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Abstract

Remote sensing derived wheat crop yield-climate models were developed to highlight the
impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling;
TSP) of wheat crop development. Specific questions addressed are: can the impact of
temperature variation occurring during the TSP on wheat crop yield be detected using remote
sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist
in real world cropping landscapes? These questions are tested in one of the world’s major
wheat breadbaskets of Punjab and Haryana, north-west India. Warming in the average
minimum temperatures during the TSP had a greater negative impact on wheat crop yield
than warming maximum temperatures. Warming minimum and maximum temperatures
during the TSP explain a greater amount of variation in wheat crop yield than average
growing season temperature. In complex real world cereal croplands there was a variable
yield response to critical temperature threshold exceedance, specifically a more pronounced
negative impact on wheat yield with increased warming events above 35°C. The negative
impact of warming increases with a later start-of-season suggesting earlier sowing can reduce
wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced
temperature-induced yield losses, which, when viewed in the context of projected warming
up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat.
This study shows it is possible to capture the impacts of temperature variation during the TSP
on wheat crop yield in real world cropping landscapes using remote sensing data; this has
important implications for monitoring the impact of climate change, variation and heat

extremes on wheat croplands.
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Introduction

The wheat crop is crucial to support global food security with the largest global cropland
coverage (Thenkabail et al., 2012). Yet, similar to other cereal crops its level of production
and productivity is vulnerable to a changing climate. Increases in mean growing season
temperature, an increase in the frequency of extreme heat stress events at key phenological
stages (e.g. the thermo-sensitive anthesis and grain filling periods), uncertain precipitation
futures and increased risk of droughts and subsequent moisture shortages all have a
potentially negative impact on wheat crop yield (Ortiz et al., 2008; Asseng et al., 2012;
Lobell & Gourdji, 2012; Lobell et al., 2012; Gourdji et al., 2013a; Koehler et al., 2013;
Teixeira et al., 2013). Across the world’s major wheat croplands, the thermo-sensitive
periods (TSP) of crop development coincide with the timing of highest average maximum

temperatures annually (Asseng et al., 2010), and growing season temperature and extreme

heat events during the TSP are projected to increase in the next century (Gourdji et al., 2013a;

Mathison et al., 2013; Teixeira et al., 2013). Climate change impacts are already limiting
wheat crop yields globally: models indicate that warming trends since 1980 led to a 5.5%
reduction in wheat production (Lobell et al., 2011). Model projections of increased exposure
to heat stress during the TSP up to 2100 suggest that suitable adaptations need to be

implemented urgently to secure climate resilient wheat production (Teixeira et al., 2013;

Deryng et al., 2014).

The underlying agricultural system (e.g. access to irrigation, cultivar type, soil type and
ecosystem services), which varies within and between cropping landscapes, can increase or

decrease the sensitivity of wheat crops to harmful climate impacts (Luers et al., 2003; Luers,
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2005; Asseng et al., 2010; Gourdji et al., 2013b; Teixeira et al., 2013). For example, access
to sufficient irrigation can enable transpiration which cools canopy temperatures relative to
atmospheric temperatures, reducing the potential negative impact of warming during the TSP
on the crop (Wassmann et al., 2009; Asseng et al., 2010; Gourdji et al., 2013a; Teixeira et al.,
2013). Therefore, to understand the impacts of climatic variation, and specifically heat stress
during the TSP, on wheat crop yields as it occurs in real world cropping landscapes requires
the ability to observe and test a variety of temperature variables whilst capturing the spatial
variation in the underlying agricultural system. Studies exploring the impacts of climatic
variables on wheat crop yield are more informative to climate resilient adaptation when they
include local or regional detail. This is because potential adaptations often include shifting
dates of cropping systems, implementing zero-tillage to avoid periods of heat stress co-
occurring with the TSP, and the need to be sensitive to location-specific double/triple

cropping rotations (Lobell et al., 2012, 2013; Teixeira et al., 2013).

Crop yield-climate interactions are usually explored using either (i) crop simulation models
which aim to replicate crop physiological responses to climatic variation (Challinor et al.,
2005; Asseng et al., 2010; Koehler et al., 2013) or (ii) regression models trained with crop
yield and climate data aggregated within administrative boundaries (Lobell & Burke, 2010;
Schlenker & Lobell, 2010; Rowhani et al., 2011; Urban et al., 2012). Crop simulation models
are often complex and require large amounts of input data to represent the underlying
complexity of the agricultural system (Welch et al., 2010; White et al., 2011); they are,
therefore, limited in their application over large spatial extents. For example, a recent global
crop model inter-comparison project simulated climate change impacts on crop yield at a 0.5°
spatial resolution (Rosenzweig et al., 2014); this will aggregate farm and field level crop

yield variability. This issue is particularly pertinent in low-latitude regions where there is the
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largest concentration of small and marginal farmers with a heterogeneous landscape and crop
yields are projected to be most vulnerable to climate change impacts (Challinor et al., 2014;
Rosenzweig et al., 2014). Alongside aggregating spatial variability in agronomic conditions,
crop simulation models applied at a global level require simplification of agronomic practices;
for example, specifying either full irrigation or no irrigation which will introduce further

uncertainty in simulated yields (Rosenzweig et al., 2014).

Moreover, often crop simulation models do not capture the differential impacts of heating
events during key phenological stages well. In a review of 221 peer-reviewed climate-crop
simulation model studies only 14 partially or fully addressed the issue of heat stress (White et
al., 2011). Deryng et al., (2014) use the PEGASUS 1.1 crop simulation model to test the
impact of projected changes in heat stress during the TSP on crop production. Whilst this
study suggests heat stress during the TSP will limit crop yields it is limited by only using one
crop simulation model and the ability to accurately capture the dynamics in the underlying
agricultural system such as rates of irrigation application, farmer decisions on planting dates
and using fertiliser application data aggregated to national levels (Deryng et al., 2014). A
multi-model comparison of different crop model projections of temperature impacts on wheat
crop yield suggested that differences in crop model structure, parameterisation and
representation of temperature impacts was a larger source of uncertainty than uncertainty in
climate projections (Asseng et al., 2013). This issue was echoed in another multi-model study
assessing climate change impacts on crop yield where differences in the processes the models
simulated and how the models were parameterised led to uncertainty in projected climate
impacts (Rosenzweig et al., 2014). In this global gridded crop model inter-comparison study
it was also noted that few models simulated heat stress at critical crop development stages

such as the TSP. Crop model uncertainty was also deemed a larger or equivalent source of

5



118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

uncertainty than that introduced through climate models when simulating wheat yield under
future climates using the Global Large Area Model (GLAM) (Koehler et al., 2013). Studies
have shown that CERES and APSIM crop simulation models underestimated the shortening
of the wheat growing season when exposed to increased heat stress events (Lobell et al.,
2012). This suggests that climate-crop simulation models may underestimate the true
negative impacts of climate change on crop yield,; this is pertinent given projected future

warming and increases in extreme heat days (Gourdji et al., 2013a; Mathison et al., 2013).

In contrast, crop yield-climate models trained at the administrative boundary level aggregate
the complexity of the underlying agricultural system which can be problematic in
heterogeneous agricultural landscapes. Also, crop yield-climate models trained at the
administrative boundary level cannot capture the differential impact of climatic variables at
varying phenological stages such as heat stress during the TSP, thus, missing information to

inform optimum climate resilient adaptations.

In this paper, we demonstrate how remote sensing data can be used to quantify the impacts of
temperature during the TSP on wheat crop yields in real world cropping landscapes, thus,
overcoming the limitations of the two, previously discussed approaches. The local detail
captured in remote sensing data enables a more appropriate representation of spatially
heterogeneous agricultural systems. Remote sensing estimates of crop production incorporate
measures of underlying system factors within a pixel (e.g. farmer decisions, access to
irrigation, sowing date). The repeat coverage of remote sensing enables monitoring of crop

phenology at a fine spatial resolution across a large spatial extent. This, therefore, enables the
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discrimination of temperature events and warming which occur at different phenological

stages, such as the TSP, and an assessment of their impacts on final crop yield.

Here, remote sensing data were used to train crop yield-climate models to assess:

(i)

(i)

(iii)

Can the impact of temperature variables occurring during the TSP on wheat
crop yield be detected from remote sensing data? Previous studies have used
remote sensing data to quantify the role of extreme heat events occurring over an
entire growing season on the green season length of wheat crops (Lobell et al.,
2012). Here, the potential for detecting the impact of temperature variables
occurring during the TSP on final crop yield from remote sensing data is tested.
This will have important implications for being able to monitor the impact of a
warming climate on levels of crop production in croplands across the world given
the global coverage of remote sensing.

What is the impact of temperature variables occurring during the TSP on
final crop yield in real world cropping landscapes? Remote sensing monitoring
of wheat cropping landscapes captures the temporal dynamics of crop
development, similar to phenological development within crop simulation models.
Yet, remote sensing monitoring captures spatial differences in crop development
and incorporates direct measures of the underlying agricultural system (e.g.
irrigation, farmer decisions) which are difficult to represent in crop simulation
models.

If crop critical temperature thresholds during the TSP exist in real world
cropping landscapes? Studies exploring the impact of heat stress during the TSP

on crop production often assume a universal crop critical temperature threshold;
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though this threshold varies through the literature (Porter & Gawith, 1999; Lobell
et al., 2012; Deryng et al., 2014). Often these studies do not test for variability in
crop critical temperature thresholds occurring due to agricultural system specific
factors such as irrigation enabling transpiration cooling. Studies which have tested
a range of temperature thresholds did not focus specifically on temperature during

the TSP (Schlenker & Roberts, 2009).

These research questions are tested in the wheat croplands of Punjab and Haryana in north-
west India, a major global wheat breadbasket, which was heavily developed using Green
Revolution advances and favourable government policy since the 1960s and 1970s (Murgai et
al., 2001; Aggarwal et al., 2004; Perveen et al., 2012; Ojha et al., 2013). The wheat crop in
the region supports, directly, the livelihoods of tens of millions of people and also supports
national government procurement for buffer stocks and national food security and welfare
schemes (Aggarwal et al., 2004; DES, 2012; Perveen et al., 2012). Key to the Green
Revolution in Punjab and Haryana was the development of an extensive irrigation
infrastructure to support wheat cropping during the dry rabi season (November — April)
(Aggarwal et al., 2004; Ojha et al., 2013). In the 2010-2011 growing season 98.8% and 99.4%
of the wheat crop were irrigated, and 80% and 84% of annual precipitation in a normal year
falls during the monsoon outside the wheat growing season, in Punjab and Haryana
respectively (DES, 2012) (Fig. 1). Therefore, water availability and precipitation variability
are unlikely to be limiting factors for wheat crop yield; however, there is a marked rise in
temperature through the latter half of the wheat growing season when the TSP occurs (Fig. 1).
Also, the supplementary material in Lobell et al., (2012) highlights the increased frequency

of extreme heat events (daily maximum temperature > 34 °C) during the latter stages of the

wheat crop growing season in this region (March and April). This makes this region a
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suitable site to test for monitoring temperature impacts during the TSP on final wheat crop

yield

Materials and methods

MODIS MODO09A1 8-day composites of land surface reflectance covering Punjab and
Haryana for the years 2002 to 2007 were assessed for quality (i.e. not cloud contaminated)
with ‘bad pixels’ as defined by the MODIS Quality Assurance data removed and gap-filled
following (Peng et al., 2011). Pixels corresponding to wheat cropping were extracted per-
year using a variety of land cover masks (Xiao et al., 2005, 2006), and a spectral matching
technique (SMT) classification procedure (Thenkabail et al., 2007). The SMT provided a
statistical match between the shape and amplitude of wheat crop phenology and pixel
phenology via a spectral similarity value (SSV) (Thenkabail et al., 2007). R? values for the
relationship between remote sensing-derived wheat crop extent and district-wise land use
statistics (http://lus.dacnet.nic.in/) ranged between 0.86 and 0.92 between 2002-2003 and
2006-2007. Phenology was generated from the MODIS data using the enhanced vegetation
index (EVI) which provides a measure of vegetation vigour, photosynthetic activity and
biomass (Pettorelli et al., 2005). The gap-filled EVI values were smoothed using a Savitzky-
Golay filter which included a fitting bias towards maximum values. This removes noise and
fluctuation in temporal EV1 profiles due to cloud cover and atmospheric contamination and
accounts for the negative bias in reflectance measured at the sensor (Chen et al., 2004).
Extracting only wheat pixels minimised error from non-wheat land covers propagating up to
the crop yield-climate models (Atzberger, 2013), ensuring that the models captured the

interaction between climatic variables and crop yield accurately.
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Crop yield was estimated per-wheat pixel for the 2002-2003 to the 2006-2007 growing
seasons using a cumulative sum of EVI values over an approximation of the TSP (CUM-
EVlrsp)). The period of maximum EVI has been shown to correspond to heading date in
cereal crops (Sakamoto et al., 2005). Teixeira et al., (2013) found that a 30 day period around
the reproductive crop development phase represented the TSP and captured extreme heat
impacts on crop yield. A 30 day period post maximum EVI was taken to represent the TSP. A
cumulative sum (or integration of vegetation index (V1) values) and maximum V1 values are
used commonly as surrogate measures of vegetation productivity and crop yield (Pettorelli et
al., 2005; Funk & Budde, 2009; Vrieling et al., 2011; Rembold et al., 2013). VI values post-
peak growing season often provide more accurate predictions of crop yield as they
correspond to the reproductive and grain filling development stages of cereal crops (Funk &
Budde, 2009; Rojas et al., 2011). CUM-EVIspy was significantly (p<0.01) correlated with
district-wise wheat crop yield and production between 2002-2003 and 2006-2007 (Fig. 2;

http://apy.dacnet.nic.in/). The R? values for the regression relationship between CUM-EVIsp)

and district-wise crop yield are stronger than those obtained using Landsat data to estimate
district-wise wheat crop yield in north-west India using the Monteith method (Lobell et al.,
2010). The R?value for the CUM-EV I rsp) crop yield model used here was 0.6 (Fig. 2a)
whereas the R? value in the Lobell et al., (2010) study was 0.28. The correlation for the
regression relationship between CUM-EVtsp) and district-wise crop yield is also comparable
to the correlations obtained with statistical models estimating crop yield from MODIS EVI
data in the USA (Bolton & Friedl, 2013). This suggests that in relatively homogenous
cropping landscapes (e.g. the USA or Punjab and Haryana) the temporal detail in MODIS
data enabling monitoring during the yield sensitive TSP is of greater importance to yield

prediction than the spatial detail of Landsat data (MODIS: daily imagery, 8-day composite,
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500m spatial resolution; Landsat: 16-day imagery, 30m spatial resolution). However, this
trade-off should be evaluated on a crop-by-crop, location-by-location and sensor-by-sensor
basis. The larger correlation between CUM-EVI(tspy and district-wise crop production
compared to crop yield is likely due to greater between district variation in cropped area and,

thus, production (Fig. 2).

The per-pixel predictions of crop yield were integrated with gridded daily precipitation and
maximum and minimum temperature datasets to train crop yield-climate panel regression
models. The APHRODITE (V1003R1) dataset provided precipitation data (Xie et al., 2007;
Yatagai et al., 2009, 2012). The APHRODITE daily temperature product (V1204R1)
provides daily mean temperature only, which inhibits exploring the differential impact of
minimum and maximum temperature, and extreme temperatures, on crop yield. Therefore,
Global Summary of the Day (GSOD) stations in Punjab and Haryana with a near complete
record of daily minimum and maximum temperatures were extracted from:
(http://www.ncdc.noaa.gov/). Weather stations were included on the basis of spatial coverage
over Punjab and Haryana and completeness in temporal coverage with minimal missing data.
Conservatively selecting stations with reliable and comprehensive temperature records was
appropriate over Punjab and Haryana as there is minimal orographic variability, especially
over cultivated lands, which would cause dramatic shifts in temperatures over short distances.
The data from these stations were used to generate gridded fields, at the same spatial
resolution as the MODIS data, using an inverse-distance weighting algorithm. GSOD weather
stations have been used as inputs in the generation of gridded climate products (Yasutomi et

al., 2011) and to assess climate impacts on crops in north India (Lobell et al., 2012).
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Linear regression models with fixed-effects terms (equation 1) were fitted to explore whether
the impact of temperature and extreme heat events during the TSP on crop yield could be

detected using remote sensing data.
CUMEVIrspyir = Bxic + ¢ + & 1)

Where i refers to pixel i and t refers to time of observation t=2002....2007. xitis the predictor
temperature variable in pixel i at observation t, c; is the fixed effects term for pixel i and it is
an error term. CUM-EV|rsp) was regressed against average minimum, maximum and mean
temperature and, extreme degree days (EDD) during the TSP. Average daily minimum and
maximum temperature were computed separately as they have been shown to have differing
impacts on cereal crop yield (Peng et al., 2004; Welch et al., 2010). EDD was defined as:

0ift;< T
1ift; =T

N
EDDqy= » DD DD {

-1

)

Where T is the threshold temperature for which EDD is computed individually for each
temperature from 32-42°C at 1°C increments, tj is the maximum temperature on day i and N is
the number of days in the TSP (N=30). Computing EDD above a threshold maximum
temperature, increasing with 1°C intervals enabled assessment of whether declines in yield
due to exceedance of critical temperatures during the TSP can be detected empirically from
remote sensing data. On the basis of performing a Hausman test, fixed-effects terms were
preferred over random-effects terms. The same sign (i.e. positive or negative slope coefficient)
in the relationship between temperature variables and crop yield was obtained when using
random-effects terms indicating that the results were not artefacts of including fixed-effects

terms. Also, we further validated the regression models using a leave-one-out approach; the
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fixed-effects regression models were performed leaving out temperature and wheat crop yield

data for each year in turn.

Including a fixed-effects term allows the regression intercept to vary spatially. It can be
thought of as accounting for time-invariant effects of the underlying agricultural system
unique to each location (these effects are not specified, but could include omitted variables
such as soil condition, fertiliser application and access to irrigation). Through this remote
sensing-based approach key climatic stresses in a particular cropping landscape can be

elucidated accounting for the differential sensitivity caused by underlying system factors.

Using remote sensing data means that a unique phenology can be captured per-pixel, per-year
enabling estimation of phenological parameters such as start-of-season (SOS), end-of-season
(EOS) and approximation of the TSP. Coarser spatial resolution yield data (e.g.
administrative boundary yield estimates) would mask variation in the timing of key
phenological stages. Using coarser spatial resolution yield data would therefore prohibit
assessment of intra-growing season sensitivity to climatic variables such as warming during
the TSP. SOS, EOS and TSP can be obtained per-pixel to extract climate information relevant
only to the exact growing season of the crop or the TSP. This avoids using monthly or
seasonal averages of climate data which correspond to normal growing seasons and may
retain climate signals not relevant to crop growth and are not sensitive to spatial and temporal
changes in the timing and length of growing seasons. Monitoring phenology using remote

sensing means that regression models could be fitted for varying SOS dates. This enables
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308  assessment of how varying SOS influenced crop exposure to temperature variation and

309  accounts for the fact that varying day length over a season can influence crop development
310 rates (Lobell et al., 2012). This is important as shifting sowing dates and cropping calendars
311  are a potential adaptation to reduce exposure to extreme heat events (Teixeira et al., 2013).

312 Regression models were fitted for SOS on day-of-year 329, 337, 345, 353 and, 361.

313

314  Panel-datasets are multi-dimensional in time and space and, thus, can capture a wider range
315  of temperatures which exhibit greater spatial variation relative to temporal variation at one
316 location (Lobell & Burke, 2010). Panel-regression models have shown improved

317  performance (in terms of strength of association) for capturing temperature-crop yield

318  relationships relative to time-series models (Lobell & Burke, 2010). The temporal extent of
319  the panel-data was restricted to five years to mitigate the impact of shifting agricultural

320  practices or technological advances on crop yield. Several studies have incorporated linear,
321  quadratic or cubic regression spline time terms into crop yield-climate regression models to
322 account for such technological development (Schlenker & Lobell, 2010; Rowhani et al., 2011,
323  Hawkins et al., 2013). However, this requires the assumption that the impact of

324  developmental change on crop yield is universal across the spatial extent of the panel. Given
325 the spatial variability in cropping-systems (Panigrahy et al., 2010), and variation in levels of
326  natural, physical, social and financial capital, which influence uptake of agricultural practices
327  (Erenstein et al., 2007), across the panel, utilising a time term to capture development and
328  assuming its spatial universality was not justified. Crop yield-climate regression models

329 trained using panel-data are less sensitive to the temporal extent over which observations

330  were taken (Lobell & Burke, 2010). For example, Welch et al., (2010) detected the signal of
331 minimum and maximum temperature impacts on rice yield using panel data with observations

332 taken over five years.

14



333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Results

(a) Temperature during the TSP and crop yield relationship

Average minimum and average maximum temperature during the TSP have greater
explanatory power compared to EDD computed with incrementing temperature thresholds
and average growing season temperature (Table 1). Increases in average minimum
temperature during the TSP and average growing season temperature have a larger negative
impact on wheat yield compared to increases in average maximum temperature during the
TSP (Fig. 3). However, increases in all temperature variables have a negative impact on
wheat crop yield (Fig. 3 and 4). Generally, an increase in the temperature threshold above
which EDD is computed registers a greater negative influence on wheat crop yield (Fig. 4).
However, a temperature threshold of 35°C had a noticeably larger R? compared to all other
temperature thresholds (Table 1), there was also an increase in the size of the slope
coefficient at 35°C compared to lower temperature thresholds (Fig. 4). The negative impact
of temperature during the TSP, determined by both the value of the slope coefficient and the
fit of the model, increased with later SOS dates (Fig. 3 and 4; Table 1). For example, for a
SOS on day-of-year 329 a per-unit (i.e. 1°C ) increase in average minimum temperature
during the TSP would result in -0.0453 Tonnes ha decrease in wheat yield whereas the same
warming for SOS on day-of-year 361 would result in a yield decrease of -0.0792 Tonnes ha™.
The negative impact of exposure to heating events greater than 35°C during the TSP also

increased with later SOS dates (Fig. 4). The same sign (i.e. positive or negative slope
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coefficient) and patterns in the magnitude of R? values were observed in the leave-one-out
regression models as occurred in the models using the full panel (Supporting Information).
This suggests the results from the full panel fixed-effects regression models are robust in
capturing temperature impacts on wheat crop yield and are not artefacts of including

anomalous years or data points in the regression models.

Discussion

Average minimum and average maximum TSP temperature explain a greater amount of
yield variation compared to mean growing season temperature (Table 1). The TSP
approximates the reproductive and the beginning of the grain filling development stages.
While several studies focus on the impacts of daily maximum temperature or daytime
temperatures above a critical threshold during the TSP or the entire growing season (Asseng
et al., 2010; Lobell et al., 2012; Gourd;ji et al., 2013a; Koehler et al., 2013; Teixeira et al.,
2013), it was shown here that minimum temperature during the TSP has an equivalent if not
greater negative impact on wheat yields (Fig. 3; Table 1). Lobell & Ortiz-Monasterio, (2007)
used the CERES-wheat model and historical wheat yield data in Mexico and California to
explore the differential yield impacts of minimum and maximum temperatures. Whilst this
study also showed the negative impact of warming minimum temperatures on wheat crop
yield it noted that the CERES-wheat model mechanism for simulating grain filling did not
replicate the impact of minimum or maximum temperatures observed in historical yields
(Lobell & Ortiz-Monasterio, 2007). It is important for further research to contribute to greater
understanding of the differential impacts of daily minimum and maximum temperature, and

associated physiological processes. This is pertinent given an observed (1970-2005) trend of
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increasing ‘hot nights’ in north-west India during the pre-monsoon wheat growing season
(Kothawale et al., 2010) and an observed (1970-2003) increasing trend in winter minimum
temperatures (Kothawale & Rupa Kumar, 2005). These results also suggest that the negative
influence of average growing season temperature may be due to it capturing heating events
during the TSP and, that adaptive efforts to increase wheat crop resilience to warming, should

focus on the TSP.

Regressing EDD above incrementing temperature thresholds showed the expected negative
impact of increasing temperature during the TSP on wheat crop yield (Fig. 4). These results
suggest that wheat yields in Punjab and Haryana are more sensitive to daily maximum
temperatures greater than 35°C rather than a crop-specific critical temperature, often reported
as 34°C for wheat (Hatfield et al., 2011; Lobell et al., 2012; Gourdji et al., 2013a). The
impact of cumulative exceedance of 35°C during the TSP on wheat yield also varied with
SOS date (Fig. 4; Table 1); this is consistent with a range of other observational and crop
simulation studies which did not reveal a uniform yield response to heating events greater
than 34°C (Fig. 4 and Fig. 8 in Asseng et al., (2010)). It is worth noting that average
minimum and average maximum TSP temperature cause a greater, negative rate of change in
wheat yields than exceedance of the 35°C threshold. This indicates that the effect of a critical
temperature threshold is less pronounced in real world cereal cropping systems compared to
more controlled, experimental environments or modelling frameworks where the critical
temperature signal can be isolated (Jagadish et al., 2007; Asseng et al., 2010; Teixeira et al.,
2013). There is likely spatial variation in crop variety, irrigation and vapour pressure deficit
during the TSP across Punjab and Haryana, but also in croplands across the globe, which will
alter wheat crop response to extreme heat events masking the effects of a critical temperature

threshold (Porter & Gawith, 1999; Asseng et al., 2010; Gourdji et al., 2013b).

17



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

Spatial variation in the quality of irrigation water has been shown to influence wheat crop
yield in Punjab and Haryana (Tyagi et al., 2005). However, the pixel specific fixed-effects
terms included in the regression models should capture the variability in yield due to
variation in irrigation water quality (and other omitted variables). As mentioned in the
introduction, due to the timing of the rabi wheat growing season outside of the wet monsoon
with near complete irrigation (>98% of the wheat crop is irrigated, (DES, 2012)) the wheat
crop should not water limited and precipitation should have little impact on final yield. This
is confirmed by univariate regression models using growing season total precipitation and
TSP total precipitation as predictor variables (Table 2). The slope coefficients for
precipitation variables show a very weak negative correlation with wheat crop yield (Table 2);
this is contrary to expected theory and is likely an artefact of relatively small amounts of
precipitation during wheat growing season and the wheat crop being irrigated. Also,
precipitation variables explain a relatively small amount of the variation in wheat crop yield

compared to average minimum and maximum temperature during the TSP (Table 1 and 2).

The negative influence of average minimum and average maximum TSP temperature on final
wheat yield increased with later SOS dates (Fig. 3). This trend is consistent with observations
by Lobell et al., (2012) who observed declines in wheat growing season length associated
with later SOS dates in north India; this was attributed to increased exposure to extreme heat
days (>34 °C) later in the wheat growing season. These results (Fig. 3 and 4, Table 1) suggest
that climatic events, namely warming during the TSP, are limiting potential wheat yields in
Punjab and Haryana. For wheat crops with a later SOS earlier sowing may be an escape

route reducing exposure to damaging heat events and, thus, closing existing yield gaps.
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Widespread adoption of zero-tillage represents a suitable adaptive, climate-resilient,
management strategy with earlier SOS reducing TSP exposure to extreme heat events with
subsequent environmental and socio-economic benefits and, no yield penalty (Erenstein &
Laxmi, 2008; Jat et al., 2009). However, even wheat crops with a SOS of day-of-year 329,
were negatively impacted by warming during the TSP (Fig. 3 and 4; Tables 1). This indicates
that alongside reducing later sown wheat crops’ exposure to higher temperatures (‘escape’
strategies) adaptations need to be explored which increase wheat crop tolerance to warming
during the TSP to reduce temperature-induced yield gaps (e.g. develop wheat varieties
tolerant to extreme temperatures (Gourdji et al., 2013b)). Implementing such adaptations are
important given (i) that current temperatures are limiting wheat yield and (ii) projected future
warming trends in the wheat growing season and increased frequency of extreme heat days
are likely to further limit wheat yields (Gourdji et al., 2013a; Mathison et al., 2013). Such
adaptations could have important future food security implications given coincidental
pressures of increased demand for food being placed on these croplands due to population
growth (Aggarwal et al., 2004), alongside unfavourable warming (Gourdji et al., 2013a;

Mathison et al., 2013).

The panel-datasets, developed using remote sensing data, captured the impacts of climate
variation on crop yields, specifically temperature variation during the TSP, as its occurs in
real world cropping systems, accounting for spatial variation in system-specific factors (e.g.

access to irrigation, farmer decisions). The key findings are highlighted below:

e Previous studies have used remote sensing data to demonstrate the impact of
increased warm days above 34 °C during the entire growing season on shortening

growing season lengths for wheat crops in north-west India (Lobell et al., 2012). Here,
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we have utilised the phenological detail in remote sensing data to isolate the impact of
temperature during the TSP (the reproductive and grain-filling stages when final yield
IS set) on wheat crops in north-west India. This has demonstrated that is possible to
monitor what impacts climate change, specifically changes in the temperature
variation and extreme heat events, will have on cereal croplands using remote sensing
data.

Warming average minimum temperatures during the TSP have a greater negative
impact on wheat crop yield than warming maximum temperatures during the TSP (e.g.
R2=0.53(Min(TSP)) and 0.38(Max(TSP)) for wheat crops sown on day-of-year 353).
This suggests that studies which focus on the negative warming impacts of extreme
heat events and maximum temperatures on anthesis, crop reproductive processes and
grain-filling should not neglect the impact of warming minimum temperatures. This is
pertinent given observed trends of warming night-time and minimum temperatures in
northern India.

Experimental and simulation studies often report 34°C as a critical temperature
threshold for wheat crop growth. However, remote sensing observations accounting
for the complexity of a real world cereal cropping landscape revealed a non-uniform
yield response after threshold exceedance and a more pronounced negative impact on
wheat yield with increased warming events above 35°C in the Punjab and Haryana
region.

Warming temperatures during the TSP are currently limiting wheat crop production in
Punjab and Haryana. The negative impact of warming temperature during the TSP
increases with later SOS dates. This suggests that earlier sowing for late sown wheat

may mitigate some temperature induced shortfalls in production. However, given that
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earlier sown wheat is still negatively impacted by warming during the TSP it suggests

there is a need for heat tolerant varieties to prevent temperature induced yield gaps.
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655  Table 1. R? values for average minimum and average maximum temperature during the TSP,
656  average growing season temperature (T) and EDD(t) accumulated above incrementing
657  temperature thresholds when wheat crop yield was regressed on each of them independently,

658  shown for different SOS dates. Only results significant at p<0.001 are shown.

SOS (day-of-year)

Variable 329 337 345 353 361

T(rspy(min) 0.25 0.34 0.39 0.54 0.61

T(rspy(max) 0.24 0.39 0.38 0.38 0.43

T 0.06 0.13 0.14 0.10 0.06

EDD(): 32 0.08 0.11 0.05 0.06 0.18

EDD(): 33 0.13 0.19 0.15 0.09 0.24

EDD(: 34 0.10 0.19 0.14 0.08 0.29

EDD(): 35 0.14 0.30 0.34 0.37 0.54

EDD(r): 36 0.04 0.15 0.17 0.19 0.23

EDD(): 37 0.13 0.11 0.04 0.08 0.13
659
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663

664  Table 2. Slope coefficients and R? values for univariate regression model for wheat yield and
665  growing season total precipitation and TSP total precipitation for different SOS dates. Only

666  results significant at p<0.001 are shown.

Growing season total precipitation TSP total precipitation
Slope coefficient R? Slope coefficient R?
329 -0.0014 0.06 -0.0047 0.21
337 -0.0014 0.05 -0.0043 0.16
345 -0.0026 0.11 -0.0036 0.12
353 0.0034 0.18 -0.0031 0.09
361 -0.0033 0.23 -0.0027 0.09
667
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Fig. 1. Normal (1950-2000) monthly precipitation and average daily temperature for

Punjab and Haryana (source: www.worldclim.org).
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Fig. 2. a) Relationship between remote sensing estimates of district-wise wheat crop

yield (CUM-EVIsp)) and district-wise wheat crop yield as reported by government

agricultural statistics (http://apy.dacnet.nic.in/) for the 2002-2003 to 2006-2007 growing
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seasons and, b) Relationship between remote sensing estimates of district-wise wheat
crop production (CUM-EVI(rsp)) and district-wise wheat crop production as reported

by government agricultural statistics (http://apy.dacnet.nic.in/) for the 2002-2003 to

2006-2007 growing seasons. The outlier residing near the x-axis between CUM-EVI(rsp)
values of 2000-3000 likely reflects erroneous reporting in the Government of India’s
crop production statistics for the district of Bhiwani in 2005-06. Production of wheat in
Bhiwani was 425000, 456000, 415000 and 527000 Tonnes in 2002-03, 2003-04, 2004-05
and 2006-07; Government statistics reporting an 39000 Tonnes for 2005-06 are
therefore likely due to an error in reporting, especially as there was not an associated

drop in area under wheat cropping (http://apy.dacnet.nic.in/). The outlier was dropped

for the yield model (a) to avoid it introducing error into the prediction of yield

throughout the study.
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Fig. 3. Slope coefficient estimates in units of Yield (Tonnes ha?) for per-unit increases in

warming (i.e. 1 °C warming) for average minimum temperatures during the TSP

min(TSP), average maximum temperature during the TSP max(TSP) and average

growing season temperature (mean(GS)). The numbers in the top left hand corner of

the plots correspond to SOS date in days-of-year. Only results significant at p<0.001 are

shown.
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Fig. 4. Slope coefficient estimates in units of Yield (Tonnes ha?) for per-unit increases in

warming (i.e. EDD) for EDD above incrementing temperature thresholds during the

TSP. The numbers in the top left hand corner of the plots correspond to SOS date in

days-of-year. Only results significant at p<0.001 are shown.
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