2 AlertMe,3 Plugwise.4

These off-the-shelf meter reading products usually offer ZigBee (IEEE 802.15.4) wireless-

mesh-based smart-plug units used in-line with appliances that are designed specifically

for in-home energy monitoring. For example, AlertMe’s meter reading kits (see Fig-

ure 2.2) measure power consumption of the whole house by clipping a clamp meter

through the standard mains voltage (or measure consumption of the appliance using a

AlertMe Smart Plug device). The clamp and the Smart Plug are connected to a battery-

powered wireless transmitter. Then, consumption data from the meter clamp and the

Smart Plug are transmitted to a supplied hub (which plugs into an ADSL or cable

routine) and the internet. In turn, the communication module offers two-way communi-

cations between suppliers and consumers. The communication module communicates to

the utility operators through GPRS technology and in the case of off-the-shelf products,

this module typically uses a broadband connection.5 Information such as real–time elec-

tricity bills, electricity prices, CO2 emissions can be provided from the utility operators

to the smart meter.

Smart meters usually include an in-home display (IHD), in which signals are sent to

a display panel from a transponder attached to the meter tail, to allow consumers

to monitor their energy consumption in real-time and retrospectively. Darby (2006)

shows that in-home displays help interested users better understand and manage their

electricity use through feedback information (on real-time and historic usage), and hence

achieving savings in the range of 5–15%. Recent real–world applications in relation to

in-home display have been deployed to help consumers manage their electricity use such

2http://www.plogg.co.uk.
3https://www.alertme.com.
4http://www.plugwise.com/.
5http://www.securetogether.com/.
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as Navetas,6 and AlertMe.7 Also, the IHD, allied with smart meters, can be developed

to encourage behaviour change by showing consumers how their energy consumption

patterns compared with those in similar households, then offers personalised tips to save

more energy (Froehlich et al., 2010).8

Moreover, a key capability of smart meters is that they allow suppliers to implement

demand–side management programmes. In more detail, energy supply companies may

offer their customers varying tariffs through the day that reflect the amount of supply

available on the system via the smart meter to incentivise them to switch some non-

urgent energy consumption activities away from peak times. By so doing, consumers

can save money on their bills, and CO2 emissions can also be minimised (by minimising

the peak demand). In addition, combined with the appliances in the home that can

be remotely controlled via smart meters, electricity use can be managed to maximise

consumers’ savings and comfort while minimising peaks on the grid. We discuss the

aspect of demand–side management in more detail in the next section.

2.1.2 Demand-Side Management

DSM involves the planning, implementation and monitoring of electricity consumption

activities in order to alter the use of their electricity in ways that will produce desired

changes in demand (Gellings, 1985; Strbac, 2008). Typical DSM approaches involve

a central controller that incentivises consumers to reduce their demand at peak times.

These approaches have been limited to two techniques, namely direct load control (DLC),

and smart pricing mechanism (SPM). DLC involves remotely controlling home appli-

ances using signals from the grid (e.g., the frequency of AC power) (Ruiz et al., 2009;

Gomes et al., 2007; Weers and Shamsedin, 1987; Chu et al., 2005). For example, air

conditioners may be automatically turned off at peak times, or storage heaters may

be turned on at night using radio signals (Faruqui and George, 2005). However, it

has been shown that the users’ privacy can be a major barrier in implementing DLC

(OpenHAN Task Force of the Utility AMI Working Group, 2010). SPM, in turn, in-

volves consumers being charged more for using electricity at peak hours. In this regard,

time-of-use (TOU), critical-peak pricing (CPP), and real-time pricing (RTP) are pop-

ular pricing mechanisms. However, only deploying these mechanisms to consumers is

ineffective because additional peaks in demand can be created instead. For example,

in TOU implementation (e.g., Economy 7, Economy 10, or eco:2020 in the UK); where

the electricity price during the day is more expensive than the electricity price at night,

it has been observed that significant additional peaks in demands are created at off-

peak hours (Strbac, 2008). In turn, CPP is often applied to control air-conditioners at

6http://www.navetas.com/.
7https://www.alertme.com/.
8This idea is also known as peer-pressure, which has been deployed recently. More detail can be seen

at http://opower.com/solutions/demand-response.
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peak periods in the USA, can raise additional peaks as soon as the critical period is over.

Similar results are caused by using RTP pricing scheme (e.g., the demonstration of Grid-

Wise Project9) in which the price of electricity varies at different hours (or half-hours)

of the day. Moreover, these approaches assume that the appliance use may be improved

efficiently if consumers are provided more automation and incentives. However, this as-

sumption raises two challenges: i) the average user can not take any meaningful action

as the signals from the grid are typically too complex (Schweppe et al., 1989); ii) in order

to maximise savings, consumers may need to perform complex calculations (Costanza

et al., 2014). Also, these techniques will not be scalable to deal with millions of homes

or buildings national-wide (Ramchurn et al., 2011a).

To address these challenges, recently, a number of agent-based demand-side management

techniques (ADSM) have been proposed (Deindl et al., 2008; Ramchurn et al., 2011b,a;

Vytelingum et al., 2010; Ygge et al., 1999; Wong et al., 2010). These approaches involve

deploying autonomous–software agents in smart meters in the home, acting on behalf

of the user, assist the user to manage the appliance usage more efficiently. By taking

into account the real time carbon content (or cost of electricity), an agent can schedule

appliance usage in order to avoid peak demands. In particular, Wong et al. (2010) use

game theory to formulate an energy consumption scheduling game in which the players

are the users and their strategies are the daily schedules of their household appliances and

loads. Vytelingum et al. (2010) propose the ADSM technique by presenting a model of

smart meters controlling the use of energy storage devices in homes. In more detail, they

optimise the usage of users’ activities and the storage profile of the house using various

information sources (e.g., predicted energy via weather data, supplier’s price plan). By

so doing, they provide agent-based micro-storage strategies to learn the best storage

profile to adopt so that the agents could learn to buy most profitable storage capacity

while helping to minimise peaks on the grid. In terms of deferrable load management,

Ramchurn et al. (2011a) propose a mechanism for agents to adapt (instead of reacting

as in traditional DSM mechanisms) the deferment of their loads to optimise the use

of electrical loads and minimise peaks. By using average UK consumption profiles for

26M homes, they show that the peak demand of domestic consumers in the grid can be

reduced by up to 17% and carbon emissions by up to 6%.

These agent-based approaches, unfortunately, do not take into account the user’s pref-

erences as well as the user’s typical consumption patterns (e.g., the use of washing

machines implies the use of the tumble dryers) (or the inter–dependencies between ap-

pliance usage) in the home when scheduling loads (Rodden et al., 2013; Alan et al.,

2014). Thus, such scheduling methods may not be acceptable to users as the plans are

not compatible with their everyday routine (Rodden et al., 2013; Alan et al., 2014). For

example, suppose that a user prefers to use the washing machine on weekends when

she/he has time to take the clothes out to dry and iron them. Consequently, she/he

9See more details at http://gridwise.pnl.gov/.
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would not accept a suggestion to use the washing machine on a week day, even though

it may be cheaper to do so.

Moreover, demand–side management algorithms generally ignore inter–dependencies be-

tween the usage of different appliances. For instance, a user might use the dishwasher

and the oven on the same day, or prefers to turn on the TV whenever she/he starts

cooking. As a result, suggested schedules that do not take these inter–dependencies

into account may not be adapted to the user’s behaviours, and thus, not be accepted.

To produce rescheduling suggestions that meet a user’s preferences (and therefore more

likely to be acceptable), it is crucial to forecast the appliance usage by capturing both

the user’s habits (or behaviour) and the inter–dependencies between appliances. Tak-

ing such forecasts into account, an agent would be able to empower the users to make

informed energy reduction decisions by providing more personalised suggestions on how

to use appliances to reduce cost and CO2 emissions.

To address this limitation, in this thesis, we address the challenge of modelling appli-

ance usage and predict future activities (see Chapter 4 and 5). In order to understand

the key contributions of this thesis, we next study related works in terms of predict-

ing dependencies in temporal data in Section 2.2, and predicting human routines in

Section 2.3.

2.2 Prediction with Inter–Dependent Data

In this section, we review two main popular approaches that can be applied to model

the inter–dependencies in time-series data (or event sequences). First, we discuss the

use of temporal point processes in Section 2.2.1. Second, we discuss a data mining

technique, specifically a rule-based method based on Frequent Episode Discovery to find

the dependencies between variables (or appliances) in event sequences in Section 2.2.2.

In addition, we use these methods as our benchmarks for our solution to the appliance

usage prediction problem in Chapter 6.

2.2.1 Temporal Point Processes

Temporal point processes are widely used in many real–world applications to model the

waiting time between two events based on the assumption that the present depends only

on the past (Brown et al., 2004; Barbieri et al., 2001). In particular, a temporal point

process is a stochastic (or random) process which is composed of a time-series of binary

events that occur in continuous time (Daley and Vere-Jones, 2003). In addition, the

whole point process can be described by the random interval between the points. In the

domain of domestic sector, the duration of waiting time between two consecutive appli-

ance usages is not constant over time. For example, a washing machine is frequently
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used over the weekend, and is rarely used on Monday. Instead, it could fluctuate de-

pending on the usage of other appliances (or itself) in the past. Therefore, if we can

model the waiting time between the use of appliances, appliance usage modelling can be

done accurately, whereby appliance usage can be considered a temporal point process.

One such temporal point process model is the Poisson process (PP), which is a counting

process characterised by a rate function �(t) that can be used to model the waiting time

between the two consecutive events (i.e., appliance usage). The PP is called homogeneous

if the rate function is constant over time. In this case, the waiting time between two

consecutive events is exponentially distributed with rate � as:

∀t ∈ ℝ+ : p(t∣�) = � exp(−�t)

On the other hand, if the rate function is not constant over time, the PP is called inho-

mogeneous (Papoulis, 1991). In this case, the waiting time distribution is a generalised

exponential distribution. In general, a PP can model the waiting time between the use

of single appliance. However, it does not consider the inter-dependencies between the

use of multiple appliances (Requirement 2).

To model the dependencies between different event types, Poisson Network Model (PNM)

(Rajaram et al., 2005) and Piecewise-Constant Conditional Intensity Model (PCIM)

(Gunawardana et al., 2011) has been proposed to learn the dependencies of each event

type separately. Thus, in the appliance usage prediction problem, event types can be

considered as different types of appliance such as dishwasher, tumble dryer, and washing

machine. In more detail, PCIM captures the dependencies of each type of event based on

historical events through a set of piecewise-constant conditional intensity functions, and

represents these dependencies by decision trees. By capturing these dependencies, PCIM

has been useful in forecasting the future interest of real web search users. However, these

algorithms are not designed to exploit the behaviour of human users (Requirement 1),

and thus, as we show later in Chapter 5, they fail in predicting human related data

sequences (Requirement 3).

In the following section, we discuss an alternative approach to modelling dependencies

in temporal event sequences.

2.2.2 Mining Dependencies in Temporal Event Sequences

In the appliance usage prediction problem, the dataset of the use of appliances in the

home is a temporal sequence of events in which each event (i.e., appliance usage) has

an associated time of occurrence. Within the dataset, there might be existing repeated

occurrences of some patterns that provide insights into the user’s everyday habits and

the inter-dependencies between appliance usages (e.g., the pattern of the use of tumble
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dryers following by the use of washing machines). Given this, mining meaningful pat-

terns in temporal event sequences can help to predict the next occurrences of appliance

usage. In this context, Frequent Episodes Discovery (FED) is a popular framework for

mining temporal patterns in event sequences (Mannila et al., 1997; Cho et al., 2010;

Berberidis and Vlahavas, 2007; Tatavarty et al., 2007; Laxman et al., 2005). In this

section, we review techniques for finding of frequent episodes in event sequences. First,

Section 2.2.2.1 provides a brief overview of frequent episodes in event sequences. Second,

Section 2.2.2.2 describes techniques to find frequent episodes. Section 2.2.2.3 discusses

related work on using frequent episodes for prediction in time-series data. Lastly, Sec-

tion 2.2.2.4 provides relevant background for the EGH algorithm.

2.2.2.1 Frequent Episodes in Event Sequences

This section briefly provides the framework of FED (Mannila et al., 1997). In general,

the dataset of event sequences is written as < (E1, t1), (E2, t2) ⋅ ⋅ ⋅ >, where Ei represents

an event type and ti is the time of occurrence of the itℎ event. Ei takes a value from a

finite set of event types. Please note that in the context of appliance usage prediction

problem, the event is the appliance usage, and event types are the different types of

appliances. For example, an event sequence containing 6 events is:

< (oven, 1), (cooking, 2), (disℎwasℎer, 5), (oven, 7), (wasℎingmacℎine, 9), (dryer, 12) >

An episode is an ordered tuple of event occurring together. For example, { cooking →
oven → dishwasher } is a 3-node episode. An episode is said to occur in the event

sequence if all events specified in the episode occur with the same time ordering in the

event sequence. In addition, a sub-episode is a subsequence of the episode where the

occurrences of events have the same ordering as the episode. Frequency of an episode is

the fraction of windows in which the episode occurs. It can be defined in many different

ways depending on the application scenario. A frequent episode is an episode in which

its frequency exceeds a user-defined threshold.

Once frequent episodes are detected, they can be used to obtain rules that describe

connections between events in the specific event sequence. We detail this problem in the

next section.

2.2.2.2 Identify Frequent Episodes

The procedure of searching for frequent episodes applies the condition that, for an N–

node episode to be frequent, all its (N-1)–node subepisodes should also be frequent

(Srikant and R., 1995; Mannila et al., 1997). This search procedure is efficient level-

wise, which starts from the episode with only one event in the first level, and then
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proceeding to the higher levels with increasing numbers of events. In particular, on each

level, frequent episodes are processed in two phases: i) candidate generation, and ii)

counting frequency.

In the candidate generation phase, a collection of candidate episodes is created by con-

structing every frequent episode, which is discovered from the previous level. The first

level contains all episodes of size 1, which has only one activity.

In the counting frequency phase, each candidate episode is counted based on some

predefined techniques (i.e., rules). In more detail, popular methods to find frequency of

the episode include:

∙ Window-based frequency: is a fraction of number of occurrences of the episode

in the given window over the length of the window. (Mannila et al., 1997)

∙ Minimal occurrences of episodes frequency: a minimal occurrence of an

episode is defined as a window which there is no other occurrence of this episode

that can be obtained in the sub-window. (Mannila et al., 1997)

∙ Non-overlapped occurrence-based frequency: “two occurrences of an episode

are said to be non-overlapping if no activity associated with one appears in between

the activities associated with the other. The frequency of an episode is defined as

the maximum number of non-overlapping occurrences of the episode in the activity

sequence.” (Laxman et al., 2005)

Furthermore, the frequency of an episode is calculated based on counting the occurrences

of the given episode (from the candidate episodes) within the event sequence using the

counting rules (listed above). For example, for the episode cooking → oven→ disℎwasℎer,

there would be an automaton that transits to state cooking when seeing an event type

of cooking in the event sequence, and then waits for an event oven in the event sequence

to transit to the next and so on. When this automaton transits to its final state, an

occurrence of the episode is complete.

Having introduced an overall FED framework, now we turn to discuss this framework

for prediction in temporal event sequences.

2.2.2.3 Frequent Episode Discovery for Prediction in Temporal Event Se-

quences

Predicting future occurrences of events in temporal event sequences can be achieved

using a rule-based method that relies on FED to find meaningful patterns in temporal

event sequences. In particular, these patterns can be used to explain the behaviour of

the events in the past in order to generate the sequence rules. Then current events are
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matched to one of the generated rules to predict the occurrences of consequent events. In

addition, finding meaningful episodes in temporal event sequences enhances a set of rules

that can be representative of the occurrence of events and model the inter-dependencies

between events.

In more detail, Weiss and Hirsh (1998) proposed a genetic algorithm to predict events by

identifying the sequence of predictive patterns with constraints in historical data (e.g.,

predicting telecommunication equipment failures from network alarm data). These pat-

terns represent inter–dependencies of events within time–series data. However, exploit-

ing equally all data points of the historical data does not scale well. Given this, Laxman

et al. (2008) show how to use rule–based methods to capture the relationship of the

events within windows of events that precede occurrences of the target event types in

historical data. In particular, they capture patterns (considering as frequent episodes)

and exploit these episodes with the associated Hidden Markov Models (HMMs) to find

the set of significant frequent episodes associated with each target event type. These

sets of significant episodes are used to represent the behaviours in the historical data,

and can be used to predict the future events. However, this method does not take

into account the human behaviour (Requirement 1), and it fails to provide accuracy for

appliance usage prediction (Requirement 3). We verify its performance in Chapter 6.

Next, we provide relevant descriptions of the EGH algorithm.

2.2.2.4 The EGH algorithm

Considering an event stream s =< E1, E2, . . . , En >, where n is the current time instant,

and Ei is an event type. Let Y denote the target event type that we want to predict its

future occurrences. EGH will construct a prediction model to predict whether or not

En+1 = Y .

First, EGH constructs a training dataset for the target event type Y in the historical

data s. A training dataset is constructed as follows. EGH examines all occurrences of

Y to find the significant frequent episodes from the historical data s. Let K denote the

number of occurrences of the Y in the historical data s. EGH builds a training dataset

of event sequences DY = {X1, . . . , XK}, where Xi is the W-length slice of events from

s, that immediately preceded the itℎ occurrence of Y in s (i = 1, . . . ,K). Then, EGH

identifies significant episodes in this training dataset (more details can be seen in Laxman

et al. (2008)).

Second, EGH provides an associated specialised HMM to each significant episode. The

HMM for the episode is constructed as follows. Let consider an N-node episode, � =

(A1, . . . , An). The associated HMM model contains 2N states. States 1 through N are the

episode states, and states (N+1) to 2N are the noise states. The probability distribution

for each episode state is the delta function �Ai(.). All transition probabilities are defined
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by a noise parameter � ∈ (0, 1). In particular, the probability of transition into noise

states is �, while the probability of transition into episode states is (1− �). In addition,

the probability of the initial state is (1 − �), and the probability of the last state (2N)

is �. More details can be seen in Laxman et al. (2008).

Furthermore, the mixture model of all the significant episodes is constructed to predict

the future occurrences of the given target event. We discuss this aspect in more detail in

Chapter 4. Next, we discuss existing works on human routine prediction in the following

section.

2.3 Predicting Human Routine

Human behaviour prediction algorithms have been developed for many applications

such as activity recognition, location prediction (McInerney et al., 2013; González et al.,

2008), mobility prediction (Eagle and Pentland, 2009) and daily routine prediction (Shi-

mosaka et al., 2010; Tominaga et al., 2012). In the domain of mobility prediction, Eagle

and Pentland (2009) use eigenvalue decomposition approach to extract the underlying

structure in the daily patterns of human behaviour. They show that many people share

a common set of mobility habits (e.g., going out of town over the weekend, leaving home

to work in the morning, returning home in the evening). This common set of human

habits is called a set of eigenbehaviours, and can be used to increase accuracy for new

users. This approach is based on assumption that the future behaviour of the user follows

the set of patterns that have been identified upon historical behaviour. In particular,

the daily behaviour of a new user will be identified and approximated by a weighted

sum of its eigenbehaviours. Hence, the prediction uses these weights that are calculated

halfway through a day to predict the day’s remaining behaviours. However, these ap-

proaches are designed to deal with sufficient, large-scale sets of training data. Also, it is

arguable whether historical data can describe a full range of the user mobility patterns.

Given this, McInerney et al. (2013) address the problem of predicting human behaviour

with sparse data in the domain of location prediction. In particular, they developed a

hierarchical Bayesian model based on shared probabilistic latent habits to exploit the

similarities of new users with existing users. In turn, Farrahi and Gatica-Perez (2011)

developed a methodology based on probabilistic topic models such as Latent Dirichlet

Allocation topic model and the Author Topic model to detect the user’s routines. Then,

they use the discovered routines to determine behavioural patterns of users. However,

these approaches are suited to transitioning between multiple mutually-exclusive labels

(locations) rather than potentially concurrent activities. Hence, they do not satisfy our

Requirement 2.

Moreover, Tominaga et al. (2012); Shimosaka et al. (2010) use a non-parametric method,

Dirichlet Process Mixture (DPM) model, to extract the person’s patterns of going out
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behaviour (i.e., to detect whether users are away from home). A number of daily patterns

can be automatically discovered by the use of DPM model (as DPM model offers the

flexibility for clustering applications in which the number of clusters is unknown a priori).

In other words, the number of the patterns of daily behaviour can be increased if the

number of input data increases. In more detail, DPM can either assign new data points

to the learnt patterns of behaviours with the probability that each pattern generates the

data or define a new pattern if the new data points are too different from the existing

patterns of behaviour. Their work assumes that the daily going-out behaviour of the

user is completed in a 24-hour cycle, and each behaviour of a day belongs to a certain

category (e.g., going out for dinner in weekends, watching TV at home every evening).

In this model, the Bernoulli distribution is used as a base distribution to describe the

state of a user at certain time (that is away from home or not). Hence, the truncated

stick-breaking process is applied to estimate the weights for each category. Once given a

new observation of one day, the method can estimate to which category (daily behaviour)

the day belongs.

Although these techniques are efficient at predicting a single user’s behaviour, they do

not address the challenges of the inter–dependency between different sequences of data

(i.e., history of appliance usage) (Requirement 2). In addition, these algorithms can only

predict within the temporal scope of one day, given initial observations of the same day,

while in our scenario we need to forecast electricity consumption at least one day ahead.

Moreover, we use DPM as a benchmark for our evaluation in Chapter 6. We will also

benchmark our algorithms with an extension of the DPM model that is capable modelling

inter-dependencies between appliances. More importantly, we propose our algorithm,

GM-PMA, to take into account the human’s routine as well as the inter-dependencies

between appliances to enhance the usage prediction accuracy (Requirement 3). By so

doing, we will show that GM-PMA efficiently predicts appliance usage in Chapter 6.

Before moving to describe our models, in the following section, we provide a brief back-

ground on probabilistic graphical models that we will use in the following chapters.

2.4 Probabilistic Graphical Models

Probabilistic graphical models are a powerful formalism for multivariate statistical mod-

elling by bringing together graph theory and probability theory. They provide a simple

way to visualise the structure of probabilistic models, and provide insights into the prop-

erties of the model such as conditional dependence between random variables. Given

this, we use probabilistic graphical models to develop algorithms that satisfy all the

requirements set out in Chapter 5. This section provides a background on probabilistic
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graphical models that we will use throughout this thesis. In particular, we describe Hid-

den Markov Models in Section 2.4.1, and then, we discuss some methods for approximate

inference in graphical models in Section 2.4.2

2.4.1 Hidden Markov Models

A hidden Markov model (HMM) is an example of a graphical model that has been widely

applied in many real-world applications.10 In particular, an HMM is a graphical model

in the form of a chain (see Figure 2.3). It defines a probability distribution in sequential

data where sequences of observations Y = {Y1, . . . , YI , . . . , YT } can be invoking another

sequence of unobserved (hidden) discrete state variables X = {X1, . . . , XI , . . . , XT }. An

important property of HMM is that the sequence of hidden states has Markov dynamics

that the conditional probability of node Xi, given its immediate predecessor Xi−1, is

independent of all other preceding variables. In addition, the model is defined in terms

of three sets of parameters. First, the initial state X1 is given a probability distribution

� = P (X1). Second, the matrix of transition probabilities from state i− 1 to state i can

be represented by matrix A = P (Xi∣Xi−1). This matrix is invariant across time. Third,

the emission matrix for nodes Yi can be represented by matrix B = P (Yi∣Xi).

Figure 2.3: A HMM represented as a graphical model. The left-to-right spatial dimen-
sion represents time. The output nodes Yi are observation nodes, and the state nodes

Xi are hidden.

In the context of learning in HMM, the output nodes are treated as observation (evi-

dence) nodes while the state nodes are treated as hidden nodes. The state–of–the–art

algorithm for maximum likelihood estimation is the expectation-maximisation (EM) al-

gorithm. However, approximate inference methods are more commonly used to reduce

computational costs and to achieve fully Bayesian inference. In the next section, we

discuss approximate inference techniques in more detail.

10We use HMM in Chapter 4.
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2.4.2 Approximate Inference

Approximate inference methods are often applied to perform inference over probabilistic

graphical models due to the expensive computational complexity of exact multivariate in-

ference. In this section, we discuss two common approximate inference methods, namely

Gibbs sampling in Section 2.4.2.1, and Variational Bayes in Section 2.4.2.2.

2.4.2.1 Gibbs Sampling

Algorithm 1 Pseudocode for Collaped Gibbs sampling.

initialise all variables;
while number of iterations is less than the maximum iteration do

for each variable do
sample new value conditioned on all variables;

end for
increment number of iterations;

end while

Algorithm 2 Pseudocode for Blocked Gibbs sampling.

initialise all variables;
while number of iterations is less than the maximum iteration do

for group of variables do
sample new value from the joint distribution of the group conditioned on all
variables;

end for
increment number of iterations;

end while

Algorithm 3 Pseudocode for Variational Bayes.

initialise variational distribution of all variables;
while increase in lower bound is greater than threshold and number of iterations is
less than maximum do

for each variables do
update variable’s variational distribution;

end for
compute lower bound on joint likelihood;
increment number of iterations;

end while

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm which can be used

to approximate samples from a (marginal) distribution indirectly, without having to cal-

culate the density (Casellaa and Georgeb, 1992). In particular, there are two main Gibbs

sampling techniques: i) Collapsed Gibbs sampling, and ii) Blocked Gibbs sampling. The

Collapsed Gibbs sampling algorithm (as shown by Algorithm 1) involves replacing the

value of one of the variables by a value drawn from the distribution of that variable

conditioned on the values of the remaining variables. However, this technique considers
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one variable at a time, and thus there might be strong dependencies between successive

samples. As a result, it is necessary to down-sample the data in order to ensure indepen-

dence between samples. To increase independent successive samples, the Blocked Gibbs

sampling algorithm (as shown by Algorithm 2) chooses groups (or blocks) of variables,

rather than individual variables, then successively samples from the joint distribution

from the variables in each block conditioned on the remaining variables (Jensen et al.,

1995).

Gibbs sampling is widely used for inference. However, it might require a large num-

ber of iterations until convergence to the stationary distribution. To address this, the

first specified number of samples are normally discarded. Due to the large number of

iterations and each variable being repeatedly sampled in each iteration, it may be not

computationally efficient. In the next section, we discuss Variational Bayes, an alterna-

tive technique for the more computationally efficient MCMC algorithm.

2.4.2.2 Variational Bayes

Variational Bayes (as shown by Algorithm 3) is used for approximate inference and

works by iteratively updating the variational distribution of all variables in the model,

and thus yields a lower bound on the model likelihood function (Blei and Jordan, 2006).

The algorithm stops once either convergence is achieved or the maximum number of

iterations has been reached.

Variational Bayes is faster in convergence than Gibbs sampling because bounds or func-

tions are found over individual variables or groups of variables within a model at each

iteration, rather than sampling from a conditional distribution.

In the following section, we discuss and summarise this chapter.

2.5 Summary

In this chapter, we have described the vision of the smart grid, discussed smart meters

and the use of DSM techniques. We detailed the challenge for standard DSM to manage

electricity demand on a large scale (thousands to millions smart meters) and discussed

how agent-based approaches could help meet this challenge. We also discussed how

recent agent-based DSM approaches have simplified the user’s settings (Requirement

1) and have not considered the dependencies between appliances (Requirement 2) and

hence are unlikely to be widely adopted. Moreover we identified the need to predict

appliance usage in order to maintain user comfort.

We then discussed existing approaches for modelling and predicting inter-dependencies

in time-series data. We described two popular approaches for modelling dependencies
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between events in temporal data: i) Temporal Point Process, ii) a rule-based method

based on Frequent Episode Discovery. In particular, we use the state–of–the–art algo-

rithms: PCIM (for a temporal point process approach), and EGH (a rule-based method)

as benchmarks to compare the appliance usage prediction accuracy in Chapter 6. How-

ever, these approaches do not take into account human routine (Requirement 1), and

thus we expect them to fail in predicting appliance usage (Requirement 3). Indeed we

demonstrate this later in Chapter 6.

Building upon this, we discussed existing work for modelling and predicting human

routine in some different applications such as location prediction, mobility prediction,

and activity recognition. We use non-parametric method, DPM, as our benchmarks for

predicting human routine. One of the popular models for detecting human routine is

DPM. However, DPM only deals with one single appliance sequence, and does not take

into account the dependencies between multi-appliances (Requirement 2). Therefore,

the usage prediction accuracy will not be accurate (Requirement 3).

Lastly, we provided background of probabilistic graphical models such as HMMs which

will be used in Chapter 4. We also discussed two main approximate inference methods:

Gibbs sampling and variational bayes that will be discussed and used in Chapter 5.

To develop algorithms that address the research requirements, more importantly, we

first extend the rule-based method by considering capturing the human’s routine, and

thus propose a rule-based algorithm, EGH-H (see Chapter 4). The EGH-H algorithm is

mainly designed for scenarios in which notifications are needed in a short time. Again,

we will demonstrate its effectiveness in Chapter 6. To model the more accurate appliance

usage prediction, we propose our graphical model based, GM-PMA (see in Chapter 5)

that also captures both human routine and the inter-dependencies between appliances.

We will also show that GM-PMA dominates other benchmarks for accurate prediction

in Chapter 6. Both algorithms, GM-PMA and EGH-H, takes into account the cyclic

behaviour of users following the work of González et al. (2008). They have found strong

periodicities in human location behaviour, and from common sense about how people

use appliances in the home, it is reasonable to assume that such periodicities are true

for appliance usage. Hence, we assume that human behaviour in terms of appliance

usage forms cycles of weekly periods. We will show later about how this assumption is

validated by the model performs well empirically (see Chapter 6).

In order to objectively compare the accuracy of various algorithms for predicting appli-

ance usage, it is necessary to test them on real–world dataset. The following chapter

describes the appliance usage prediction model, and discuss real–world dataset that we

will use for evaluation.





Chapter 3

Appliance Usage Prediction

Model and Datasets

This chapter describes the model of appliance usage prediction problem and the real–

world datasets that we use for evaluating our proposed algorithms in the next few

chapters. We start by modelling the appliance usage in the home, and discuss inter–

dependencies between the appliances as well as the cycle of human routine for using the

appliances in Section 3.1. Next, we provide two types of real–world datasets that will be

used for evaluating the performances of the algorithms later in Chapter 6: i) expensive

deployment for data collection, but low level of uncertainty; ii) cheap deployment for

data collection, but high level of uncertainty. We describe the preparation of the datasets

in more detail in Section 3.2. Finally, Section 3.3 summarises the findings of this chapter.

3.1 Model Description

Our goal is to generate time–specific predictions of appliance usage based on historical

behaviour. In more detail, given a set of training data of past behaviour consisting of

a time context indicating the day of the week and appliance usage, we wish to predict

which appliances are likely to be used, and when they are likely to be used during the

day. Assume that we have a finite set of appliance usage events, where different types of

appliances are distinguished by l ∈ L. We consider a typical domestic profile that spans

the usage over a day divided in T slots represents by a set of time slots t ∈ T (e.g.,

if T = 24, the day is divided into one-hourly slots). We are concerned with modelling

discrete binary information, xn,l,t ∈ {0, 1}, indicating whether appliance l will be used

on day n at time t. Let xn,l = ⟨xn,l,1, . . . , xn,l,T ⟩ denote the observations of appliance

l on the ntℎ day. Then, xn is the observation of a subset appliances L on the ntℎ

day. In probabilistic terms, we need to find the conditional probability p(xn,l,t∣X, n, l, t),
where X = {x1,l, . . . , xn−1,l} represents the history of the use of appliances. To solve this
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problem, we need to take into account two main dependencies that underlie a consumer’s

activities:

∙ Time dependencies: consumers can undertake their activities at different times

that satisfy their needs and daily routine. For example, if one uses a washing

machine at time t, it is less likely one will use it again at time (t+ 1) as one wash

implies a reduction in the number of dirty clothes.1

∙ Activity inter–dependencies: some types of activities may depend on other

activities. For example, while cooking, one might need to use the oven and mi-

crowave, then one might need to use the dishwasher to wash the dirty dishes.

Therefore, the activities of using the oven, microwave, and dishwasher are inter–

dependent.

In Chapter 4 and 5, we develop algorithms that take into account these dependencies of

appliance usage. In the next section, we analyse the set of real–world datasets that we

use to evaluate our algorithms in Chapter 6.

3.2 Real–world Datasets

In this section, we make use of two datasets that are collected from a field trial of energy

feedback systems and are used in our experiments (Chapter 6) to evaluate our algorithms

and the benchmark approaches. In particular, we use the REDD dataset (Kolter and

Johnson, 2011) and the FigureEnergy dataset (Costanza et al., 2012). The REDD

dataset is produced using highly intrusive methods that monitor appliance–level energy

usage at high granularity and with high accuracy. Instead, the FigureEnergy dataset

is collected by using non–intrusive methods (house-level monitoring), but involved high

uncertainty (as appliance usage events were manually tagged by users who may have

either mistaken the information of the event or forgotten to tag the labels). We describe

the two datasets in more detail in Section 3.2.1 and Section 3.2.2 respectively.

3.2.1 The REDD dataset

The REDD dataset includes six different houses. These houses have been monitored

for approximately 35 days with sub-meters installed on multiple relevant electrical home

appliances. The raw data in the REDD dataset is the power consumption for the specific

devices every 3 seconds. As we are interested in when and which appliances are being

used during particular days. Thus, we need to prepare the data before using it. To do

1This may not be true of course for some users and this is what the algorithm is meant to detect as
well.
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Figure 3.1: An example of using annotation in the FE application. The graph denotes
power consumptions and the highlighted segments are the annotations of the user.

so, we converted the raw data of power consumption into a list of cyclic on–off events

(i.e., a list of tuple ⟨ appliance name, starting time, end time ⟩), and use these lists to

test our prediction performance. The appliance usage detection method is as follows:

∙ We set a threshold of power consumption (typically 55W) to determine the periods

that the appliances turned on. We store all these segments of durations when the

appliances are turned on.

∙ We set a gap allowance parameter for two consecutive segments. If the gap between

these two consecutive segments is greater than the gap allowance, we connect these

two segments together, and considered them as one segment.

∙ We select a noise removal parameter to filter the noise of the data. All the segments

that have values lower than the noise parameter, are removed.

Figure 3.2 shows an example of converting raw data into a list of on–off events. The

gap allowance parameters and noise removal parameter are adjusted to adapt to the

behaviour of the appliances. For example, the period of dishwasher cycle is typically

over 30 minutes. Hence we set the noise parameters for the full cycle of using the

dishwasher is up to 30 minutes. In addition, the power consumption of the dishwasher is

controlled by the built-in temperature sensor in the dishwasher. Given this, the power

consumption consumed for the dishwasher fluctuates. However, the gap between the two

consecutive periods where the power consumption over 55W is less than 10 minutes. We

observed that there were 3 houses that do not have enough data to judge the performance

of the prediction. Hence, we only carry out our tests on data from the other 3 houses.

Moreover, for the FE dataset, we use the user’s labelling (i.e., appliance usages) directly.

We describe the FE system in the following section.

3.2.2 The FigureEnergy Dataset

FigureEnergy which is a web–based application designed for appliance usage labelling

to allow users to identify and label the activities. In particular, the dataset included

13 participating homes. Each household was given an off–the–shelf energy monitoring
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device,2 which integrated into the user’s home and transferred data into the application’s

server over the internet. Users then could observe their aggregated energy consumption

from their web browser using FigureEnergy. This application allows users to identify

and label individual activities as follows. By clicking on the graph with their mouse and

dragging, users can select a segment and fill information about the activities that they

spent. There is a preset list of labels that users can choose from for their activities. The

labels are also displayed on the aggregate energy consumption graph to show users the

results that they have annotated (see Figure 3.1). An example of the collected data can

be seen in Table 3.1. The labels of appliance usage are being used directly for evaluating

the prediction performance. Please note that users can tag the wrong information (e.g.,

incorrect type of appliance, and time), and forget to tag their past activities (due to

short term memory retrieve). This raises the uncertainty for the FE dataset. Now, we

summary this chapter in the following section.

Figure 3.2: An example of how to convert raw data of power consumption into a list of
cyclic on–off events.

3.3 Summary

In this chapter, we described the model for the appliance usage prediction problem more

formally. We also identified two main dependencies that underlie the use of appliances

2AlertMe
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Type Start

time

(time

unit)

End time

(time

unit)

Energy

usage (J)

Baseline

(J)

oven 2011-08-31
18:58:27

2011-08-31
19:42:47

1.562 0.069

kettle 2011-09-01
07:21:05

2011-09-01
07:26:17

0.094 0.007

shower 2011-09-01
08:12:45

2011-09-01
08:21:08

0.102 0.0144

tv 2011-09-01
17:54:16

2011-09-01
19:18:20

0.3902 0.151

stove 2011-09-01
19:18:20

2011-09-01
19:41:16

0.585 0.0396

Table 3.1: An example of data collected from FigureEnergy for user 32.

in the home: i) time dependencies, ii) appliance inter-dependencies. Then we described

two real–world datasets: the REDD dataset, and the FE dataset. We discussed data

preparation techniques for the REDD dataset before evaluating the prediction perfor-

mance in Chapter 6. Now, we turn to describe our first proposed algorithm, EGH-H,

which is designed for scenarios in which the notifications are quickly generated, in the

next chapter.





Chapter 4

The EGH-H Algorithm

This chapter describes the EGH-H algorithm that was developed for scenarios in which

notifications need to be given at short notice. In general, EGH-H builds upon the EGH

algorithm proposed by Laxman et al. (2005). As EGH is not designed for detecting

human activities, we adapt the algorithm to suit our settings by fitting it with a model

of the periodic nature of human routine. We first detail the training phase of our

approach in Section 4.1, where we use a set of training data to build up a dependency

model for the correlations between the usage of appliances. We then describe a human

routine model in Section 4.2. Based on these models, we then construct a mixture

model of the significant episodes (i.e., sets of possible inter–dependency rules) in order

to calculate the probability of appliances being used in Section 4.3. Section 4.4 describes

the appliance usage prediction using the constructed mixture model. Finally, Section 4.5

summarises the findings of this chapter.

4.1 The Inter–Dependency Model

To build the inter–dependency model, we first assume that the inter–dependency be-

tween the usage of different appliances follows some probabilistic patterns. For example,

a typical pattern can be the following: it is likely that the dryer is also used after the

usage of the washing machine, or the use of the microwave follows the use of the oven.

In our model we denote these patterns as episodes (i.e., a sequence of appliance usage).

To evaluate the likelihood of an episode, we calculate its probability of occurrence, given

the history of appliance usage. To do so, we use the EGH approach, which assigns a dis-

crete hidden Markov model (HMM) to the corresponding episode (note that the EGH’s

background can be seen in more detail in Section 2.2.2.4). In particular, suppose that

episode ' consists of p usage of the appliances (x1,l1,t1 , x2,l2,t2 , . . . , xp,lp,tp) that are in

temporal order (i.e., the appliance usage xp,lp,tp occurred before the next appliance usage
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xp+1,lp+1,tp+1). EGH assigns a special discrete HMM Λ' = (S,Δ', �') to ' such that

S = {1, . . . , p, p+ 1, . . . , 2p}, denotes the state space (includes two states: the episode

states = {1, . . . , p}, and the noise states = {p+1, . . . , 2p}), Δ' = (x1,l1,t1 , x2,l1,t2 , . . . , xp,lp,tp)

denotes the appliance usage, and �' is the noise parameter. More particularly, the noise

parameter �' is defined as follows:

�' =

{
T'−pf'
T'

if �' ≤ M̂
M̂+1

1 otℎerwise.
(4.1)

where T' is the total number of appliance usage in the training dataset and f' is the

number of times the episode ' occurs in the training dataset, and M̂ is a size of the

episode . The intuition behind the use of Λ' is that it represents a Markov model of a

sequences activities that contains the corresponding episode (see Laxman et al. (2005)

for more details).

Now, we calculate the corresponding frequency f' of each possible episode ' within the

dataset (i.e., the number of times the episode occurs in a non–overlapping way). Here-

after, we only consider those episodes that have a frequency f' higher than
T'

p(')M̂
, where

p (') is the number of usage of the appliances within '. We denote these as significant

episodes. The reason we focus on these episodes (and thus, ignore the rest) is that the

others are unlikely to occur given the training data set. These significant episodes can be

regarded as rules that model the inter–dependency between the occurrence of different

appliance usage.

4.2 The Human Routine Model

By building up the set of significant episodes, we can then predict the occurrence of

appliance usage within the next time step (e.g., hour, or day) by analysing whether they

can be part of a significant episode. Also, the prediction model can be repeated to predict

for a future day, or week ahead. However, as the number of significant episodes can be

an exponential in the size of the training dataset, EGH may have high computational

costs. In addition, EGH may overestimate the occurrence of usage of the appliances,

due to redundant episodes. In particular, due to the cyclic nature of human routines, a

sequence of appliance usage that consists of two non–overlapping, but identical, episodes

can also be regarded as a significant episode. This can lead the inaccurate estimation of

the probability of the occurrence of the appliance usage.

To address these challenges, we reduce the set of potential significant episodes by ex-

ploiting the cyclic features of human everyday routine. In particular, we assume that

human behaviour in home energy usage follows a weekly cycle. Thus, if the goal is

to predict whether a target appliance l occurs on the day of the week qn, we focus on
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learning the user’s behaviour for the use of appliance l on the same day of the week

qn in the past by capturing the appliance dependency and cyclic human behaviour that

triggered the actual use of the appliance l during the day. More formally, let C denote

the number of occurrences of the target appliance l on the specific day of the week qn

in the activity usage history X. Thus, for each label l and the prediction day of the

week qn, from the original training dataset D, we extract a training set Dl = {Xi}Ci=1,

where Xi = < xi−w,l,t, . . . , xi−1,l,t > is the preceding window of activities from xi,l,t that

immediately preceded the itℎ occurrence of appliance l on the day of the week qn in the

historical observation of appliances X. We consider a weekly cycle in our experiment

(i.e., w = 7).1

Given this reduced training dataset Dl, we then use the EGH approach to identify the

significant episodes. The intuition behind this technique can be described as follows.

We assume that the appliance usage events are typically influenced only by the use of

appliances within a week (i.e., older activities do not have any effect on them). By so

doing, we can reduce the computational costs and also improve the quality of prediction

(as we will demonstrate later in Chapter 6).

4.3 The Mixture Model

Given the episode reduction using the human routine model, we now turn to the dis-

cussion of how to use these episodes to predict future appliance usage. To do so, we

first analyse the joint influence of these episodes on the probability of occurrence of

a single future activity. Suppose that for a given training data set Dl = {Xi}Ci=1, we

have calculated a set of significant episodes, denoted as F s = {'1, . . . , 'J}, and each

HMM Λ'j of episode 'j . Now, to predict the usage of appliance l in the next time

step t, we use these episodes in order to calculate the probability of occurrence. To do

so, we calculate the probability that l is a part of a significant episode. However, as

an episode typically has a certain positive probability of indicating the occurrence of l,

we have to take into account all of HMMs. To model the effect of this joint influence,

we compute a mixture model Λl (i.e., a combination of probabilistic processes) of the

significant episodes’ HMMs. This mixture model can then be used to predict the future

occurrences of the target appliance l. In what follows, we first build the aforementioned

mixture model and then demonstrate how to predict future activities.

Now, the likelihood function of the training dataset D under a mixture model Λl can be

written as follows:

P [D∣Λl] =
C∏
i=1

P [Xi∣Λl] =

C∏
i=1

⎛⎝ J∑
j=1

�jP [Xi∣Λ'j ]

⎞⎠ (4.2)

1Note that we can easily change to other period lengths by updating the parameter of cycle length.
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where �j , j = 1..J are the mixture coefficients of Λl (with �j ∈ [0, 1] for all j, and∑J
j=1 �j = 1). Recall that each HMM Λ'j is fully characterised by the significant episode

'j and its noise parameter �'j . Given this, the likelihood of the activity sequence Xi,

given the HMMs {Λ'j}Jj=1, is computed by approximating the likelihood along the cor-

responding most likely state sequence:

P [Xi∣Λ'j ] =
(�'j

M

)∣Xi∣
(

1− �'j

M

)∣'j ∣f'j(Xi)

(4.3)

where ∣Xi∣ denotes the length of sequence, Xi, f'j (Xi) denotes the non-overlapping

occurrences-based frequency of 'j in the sequence Xi, and ∣'j ∣ denotes the size of the

episode 'j .

We use the Expectation Maximisation (EM) algorithm to estimate the set of mixture

coefficients of the mixture model Λl. In particular, the algorithm is initialised with the

current guess for the mixture coefficients, denoted by Θg = {�g1, . . . , �
g
J}. These mixture

coefficient values are initially set to be uniform, that is, �gj = 1
J for every j ∈ J . We

then use these current guesses to update the mixture coefficients as follows. Let Θnew

= {�new1 , . . . , �newJ } denote the new values of these coefficients. Given this, we have:

�newq =
1

C

C∑
i=1

P [q∣Xi,Θ
g] (4.4)

where q = 1..J . Let P [q∣Xi,Θ
g] denote the posterior probability for the qtℎ mixture

component, with respect to the window Xi ∈ Dl, which can be computed using Bayes’

Rule:

P [l∣Xi,Θ
g] =

�gl P [Xi∣Λl]∑J
j=1 �

g
jP [Xi∣Λ'j ]

(4.5)

The new set of mixture coefficients Θnew is then used as the current set of guesses (i.e.,

Θg) of the mixture coefficients. The process is repeated until the coefficients converge.

4.4 Appliance Usage Prediction

Given the mixture model Λl = {('j , �j)}j=1,...,J , we now turn to the prediction phase

of our approach. Let n denote the current day. For the set of target appliances l ∈ L̷,

we want to predict their usage in the next day, n+ 1. As we are mainly interested in

the recent usage of appliances of the users, therefore, we construct the weekly period

[n− 7, n] of the usage of appliances. The recent list of usage of appliances can be

written as Xn = [xn−7,l,t, . . . , xn−1,l,t]. We then estimate the likelihood of this list of

recent appliance usage events, given the mixture model, Λl, that is obtained from the

training phase. The algorithm determines the usage of the target appliance at time

step (n+ 1) based on the value of the threshold. In particular, if the probability of the
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window under the mixture model is greater or equal than the prediction threshold, the

algorithm predicts that the target appliance will be used at the next time step (n+ 1).

Otherwise, if the probability of the window under the mixture model is less than the

threshold value, the algorithm predicts that the target appliance will not be used at the

next time step (n+ 1).

We will show that EGH-H can perform the prediction quickly in Chapter 6. The al-

gorithm is best suited for scenarios that notifications need to be given in a short time.

However, EGH-H may not be the best algorithm for such scenarios that prefer the more

accurate prediction rather than the runtime. To improve the prediction accuracy, we

develop an alternative algorithm, GM-PMA. We describe it in Chapter 5. Next, we

summarise this chapter in the following section.

4.5 Summary

In this chapter, we presented the EGH-H algorithm that can be used to forecast the

appliance usage in limited time. To capture the inter–dependencies between appliances,

we defined the inter–dependency model that can identify the significant episodes (i.e.,

patterns). We also defined the human routine model that allows EGH-H algorithm to

find these significant episodes based on the construction of the (weekly) cyclic nature of

human routine over the historical data. By so doing, EGH-H can improve the prediction

accuracy as well as the computational cost (as we will show in Chapter 6). Then, for

each significant episode, we applied the discrete HMM to model the episode’s structure.

We took the effect of the joint influences of all episodes by modelling the mixture model

(i.e., all HMMs). Hence, we used this mixture model to predict for the future use of

appliances.

We will show that EGH-H algorithm can deliver reasonable prediction accuracy quickly

(i.e., seconds). It is best suitable for scenarios where consumers need to be notified in

a short time. To improve the prediction accuracy, we provide an alternative solution

by developing our graphical model based algorithm (GM-PMA). We elaborate on our

GM-PMA algorithm in the next chapter.





Chapter 5

The GM-PMA Algorithm

In this chapter we propose GM-PMA algorithm, a graphical model based method for the

prediction of appliance usage. In particular, we present our model based on appliance

interdependency in Section 5.1. We then describe the algorithm for model inference

(based on training data) in Section 5.2, and finish with the equations required to perform

prediction with this model in Section 5.3. Finally, we summarise the findings of this

chapter in Section 5.4.

5.1 The Inter–Dependency Clustering Model

A key assumption we make in GM-PMA is that such multi–appliance usage behaviour

comes in blocks of fixed size, where each block represents a single day of activity. This

approach has been effective in related areas of human presence prediction (Tominaga

et al., 2012) and derives from the periodic features of human behaviour that have been

widely observed in empirical data (González et al., 2008). Our extension is to also con-

sider the conditional dependencies between day blocks of behaviour for a single household

(multiple day dependencies) and within day blocks (intra–day dependencies).

In general, we trade–off complicated dependencies between day blocks in favour of the

assumption that each day of behaviour is independent of any other day given the assign-

ment of days to discrete classes of behaviour. Since supervised labels of these assignments

are unavailable, we consider them to be latent random variables in our model. These

latent classes compactly represent sets of behaviours that we call day types. As we will

show, it is possible to infer the nature of these day types in an unsupervised way. Intu-

itively, day types can be understood as representing, for example, working days, weekend

days, or family visiting days. Day types can be considered latent classes of a mixture

model, albeit with a non-standard structure to the observations which we detail next.
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Within day blocks, we now discuss the random variables controlling observations within

each day block (i.e., intra–day dependencies). Since we are interested in predicting far

ahead in time, (i.e., the next day or next several days of appliance usage), there is lit-

tle advantage in making behaviour at one time of the day dependent on behaviour at

another time, because we have already made the assumption that each day’s behaviour

is generated from a hidden day type class. In more detail, because day types are never

directly observed (i.e., the random variable indicating latent assignment is never in-

stantiated), we already achieve dependencies between appliance usage at different times

of the day. This can be intuitively understood as a flow of information between the

random variables indicating appliance usage at different times of the day, all flowing

via the latent assignment of that day’s behaviour. We may make a similar argument

for dependencies between appliances (e.g., between the oven and the kettle, or between

the television and lighting). In summary, we achieve the desired dependencies between

appliance usages whilst simultaneously using the fast and well–established machinery of

mixture modelling, by taking advantage of the periodicities of routine behaviour and the

fact that appliance use is explained by a set of uninstantiated day types (e.g., weekend,

holiday).

We now formalise these assumptions into a full Bayesian model of the appliance usage

in a single home, that avoids problems of over–fitting which can affect models involving

large numbers of parameters relative to the number of observations. This requires the

specification of two main components to the model (along with their respective param-

eters): (i) the likelihood function of appliance usage and day of the week observations,

and, (ii) the prior distribution over latent day types. The observations and parameters

to this model are summarised in Figure 5.1. The dependencies between parameters is

represented by directed arrows. In this graph, the observation xn,l (n ∈ N) depends on

the day types �k (k ∈ K), the indicator parameter zn (generated from the prior distribu-

tion �k) that indicates which day type the observation xn belongs to, and the day of the

week qn (qn ∈W ) is parameterised by multinomial distribution �k with prior Dirichlet

distribution 
. In what follows, we elaborate on our graphical model by showing how

we form the likelihood functions of the appliance behaviour and how we employ the

Dirichlet Process Mixture to estimate day type classes.

5.1.1 Likelihood Functions

Starting with the likelihood functions, the behaviour for each appliance throughout a

day can be represented by a Bernoulli distribution:

p(xn,l∣�) = �xn,l,t(1− �)1−xn,l,t (5.1)

where xn,l be the observation of appliance l on ntℎ day, � = �(t)(0 < �(t) < 1), and

xn,l,t = {0, 1} be the observation of appliance l on ntℎ day at time slot t ∈ T of the
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Figure 5.1: Graphical model for the usage of multi appliances in the home. Shaded
nodes indicate observed information.

day (0: not being used, 1: being used). For example, Figure 5.2 shows the use of the

washing machine on a specific day (i.e., �n,l,t for 0 ≤ t ≤ 24). In this graph, we can see

the washing machine is likely to be used around 18:00 with the probability is 0.9. The

day type can be used to describe the behaviour of the appliance on a specific day. Let

k = 1, . . . ,K be the ID of the day types. Each day type has a sequence of parameter

�k = (�k,l,1 . . . �k,l,T ), where �k,l,t ∈ [0, 1] represents for the probability of the appliance

l belongs to the day type class k in the time of the day t ∈ T . Given this, the likelihood

of the observation xn is:

p(xn∣�k) =

L∏
l=1

T∏
t=1

�
xn,l,t

k,l,t (1− �k,l,t)1−xn,l,t (5.2)

The beta distribution is used as a conjugate prior for the parameter �k,l,t. That is:

�k,l,t ∼ ℬ(�k,l,t∣�1, �2) ∝ ��1−1k,l,t (1− �k,l,t)�2−1 (5.3)

where �1 and �2 are preset hyperparameters. Furthermore, we exploit the cyclic features

of human everyday routine. In particular, we assume that human behaviour in term of
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Figure 5.2: An example of the washing machine usage throughout a day.

appliance usage follows a weekly cycle (as in the case of EGH-H). Thus, to increase the

accuracy of the prediction, we condition the indicator with the day of the week. More

precisely, if the goal is to predict the activity usage profile on the next day xn+1, where

qn+1 can be found as the day of the week, then we only consider the same day of the

week qn+1 from the past to predict the activity profile on the (n+ 1)tℎ day.1 As we show

later in Chapter 6, doing so can significantly improve prediction accuracy. Given �k,w

as the probability of the day type k ∈ K belongs to the day of the week w ∈W , the day

of the week qn is modelled using a multinomial distribution as qn ∼ ℳ(Z, �k,w) (see

the dependency in Figure 5.1). In particular, we use conjugate Dirichlet distribution

to model �k,w, which can be expanded as �k,w ∼ Dir(!), where ! is a preset hyper

parameter. We describe the use of Dirichlet Process Mixture in the next section.

5.1.2 Dirichlet Process Mixture

To denote that an appliance usage activity fits a given day type, we define an indicator

{Z}n,k. In particular, {Z}n,k indicates the observation on day n ∈ N belongs to the day

type ID k ∈ K and is defined as follows:

{Z}n,k = {zn,k∣zn,k = {0, 1}, and
∑
k

zn,k = 1} (5.4)

1However, if more information is available, such as weather forecasts for the location of the home,
or calendar information, then the model may treat these additional observations in a similar way to the
day of the week observations, and get an even more accurate prediction of appliance usage.
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As shown from the graphical model (see Figure 5.1), zn is a random variable follow-

ing multinomial distribution ℳ(zn∣�). Thus, we employ the Dirichlet Process Mixture

(DPM) to describe the infinite Dirichlet distribution with unknown component coeffi-

cient parameters as a prior distribution of day type classes. Previous work has shown

that DPM parameterises the distribution of the size of the day type classes, and effec-

tively estimates the number of day types as well as the parameters of the day types

(Tominaga et al., 2012). The number of day types can in principle be infinite. However,

in practice an upper bound K is set to a suitably large value (e.g., 50, 100). The method

estimates the number of day types as k ≪ K that is guaranteed to be bigger than what

would be expected in any given case. In particular, we apply DPM truncated stick–

breaking process (Sethuraman, 1994) to approximate the infinite–dimensional Dirichlet

distribution, which represents the beta distribution as a prior of each coefficient of a

multinomial distribution. The coefficients �k are calculated as:

�k = vk

k−1∏
i=1

(1− vi),vk ∼ ℬ(vk∣1, �) (5.5)

where � is a preset hyperparameter. Given this, we can now define the conjugate prior

of the Dirichlet distribution for � as:

� ∼ Dir(�∣�) ∝
∏
k

��−1k (5.6)

where � is a preset hyperparameter. If M = (�1, . . . , �K), and Z = {z1, . . . , zN} be the

parameter sequences of the day types, then we can define the likelihood of the appliance

usage profile given all parameters is:

p(xn∣Z,M) =
K∏
k=1

L∏
l=1

T∏
t=1

[�
xn,l,t

k,l,t (1− �k,l,t)1−xn,l,t ]
zn,k (5.7)

In the next section, we describe how these latent day type parameters are estimated.

5.2 Inference of Parameters and Cluster Number

It has been shown that among existing inference methods for implementing DPM, such as

blocked Gibbs sampler (Ishwaran and James, 2001), variational Bayes (Blei and Jordan,

2006), collapsed Gibbs sampler (Maceachern, 1994), the blocked Gibbs sampler has

higher probability to reach global optima than the others (Tominaga et al., 2012). Thus,

we use the blocked Gibbs sampling within our paper. The Gibbs sampling process firstly

initialises the parameters randomly. Then, it iteratively alternates resampling from the
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posterior distributions of the unknown random variables as follows:

V,M, � ∼ p(V,M, �∣X,Z) (5.8)

Z ∼ p(Z∣X,V,M, �) (5.9)

where V = {v1, . . . , vK}; � = {�1, . . . , �K}. Based on the aforementioned discussion,

the posterior distributions can be calculated as follows:

vk ∼ ℬ(vk∣1 +
∑
n

zn,k, �+
K∑

i=k+1

∑
n

zn,i) (5.10)

�k,l,t ∼ ℬ(�k,l,t∣ �1 +
∑
n

xn,l,tzn,k,

�2 +
∑
n

(1− xn,l,t)zn,k) (5.11)

�k,w ∼ Dir(�k,w∣! +
∑
n

qnzn,k) (5.12)

zn ∼ℳ(zn∣�∗), �∗ :=
�kp(xn∣�k)p(qn∣�k)∑
k �kp(xn∣�k)p(qn∣�k)

(5.13)

In Equation 5.10, we sample the weights vk, which are the beta random variables of the

stick breaking construction of the DP, as per the standard stick-breaking construction

(Sethuraman, 1994). The posterior distribution for weights can be directly calculated

from the total counts of latent day type assignments and are added to the hyper pa-

rameters to find the current pseudo count of each beta distribution (Bishop, 2006). In

Equation 5.11, a similar process is applied to the beta random variables � indicating the

probability of using appliances at all times of the day. Equation 5.12 defines how the day

of the week probabilities for each day type are sampled from their posterior Dirichlet

distribution. Finally, Equation 5.13 uses Bayes’ theorem to incorporate the likelihood of

appliance use observations and the prior distribution of day types to randomly sample

the day assignments for each day block, zn. As per normal Gibbs sampling, we iterate

through these sampling steps until convergence.

Next, we show how to use this model to perform prediction.

5.3 Appliance Usage Prediction

Given the historical observation for all appliances X and the parameters estimated from

the training process, we now consider the prediction of the probability of all appliance

usages for the next day xn+1,l = {xn+1,l,1 . . .xn+1,l,T } (where l ∈ L). In this scenario,

the day of week on the (n+ 1)tℎ day is a known value, denoted as qn+1 ∈W . The
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prediction algorithm uses marginalization from unknown random variables. To ensure

convergence, we use a standard technique known as ’burn-in’ that discards the initial

parameters samples (during Gibbs sampling) to ensure that we do not end up with

inaccurate parameter estimates that were taken before convergence of the Markov chain

in Monte Carlo. We found that convergence occurred for our model before 60 iterations.

Thus, we discard the first 60 samples. Then, we downsample the remaining samples

such that every 3rd sample is retained. Finally, we obtain the mean probability for each

appliance on the prediction day (n+ 1). The likelihood for each appliance l ∈ L can be

expanded as:

p(xn+1,l∣qn+1,hN ) = (5.14)

= 1/R
R∑
r=1

p(xn+1∣q(r)
n+1, �

(r), �(r), �(r))

whereR is the number of samples obtained in the Gibbs sampling process. We marginalise

over unknown day types for the day (n+1), and take out the normalising constant p(qn),

then p(xn+1∣qn+1, �, �, �) can be computed as follows:

p(xn+1∣qn+1, �, �, �) (5.15)

∼
∑
zn

p(xn∣�, zn)p(zn∣�)p(qn∣�, zn) (5.16)

=

K∑
k=1

(�k,qn+1�k�k,l) (5.17)

The algorithm determines the occurrence of the target appliance at time step t ∈ T
based on the value of the threshold in which we vary this threshold value from the

minimum probability value to the maximum value from all prediction probability (see

more detail in Chapter 6 while we evaluate the prediction performance of the algorithm).

In particular, if the probability of the target activity at the specific time of the day is

greater or equal than the prediction threshold, the algorithm predicts that the target

activity will occur at the time of the day t ∈ T at the next day n+ 1. Otherwise, if the

probability of the target activity at the specific time of the day is less than the threshold

value, the algorithm predicts that the target activity will not occur at that time of the

day.

We show that GM-PMA outperforms other benchmarks in terms of prediction accuracy

in the next chapter. We now summarise the findings of this chapter in the following

section.
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5.4 Summary

This chapter described GM-PMA algorithm that shows to be the best for prediction

accuracy, though at the expose of computational time. At GM-PMA, we used Bernoulli

distribution to model the behaviour of each appliance throughout the day (i.e., modelling

the probability of when and which appliance is being used during the day). Then, we

develop the Dirichlet Process Mixture based to identify the hidden classes that represents

for a group of behaviours of the user (e.g., working days, weekend day). The GM-PMA

also conditioned on the (weekly) cyclic nature of human routine, and thus enhances

prediction accuracy. We then presented the use of blocked Gibbs sampling to infer the

model’s parameters and cluster numbers. We predict the future appliance usage by using

the marginalisation from unknown random variables. Next, we evaluate the performance

of our algorithms, GM-PMA, and EGH-H (Chapter 4) against other benchmarks in the

following chapter.



Chapter 6

Empirical Evaluation

In this chapter, we evaluate GM-PMA, and EGH-H in predicting the usage of appliances

during a day in the home. To do so, we first describe the settings of our experiments

in Section 6.1. Then, we introduce a set of benchmark algorithms against which we

compare our methods in Section 6.2. Section 6.3 provides evaluation metrics for our

experiments. Section 6.4 describes synthetic data evaluation. Next, we empirically

analyse the experiment results in Section 6.5. Finally, we summarise this chapter in

Section 6.6.

6.1 Experiment Settings

In our model, we focus on predicting the use of the appliance at the certain time slot

through a day (i.e., binary use). We consider the domestic profile where the usage over a

day can be divided in two-hourly slots represented by a set of time slots T = {1, . . . , 12}
because some appliances (e.g., washing machine) can be lasted for up to 2 hours.1 In

addition, for all houses in our datasets,2 we use the first 75% as a training data set, and

the remaining 25% as a test set (i.e., comparing the appliance usage prediction against

the ground–truth dataset). Now, we describe the benchmark algorithms in the following

section.

6.2 Benchmark Algorithms

Related work has typically focused on single user behaviour prediction and dependency

model prediction for non–human data (see Chapter 2). Given this, we choose a number

1Note that we focus to answer the question whether or not the appliance is being used at the given
time slot.

2The REDD dataset, and the FigureEnergy dataset.
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of state–of–the–art methods from these domains to benchmark against. In particular,

we compare our method against the following approaches:

∙ The piece–wise constant conditional intensity model (PCIM): a state–of–

the–art approach in predicting multiple–source web data where data from different

sources might depend on each other. In particular, it uses a set of piece–wise

constant dependency functions to capture the correlation between labels (i.e., data

from different sources). It uses these functions to create a decision learning tree

to describe the inter–dependency model. Based on this model, it then estimates

the probability of event occurrence in the future by using forward and importance

sampling (Gunawardana et al., 2011).

∙ Dirichlet Process based (DP): this algorithm is designed for predicting the

presence at locations of a single appliance ((Gao et al., 2012), (Tominaga et al.,

2012)). In particular, it regards a set of binary observation (i.e., whether the

user is at a certain place at a particular time), modelled by beta distributions.

The parameters of these distributions are conditioned on a day type category for

that particular day. To adapt this algorithm to our settings, we run it on each

appliance, as if it was independent from the others.

∙ An extension of the Dirichlet Process based (DP–Ext): this extends the

model of Tominaga et al. (2012) to capture inter–dependency by assuming that

if two appliances share the same day type class, they are highly correlated. In

general, DP–Ext is capably dealing with the inter-dependencies between multiple

appliances. However, it does not take into account the cyclic human routine.

∙ EGH: this is a rule–based method to find patterns of appliance usage events on

the historical given preceding window (Laxman et al., 2008).

We refer to our algorithms as GM–MAP, and EGH-H. In the next section, we provide

evaluation metrics for our experiments.

6.3 Evaluation Metrics

We evaluate the prediction accuracy of our algorithms against other benchmarks using

the receiver operating characteristic (ROC), which illustrates the performance of the

algorithms as the threshold of the algorithm is varied.3 The ROC curve shows the trade–

off between the algorithm’s true positive rate (TPR) and false positive rate (FTR), which

are defined as follows:

3The threshold value is varied from 0.0 to 1.0. Each threshold value can be used to estimate the True
Positive Rate (TPR) and the False Positive Rate (FPR).
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TPR =
TP

TP + FN
(6.1)

FPR =
FP

FP + TN
(6.2)

where:

∙ TP (True Positive) - the number of appliance usage that are predicted correctly

as being used.

∙ FP (False Positive) - the number of appliance usage that are predicted as being

used, but actually not being used.

∙ TN (True Negative) - the number of appliance usage that are predicted correctly

as not being use.

∙ FN (False Negative) - the number of appliance usage that are predicted as not

being used, but actually being used.

Given the ROC curve, we use the area under the ROC curve (AUC) to evaluate the

prediction accuracy. The AUC is varied from 0.0 to 1.0 that represents from the worst

prediction accuracy to the best prediction accuracy. We next turn to evaluate our

algorithms, on the synthetic data in the following section.

6.4 Synthetic Data Evaluation

In this section, we evaluate the prediction accuracy on all the algorithms using a synthetic

dataset. More importantly, using the synthetic dataset allows us to test the algorithms

with different settings of inter-dependencies between appliances. Here, we basically

concentrate on testing the prediction performance with a variety of level of the inter-

dependencies for two appliances: washing machine and tumble dryer.

We assume that these appliances (i.e., washing machine and tumble dryer) are tempo-

rally dependent on each other. In particular, the use of washing machine implies the

use of the tumble dryer. To do so, we assume that the tumble dryer is always turned

on once the washing machine has been used (i.e., turned on and off). Here, the levels

of inter-dependencies between these appliances are in relation to the gap between these

two usage, and the frequency that the pair of these usage (i.e., same gap) can repeat.

For example, considering a scenario that a user uses the washing machine every week,

there are two cases of using the tumble dryer: i) a user will turn on the tumble dryer

randomly during next 24 hours (equivalent to one day), ii) a user will turn on the tum-

ble dryer randomly during next 169 hours (equivalent to one week). Intuitively, we can
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find that the relationship between these two appliances in the first case is stronger than

the second case because it is more likely to find the repetitive pair (same gap) in the

first case than the second case. Hence, we model the gap between these two labels by

defining a dependency function Ϝ($) which randomly withdraws a number in a range of

1 . . . $, where $ ∈ ℤ+ is the noise of the inter-dependency between the appliance usage.

In this regard, assume the washing machine is being used every day, once the washing

machine is being used, then the time that the tumble dryer is being used is defined as

the following equation:

ttd = twm + Ϝ($) (6.3)

where twm is the time that the washing machine is being used that is randomly generated

during the day. In this equation, if $ increases, the level of inter-dependencies decreases.

We generate two set of synthetic datasets:

∙ Synthetic Dataset 1 (SD1): we fix a number of usage of washing machine per day

(arbitrarily set to 3), then we vary the level of dependencies based on varying

the noise of the inter-dependency $. Here, we want to evaluate the prediction

performance on different level of inter-dependencies between appliances. We expect

that the prediction accuracy would be likely to reduce if $ increases (i.e., the level

of inter-dependency between appliances increases)

∙ Synthetic Dataset 2 (SD2): we fix the level of dependencies through $ (arbitrarily

set $ = 10), then we vary the number of usage of the washing machine for a day.

Here, we want to evaluate the prediction performance on the different number of

usage of washing machine for a day. If these usage increases, there will be likely to

find stronger dependencies between the two appliances. Thus, we expect that the

prediction accuracy would be likely to increase if the number of appliance usage

of the washing machine for a day increases.

These datasets are divided into two parts: training dataset, and testing dataset. The

training dataset is generated from day 1 to day 30. The testing dataset is generated

from data 31 to day 40.

Figure 6.1 shows the prediction performance of all the algorithms (including bench-

marks) on SD1. In overall, the prediction accuracy (represented by AUC) for all al-

gorithms decreases when the noise of the inter-dependency increases (equivalent to the

decrease of the level of inter-dependency between the appliances). GM-PMA has shown

to outperform all other algorithms. In particular, GM-PMA outperforms EGH-H (the

second best performance) as the AUC of GM-PMA on average is approximately 5%

higher than EGH-H. In addition, Figure 6.2 shows the prediction performance of the
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Figure 6.1: Synthetic data evaluation for two appliances: washing machine and tumble
dryer. The number of usage of washing machine is arbitrarily fixed at 3. The noise of
inter-dependency between the appliances is varied. Note that the higher the noise of
inter-dependency value are generated, the lower the level of inter-dependency between

the two appliances is likely to achieve.
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Figure 6.2: Synthetic data evaluation for two appliances: washing machine and tumble
dryer. The level of inter-dependency between these appliances is fixed.

algorithms on SD2. The prediction accuracy of all algorithms is likely to improve if

the number of usage of the washing machine for a day increases. Similarly, GM-PMA

also dominates other algorithms, and the AUC of GM-PMA outperforms EGH-H (the

second best performance) approximately 6% higher.

In the next section, we empirically evaluate the prediction performance on real–world

datasets.

6.5 Empirical Evaluation on Real–World Datasets

In this section, we analyse the results of all algorithms in the two real–world datasets:

the REDD dataset, and the FigureEnergy dataset. In particular, we first evaluate the
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Figure 6.3: ROC curve of the algorithms run on house 1 - REDD.

prediction accuracy on the REDD dataset in Section 6.5.1. Similarly, we show the results

on the FigureEnergy dataset in Section 6.5.2. We then evaluates human routine cycles

in Section 6.5.3. Finally, we analyse the algorithm’s runtime in Section 6.5.4.

6.5.1 Experiment 1: Performance on the REDD Dataset

Here, we run our algorithms to predict all the labels of the REDD dataset. We depict

the Receiver Operating Characteristic (ROC) curve of the algorithms for each home in

Figure 6.3, Figure 6.4, and Figure 6.5. From Figure 6.3, we can see that our algorithm

dominates all the others. In particular, the area under the curve (AUC) of GM–MAP

in home 3 is 0.79, while the AUC value for DP, DP–Ext, PCIM, EGH-H, and EGH is

0.58, 0.65, 0.38, 0.67, and 0.58 respectively. In other words, our algorithm (GM–MAP)

outperforms DP, DP–Ext, PCIM, EGH-H, and EGH by 21%, 14%, 41%, 12%, and 21%

respectively in home 1. Similarly, our algorithm dominates the nearest best algorithm

DP-Ext up to 15% in home 3. Note that since home 1 and home 3 have the most detailed

data,4 all the algorithms typically exhibit their best performance on these homes. Note

that the data from home 4 is less detailed, and thus, all the algorithms perform worse,

compared to themselves in home 3 and home 1. However, our algorithm still dominates

the benchmarks. An exception is the PCIM method, which performs by far the worst.

The reason for this is that due to the large size of the dataset, PCIM overfits the

inter–dependency model (since it does not take into account the cyclic feature of human

routine). Given this, it fails to correctly detect the occurrence of activities.

6.5.2 Experiment 2: Performance on the FigureEnergy Dataset

In this section, we test the performance of our algorithms on two selected homes from

the FE dataset as the other homes did not have sufficient data for the algorithms to

4The number of labels in home 1 and 3 is higher than the number of labels in home 4.
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Figure 6.4: ROC curve of the algorithms run on house 3 - REDD.
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Figure 6.5: ROC curve of the algorithms run on house 4 - REDD.

be trained and tested. Thus, we were not able to set up a proper training dataset for

those homes. Similar to the previous section, we also consider of measure the prediction

accuracy of the algorithms by using the ROC curves measurement. Note that in the FE

dataset, the labels of energy usage activities were annotated by consumers, and hence,

there is a possibility that users might mistakenly select incorrect activity types or dura-

tions of specific activities. Thus, the uncertainty of the labels is high. Consequently, the

algorithms can be overfitted in training, and hence worsen the prediction performance.5

Therefore we selected labels that occurred sufficiently in both training and test datasets.

We also plot the ROC curve of the algorithms for these homes in Figure 6.6 and Fig-

ure 6.7. From these figures, we can observe that, due to the uncertainty of the users’

manual labelling process, the performance of the algorithms is much worse, compared

to the case of the REDD dataset. However, GM–MAP still provides the highest accu-

racy in predicting future activities. For example, GM–MAP outperforms DP, DP–Ext,

EGH-H, EGH and PCIM by approximately 12%, 10%, 11%, 20% and 30% respectively.

5This is an aspect which we will further investigate as part of our future work.
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Figure 6.6: ROC curve of the algorithms run on User FE22 from FigureEnergy.
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Figure 6.7: ROC curve of the algorithms run on User FE39 from FigureEnergy.

6.5.3 Experiment 3: Human Routine Cycles

In this experiment, we show that our appliance usage prediction algorithms (GM-PMA

and EGH-H) will improve the prediction accuracy if we take into account weekly pe-

riodicities of human routine behaviour. In particular, we already demonstrated that

GM-PMA outperformed DP-Ext using real-world datasets in Experiment 1 and 2. Note

that GM-PMA learns day types classes conditioning on the day of the week, while DP-

Ext does not.

Moreover, with regards to EGH-H, to test the appliance usage prediction with different

periodicities, we use the REDD dataset (house 1).6 Figure 6.8 shows the performance of

usage prediction with different cycle routines (ranging from 1 to 7 days) for the EGH-H

algorithm. We can see that the prediction accuracy of EGH-H with a weekly period is

much improved compared to EGH-H with other periods. In more detail, EGH-H with

6House 1 in the REDD dataset provides more appliances than others. We only use this to strengthen
the use of weekly human routine assumption in our model.
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Figure 6.8: Cyclic human routine evaluation on EGH-H for REDD (House 1) dataset.

GM-PMA EGH–H DP DP-Ext PCIM EGH

545.86 2.58 1225.14 815.24 371.30 1221.72

Table 6.1: Runtime performance for 8 appliances (in seconds).

a weekly period dominates EGH-H with one day period approximately 17% in term of

the AUC measurements.

6.5.4 Experiment 4: Average Runtime

Having evaluated the prediction accuracy of the algorithms, we now turn to evaluate

the running time of each algorithm. In particular, we run the algorithms on an Intel(R)

Xeon(R) computer (64–bit operating system) with 2.67 GHz and 12GB. The results

measured in seconds are depicted in Table 6.1. We measure the runtime of each algorithm

on the REDD dataset (house 1) within 8 appliances. We can see that even in the case

of 8 labels, the runtime of the benchmark algorithms is significant (9, 20, 14, 6 and

21 minutes for GM-PMA, DP, DP-Ext, PCIM, and EGH). In contrast, the runtime

of EGH–H still remains under 3 seconds. This implies that EGH–H could be you for

scenarios that feedback may need to generate in short notice. Additionally, EGH-H could

be used for interactive feedback, where the agent suggests users different home energy

consumption plans in real–time (if needed), as it can use EGH–H to quickly predict the

next–day usage, based on the real–time feedback of users. On the other hand, GM-PMA

may provide more accurate schedule of appliance usage, but this algorithm requires more

time to generate. Thus, it is best use for scenarios that users are comfortable of waiting.

For example, the agent can request GM-PMA algorithm to run at the end of the day,

then provide users the appliance usage plan in the morning. We now summarise the

findings of this chapter in the following section.
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6.6 Summary

In this chapter, we provided the experimental settings for our evaluation on the real–

world datasets. We described a set of benchmark algorithms that we used to compare

to our algorithms, including PCIM, DP, DP-Ext and EGH (these algorithms have also

described in Chapter 2). We also provided evaluation metrics such as ROC curves and

AUC to measure the prediction performances for the prediction algorithms. We then

simulated the synthetic dataset with two appliances (a washing machine and a tumble

dryer) to evaluate the prediction performance of all the algorithms. The use of syn-

thetic data allows us to test with different settings of inter-dependencies between these

two appliances. We found that GM-PMA dominated other algorithms using the syn-

thetic datasets. Then, we demonstrated the prediction performance of our algorithms

with other benchmark algorithms using the two real-world datasets: the REDD dataset

and the FE dataset. We found that GM-PMA algorithm outperformed existing meth-

ods by up to 41% in term of prediction accuracy. Similarly, EGH-H dominates other

benchmarks by up to 420% faster in term of runtime performance.

So far, we have addressed the appliance usage prediction problem by proposing efficient

algorithms: GM-PMA, and EGH-H. In the next chapter, we show how to use our pre-

diction algorithms, and provide insights about how the agent can assist to minimise the

user’s discomfort and costs as a result of deferring appliance usage.



Chapter 7

Intelligent Demand Response

In this chapter, we study a scenario in which an agent assists to optimise their savings

and comfort using GM-PMA. In particular, we propose an Intelligent Demand Response

(IDR) mechanism that extends GM-PMA to learn, from the user’s responses, the best

suggestions to give to the user to maximise the acceptance of the load deferment. The

IDR mechanism has three main phases, include: i) Appliance usage prediction (Phase 1),

ii) Suggestion optimisation (Phase 2), and iii) Human-Agent interaction (Phase 3). We

describe these phases more formally in Section 7.1. In order to evaluate IDR (particu-

larly for Phase 3), we model and simulate realistic human responses to suggestions in

Section 7.2. In Section 7.3, we elaborate on Phase 2 to show how the agent can op-

timise personalised suggestions. Then, we describe how the agent can learn the user’s

preferences (i.e., the trade–off between the user’s comfort and savings) from the user’s

responses (i.e., Phase 3) in Section 7.4. Given this, we empirically evaluate the IDR

mechanism using the REDD dataset in Section 7.5. Finally, we summarise this chapter

in Section 7.6.

7.1 The IDR Mechanism

The IDR mechanism iteratively runs through the three main following phases:

∙ Appliance usage prediction (Phase 1): here, we wish to predict which appli-

ances are likely to be used, and when they are likely to be used during the day.

This prediction problem has been analysed and addressed in Section 3. In particu-

lar, within the home, there is a finite set of appliance usage events, where different

types of appliances are distinguished by labels l ∈ L, and the time of the day t ∈ T
can be discretised by a number of time slots for a day (e.g., T = 24 is equivalent to

1 hour time slot). xn,l,t indicates whether appliance l was used on day n at time t.
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Here, we employ the GM-PMA algorithm to solve this problem given its superior

performance in terms of accuracy.1

∙ Suggestion optimisation (Phase 2): by considering the predicted activities of

the user (based on Phase 1) as well as the electricity prices (here we assume

a dynamic pricing regime (Ramchurn et al., 2011a)), the agent can optimise a

suggestion plan of the use of appliances that will be passed to the user to maximise

their savings and comfort. In particular, we denote ptn ∈ R as the electricity price

at time slot t on day n. According to the electricity price, then the agent estimates

optimal suggestions that can help the user save money. A suggestion is in the form

of a tuple < S(l)
ti→tj
n ,Δt,ΔE(l)

ti→tj
n >, where S(l)

ti→tj
n indicates an appliance l

on day n should be deferred from time slot ti to time slot tj , Δt = ∣ti − tj ∣,
and ΔE(l)

ti→tj
n ∈ R+ is potential savings gained if the user would accept this

suggestion. We describe this phase in more detail in Section 7.3.

∙ Human-Agent interaction (Phase 3): the agent chooses the best personalised

suggestions, and sends them to the user. For example, the agent may suggest the

deferment of the washing machine from 8.00am to 10.00pm because it is cheaper to

do so. Then, the user responds to the agent’s suggestion by agreeing or rejecting

the proposal. Formally, a user’s response given to the suggestion S(l)
ti→tj
n is noted

as D(l)
ti→tj
n = (0, 1), where 0 means the user does not follow the agent’s suggestion,

and 1 means the user would follow the agent’s suggestion. Crucially, by analysing

many such responses over time, the agent can learn the user’s preferences from

her reactions in order to select better suggestions in Phase 2. The details of this

phase are described in Section 7.4.

Now, in order to evaluate IDR, we need to model and simulate realistic human responses

to suggestions (in Phase 3). Hence, we describe human response model in the next

section.

7.2 The Human Response Model

Human decision–making (as it relates to appliance usage) is clearly complex and de-

termined by many factors. Also, there is not enough real data to understand user’s

behaviour in this domain. Thus, completely modelling the user’s behaviour would be

unrealistic. However, many studies have shown that the energy consumption behaviours

are mainly influenced by cost, comfort and even peer-pressure2 (Froehlich et al., 2010).

Given this, we use these factors (except peer-pressure as it does not apply to our settings)

1Since the focus here is on learning from human responses rather than providing timely feedback, we
only use GM-PMA.

2More information can be seen at http://opower.com/solutions/behavioral-demand-response, but
testing on peer-pressure is beyond the scope of this paper.
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to model human response in our scenario. Note that more complex human behaviour

model will be considered as our future work. In more detail, we first describe a user’s

utility function that defines the agent’s interpretation of the user’s preferences in Sec-

tion 7.2.1. Then, we elaborate on how we develop a decision–making model given agent

suggestions in Section 7.2.2.

7.2.1 User Utility Function

In the context of the home energy management, energy consumption reduction or defer-

ment results in monetary savings (i.e., as per the user’s energy tariff). However, people

may have their own preferences to use specific appliances at certain times during a day

(e.g., prefer cooking at 7.30pm, wash and dry their clothes during the weekend). In

addition, the use of appliances in the home is usually constrained by daily activities

(e.g., working hours in offices, spending time for kids, weather forecast). Thus, there

exists inconvenience/loss of comfort associated with using appliance at time tj instead

of ti.

Hence, savings may be in tension with comfort (i.e., there is a trade–off). To satisfy a

user’s preferences and (possibly) her real-life constraints (via their appliance usage), the

agent can make suggestions to change the user’s existing appliance usage behaviour by

accounting for the trade-off between comfort and savings. In particular, to represent this

trade–off, we let utility of user following agent suggestion be fn: U(s, ti, tj), where s is

the monetary savings to be made for accepting the agent’s suggestion to defer appliance

usage from time ti to tj . Here, ti is the preferred time that the user would like to turn

on the home appliance. Any suggestion that asks the user to move away from this time

is likely to cause a loss of comfort. Thus, the assumption we make for estimating the

user’s discomfort in our model is that the more the user is asked to deviate from the

time they would prefer to turn the the appliance on, the more discomfort it will cause

to the user. As such, the discomfort function is assumed to be stationary (e.g., that the

discomfort of going from 2pm to 4pm is identical to the discomfort of shifting from 2pm

to 12 noon or from 4pm to 6pm).3 Moreover, the monetary savings s is the difference

between the energy cost at time slot tj and the energy cost at time slot ti, which can be

estimated as follows:

s = ΔE(l)
ti→tj
n = E(l)

tj
n − E(l)tin

where E(l)
tj
n is the energy cost of appliance l at time slot tj , and E(l)tin is the energy

cost of appliance l at time slot ti. The energy cost of an appliance l at time slot t on

day n can be estimated as follows:

3More complex models are beyond the scope of this paper and will be considered in future work.
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E(l)tn = dlclp
t
n (7.1)

where dl (hours) is the duration of operation for appliance l, cl (kW) is the power

consumption of appliance l, and ptn (£/kWh) is the energy cost at time t on day n.

In our experiments, we use real data for the average duration of the appliance and the

energy consumption of the appliance that have been measured and collected in some

sources.4 For example, a dishwasher typically requires approximately 1.85 (kWh) in 2

hours of operation, while a washing machine consumes around 0.63 (kWh) in 1.5 hours

on average.

To model the user’s utility function, for the sake of simplicity, we use a standard linear

model as used in many scenarios (Vytelingum et al., 2010; Ramchurn et al., 2011a).

More specifically, the user’s utility function can be written as:

U(s, ti, tj) = U(l)
ti→tj
n = wc∣tj − ti∣+ wss

where wc ∈ ℝ is the weight of the comfort of the user and ws ∈ ℝ is the weight of the

monetary savings of the user. The unit of wc is £/(time slot). As we will arbitrarily fix

ws = 1 in our experiment, thus we only need to focus on wc (see details in Section 7.5.1).

So far, our model specifies a user’s preferences given suggestions but does not specify

how we simulate the user’s responses to the agent’s suggestions. We address this in the

next section.

7.2.2 Decision–making given suggestions

In an ideal scenario, the user would say ‘yes’ with probability 1 to any suggestion that

had positive total utility for them, and ‘yes’ with probability 0 to any suggestion that

had negative total utility (i.e., ‘no’). This is equivalent to a step function applied to

the total utility. However, even if we assume our model of user responses is completely

correct (i.e., that their decision boundary between comfort and savings is linear), people

do not always behave rationally very near to their decision boundary (i.e., occasionally,

they may say ‘no’ to perfectly good suggestions) (Costanza et al., 2014). To improve

the realism of our model of user responses, we use logistic regression as our decision–

making model for users to deal with any given suggestions. More practically, it is

more convenient to perform logistic inference with differentiable functions (which the

step function is not), and the sigmoid function is by far the most widely used function

for this purpose in settings that have binary classifications (Bishop, 2006). Formally

speaking, we apply a sigmoid function within the user utility function (Equation 7.2)

to generate user responses to suggestions (‘yes’ to accept and ‘no’ to reject). Then, the

4http://www.daftlogic.com/information-appliance-power-consumption.htm.



Chapter 7 Intelligent Demand Response 65

likelihood of the user to accept a suggestion can be estimated as a sigmoid function as

follows:

p(D(l)
ti→tj
n = 1∣�) = �(wT�)

=
1

1 + exp(−U(s, ti, tj))

=
1

1 + exp(−U(l)
ti→tj
n )

=
1

1 + exp(−(wc(Δt) + ws(ΔE(l)
ti→tj
n )))

Using this sigmoid function, it is thus possible to simulate the user responses to the

agent’s suggestions. As this model is dependent on the two parameters wc and ws, some

settings of these parameters would give identical behaviour in our model. We address

this in Section 7.5.1. Now, we turn to describe how the agent optimises the user’s

personalised suggestions (Phase 2) in the next section.

7.3 Suggestion Optimisation

In this section, we describe an optimisation algorithm for selecting personalised sugges-

tions that can maximise user’s comfort and savings. At this stage, the agent already

knows the user’s appliance usage plan via solving the appliance usage prediction problem

(in Phase 1). Taking into account the forecast of the electricity price, the agent solves

the user’s suggestion optimisation problem by maximising the user’s utility function

(see Equation 7.2). In more detail, we denote �(l) (initially empty) as a set of appliance

usages l to be deferred (obtained from prediction appliance usage in phase 1), then the

optimisation process can be done as follows. First, we select the time to be deferred

that has optimal utility as:

S(l)
ti→tj
n = arg max

ti,tj∈T
U(l)

ti→tj
n

s.t. tj /∈ �(l) & ti ∈ �(l)

Second, we update time to be deferred tj for appliance l.5

�(l) = �(l) ∪ tj (7.2)

According to the calculation from the optimisation process, the agent then can choose

the best personalised suggestions for the user. We send these suggestions to the users to

5Please note we only deal with binary decision for this scenario. More complex decision will be
considered as future work.
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Figure 7.1: Example of using logistic inference to learn the user’s preferences from the
user’s responses. The algorithm finds a new gradient (the dashed line) to minimise the
errors of agent’s suggestions. Intuitively, the user would say ‘yes’ to the suggestion that

the trade-off located above the line, and ‘no’ otherwise.

obtain their responses. In the next section, we describe how the agent learn the user’s

preferences from the user’s responses to the agent’s suggestions (Phase 3).

7.4 Learning from User Responses

Here, we model the interactions between the user and the agent and develop an algorithm

that can adapt to the user’s changing preferences by learning over the user’s responses

to the agent’s suggestions. This learning process can be summarised as follows. First,

by maximising the utility function, the agent selects a list of personally meaningful

suggestions s1..M = {s1, . . . , sM}, where si = S(l)
ti→tj
n (see Phase 2). For each suggestion

si, the agent has already estimated the trade–off between comfort and savings, noted

in the form of vector �i = (Δt,ΔE(l)
ti→tj
n )

T
. Second, by sending these suggestions

to the user, the agent obtains a list of corresponding responses from the user d1..M =

{d1, . . . , dM}, where di = (0, 1). Here, di = 0 means the user says ‘no’ to the suggestion,

and di = 1 means the user says ‘yes’ to the suggestion. Third, we learn the user’s

preferences by adjusting the weights (of discomfort and savings) for the user’s utility

function (see Equation 7.2). Note that we select the best personalised suggestions based
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on the user’s utility function in Phase 2. More importantly, we learn these weights by

using logistic inference (Bishop, 2006). Given the agent’s suggestion trade-offs �1..M ,

and the corresponding user’s responses d1..M , the logistic inference algorithm returns

the corresponding learnt weights for comfort (wc) and savings (ws) that can minimise

the error of the agent’s suggestions. These weights will be used for the next iteration

of our IDR mechanism (Section 7.1). Figure 7.1 illustrates how the logistic inference

algorithm works in our scenario. Next, we empirically evaluate our IDR mechanism to

determine the potential money that can be saved for the user.

7.5 Empirical Evaluation

We evaluate the IDR mechanism on the REDD dataset with a number of simulated

human responses in two experiments. In Experiment 1, we analyse whether users are

inclined to make more savings by using the IDR mechanism. We also evaluate the

logistic inference algorithm that learns user’s preferences. We describe this experiment

in more detail in Section 7.5.2. In Experiment 2, we evaluate the process of selecting

the best personalised suggestions in Phase 2 (Section 7.5.3).

In addition, to evaluate IDR under reasonable real-time pricing schemes, we simulate

real-time prices as Ramchurn et al. (2011a).6 In turn, given the lack of real data about

user’s response behaviours (due to the novelty of proposed system and unknown ground

truth that would help us determine the solution), we use synthetic data to model differ-

ent human response behaviours. More importantly, the use of synthetic data not only

helps us to consider broad range of behaviours, but also allows us to study how quickly

inference gets close to the true value. We describe how we generate user profiles for our

experiment in the following section.

7.5.1 User Profiles

As described in Section 7.2, our human response model has two parameters, ws and wc,

representing the user’s personal preference for energy savings and comfort, respectively.

In our experiments, we want to test the improvement in performance that our system

brings with respect to a variety of simulated human response behaviours. To create such

behaviours, we must vary the ground truth savings and comfort parameters. However,

we notice that some settings of ws and wc would give identical behaviour in our model

before response noise is added (i.e., before applying the sigmoid function). This is due to

the linearity at the utility function (see Figure 7.2). In order to consider a wider variety

of behaviours, we therefore avoid considering ground truth parameters ws and wc that

correspond to identical noiseless behaviours. This can be most conveniently achieved by

6The approach generates the prices from simulated aggregate demand on the grid.
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Figure 7.2: The 5 canonical ground truth user preferences we use in our experiments,
represented as lines of different colour (representing the linear trade-off between savings
and comfort). For savings-comfort values above each line, the rational response (i.e.,
without noise) for the simulated user is to accept the proposed appliance usage shift.
Otherwise, the suggestion is rejected. However, since our model is probabilistic, the user
may behave irrationally. The extent of irrationality is best understood as new parameter
� under a change of basis for the utility function U(s, ti, tj) = 1

� (wc∣tj − ti∣+ s). The
4 subfigures show different values for irrationality. The shaded areas indicate the 95%
confidence region that the simulated response behaviour will be irrational (i.e., be the
opposite response to the one dictated purely by utility theory). In our experiments,
we fix � = 1 (equivalent to ws = 1 in the original basis given in Equation 7.2) as a
reasonable choice of irrationality, resulting in the need to change only one parameter

(wc) throughout.
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UserID 0 1 2 3 4

wc -10 -30 -50 -70 -90

Table 7.1: Different User settings for different decision making.

fixing one of the parameters (we arbitrarily chose ws = 1) while allowing the other (wc)

to vary. The various parameter settings we considered in our experiments are given in

Table 7.1. We expect to see that the user with higher adaptability (i.e., higher value of

wc) will be likely to save more money. We use these user behaviours in Experiment 1 in

the next section.

7.5.2 Experiment 1: Evaluating IDR

In this section, we evaluate the IDR mechanism under a number of simulated human

response behaviours (that has been defined in Section 7.5.1) using the REDD dataset.

Settings for the training set and the testing set for each home in the REDD dataset are

set similar to the settings for appliance usage prediction problem. Thus, we apply IDR

over these test dataset to test two hypotheses:

∙ H1: any user is likely to achieve more savings by using the IDR mechanism.

Note that the IDR provides personalised suggestions to the user based on learning

the user’s preferences from the responses. Due to the uncertainty of suggestions,

the user can reject suggestions and therefore impact the learning phase of the

algorithm. Savings can only improve if suggestions are accepted by the users.

∙ H2: the user that tends to be more adaptive to suggestions (i.e., higher value of wc)

can save more money than the one that is conservative (i.e., avoids deferments).

We show that the agent can computerise the user’s behaviour by learning and

suggesting the suitable trade–off between comfort and savings.

Our approach to test these hypotheses can be summarised as follows: First, we apply

GM-PMA to predict all appliance usages for the next day. Second, we obtain all per-

sonalised suggestions from Phase 2. These suggestions are selected based on the learnt

user preferences (i.e., maximising the user’s utility function).7 Third, the agent sends

all personalised suggestions to the user and receives the corresponding responses. Then,

we estimate the electricity cost at the suggestion’s time if the user says ‘yes’ (i.e., ac-

cepts to defer). Otherwise, if the user says ‘no’ to the suggestion, the user will use the

appliance at their preferred time (i.e., at the prediction time). Hence, we then calculate

the electricity cost at the predicted time. The total potential savings for each user is

the difference between the cost of the user’s preferred time (i.e., at the predicted time)

7Note that, for this demonstration, we do not take into account the prediction error in Phase 1. We
will consider it in the optimisation process in Phase 2 in the future work.



70 Chapter 7 Intelligent Demand Response

UserID 0 1 2 3 4

HomeID = 1 1262.35 1029.61 874.81 717.98 555.04

HomeID = 3 2623.45 2483.95 2119.33 1603.08 1374.06

HomeID = 4 414.46 276.83 253.29 236.24 217.46

Table 7.2: Savings (in UK pence) achieved by different simulated human response
behaviours performed on REDD dataset.

and the cost of the user’s deferred time. Table 7.2 shows the final results of how much

savings each user can achieve. The results confirm that the users can always improve

their savings if they use IDR (H1). Also, the most money can be saved by the user 0

who tends to adapt to the agent’s suggestion, and the least money can be saved by the

user 4 who tends to be more conservative with their preferred time for appliance usage

(H2). In more detail, the user 0 gains approximately £12.62, £26.23, and £4.14 per

week (i.e., the testing period) within House 1, 3 and 4 respectively, about 227%, 200%,

and 100% respectively higher than the user 4.

To evaluate the logistic inference algorithm for learning the user’s preferences, we es-

timate the error between the preset weight parameters ws and wc (these parameters

are represented for the user’s behaviour as defined in Section 7.5.1) and the new weight

parameters w
′
s and w

′
c returned by the algorithm from learning the user’s responses. In

addition, as shown in Section 7.5.1, we have arbitrarily chosen ws = 1. Therefore, we

only need to evaluate the parameter wc. To do so, we first normalise the weight of w
′
c.

The normalisation equation is estimated as follow:

wnormc =
w

′
c

w′
s

ws

We define learning error is the difference between parameters wc and wnormc . We measure

the learning error to evaluate the performance of learning the user profiles. Intuitively,

if this converges to 0, the logistic inference is efficient.8 Figure 7.3, Figure 7.4, and

Figure 7.5 show the learning errors that vary for house 1, 3, and 4 respectively. The

value of the learning errors starts converging after the first 3 days. Also, the user with

higher adaptive behaviours converges faster.

7.5.3 Experiment 2: Evaluating Personalised Suggestions

In this section, we evaluate the process of selecting the best personalised suggestions to

the user. We consider the fact that the user will probably ignore too many suggestions.

Thus, we select the best suggestion for each appliance to send to the user each day.

More particularly, we want to test that the user can make the most savings if the agent

8We only use the learning error to validate the learning user behaviour. Other techniques can be
used, but this is not a main focus here.
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Figure 7.3: Learning user’s behaviour error at House 1 (REDD dataset).
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Figure 7.4: Learning user’s behaviour error at House 3 (REDD dataset).
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Figure 7.5: Learning user’s behaviour error at House 4 (REDD dataset).

assists them with the best personalised suggestions that can satisfy her preferences

(i.e., maximising the user’s utility function in Phase 2). We call the algorithm that

solves Equation 7.2 AlgU . We benchmark AlgU with other two suggestion optimisation

methods as follows:

∙ AlgUs: selects the best suggestion per appliance per day that returns the optimal

user’s savings (i.e., maximum wss in the user’s utility function).

∙ AlgRand: selects the best suggestion per appliance per day randomly.

Figure 7.6, Figure 7.7, and Figure 7.8 show the potential savings that the users can gain

based on responding to the agent’s personalised suggestions within House 1, 3, and 4

respectively. As we can see from this graph, AlgU (that maximises the user’s utility

function) outperforms others with respect to savings (for a week of testing period).

In particular, the AlgU algorithm can save up to about £1.00/week (equivalent to

£52.00/year) for user 0, and about £0.50/week (equivallent to £26.00/year) for user 4

within House 1. Similarly, AlgU can save up to £1.20/week (equivalent to £62.40/year),

and about £0.90/week (equivalent to £46.80/year) for user 0, and 4 respectively within

House 3. In average, users using AlgU can save up to 40%, 90%, and 70% in House 1,

3 and 4 respectively.

Now, we summarise the findings of this chapter in the next section.
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Figure 7.6: Potential savings by selecting the best personalised suggestions within House
1 (REDD dataset).
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Figure 7.7: Potential savings by selecting the best personalised suggestions within House
3 (REDD dataset).
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Figure 7.8: Potential savings by selecting the best personalised suggestions within House
4 (REDD dataset).

7.6 Summary

In this chapter, we have proposed the IDR mechanism to improve demand-side manage-

ment. The IDR mechanism is an extension of the appliance usage prediction problem,

allowing the agent to use appliance usage prediction algorithms to interact with a user so

that it can learn their preferences to provide personalised feedback. The IDR mechanism

has 3 phases: i) Appliance usage prediction (Phase 1), ii) Suggestion optimisation (Phase

2), iii) Human-Agent interaction (Phase 3). Phase 1 makes use of the appliance usage

prediction algorithm, GM-PMA, (proposed in Chapter 4). Phase 2 (see Section 7.3)

solves a feedback optimisation problem by optimising suggestions to satisfy the user’s

personal preferences for energy’ savings and comfort. Phase 3 (see Section 7.4) describes

an algorithm to learn the user’s preferences from her responses to the suggestions pro-

vided by Phase 2. In addition, a human response model was described in Section 7.2

to provide simulated user behaviours and how decision-making can be processed by the

users.

Moreover, we have also evaluated the IDR mechanism by applying it to a variety of

simulated human response behaviours within the REDD dataset. We found that, by

using IDR, users can always improve their savings. In particular, within a number of

our test user profiles, users can save up to £26.23 per week (equivalent to approximately

£136.96). We have also evaluated our method (AlgU ) to provide the best personalised
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suggestions that maximises the user’s preferences (Phase 2) against two other bench-

marks and showed that by optimising the users’ personal preferences for comfort and

savings can always help to save more money, and up to approximately 90% compared

to other benchmarks.

The following chapter provides a detailed summary of the thesis, and and discusses

future theoretical and practical implications.





Chapter 8

Conclusions

In Chapter 1, we introduced the key challenges faced in managing energy demand at

domestic level. Minimising peaks on the grid can be addressed by DSM techniques,

and that a key requirement is to predict energy consumption activities (or appliance

usage). We proposed our agent-based DSM approach fundamentally based on solving

the appliance usage prediction problem in the smart home. We also identified key

requirements that must be fulfilled in order to realise the efficient solution to the problem.

Chapter 2 described the vision of the smart grid, discussed smart meters and the use

of DSM techniques. We provided the challenge for standard DSM to manage electricity

demand on a large scale and discussed how agent-based approaches could help meet this

challenge. We described why agent-based DSM technique that takes the appliance usage

prediction problem as a key challenge to be an efficient approach to improve domestic

energy management. Then, we highlighted existing works on modelling and predicting

inter-dependencies between appliances (or events) in temporal data. In particular, we

discussed the two popular approaches that may be used to model the inter-dependencies

between appliances: a temporal point process technique, and a rule-based method based

on Frequent Episode Discovery. In particular, we used the state–of–the–art algorithms:

PCIM (as for temporal point process technique), and EGH (for FED technique) as bench-

marks for our evaluation. We showed that as these approaches do not take into account

the human routine behaviours and, thus, do not perform well to predict appliance usage

on real–world datasets of energy consumption from homes. We then discussed related

works for human routine modelling and prediction. We used a popular non-parametric

method, Dirichlet Process Mixture, as our benchmark for predicting human routine be-

haviours. However, this method only deal with one single appliance sequences (i.e, single

stream), and does not model the complex inter-dependencies between appliances.

In Chapter 3, we described our appliance usage prediction model formally. The model

takes into account historical data (such as the appliance usage) in order to predict when

77
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and which appliances will likely to be used in the future. We then described two real–

world datasets: the REDD dataset and the FE dataset, that we use to evaluate the

prediction performance in this thesis. The REDD dataset was produced using highly

intrusive method that monitoring appliance–level energy usage at high granularity and

with high accuracy. In contrast, the FE dataset was collected by non-intrusive methods

(i.e., house-level monitoring), and therefore involved high uncertainty as appliance usage

events were manually tagged by the users who may have mistaken appliance runtime.

We also explained in more detail how we extract the raw data from the REDD dataset

to use in our prediction model.

In Chapter 4, we described our algorithm, EGH-H, that is designed to take into account

the appliance usage dependencies and the human routine and generate the prediction

results in a short time (i.e., seconds). In more detail, by considering the weekly cyclic

human’s routine, EGH-H captures the dependencies between the appliance usage based

on identifying the significant patterns (i.e., the rule-based for appliance usage).

Next, in Chapter 5, we described an alternative algorithm, GM-PMA, that captures

the human routine and the inter-dependencies between appliance usage. GM-PMA is

based on Dirichlet Process Mixture, conditioning on the cyclic human weekly routine to

identify sets of latent classes that represent sets of behaviours of the user (e.g., working

days, holidays, studying, weekends). These latent classes are hidden, and never directly

observed, and hence automatically capture the inter-dependencies between appliance

usage at different times of the day.

Then, in Chapter 6. we evaluated the prediction accuracy and runtime of our algo-

rithms: GM-PMA, EGH-H, against other benchmarks (DP, DP-Ext, EGH, and PCIM).

We use ROC curves to compare the prediction accuracy of the algorithms. We used

the synthetic datasets to evaluate the prediction performance with different settings

of inter-dependencies between appliances. We found that GM-PMA dominated other

benchmarked algorithms. Then, we empirically evaluated our algorithms and other

benchmarks using the two real–world datasets: the REDD dataset and the FE dataset.

We found that GM-PMA outperformed other benchmarks up to 41% in term of predic-

tion accuracy. In turn, the runtime of EGH-H is 100 times lower on average, than that

of other benchmarked algorithms.

In Chapter 7, we proposed the IDR mechanism in order to extend the use of appliance

usage prediction algorithms in the context of demand response to learn user’ preferences.

In more detail, we evaluated the IDR mechanism to provide insights into how appliance

usage prediction algorithms can help to provide personalised suggestions, and hence,

learn the user’s preferences to minimise discomfort as well as energy costs. We evaluated

the IDR on a number of different simulated user behaviours on the REDD dataset based

on the measurement of monetary savings. We showed that, by using the IDR, users

are likely to improve their monetary savings and that the mechanism can optimise
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personalised suggestions to users by learning from their responses. We also showed that

if we learn the user’s preferences (for comfort and savings), up to 90% savings can be

achieved compared to other benchmarks that: i) only focus on maximising monetary

savings (but ignoring user’s comfort), ii) randomly notify the user. Next, we discuss the

theoretical (Section 8.1) and practical implications (Section 8.2) of our work.

8.1 Theoretical Implications

Low uncertainty in the use of appliances is a key assumption that we have made in our

models. We have showed that our model, GM-PMA, dominates others with regards

to the prediction accuracy on the FigureEnergy dataset which has highly uncertain

labels (i.e., appliance usage). However, minimising (or correcting) the uncertainty of

the appliance usage events can significantly improve the usage prediction accuracy. For

example, in our current model of energy consumption activities in the home, we have

assumed the appliance usage is correctly annotated (i.e., the information of appliance

usage is properly given, such as appliance’s types and duration; no data loss occurs). This

assumption allowed us to simplify the model of appliance usage prediction, and thus, the

prediction algorithm does not have to deal with the uncertainty in the dataset. However,

in a real application (e.g., FE), missing appliance usage typically occurs because it is

difficult to get users to precisely tag everything they have done in the past. Furthermore,

users may mistakenly give the wrong type for the appliance, or energy consumption

activity (e.g., cooking instead of having shower), or set the incorrect length for the

use of appliance. Hence, the data might be wrong/biased in some cases. Taking into

account the uncertainty of the use of appliances will cause difficulties in learning the

inter–dependencies of appliance usage, or identifying the pattern of occurrences of the

use of appliances. One possible rewards would be to detect the missing usage and fulfill

those missing data with some certain level of correct labels as well as correcting the

incorrect labelling of the appliance usage. Hence, this fixed dataset may be passed to

our appliance usage prediction algorithms.

Another issue is that GM-PMA is only conditioned on the cyclic nature of human routine.

To improve the prediction accuracy, there might be others factors that will be highly

correlated (e.g., external factors such as weather forecast, different human routines,

user’s relationship on social network, and the influence of the group’s behaviour). GM-

PMA can also analyse these factors in more detail. Also, the runtime can be much faster

if a online-learning version of GM-PMA can be developed.
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8.2 Practical Implications

In this section, we discuss a number of practical implications for the works in this thesis.

We enumerate a number of implications that we can pursue for real–world deployment

as follows:

∙ We have evaluated that, by using the IDR mechanism over a variety of simulated

human response behaviours, users are likely to improve their savings significantly.

A real–world deployment of the IDR mechanism is needed to validate these results.

∙ We need to design interfaces to incentivise users to shift energy consumption ac-

tivities and to consider prices when these tend to be low. By so doing, users can

be significantly encouraged to trade their convenience of using the appliances in

return for savings.

∙ The “Peer-pressure” approach may be employed as another incentive in addition

to potential savings. This approach combines intelligent monitoring of energy use

with personalised suggestions and information sharing within user groups (e.g.,

neighbourhood, social-network groups). Users will be provided, via smart meters,

their energy consumption patterns compared with those in similar households in

terms of size or age.
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