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 

Abstract— We report experimental results for thermo-optic 

modulators in silicon-on-insulator (SOI) material operating at the 

wavelength of 3.8 µm. These devices are based on asymmetric 

Mach-Zehnder interferometers (MZI) with aluminium heaters 

placed above one MZI arm. SOI rib waveguides with 400 nm Si 

device layer thickness are used. Devices with conventional straight 

MZI arm and spiral MZI arm geometries are investigated. 

Straight-arm MZIs exhibited higher modulation depths, of up to 

30.5 dB, while spiral-arm MZIs required smaller switching 

powers, as low as 47 mW. Measured -3 dB bandwidths were up to 

23.8 kHz and did not vary significantly with device configuration. 

 
Index Terms—Thermo-optic modulator, silicon photonics, mid-

infrared, optoelectronic devices, photonics.  

I. INTRODUCTION 

ID-INFRARED (MIR) group IV photonics is attracting 

increasing attention for possible application in “lab-on-a-

chip” technologies for chemical, biological and gas sensing as 

well as for free-space communications and infrared 

countermeasures [1]. Many of the passive components required 

to create an integrated mid-infrared photonic sensing system 

based in silicon-on-insulator (SOI) for wavelengths up to 4μm 

have now been demonstrated, such as waveguides [2-4], 

splitters/couplers [4], Mach-Zehnder interferometers [4], ring 

resonators [3] and spectrometers [5]. Planar electro-optical 

modulators have not yet been demonstrated in group-IV 

materials at wavelengths greater than 2.2 μm [6], but are likely 

to have a part to play in the creation of high sensitivity sensing 

circuits. For experimental characterization of MIR components 

a combination of a chopper and lock-in amplifier is often used 

to increase the signal-to-noise ratio (SNR), e.g. [2, 7, 8], whose 

purpose is to shift the system to a higher operating frequency, 

where frequency dependent noise might be smaller [9].  

 

Fig. 1. Schematic diagram of integrated spectrometer, with a modulator acting 
as an on-chip chopper. 

An electro-optical modulator could replace the chopper in an on-

chip equivalent of such a system, for example in the configuration 

shown in Fig. 1. In this paper we report characterization of thermo-

optic modulators operating at 3.8 μm. 
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II. THERMO-OPTIC MODULATOR DESIGN 

Thermo-optic modulators have been realised in near-IR (NIR) silicon 

components [10, 11], and although they exhibit much smaller 

modulation bandwidths than plasma dispersion effect modulators, 

they have been shown to be compact [11], require low powers (6.5 

mW switching power [10]), and are much simpler to fabricate. In the 

NIR in SOI typical thermo-optic modulation bandwidths are in the 3.5-

70 kHz range [10], which is sufficient for sensing applications. In Fig. 

2 the wavelength dependence of the thermo-optic coefficient, 𝑑𝑛 𝑑𝑇⁄ , 

of silicon from [12] is shown. At 3.8 μm 𝑑𝑛 𝑑𝑇⁄ = 1.70 × 10−4 °C-

1, which is 8% weaker than at 1.55 μm but remains large enough for 

efficient thermo-optic modulation.  

 

Fig. 2.  Thermo-optic coefficient spectrum of silicon, plotted using the data of 
[12]. 

We investigate here modulators that are based on heaters placed 

above one arm of an asymmetric Mach-Zehnder interferometer 

(MZI). The MZI is based on SOI rib waveguides with silicon height 

H=400 nm, waveguide width W=1300 nm, etch depth D=220 nm, and 

buried oxide layer (BOX) thickness HBOX=2 μm. 1 × 2 multi-mode 

interferometers (MMIs) with tapered input and output ports are used 

as the splitter/coupler for the MZI. In [4] we showed that MMIs 

fabricated according to the same design and using the same fabrication 

process exhibited insertion losses of only 0.10±0.01 dB. Waveguides 

with these dimensions, characterized using the cut-back method, 

showed a propagation loss of 3.5 dB/cm. 

Densmore et al. [10] demonstrated thermo-optic modulators that 

employed both conventional MZIs with straight arms and MZIs with 

spiral patterned arms. The spiral-arm MZIs were found to require 

smaller switching powers (e.g. 6.5 mW for spiral-arm devices, and 36 

mW for straight-arm devices), as when the waveguide is wrapped into 

a spiral the overlap between the heated volume and optical mode 

volume is improved. In this work we investigate devices based on both 

MZI types. 
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An aluminium heater, which acts as a phase shifter, is placed above 

one of the MZI arms (figures 3 and 4), and because there is high optical 

absorption in metals a SiO2 layer is used to isolate the heater from the 

optical mode. For the case of the straight-arm MZI the heater can be 

placed either directly above the waveguide, as in Fig. 3a, or with a 

slight lateral separation, as in Fig. 3b. The lateral heater separation 

further isolates the metal from the optical mode, but the increased 

distance from the waveguide will increase the required switching 

power, as a smaller proportion of the thermal power dissipated from 

the heater will heat the waveguide. For the spiral-arm case, the metal 

heating strip is folded such that it passes back and forth above the 

waveguide, as shown in Fig. 4b. 

 

Fig. 3.  Labelled schematic cross-section of thermo-optic phase shifters with 
metal heaters placed a) directly above the waveguide, b) with a slight lateral 
separation from the waveguide. Note that in practice the profile of deposited 
SiO2 is not flat, and is thicker above the waveguides. 

 

Fig. 4.  Top view optical microscope image of a) a spiral-arm MZI, b) one arm 
of the spiral MZI with Al heater. 

Fig. 5 shows the simulated waveguide loss with varying silica 

thickness when an aluminium strip is placed both directly above and 

separated laterally by 1 μm from the waveguide. Simulations were 

carried out using the Photon Design Fimmwave software package, and 

the loss includes contributions from Al absorption (5.6 × 106 dB/cm 

[13]) and SiO2 absorption (6 dB/cm [14]). It should be noted that in 

practice the absorption coefficient of the PECVD deposited SiO2 layer 

is likely to be different from the absorption of the BOX layer. 

 

Fig. 5.  Simulated optical absorption of waveguides with metal strips placed 
directly above waveguides (red dots) and metal strips with 1 μm edge to edge 
separation from waveguides (black squares). In both cases the metal strip is 100 
nm thick, and its width extends to the edge of the simulation region. 

The figure shows that for negligible aluminium absorption loss HOX 

> ~1 μm is required for the laterally separated case, and HOX > ~1.8 

μm is required when the heater is directly above the waveguide. As 

both spiral-arm and straight-arm devices were fabricated on the same 

chip the silica isolating layer was chosen to be 2 μm thick. As a 

conservative design choice the straight-arm modulators were chosen 

to have a separation Smet=1 μm from the waveguide. Straight-arm 

devices were fabricated with heater widths of 10 μm and 15 μm, and 

heater lengths of 2.25 mm to 4.5 mm. The dimensions of spiral arm 

MZIs are defined by the spiral inner bend radius R1, the edge to edge 

separation between waveguides in adjacent loops of the spiral Wgap, 

and the number of spiral loops, N. Spiral-arm MZIs were fabricated 

with R1 between 20 μm to 42.5 μm and N between 1 and 6. From 

Fimmwave optical mode simulations it was determined that a 

separation Wgap = 4 μm is required so that the optical modes of 

waveguides in adjacent spiral loops do not interfere with each other. 

The resulting spirals had lengths between 0.7 mm and 9.1 mm. The 

spiral-arm MZIs were made to be asymmetric by placing a spiral with 

N loops in one of the two arms, and N+1 loops in the other. 

III. FABRICATION AND CHARACTERIZATION 

Chip fabrication was carried out at the Southampton 

Nanofabricaton Centre, University of Southampton. The 

waveguides were defined using e-beam lithography followed 

by ICP silicon etching. At this stage the wafer was diced into 

chips, and a 2 μm thick layer of SiO2 was deposited on the chips 

by Plasma Enhanced Chemical Vapor Deposition (PECVD). A 

120 nm thick Al layer was deposited on the chips by sputtering, 

and the aluminium heaters were patterned by standard contact 

photolithography followed by metal ICP etching. 

A. Optical characterization of Mach-Zehnder interferometers 

Optical characterization was carried out using a MIR 

experimental setup consisting of a quantum cascade laser 

operating at 3.8 μm and an InSb detector with a time constant 

of <1 μs [15], where light was coupled into and out of the chip 

using MIR fibers and grating couplers defined on the chip. The 

setup is described in much greater detail in [2]. A combination 

of a chopper in the optical beam operating at ~250 Hz and a 

lock-in amplifier connected to the detector output were used to 

improve the SNR. Optical extinction ratios (ERs) and insertion 

losses for the fabricated devices were measured from 

wavelength scans in the range 3.725-3.80 μm that were 

normalized to the transmission through straight waveguides, for 

devices before SiO2 deposition. For straight-arm MZIs average 

extinction ratios across all of the devices were 19.3-22.5 dB, 

with the highest measured extinction ratio being 28.2 dB, while 

average insertion losses were 1.3-2.2 dB. For spiral-arm MZIs 

maximum extinction ratios were 7.9-21.0 dB, while average 

insertion losses were 3.1-9.2 dB. The large variations in 

extinction ratio and insertion loss are mostly due to variations 

in spiral geometry. The greater insertion losses of spiral MZIs 

are attributed to bending loss in the spiral waveguides, 

particularly in the tight inner spiral layer. The insertion losses 

of both MZI types could be reduced by using waveguides with 

W=1350 nm, which have been shown to have losses as low as 

1.5 dB/cm [4]. The smaller ERs of the spiral-arm MZI are partly 

attributed to a greater loss difference between the two arms than 

in the straight-arm MZI. Additionally, the free-spectral range 

(FSR) of the spiral-arm MZI is smaller, and as the QCL exhibits 

some wavelength instability due to mode-hopping behavior, it 
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is more difficult to accurately interrogate these fine wavelength 

features.  

B. DC operation 

     Electro-optical performance of the fabricated modulators was 

characterised under DC and AC operating conditions. An electrical 

probe was used to contact the heaters, which had probe pads at either 

end of the heating strip. For DC characterisation a PC controlled power 

supply was used to apply a steady current to the heater electrode. 

During the DC measurements the chopper was used, and scans of 

applied DC power versus optical power, measured from the lock-in 

amplifier output, were carried out. Fig. 6 shows an example of the 

measured normalized DC response of an asymmetric spiral-arm 

modulator with R1=27.5 μm and N=2, with a spiral length of 1.77 mm 

and arm length difference of 96.1 μm. The red curve plotted alongside 

the measured points shows a fit of theoretical response of a 1 × 2 MZI 

[16]. Modulation depths (MD) have been calculated directly from the 

measured data, and switching power has been extracted from the fitted 

curve. Because SiO2 deposition was carried out on individual chips the 

SiO2 thickness was visibly uneven across sections of a sample, which 

meant that the transmission through MZIs could no longer be 

normalized to the transmission through straight waveguides for 

modulator insertion loss measurements. 

 

Fig. 6. Measured normalized transmission (black squares) of asymmetric 
spiral-arm MZI with 1.77 mm spiral length and 96.1 μm arm length difference, 
plotted alongside a fitted theoretical curve (red line). ER = 17.8 dB. 

     The average DC modulation depth for straight-arm MZIs was 24.1 

dB and the maximum MD was 30.5 dB, while for spiral-arm MZIs the 

average MD was 10.9 dB and the maximum was 17.8 dB, which was 

measured for the device shown in Fig. 6. The measured DC 

modulation depths are consistent with the optical extinction ratios 

measured from wavelength scans. Fig. 7a shows the power required to 

produce a π phase shift plotted against heated waveguide length. It is 

clear that much greater switching powers are required for straight-arm 

MZIs than for spiral-arm MZIs, for which 47 mW is the smallest 

switching power, and that increasing the arm length of a spiral-arm 

MZI reduces the required switching power, but has little effect for 

straight-arm MZIs. This agrees with the findings of [10] for NIR 

modulators. 

 

Fig. 7.  a) Switching power of straight-arm MZIs (black squares) and of spiral-
arm MZIs with R1=20 μm (red dots) and R1=27.5 μm (blue triangles), plotted 
as a function of heated arm length. b) Switching power of spiral-arm MZIs with 
varying inner bend radius R0, but with the same waveguide width, waveguide 
separation and number of spiral loops. 

The large switching powers of the straight-arm MZIs are largely a 

result of the lateral separation of the heater electrodes from the 

waveguide. This is confirmed by measurements on devices with the 

same waveguide edge to heater edge separation but different heater 

widths, and therefore different average separation. Devices with Wmet 

= 10 μm having heated arm lengths LH = 2.25 mm and 3.0 mm 

required switching powers of 245 mW and 248 mW respectively, 

whereas those with Wmet = 15 μm required 317 mW and 318 mW for 

those same heater lengths. For spiral-arm MZIs the switching power is 

also a function of spiral inner bend radius, as shown in Fig. 7b, which 

shows the switching power of spirals with the same W, Wgap, and N, 

but different R1. The switching power increases strongly with 

increasing inner bend radius despite an accompanying increase in 

heated spiral length, as there is an area at the centre of the spiral where 

the heater passes above etched silicon, therefore power used to heat 

this space is wasted. This is an important consequence of migrating 

spiral structures to longer wavelengths: longer wavelength spirals 

require greater bending radii and greater waveguide separation, 

limiting how tightly the spiral can be wrapped, and therefore limiting 

the efficiency of the modulator. 

C. AC operation 

     For AC testing a PC controlled signal generator was used to apply 

a square wave signal to the heater electrode, and the mechanical 

chopper was removed from the optical path. The signal generator also 

supplied a reference signal to the lock-in amplifier, to filter the 

modulated frequency from the detector output. Fig. 8 shows the 

normalized optical transmission plotted against modulation frequency 

for a straight-arm MZI with 10 μm wide heating strips and a 2.25 mm 

long heater. The -3 dB bandwidth of the device shown in Fig. 8 was 

23.8 kHz.  

 

Fig. 8.  Frequency response of a straight-arm MZI with 2.25 mm long heaters 
and 10 μm wide heating strips. 
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There was relatively little variation in the measured 

bandwidths of all of the measured devices regardless of layout, 

which were between 17.8 kHz and 23.8 kHz, and no clear 

design dependent trends were discernible from the data. In [10] 

a -3 dB bandwidth of ~25 kHz was measured for similar devices 

in the NIR, with the authors also noting that lateral heat 

diffusion has little effect on the frequency response, but that the 

switching speed could be increased by reducing the BOX 

thickness. However, at 3.8 μm according to simulations a 2 μm 

thick BOX layer results in substrate leakage of 0.6 dB/cm for 

the waveguide dimensions used in this work, and further 

reduction of the BOX thickness would increase the propagation 

loss. A comparison of heater architectures in the literature [17] 

showed that there is a design tradeoff between reducing 

switching power and increasing modulation frequency, in 

which the speed of thermal dissipation is the determining factor. 

IV. CONCLUSION 

In this paper we have demonstrated SOI thermo-optic 

modulators operating at 3.8 μm, in which an Al heater was 

placed above one arm of a Mach-Zehnder interferometer. MZIs 

with straight arms and MZIs with spiral arms were investigated. 

Straight-arm MZIs exhibited modulation depths of up to 30.5 

dB, insertion losses of 1.3-2.2 dB, -3 dB bandwidths of up to 

23.8 kHz, and power consumption of 245 mW. Spiral-arm 

MZIs exhibited modulation depths of up to 17.8 dB, insertion 

losses of 4.8-11.8 dB, depending on the configuration, -3 dB 

bandwidths of up to 21.3 kHz, and power consumption of 47 

mW. The large power consumption of the straight-arm MZIs 

could be reduced by placing the Al heaters directly above the 

waveguide in the MZI arm, and by reducing the thickness of the 

SiO2 layer that separates the Al from the waveguide mode. The 

insertion losses of both MZI types could be reduced by using 

wider waveguides, which have previously been shown to have 

losses as low as 1.5 dB/cm [4]. This would also be expected to 

increase the extinction ratio. The -3 dB bandwidths are 

comparable to those that have been achieved in the literature for 

similar NIR devices. Ultimately, the power consumption of 

silicon MIR thermo-optic modulators will be greater than their 

NIR equivalents. The optical mode for longer wavelength 

waveguides is larger, therefore heaters must be placed further 

away from the waveguide, and in a spiral the waveguide folding 

density will be smaller because greater bend radii and greater 

separation between spiral layers are required. The thermo-optic effect 

is also weaker in the MIR than in the NIR. However, further 

optimization of the silica thickness and of the heater design for 

improved overlap between the heated area and the optical mode is 

required. 

 This device represents the first demonstration of a waveguide 

integrated silicon modulator at wavelengths greater than 2.2 

μm, and devices such as this could be important components of 

integrated mid-infrared sensing systems. As an on-chip chopper 

for sensing the thermo-optic modulator combines the ideal 

properties of low optical insertion loss and straightforward 

fabrication. For applications where faster modulation is needed 

modulators based on the free-carrier plasma dispersion effect 

should be investigated, and design equations for prediction of 

this effect in the MIR have recently become available [18]. 
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