The University of Southampton
University of Southampton Institutional Repository

Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application

Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application
Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application
185312821X
WIT Press
Viaene, S.
68e01ebc-8a4d-4460-86bf-18711fcee8d6
Baesens, B.
f7c6496b-aa7f-4026-8616-ca61d9e216f0
Van den Poel, D.
956e522c-3a91-4885-ac2d-4eee48b27353
Dedene, G.
8afb894b-10b1-48d9-8751-4fab7a71b8ca
Vanthienen, J.
808131f1-b77b-4dee-bdda-90a94124c999
Viaene, S.
68e01ebc-8a4d-4460-86bf-18711fcee8d6
Baesens, B.
f7c6496b-aa7f-4026-8616-ca61d9e216f0
Van den Poel, D.
956e522c-3a91-4885-ac2d-4eee48b27353
Dedene, G.
8afb894b-10b1-48d9-8751-4fab7a71b8ca
Vanthienen, J.
808131f1-b77b-4dee-bdda-90a94124c999

Viaene, S., Baesens, B., Van den Poel, D., Dedene, G. and Vanthienen, J. (2000) Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application. In Data Mining II. vol. 2, WIT Press..

Record type: Conference or Workshop Item (Paper)

This record has no associated files available for download.

More information

Published date: 2000
Venue - Dates: The Second International Conference on Data Mining, Cambridge, UK, 2000-07-05 - 2000-07-07

Identifiers

Local EPrints ID: 36759
URI: http://eprints.soton.ac.uk/id/eprint/36759
ISBN: 185312821X
PURE UUID: 3eca509b-ea22-47ca-887d-5583816f8a01
ORCID for B. Baesens: ORCID iD orcid.org/0000-0002-5831-5668

Catalogue record

Date deposited: 31 Jul 2006
Last modified: 10 Jan 2024 02:39

Export record

Contributors

Author: S. Viaene
Author: B. Baesens ORCID iD
Author: D. Van den Poel
Author: G. Dedene
Author: J. Vanthienen

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×