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Abstract 20 

Remote sensing derived wheat crop yield-climate models were developed to highlight the 21 

impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; 22 

TSP) of wheat crop development. Specific questions addressed are: can the impact of 23 

temperature variation occurring during the TSP on wheat crop yield be detected using remote 24 

sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist 25 

in real world cropping landscapes? These questions are tested in one of the world’s major 26 

wheat breadbaskets of Punjab and Haryana, north-west India. Warming in the average 27 

minimum temperatures during the TSP had a greater negative impact on wheat crop yield 28 

than warming maximum temperatures. Warming minimum and maximum temperatures 29 

during the TSP explain a greater amount of variation in wheat crop yield than average 30 

growing season temperature. In complex real world cereal croplands there was a variable 31 

yield response to critical temperature threshold exceedance, specifically a more pronounced 32 

negative impact on wheat yield with increased warming events above 35˚C. The negative 33 

impact of warming increases with a later start-of-season suggesting earlier sowing can reduce 34 

wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced 35 

temperature-induced yield losses, which, when viewed in the context of projected warming 36 

up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. 37 

This study shows it is possible to capture the impacts of temperature variation during the TSP 38 

on wheat crop yield in real world cropping landscapes using remote sensing data; this has 39 

important implications for monitoring the impact of climate change, variation and heat 40 

extremes on wheat croplands.  41 

 42 

 43 
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Introduction 44 

 45 

The wheat crop is crucial to support global food security with the largest global cropland 46 

coverage (Thenkabail et al., 2012). Yet, similar to other cereal crops its level of production 47 

and productivity is vulnerable to a changing climate. Increases in mean growing season 48 

temperature, an increase in the frequency of extreme heat stress events at key phenological 49 

stages (e.g. the thermo-sensitive anthesis and grain filling periods), uncertain precipitation 50 

futures and increased risk of droughts and subsequent moisture shortages all have a 51 

potentially negative impact on wheat crop yield (Ortiz et al., 2008; Asseng et al., 2012; 52 

Lobell & Gourdji, 2012; Lobell et al., 2012; Gourdji et al., 2013a; Koehler et al., 2013; 53 

Teixeira et al., 2013). Across the world’s major wheat croplands, the thermo-sensitive 54 

periods (TSP) of crop development coincide with the timing of highest average maximum 55 

temperatures annually (Asseng et al., 2010), and growing season temperature and extreme 56 

heat events during the TSP are projected to increase in the next century (Gourdji et al., 2013a; 57 

Mathison et al., 2013; Teixeira et al., 2013). Climate change impacts are already limiting 58 

wheat crop yields globally: models indicate that warming trends since 1980 led to a 5.5% 59 

reduction in wheat production (Lobell et al., 2011). Model projections of increased exposure 60 

to heat stress during the TSP up to 2100 suggest that suitable adaptations need to be 61 

implemented urgently to secure climate resilient wheat production (Teixeira et al., 2013; 62 

Deryng et al., 2014).  63 

 64 

The underlying agricultural system (e.g. access to irrigation, cultivar type, soil type and 65 

ecosystem services), which varies within and between cropping landscapes, can increase or 66 

decrease the sensitivity of wheat crops to harmful climate impacts (Luers et al., 2003; Luers, 67 
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2005; Asseng et al., 2010; Gourdji et al., 2013b; Teixeira et al., 2013). For example, access 68 

to sufficient irrigation can enable transpiration which cools canopy temperatures relative to 69 

atmospheric temperatures, reducing the potential negative impact of warming during the TSP 70 

on the crop (Wassmann et al., 2009; Asseng et al., 2010; Gourdji et al., 2013a; Teixeira et al., 71 

2013). Therefore, to understand the impacts of climatic variation, and specifically heat stress 72 

during the TSP, on wheat crop yields as it occurs in real world cropping landscapes requires 73 

the ability to observe and test a variety of temperature variables whilst capturing the spatial 74 

variation in the underlying agricultural system. Studies exploring the impacts of climatic 75 

variables on wheat crop yield are more informative to climate resilient adaptation when they 76 

include local or regional detail. This is because potential adaptations often include shifting 77 

dates of cropping systems, implementing zero-tillage to avoid periods of heat stress co-78 

occurring with the TSP, and the need to be sensitive to location-specific double/triple 79 

cropping rotations (Lobell et al., 2012, 2013; Teixeira et al., 2013). 80 

 81 

Crop yield-climate interactions are usually explored using either (i) crop simulation models 82 

which aim to replicate crop physiological responses to climatic variation (Challinor et al., 83 

2005; Asseng et al., 2010; Koehler et al., 2013) or (ii) regression models trained with crop 84 

yield and climate data aggregated within administrative boundaries (Lobell & Burke, 2010; 85 

Schlenker & Lobell, 2010; Rowhani et al., 2011; Urban et al., 2012). Crop simulation models 86 

are often complex and require large amounts of input data to represent the underlying 87 

complexity of the agricultural system (Welch et al., 2010; White et al., 2011); they are, 88 

therefore, limited in their application over large spatial extents. For example, a recent global 89 

crop model inter-comparison project simulated climate change impacts on crop yield at a 0.5˚ 90 

spatial resolution (Rosenzweig et al., 2014); this will aggregate farm and field level crop 91 

yield variability. This issue is particularly pertinent in low-latitude regions where there is the 92 



5 
 

largest concentration of small and marginal farmers with a heterogeneous landscape and crop 93 

yields are projected to be most vulnerable to climate change impacts (Challinor et al., 2014; 94 

Rosenzweig et al., 2014). Alongside aggregating spatial variability in agronomic conditions, 95 

crop simulation models applied at a global level require simplification of agronomic practices; 96 

for example, specifying either full irrigation or no irrigation which will introduce further 97 

uncertainty in simulated yields (Rosenzweig et al., 2014).  98 

 99 

Moreover, often crop simulation models do not capture the differential impacts of heating 100 

events during key phenological stages well. In a review of 221 peer-reviewed climate-crop 101 

simulation model studies only 14 partially or fully addressed the issue of heat stress (White et 102 

al., 2011). Deryng et al., (2014) use the PEGASUS 1.1 crop simulation model to test the 103 

impact of projected changes in heat stress during the TSP on crop production. Whilst this 104 

study suggests heat stress during the TSP will limit crop yields it is limited by only using one 105 

crop simulation model and the ability to accurately capture the dynamics in the underlying 106 

agricultural system such as rates of irrigation application, farmer decisions on planting dates 107 

and using fertiliser application data aggregated to national levels (Deryng et al., 2014). A 108 

multi-model comparison of different crop model projections of temperature impacts on wheat 109 

crop yield suggested that differences in crop model structure, parameterisation and 110 

representation of temperature impacts was a larger source of uncertainty than uncertainty in 111 

climate projections (Asseng et al., 2013). This issue was echoed in another multi-model study 112 

assessing climate change impacts on crop yield where differences in the processes the models 113 

simulated and how the models were parameterised led to uncertainty in projected climate 114 

impacts (Rosenzweig et al., 2014). In this global gridded crop model inter-comparison study 115 

it was also noted that few models simulated heat stress at critical crop development stages 116 

such as the TSP.  Crop model uncertainty was also deemed a larger or equivalent source of 117 
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uncertainty than that introduced through climate models when simulating wheat yield under 118 

future climates using the Global Large Area Model (GLAM) (Koehler et al., 2013). Studies 119 

have shown that CERES and APSIM crop simulation models underestimated the shortening 120 

of the wheat growing season when exposed to increased heat stress events (Lobell et al., 121 

2012). This suggests that climate-crop simulation models may underestimate the true 122 

negative impacts of climate change on crop yield; this is pertinent given projected future 123 

warming and increases in extreme heat days (Gourdji et al., 2013a; Mathison et al., 2013).  124 

 125 

In contrast, crop yield-climate models trained at the administrative boundary level aggregate 126 

the complexity of the underlying agricultural system which can be problematic in 127 

heterogeneous agricultural landscapes. Also, crop yield-climate models trained at the 128 

administrative boundary level cannot capture the differential impact of climatic variables at 129 

varying phenological stages such as heat stress during the TSP, thus, missing information to 130 

inform optimum climate resilient adaptations.  131 

 132 

In this paper, we demonstrate how remote sensing data can be used to quantify the impacts of 133 

temperature during the TSP on wheat crop yields in real world cropping landscapes, thus, 134 

overcoming the limitations of the two, previously discussed approaches. The local detail 135 

captured in remote sensing data enables a more appropriate representation of spatially 136 

heterogeneous agricultural systems. Remote sensing estimates of crop production incorporate 137 

measures of underlying system factors within a pixel (e.g. farmer decisions, access to 138 

irrigation, sowing date). The repeat coverage of remote sensing enables monitoring of crop 139 

phenology at a fine spatial resolution across a large spatial extent. This, therefore, enables the 140 
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discrimination of temperature events and warming which occur at different phenological 141 

stages, such as the TSP, and an assessment of their impacts on final crop yield.  142 

 143 

Here, remote sensing data were used to train crop yield-climate models to assess:  144 

(i) Can the impact of temperature variables occurring during the TSP on wheat 145 

crop yield be detected from remote sensing data? Previous studies have used 146 

remote sensing data to quantify the role of extreme heat events occurring over an 147 

entire growing season on the green season length of wheat crops (Lobell et al., 148 

2012). Here, the potential for detecting the impact of temperature variables 149 

occurring during the TSP on final crop yield from remote sensing data is tested. 150 

This will have important implications for being able to monitor the impact of a 151 

warming climate on levels of crop production in croplands across the world given 152 

the global coverage of remote sensing.  153 

(ii) What is the impact of temperature variables occurring during the TSP on 154 

final crop yield in real world cropping landscapes? Remote sensing monitoring 155 

of wheat cropping landscapes captures the temporal dynamics of crop 156 

development, similar to phenological development within crop simulation models. 157 

Yet, remote sensing monitoring captures spatial differences in crop development 158 

and incorporates direct measures of the underlying agricultural system (e.g. 159 

irrigation, farmer decisions) which are difficult to represent in crop simulation 160 

models.  161 

(iii) If crop critical temperature thresholds during the TSP exist in real world 162 

cropping landscapes? Studies exploring the impact of heat stress during the TSP 163 

on crop production often assume a universal crop critical temperature threshold; 164 
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though this threshold varies through the literature (Porter & Gawith, 1999; Lobell 165 

et al., 2012; Deryng et al., 2014). Often these studies do not test for variability in 166 

crop critical temperature thresholds occurring due to agricultural system specific 167 

factors such as irrigation enabling transpiration cooling. Studies which have tested 168 

a range of temperature thresholds did not focus specifically on temperature during 169 

the TSP (Schlenker & Roberts, 2009).  170 

 171 

These research questions are tested in the wheat croplands of Punjab and Haryana in north-172 

west India, a major global wheat breadbasket, which was heavily developed using Green 173 

Revolution advances and favourable government policy since the 1960s and 1970s (Murgai et 174 

al., 2001; Aggarwal et al., 2004; Perveen et al., 2012; Ojha et al., 2013). The wheat crop in 175 

the region supports, directly, the livelihoods of tens of millions of people and also supports 176 

national government procurement for buffer stocks and national food security and welfare 177 

schemes (Aggarwal et al., 2004; DES, 2012; Perveen et al., 2012). Key to the Green 178 

Revolution in Punjab and Haryana was the development of an extensive irrigation 179 

infrastructure to support wheat cropping during the dry rabi season (November – April) 180 

(Aggarwal et al., 2004; Ojha et al., 2013). In the 2010-2011 growing season 98.8% and 99.4% 181 

of the wheat crop were irrigated, and 80% and 84% of annual precipitation in a normal year 182 

falls during the monsoon outside the wheat growing season, in Punjab and Haryana 183 

respectively (DES, 2012) (Fig. 1). Therefore, water availability and precipitation variability 184 

are unlikely to be limiting factors for wheat crop yield; however, there is a marked rise in 185 

temperature through the latter half of the wheat growing season when the TSP occurs (Fig. 1). 186 

Also, the supplementary material in Lobell et al., (2012) highlights the increased frequency 187 

of extreme heat events (daily maximum temperature > 34 ˚C) during the latter stages of the 188 

wheat crop growing season in this region (March and April).  This makes this region a 189 
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suitable site to test for monitoring temperature impacts during the TSP on final wheat crop 190 

yield   191 

 192 

Materials and methods 193 

 194 

MODIS MOD09A1 8-day composites of land surface reflectance covering Punjab and 195 

Haryana for the years 2002 to 2007 were assessed for quality (i.e. not cloud contaminated) 196 

with ‘bad pixels’ as defined by the MODIS Quality Assurance data removed and gap-filled 197 

following (Peng et al., 2011). Pixels corresponding to wheat cropping were extracted per-198 

year using a variety of land cover masks (Xiao et al., 2005, 2006), and a spectral matching 199 

technique (SMT) classification procedure (Thenkabail et al., 2007). The SMT provided a 200 

statistical match between the shape and amplitude of wheat crop phenology and pixel 201 

phenology via a spectral similarity value (SSV) (Thenkabail et al., 2007).  R2 values for the 202 

relationship between remote sensing-derived wheat crop extent and district-wise land use 203 

statistics (http://lus.dacnet.nic.in/) ranged between 0.86 and 0.92 between 2002-2003 and 204 

2006-2007. Phenology was generated from the MODIS data using the enhanced vegetation 205 

index (EVI) which provides a measure of vegetation vigour, photosynthetic activity and 206 

biomass (Pettorelli et al., 2005).  The gap-filled EVI values were smoothed using a Savitzky-207 

Golay filter which included a fitting bias towards maximum values. This removes noise and 208 

fluctuation in temporal EVI profiles due to cloud cover and atmospheric contamination and 209 

accounts for the negative bias in reflectance measured at the sensor (Chen et al., 2004). 210 

Extracting only wheat pixels minimised error from non-wheat land covers propagating up to 211 

the crop yield-climate models (Atzberger, 2013), ensuring that the models captured the 212 

interaction between climatic variables and crop yield accurately. 213 
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 214 

Crop yield was estimated per-wheat pixel for the 2002-2003 to the 2006-2007 growing 215 

seasons using a cumulative sum of EVI values over an approximation of the TSP (CUM-216 

EVI(TSP)). The period of maximum EVI has been shown to correspond to heading date in 217 

cereal crops (Sakamoto et al., 2005). Teixeira et al., (2013) found that a 30 day period around 218 

the reproductive crop development phase represented the TSP and captured extreme heat 219 

impacts on crop yield. A 30 day period post maximum EVI was taken to represent the TSP. A 220 

cumulative sum (or integration of vegetation index (VI) values) and maximum VI values are 221 

used commonly as surrogate measures of vegetation productivity and crop yield (Pettorelli et 222 

al., 2005; Funk & Budde, 2009; Vrieling et al., 2011; Rembold et al., 2013). VI values post-223 

peak growing season often provide more accurate predictions of crop yield as they 224 

correspond to the reproductive and grain filling development stages of cereal crops (Funk & 225 

Budde, 2009; Rojas et al., 2011). CUM-EVI(TSP) was significantly (p<0.01) correlated with 226 

district-wise wheat crop yield and production between 2002-2003 and 2006-2007 (Fig. 2; 227 

http://apy.dacnet.nic.in/). The R2 values for the regression relationship between CUM-EVI(TSP) 228 

and district-wise crop yield are stronger than those obtained using Landsat data to estimate 229 

district-wise wheat crop yield in north-west India using the Monteith method (Lobell et al., 230 

2010). The R2 value for the CUM-EVI(TSP) crop yield model used here was 0.6 (Fig. 2a) 231 

whereas the R2 value in the Lobell et al., (2010) study was 0.28. The correlation for the 232 

regression relationship between CUM-EVI(TSP) and district-wise crop yield is also comparable 233 

to the correlations obtained with statistical models estimating crop yield from MODIS EVI 234 

data in the USA (Bolton & Friedl, 2013). This suggests that in relatively homogenous 235 

cropping landscapes (e.g. the USA or Punjab and Haryana) the temporal detail in MODIS 236 

data enabling monitoring during the yield sensitive TSP is of greater importance to yield 237 

prediction than the spatial detail of Landsat data (MODIS: daily imagery, 8-day composite, 238 

http://apy.dacnet.nic.in/
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500m spatial resolution; Landsat: 16-day imagery, 30m spatial resolution). However, this 239 

trade-off should be evaluated on a crop-by-crop, location-by-location and sensor-by-sensor 240 

basis. The larger correlation between CUM-EVI(TSP) and district-wise crop production 241 

compared to crop yield is likely due to greater between district variation in cropped area and, 242 

thus, production (Fig. 2).  243 

 244 

The per-pixel predictions of crop yield were integrated with gridded daily precipitation and 245 

maximum and minimum temperature datasets to train crop yield-climate panel regression 246 

models. The APHRODITE (V1003R1) dataset provided precipitation data (Xie et al., 2007; 247 

Yatagai et al., 2009, 2012). The APHRODITE daily temperature product (V1204R1) 248 

provides daily mean temperature only, which inhibits exploring the differential impact of 249 

minimum and maximum temperature, and extreme temperatures, on crop yield. Therefore, 250 

Global Summary of the Day (GSOD) stations in Punjab and Haryana with a near complete 251 

record of daily minimum and maximum temperatures were extracted from: 252 

(http://www.ncdc.noaa.gov/). Weather stations were included on the basis of spatial coverage 253 

over Punjab and Haryana and completeness in temporal coverage with minimal missing data. 254 

Conservatively selecting stations with reliable and comprehensive temperature records was 255 

appropriate over Punjab and Haryana as there is minimal orographic variability, especially 256 

over cultivated lands, which would cause dramatic shifts in temperatures over short distances. 257 

The data from these stations were used to generate gridded fields, at the same spatial 258 

resolution as the MODIS data, using an inverse-distance weighting algorithm. GSOD weather 259 

stations have been used as inputs in the generation of gridded climate products (Yasutomi et 260 

al., 2011) and to assess climate impacts on crops in  north India (Lobell et al., 2012).  261 

 262 
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Linear regression models with fixed-effects terms (equation 1) were fitted to explore whether 263 

the impact of temperature and extreme heat events during the TSP on crop yield could be 264 

detected using remote sensing data.  265 

𝐶𝑈𝑀𝐸𝑉𝐼(𝑇𝑆𝑃)𝑖𝑡 =  𝛽𝑥𝑖𝑡 + 𝑐𝑖 + 𝜀𝑖𝑡    (1) 266 

Where i refers to pixel i and t refers to time of observation t=2002….2007. xit is the predictor 267 

temperature variable in pixel i at observation t, ci is the fixed effects term for pixel i and ɛit is 268 

an error term. CUM-EVI(TSP) was regressed against  average minimum, maximum and mean 269 

temperature and, extreme degree days (EDD) during the TSP. Average daily minimum and 270 

maximum temperature were computed separately as they have been shown to have differing 271 

impacts on cereal crop yield (Peng et al., 2004; Welch et al., 2010). EDD was defined as: 272 

𝐸𝐷𝐷(𝑇) = ∑ 𝐷𝐷      𝐷𝐷 {
0  𝑖𝑓 𝑡𝑖 <  𝑇
1  𝑖𝑓 𝑡𝑖  ≥ 𝑇

𝑁

𝑖−1

 273 

(2) 274 

Where T is the threshold temperature for which EDD is computed individually for each 275 

temperature from 32-42˚C at 1˚C increments, ti is the maximum temperature on day i and N is 276 

the number of days in the TSP (N=30). Computing EDD above a threshold maximum 277 

temperature, increasing with 1˚C intervals enabled assessment of whether declines in yield 278 

due to exceedance of critical temperatures during the TSP can be detected empirically from 279 

remote sensing data. On the basis of performing a Hausman test, fixed-effects terms were 280 

preferred over random-effects terms. The same sign (i.e. positive or negative slope coefficient) 281 

in the relationship between temperature variables and crop yield was obtained when using 282 

random-effects terms indicating that the results were not artefacts of including fixed-effects 283 

terms. Also, we further validated the regression models using a leave-one-out approach; the 284 
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fixed-effects regression models were performed leaving out temperature and wheat crop yield 285 

data for each year in turn.  286 

 287 

 288 

Including a fixed-effects term allows the regression intercept to vary spatially. It can be 289 

thought of as accounting for time-invariant effects of the underlying agricultural system 290 

unique to each location (these effects are not specified, but could include omitted variables 291 

such as soil condition, fertiliser application and access to irrigation). Through this remote 292 

sensing-based approach key climatic stresses in a particular cropping landscape can be 293 

elucidated accounting for the differential sensitivity caused by underlying system factors.    294 

 295 

Using remote sensing data means that a unique phenology can be captured per-pixel, per-year 296 

enabling estimation of phenological parameters such as start-of-season (SOS), end-of-season 297 

(EOS) and approximation of the TSP. Coarser spatial resolution yield data (e.g. 298 

administrative boundary yield estimates) would mask variation in the timing of key 299 

phenological stages. Using coarser spatial resolution yield data would therefore prohibit 300 

assessment of intra-growing season sensitivity to climatic variables such as warming during 301 

the TSP. SOS, EOS and TSP can be obtained per-pixel to extract climate information relevant 302 

only to the exact growing season of the crop or the TSP. This avoids using monthly or 303 

seasonal averages of climate data which correspond to normal growing seasons and may 304 

retain climate signals not relevant to crop growth and are not sensitive to spatial and temporal 305 

changes in the timing and length of growing seasons. Monitoring phenology using remote 306 

sensing means that regression models could be fitted for varying SOS dates. This enables 307 
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assessment of how varying SOS influenced crop exposure to temperature variation and 308 

accounts for the fact that varying day length over a season can influence crop development 309 

rates (Lobell et al., 2012). This is important as shifting sowing dates and cropping calendars 310 

are a potential adaptation to reduce exposure to extreme heat events (Teixeira et al., 2013). 311 

Regression models were fitted for SOS on day-of-year 329, 337, 345, 353 and, 361.   312 

 313 

Panel-datasets are multi-dimensional in time and space and, thus, can capture a wider range 314 

of temperatures which exhibit greater spatial variation relative to temporal variation at one 315 

location (Lobell & Burke, 2010). Panel-regression models have shown improved 316 

performance (in terms of strength of association) for capturing temperature-crop yield 317 

relationships relative to time-series models (Lobell & Burke, 2010). The temporal extent of 318 

the panel-data was restricted to five years to mitigate the impact of shifting agricultural 319 

practices or technological advances on crop yield. Several studies have incorporated linear, 320 

quadratic or cubic regression spline time terms into crop yield-climate regression models to 321 

account for such technological development (Schlenker & Lobell, 2010; Rowhani et al., 2011; 322 

Hawkins et al., 2013). However, this requires the assumption that the impact of 323 

developmental change on crop yield is universal across the spatial extent of the panel. Given 324 

the spatial variability in cropping-systems (Panigrahy et al., 2010), and variation in levels of 325 

natural, physical, social and financial capital, which influence uptake of agricultural practices 326 

(Erenstein et al., 2007), across the panel, utilising a time term to capture development and 327 

assuming its spatial universality was not justified. Crop yield-climate regression models 328 

trained using panel-data are less sensitive to the temporal extent over which observations 329 

were taken (Lobell & Burke, 2010). For example, Welch et al., (2010) detected the signal of 330 

minimum and maximum temperature impacts on rice yield using panel data with observations 331 

taken over five years. 332 
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 333 

Results 334 

 335 

(a) Temperature during the TSP and crop yield relationship 336 

 337 

Average minimum and average maximum temperature during the TSP have greater 338 

explanatory power compared to EDD computed with incrementing temperature thresholds 339 

and average growing season temperature (Table 1). Increases in average minimum 340 

temperature during the TSP and average growing season temperature have a larger negative 341 

impact on wheat yield compared to increases in average maximum temperature during the 342 

TSP (Fig. 3). However, increases in all temperature variables have a negative impact on 343 

wheat crop yield (Fig. 3 and 4). Generally, an increase in the temperature threshold above 344 

which EDD is computed registers a greater negative influence on wheat crop yield (Fig. 4). 345 

However, a temperature threshold of 35°C had a noticeably larger R2
 compared to all other 346 

temperature thresholds (Table 1), there was also an increase in the size of the slope 347 

coefficient at 35°C compared to lower temperature thresholds (Fig. 4). The negative impact 348 

of temperature during the TSP, determined by both the value of the slope coefficient and the 349 

fit of the model, increased with later SOS dates (Fig. 3 and 4; Table 1). For example, for a 350 

SOS on day-of-year 329 a per-unit (i.e. 1°C ) increase in average minimum temperature 351 

during the TSP would result in -0.0453 Tonnes ha-1 decrease in wheat yield whereas the same 352 

warming for SOS on day-of-year 361 would result in a yield decrease of -0.0792 Tonnes ha-1. 353 

The negative impact of exposure to heating events greater than 35°C during the TSP also 354 

increased with later SOS dates (Fig. 4). The same sign (i.e. positive or negative slope 355 
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coefficient) and patterns in the magnitude of R2 values were observed in the leave-one-out 356 

regression models as occurred in the models using the full panel (Supporting Information). 357 

This suggests the results from the full panel fixed-effects regression models are robust in 358 

capturing temperature impacts on wheat crop yield and are not artefacts of including 359 

anomalous years or data points in the regression models. 360 

 361 

Discussion 362 

 363 

Average minimum and average maximum TSP temperature  explain a greater amount of 364 

yield variation compared to mean growing season temperature (Table 1). The TSP 365 

approximates the reproductive and the beginning of the grain filling development stages. 366 

While several studies focus on the impacts of daily maximum temperature or daytime 367 

temperatures above a critical threshold during the TSP or the entire growing season (Asseng 368 

et al., 2010; Lobell et al., 2012; Gourdji et al., 2013a; Koehler et al., 2013; Teixeira et al., 369 

2013), it was shown here that minimum temperature during the TSP has an equivalent if not 370 

greater negative impact on wheat yields (Fig. 3; Table 1). Lobell & Ortiz-Monasterio, (2007) 371 

used the CERES-wheat model and historical wheat yield data in Mexico and California to 372 

explore the differential yield impacts of minimum and maximum temperatures. Whilst this 373 

study also showed the negative impact of warming minimum temperatures on wheat crop 374 

yield it noted that the CERES-wheat model mechanism for simulating grain filling did not 375 

replicate the impact of minimum or maximum temperatures observed in historical yields 376 

(Lobell & Ortiz-Monasterio, 2007). It is important for further research to contribute to greater 377 

understanding of the differential impacts of daily minimum and maximum temperature, and 378 

associated physiological processes. This is pertinent given an observed (1970-2005) trend of 379 
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increasing ‘hot nights’ in north-west India during the pre-monsoon wheat growing season 380 

(Kothawale et al., 2010) and an observed (1970-2003) increasing trend in winter minimum 381 

temperatures (Kothawale & Rupa Kumar, 2005). These results also suggest that the negative 382 

influence of average growing season temperature may be due to it capturing heating events 383 

during the TSP and, that adaptive efforts to increase wheat crop resilience to warming, should 384 

focus on the TSP. 385 

 386 

Regressing EDD above incrementing temperature thresholds showed the expected negative 387 

impact of increasing temperature during the TSP on wheat crop yield (Fig. 4). These results 388 

suggest that wheat yields in Punjab and Haryana are more sensitive to daily maximum 389 

temperatures greater than 35˚C rather than a crop-specific critical temperature, often reported 390 

as 34˚C for wheat (Hatfield et al., 2011; Lobell et al., 2012; Gourdji et al., 2013a). The 391 

impact of cumulative exceedance of 35˚C during the TSP on wheat yield also varied with 392 

SOS date (Fig. 4; Table 1); this is consistent with a range of other observational and crop 393 

simulation studies which did not reveal a uniform yield response to heating events greater 394 

than 34˚C (Fig. 4 and Fig. 8 in Asseng et al., (2010)). It is worth noting that average 395 

minimum and average maximum TSP temperature cause a greater, negative rate of change in 396 

wheat yields than exceedance of the 35˚C threshold. This indicates that the effect of a critical 397 

temperature threshold is less pronounced in real world cereal cropping systems compared to 398 

more controlled, experimental environments or modelling frameworks where the critical 399 

temperature signal can be isolated (Jagadish et al., 2007; Asseng et al., 2010; Teixeira et al., 400 

2013). There is likely spatial variation in crop variety, irrigation and vapour pressure deficit 401 

during the TSP across Punjab and Haryana, but also in croplands across the globe, which will 402 

alter wheat crop response to extreme heat events masking the effects of a critical temperature 403 

threshold (Porter & Gawith, 1999; Asseng et al., 2010; Gourdji et al., 2013b).  404 
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 405 

Spatial variation in the quality of irrigation water has been shown to influence wheat crop 406 

yield in Punjab and Haryana (Tyagi et al., 2005). However, the pixel specific fixed-effects 407 

terms included in the regression models should capture the variability in yield due to 408 

variation in irrigation water quality (and other omitted variables). As mentioned in the 409 

introduction, due to the timing of the rabi wheat growing season outside of the wet monsoon  410 

with near complete irrigation (>98% of the wheat crop is irrigated, (DES, 2012)) the wheat 411 

crop should not water limited and precipitation should have little impact on final yield. This 412 

is confirmed by univariate regression models using growing season total precipitation and 413 

TSP total precipitation as predictor variables (Table 2). The slope coefficients for 414 

precipitation variables show a very weak negative correlation with wheat crop yield (Table 2); 415 

this is contrary to expected theory and is likely an artefact of relatively small amounts of 416 

precipitation during wheat growing season and the wheat crop being irrigated. Also, 417 

precipitation variables explain a relatively small amount of the variation in wheat crop yield 418 

compared to average minimum and maximum temperature during the TSP (Table 1 and 2).  419 

 420 

The negative influence of average minimum and average maximum TSP temperature on final 421 

wheat yield increased with later SOS dates (Fig. 3). This trend is consistent with observations 422 

by Lobell et al., (2012) who observed declines in wheat growing season length associated 423 

with later SOS dates in north India; this was attributed to increased exposure to extreme heat 424 

days (>34 ˚C) later in the wheat growing season. These results (Fig. 3 and 4, Table 1) suggest 425 

that climatic events, namely warming during the TSP, are limiting potential wheat yields in 426 

Punjab and Haryana.  For wheat crops with a later SOS earlier sowing may be an escape 427 

route reducing exposure to damaging heat events and, thus, closing existing yield gaps. 428 
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Widespread adoption of zero-tillage represents a suitable adaptive, climate-resilient, 429 

management strategy with earlier SOS reducing TSP exposure to extreme heat events with 430 

subsequent environmental and socio-economic benefits and, no yield penalty (Erenstein & 431 

Laxmi, 2008; Jat et al., 2009).  However, even wheat crops with a SOS of day-of-year 329, 432 

were negatively impacted by warming during the TSP (Fig. 3 and 4; Tables 1). This indicates 433 

that alongside reducing later sown wheat crops’ exposure to higher temperatures (‘escape’ 434 

strategies) adaptations need to be explored which increase wheat crop tolerance to warming 435 

during the TSP to reduce temperature-induced yield gaps (e.g. develop wheat varieties 436 

tolerant to extreme temperatures (Gourdji et al., 2013b)). Implementing such adaptations are 437 

important given (i) that current temperatures are limiting wheat yield and (ii) projected future 438 

warming trends in the wheat growing season and increased frequency of extreme heat days 439 

are likely to further limit wheat yields (Gourdji et al., 2013a; Mathison et al., 2013). Such 440 

adaptations could have important future food security implications given coincidental 441 

pressures of increased demand for food being placed on these croplands due to population 442 

growth (Aggarwal et al., 2004), alongside unfavourable warming (Gourdji et al., 2013a; 443 

Mathison et al., 2013).  444 

 445 

The panel-datasets, developed using remote sensing data, captured the impacts of climate 446 

variation on crop yields, specifically temperature variation during the TSP, as its occurs in 447 

real world cropping systems, accounting for spatial variation in system-specific factors (e.g. 448 

access to irrigation, farmer decisions). The key findings are highlighted below: 449 

 Previous studies have used remote sensing data to demonstrate the impact of 450 

increased warm days above 34 ˚C during the entire growing season on shortening 451 

growing season lengths for wheat crops in north-west India (Lobell et al., 2012). Here, 452 
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we have utilised the phenological detail in remote sensing data to isolate the impact of 453 

temperature during the TSP (the reproductive and grain-filling stages when final yield 454 

is set) on wheat crops in north-west India. This has demonstrated that is possible to 455 

monitor what impacts climate change, specifically changes in the temperature 456 

variation and extreme heat events, will have on cereal croplands using remote sensing 457 

data. 458 

 Warming average minimum temperatures during the TSP have a greater negative 459 

impact on wheat crop yield than warming maximum temperatures during the TSP (e.g. 460 

R2=0.53(Min(TSP)) and 0.38(Max(TSP)) for wheat crops sown on day-of-year 353). 461 

This suggests that studies which focus on the negative warming impacts of extreme 462 

heat events and maximum temperatures on anthesis, crop reproductive processes and 463 

grain-filling should not neglect the impact of warming minimum temperatures. This is 464 

pertinent given observed trends of warming night-time and minimum temperatures in 465 

northern India.  466 

 Experimental and simulation studies often report 34˚C as a critical temperature 467 

threshold for wheat crop growth. However, remote sensing observations accounting 468 

for the complexity of a real world cereal cropping landscape revealed a non-uniform 469 

yield response after threshold exceedance and a more pronounced negative impact on 470 

wheat yield with increased warming events above 35˚C in the Punjab and Haryana 471 

region. 472 

 Warming temperatures during the TSP are currently limiting wheat crop production in 473 

Punjab and Haryana. The negative impact of warming temperature during the TSP 474 

increases with later SOS dates. This suggests that earlier sowing for late sown wheat 475 

may mitigate some temperature induced shortfalls in production. However, given that 476 
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earlier sown wheat is still negatively impacted by warming during the TSP it suggests 477 

there is a need for heat tolerant varieties to prevent temperature induced yield gaps.  478 
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 654 

Table 1. R2 values for average minimum and average maximum temperature during the TSP, 655 

average growing season temperature (T) and EDD(T) accumulated above incrementing 656 

temperature thresholds when wheat crop yield was regressed on each of them independently, 657 

shown for different SOS dates. Only results significant at p<0.001 are shown.  658 

 SOS (day-of-year) 

Variable 329 337 345 353 361 

T(TSP)(min) 0.25 0.34 0.39 0.54 0.61 

T(TSP)(max) 0.24 0.39 0.38 0.38 0.43 

T 0.06 0.13 0.14 0.10 0.06 

EDD(T): 32 0.08 0.11 0.05 0.06 0.18 

EDD(T): 33 0.13 0.19 0.15 0.09 0.24 

EDD(T): 34 0.10 0.19 0.14 0.08 0.29 

EDD(T): 35 0.14 0.30 0.34 0.37 0.54 

EDD(T): 36 0.04 0.15 0.17 0.19 0.23 

EDD(T): 37 0.13 0.11 0.04 0.08 0.13 

 659 

 660 

 661 
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 662 

 663 

Table 2. Slope coefficients and R2 values for univariate regression model for wheat yield and 664 

growing season total precipitation and TSP total precipitation for different SOS dates. Only 665 

results significant at p<0.001 are shown. 666 

 Growing season total precipitation TSP total precipitation 

 Slope coefficient R2 Slope coefficient R2 

329 -0.0014 0.06 -0.0047 0.21 

337 -0.0014 0.05 -0.0043 0.16 

345 -0.0026 0.11 -0.0036 0.12 

353 0.0034 0.18 -0.0031 0.09 

361 -0.0033 0.23 -0.0027 0.09 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 
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 677 

 678 

Fig. 1. Normal (1950-2000) monthly precipitation and average daily temperature for 679 

Punjab and Haryana (source: www.worldclim.org).  680 

 681 

Fig. 2. a) Relationship between remote sensing estimates of district-wise wheat crop 682 

yield (CUM-EVI(TSP)) and district-wise wheat crop yield as reported by government 683 

agricultural statistics (http://apy.dacnet.nic.in/) for the 2002-2003 to 2006-2007 growing 684 

http://apy.dacnet.nic.in/
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seasons and, b) Relationship between remote sensing estimates of district-wise wheat 685 

crop production (CUM-EVI(TSP)) and district-wise wheat crop production as reported 686 

by government agricultural statistics (http://apy.dacnet.nic.in/) for the 2002-2003 to 687 

2006-2007 growing seasons. The outlier residing near the x-axis between CUM-EVI(TSP) 688 

values of 2000-3000 likely reflects erroneous reporting in the Government of India’s 689 

crop production statistics for the district of Bhiwani in 2005-06. Production of wheat in 690 

Bhiwani was 425000, 456000, 415000 and 527000 Tonnes in 2002-03, 2003-04, 2004-05 691 

and 2006-07; Government statistics reporting an 39000 Tonnes for 2005-06 are 692 

therefore likely due to an error in reporting, especially as there was not an associated 693 

drop in area under wheat cropping (http://apy.dacnet.nic.in/). The outlier was dropped 694 

for the yield model (a) to avoid it introducing error into the prediction of yield 695 

throughout the study.  696 

http://apy.dacnet.nic.in/
http://apy.dacnet.nic.in/
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 697 

Fig. 3. Slope coefficient estimates in units of Yield (Tonnes ha-1) for per-unit increases in 698 

warming (i.e. 1 ˚C warming) for average minimum temperatures during the TSP 699 

min(TSP), average maximum temperature during the TSP max(TSP) and average 700 

growing season temperature (mean(GS)). The numbers in the top left hand corner of 701 

the plots correspond to SOS date in days-of-year. Only results significant at p<0.001 are 702 

shown. 703 
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 704 

Fig. 4. Slope coefficient estimates in units of Yield (Tonnes ha-1) for per-unit increases in 705 

warming (i.e. EDD) for EDD above incrementing temperature thresholds during the 706 

TSP. The numbers in the top left hand corner of the plots correspond to SOS date in 707 

days-of-year. Only results significant at p<0.001 are shown. 708 

 709 

 710 


