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Abstract: This study presents a fast algorithm for the registration of shapes implicitly represented by their characteristic functions.
The algorithm proposed here aims to recover the registration parameters (scaling, rotation and translation) by minimising a
dissimilarity term between the two shapes. The proposed algorithm is based on phase correlation and statistical shape
moments to compute the registration parameters individually. The registration method proposed here is applied to various
registration problems, to address issues such as the registration of shapes with various topologies and registration of complex
shapes containing various numbers of sub-shapes. The method proposed here is characterised with a better accuracy, a higher
convergence speed, robustness at the presence of excessive noise and a better performance for registration over large

databases of shapes, in comparison with other state-of-the-art shape registration techniques in the literature.

1 Introduction

Shape registration can be viewed as the result of a point-wise
transformation between an observed source and a target
shape. It is a fundamental task used to match two or more
shapes taken, for example, at different times, from different
viewpoints, or from different scenes. Most image analysis
systems that evaluate images from various sources require
the registration or a closely related operation as an
intermediate step. Shape registration is an essential
requirement shared among many computer vision domains
and applications, such as pattern recognition, remote
sensing, computer graphics and medical image analysis to
name a few.

In shape registration, the representation of the shape plays a
crucial role in the registration process, and can significantly
influence the overall performance of the registration
algorithm. Non-parametric shape representations such as the
shape characteristic functions used in this paper are
becoming a more popular choice, owing to their implicit
handling of important shape deformation, and the simple
extension to describe higher dimensions. Shape
characteristic functions have previously been wused in
segmentation [1]. A dissimilarity measure based on shape
characteristic functions is proposed in [2-4]. Such a
dissimilarity measure has some favourable properties. First,
it is independent of image size. This dissimilarity defines a
distance which is non-negative, symmetric and satisfies the
triangle inequality [5]. In this paper, the shape characteristic
functions and their dissimilarity measure are exploited for
shape registration.

Contour-based registration methods, examples of which are
found in [6, 7], are among the techniques used widely in
shape registration because of their fast convergence. These
techniques, however, rely merely on the contour points
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representing the shapes to be matched during the
registration. These techniques also require point
correspondence for the boundary of the shapes.
Consequently, contour-based methods fall short if the two
shapes to be registered have different Euler characteristic
numbers, or contain different number of sub-shapes, due to
the ambiguity surrounding the process of establishing the
point correspondence.

Signed distance function (SDF)-based shape registration
techniques minimise the distance between the SDFs of two
shapes [5, 8-11]. Some of these algorithms minimise such
a distance by employing gradient descent algorithm (e.g.
see [5, 8, 9]). These techniques are widely used with
segmentation applications because it is relatively
straightforward to embed such registration methods in
functionals wused for segmentation. The gradient
descent-based shape registration methods (e.g. the seminal
work in [8]) are in general capable of dealing with shapes
with various Euler characteristic numbers (different
topologies), although with the increase in shape complexity,
the cost as well as the chances that these methods fall into
local minima also increases. These methods, however, have
some drawbacks: (i) low speed, (ii) in some cases, the
instability and convergence to local minima, which leads to
a limitation in the range of transformation these techniques
can handle, and finally (iii) these methods are somewhat
difficult to implement due to the need to tune the stopping
parameters and time step for each transformation
individually (see [5] for details). A shape registration
method based on shape characteristic functions by using the
iterated projection technique is also investigated in [12].
The drawback of such a method is that it is computationally
expensive.

This paper presents a shape registration algorithm based on
shape characteristic functions. The search space is assumed to
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be over shapes with similarity transformation function. Our
algorithm therefore estimates the translation, rotation and
scale parameters to minimise a dissimilarity measure. The
algorithm proposed here employs orthogonal linear
transformations and shape moments to estimate the
registration parameters individually.

The 2D shape registration technique presented in [11] is
another algorithm based on SDFs and is different from the
work presented in this paper in the following ways:

(1) The registration technique proposed in [11] is based on
SDFs and therefore the dissimilarity measure (e.g. see (2))
is theoretically unbounded for different (but similar) shapes
with even optimal registration parameters. A pseudo-SDF is
therefore proposed in [11] to resolve this issue in numerical
implementations. However, the registration method
proposed here does not suffer from such a theoretical issue,
since a dissimilarity measure such as (2) is naturally
bounded, if the shape characteristic functions are employed.
(2) The registration algorithm proposed here is iterative and
therefore its accuracy is always better than the accuracy of
the non-iterative SDF-based registration scheme proposed in
[11]. However, due to this iterative nature, the registration
algorithm proposed here takes longer to converge to the
optimal solution than the SDF-based algorithm considered
in [11]. A numerical example is presented in Section 5.2 to
show the superior performance of the registration algorithm
proposed here in comparison to the work in [11].

(3) The desired rotational angle in [11] is estimated by
minimising a term approximating the standard dissimilarity
term (such as the one in (2)), whereas the exact
dissimilarity term is minimised to estimate the desired
rotational angle in the registration method proposed here.

A 3D shape registration approach is also proposed by Liu
et al [13] by using shape characteristic functions to
eliminate theoretical issues associated with SDF functions
encountered in the work presented in [11]. However, in
contrast to the 2D registration method proposed here, before
estimating the optimal parameters of the registration,
the three axes of rotations need to be computed for 3D
shape registration. Also contrary to the iterative 2D shape
registration algorithm proposed here, the 3D shape
registration algorithm of [13] is a non-iterative algorithm.

The main contributions of this paper are as follows:

(1) It employs the Parseval theorem to compute the translation
and rotation parameters; however, we must stress that unlike
early deployments of this theorem, such as in [14] and
many others which are area-based methods, this paper
presents a shape characteristic-based method where the
characteristic functions of the shapes are used for
registration. Our method also enjoys more flexibility in
terms of handling a variety of source and target shapes in
contrast with the registration method discussed in [14].

(2) The evaluation of the approach proposed here shows that
this registration technique is robust, fast and suitable for a
wide range of registration problems. These problems
address issues such as shapes with various topologies (i.e.
shapes with different Euler characteristic numbers) even at
the presence of noise, and our method sustains a better
performance over large databases. The results presented
here are compared with the state-of-the-art shape
registration algorithms in the literature.
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The rest of the paper is structured as follows: The
registration problem is stated in Section 2. The registration
technique proposed here is presented in Section 3. The
implementation issues are then discussed in Section 4. In
this section, the implementation of the algorithm proposed
in this paper is described in a form of a pseudo-code. The
experimental results are presented in Section 5, and finally
conclusions are drawn in Section 6.

2 Statement of the problem

Let ¢,(x, y): Q— {0, 1} and ¢,(x, y): Q— {0, 1} denote
characteristic functions for shapes p and ¢, where Q is the
bounded image domain. The characteristic functions are
generally defined as

_JL Gy €l
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where /5 is a subset of the domain Q representing the interior
of shape B and C is the shape boundary.

The parameters s, 6, T and 7, representing scaling, rotation
and translations in x and y directions, respectively, are
required to transform ¢, to minimise a dissimilarity
measure between ¢, and ¢, defined in (2)

E= ﬂﬂ 6,000 = @ (Ro(r+ Ty + T ey @)
so that

(9, 3, Tx, Ty) = argmin £ 3)
0.5.T. T,

where 6, 3, f . and T ) are, respectively, the estimated angle,
scale and translations. The functions ¢,, ¢, and the
transformed characteristic functions are in ; that is,
the aim is to compute registration parameters such that the
result is still in Q. Also, Ry is a conventional 2D rotation
matrix

R — cosf sinf
97| —sinf cos@

The minimisation of (2) in a gradient descent framework
leads to a set of non-linear equations with respect to
the desired parameters. In such a framework, the
implementation of the equations obtained by vanishing the
derivative of the dissimilarity measure with respect to
registration parameters would be slow to converge, could
fall into local minima and requires to continuously tune
parameters for a smooth convergence. The objective of this
paper is therefore to propose a method minimising distance
terms equivalent to (2). The method should be robust
against local minima, noise and also be fast, and easy to
implement.

3 Shape registration

In this section, we discuss how to estimate registration
parameters one by one by minimising the dissimilarity
term (2).
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3.1 Rotation

The notion that a rotation in Cartesian domain is a
displacement in the angular component of the polar
coordinate system [15] is exploited here. To this end, the
polar coordinate system is employed here in order to find

the desirable rotation angle. Initially, the shape
characteristic functions are centralised, that is
b5, ) = &, (x = Py = p,) ©)
b, ) = d,x—q..y—q,) (5)

where (ps, py) and (q., q,) are, respectively, the centroids of
¢, and ¢,. The centralisation of shapes is necessary to find
scaling and rotation parameters. This is due to the
observation that for the rotation (or scaling) of a shape, the
shape is initially transferred to its centroid. The rotation (or
scaling) is then performed while the shape is in its centroid.
The shape is finally transferred back from its centroid to its
original location. We use this notion to calculate rotation
and scaling parameters by centralising the shapes in (4)
and (5).

A simple and efficient algorithm presented in [16] with
sub-pixel accuracy is used to map (Z)p(x, y) and (%q(x, y) to

polar coordinates. We then calculate $p(p, ) and <2>q(p, w)
such that x = pcosw and y = psine.

Let us initially define 8 as a function of the desirable
rotation angle 0, that is

g0 = || (dend®iem) s ©

The desirable angle is estimated by minimising the
dissimilarity term E,z in (2) by assuming that the other
transformation parameters are known and constant, that is

el

A

d,— & deay ™

or

g= 1, (
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b, — b,

&, — b)) dr v
®)

The first and the last terms in the above equation are
independent of 6, therefore

jjﬂ)@,—as,,

o f e
+ HQ }&1,‘2 dedy—28 (9)

Hence, the minimisation of (9) is achieved by maximising £.
The optimal rotation angle is therefore calculated by
maximising 3 with respect to 6, or

6 = arg max 3 (10)
0

The maximum value for 3 can be computed more easily when
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it is written in polar coordinates, that is
mmzﬁxﬁmﬁ@mmwﬂw®

:ﬂ(@m@@mw—mpww

Q

By using the Parseval theorem and Fourier transform,
we estimate the optimal value for @ by maximising 8.

Let the Fourier transform of ¢, and ¢, be ¢, and ¢,
respectively, such that

1

by, © =5 [[ o 0 dpdo )

N 1 ~ .
,(n, &) = ZTJ] b, (p, w)e M09 45 de (12)

where 717 and ¢ are spatial frequencies in the polar coordinate
system. Accordingly, by using Parseval’s theorem, one can
write

mmzﬂQMmm@mw—mﬁmmw

Q

= ZJ] (M lz,*(n’ g)ei(fﬁ)) dn dé
omn L

(13)

A

where (*) denotes the complex conjugate. Hence, 6 is
computed as

6 = arg max 3
0

y (14)
= arg maxi J] <w 121; (n, é’)ei(ge)) dn d¢
9

Therefore, in the algorithm proposed here, the rotation angle
is computed by using (14).

3.2 Scale

Similar to the previous section, it is possible to express shapes
p and ¢ by using some orthogonal shape moments such as
Chebyshev moments and then rewrite distance term (2)
with respect to these shape moments by using the Parseval
theorem. However, a simpler approach, which is Iess
numerically expensive and easier to handle, is proposed in
this section to estimate the scaling parameter s. This
approach calculates the scaling parameter between two
shapes, by minimising the distance between their radial
moments. R

The radial moments of the source characteristic function ¢,
and the target characteristic function ¢, are computed in
(15) and (16)

ﬂﬁ==“;<v%2+yﬁm$4nyhhdy (15)
M£=[k(¢%+w0m@@JOMdy (16)

where m represents the degree of the moment. The moments
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of a shape scaled by 1/s are then calculated as
wpe= || ()8 e an
Q s S

By changing variables, that is, X=x/s, and Y= y/s, (17) can be
written as

Mp = H (VX 72)"d,00 18 X dy
Q
_ (m+2) ﬂ (W)m&)p(x, Y)dx dy
Q

— S(m+2)M£

In order to minimise the distance between the two
characteristic functions, we minimise the distance between

their radial moments, that is
Ey= Y Mg — Ml =3 |

m m

—s"2me)? (18)

The optimal scaling parameter is a minimiser of (18). To find
the optimal scale, the derivative of E; with respect to s should
vanish, that is

> [+ 2

m

—(m+ 2)(M,1,’,)2s2'”+3] —0 (19)

The optimal scale is calculated by numerically solving the
above polynomial equation.

3.3 Translation

By using the scaling and rotation parameters calculated in
Sections 3.1 and 3.2, the term (2) is optimised to calculate
the translation parameters 7 and T,

By employing the same approach explained in Section 3.1,
the translation parameters are also estimated. The only
difference here is that since the translations are shifts in the
Cartesian coordinate systems, there is no need to represent
the shape characteristic functions in the polar coordinate
system.

Also, let us define 6 as a function of the translation
parameters 7 and 7}, i.e.

Maﬁ—k%%ﬂ%@—EJ—QD®® (20)

The unknown desired translation parameters will be estimated
by minimising the dissimilarity term in (21)

j |¢q—¢,,|2dxdy=j (¢, — d,lld, — ¢, 1) dxdy
X,y X,y
=j ¢>,,¢qudy—j ¢, , dx dy
X,y X,y

—j ¢q¢pdxdy+j
Xy

X,y

¢, ¢, dx dy
zj b, dx dy — X, 6,)
X,y
+j by e dy @)
X,y
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The first and the last terms in the above equation are
independent of the translation parameters

The minimisation of (21) is therefore achieved by
maximising (¢,¢,), that is

T, T = arg max(¢, ¢,) = arg max &(

xoty xTy

I.T) (22

Similar to what is presented in Section 3.1, the maximum
value for (¢,¢,) is computed in the Fourier domain by
using the Parseval theorem, that is

LTX TyJ = arg max(¢, ¢,) = arg maxj j
Txa]:v TX ’T" Wy Y0,

<¢q(wxﬂ wy)‘/f;(“’ )e (T “rtlya ) ) do, do,

(23)

where T " T ) Py loy, o), Y0, 0,), o, and o, represent the
estimated optimal translation parameters, the 2D Fourier
transform of ¢, and ¢, and the spatial frequencies,
respectively. Equation (23) is thus used to compute the
optimal translation parameters in the algorithm proposed here.

4 Implementation issues

An iterative scheme is used for the implementation of the
algorithm proposed here. The registration parameters
estimated by using (14), (19) and (23) are updated
iteratively, until the difference between two consecutive
registered shapes becomes less than a certain threshold.
Therefore, (14), (19) and (23) can be used to form an
iterative algorithm as follows:
At iteration t:

¢ Centralise shapes (¢,), and ¢,
e Update the transformation parameters by optimising the
following terms:

0, =arg maxB = arg ;naxi

ﬂ <a¢ ol 9 (I 0) ’(§”)> dn dé

m+2 (Mp)t 2

m

Sf+1 - arg maX 2 ’ m

[0 (£), | o ][

\
(%(wx, wy)(lp;(wx, wy)>tei(TX“’»*+T»""'J’)>de do,

e Repeat the above steps, until the distance between ()11
and (¢,), is less than a threshold.

In practice, two iterations are required for our registration
algorithm to converge in the most of the experiments
performed in this paper.

In our implementation, we use ‘roots’ built-in function in
MATLAB to find the solutions of (19). We use up to the
fifth radial moments (m =5). Therefore in various examples
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on which our algorithm is applied, (19) has 13 roots. Ten
roots are always complex, one is zero and one is negative.
There is only one positive root which is the desired scale
we use for registration.
For the implementation of (14), we take the following steps:
At iteration #:

(i) Calculate 2D Fourier transforms (;,(n, £)), and 4, (n, &)
of two shapes (¢,), and ¢, in the polar coordinate system.
(i) Calculate 49

aee an 8‘7[&](77’ g) 7% .
(iii) Calculate the product of ———— and (l/fp (n, f)) pixel
by pixel. n !

(iv) Take the inverse Fourier transform of the product
calculated in (iii).

(v) Find the value (for ) in which the inverse Fourier
transform calculated in (iv) is maximum for p =0.

Equation (23) is also implemented as explained in the
following steps:
At iteration ¢:

(1) Calculate 2D Fourier transforms (,(wy, @,)), and ¢ (@,
o,) of two shapes (¢,), and ¢, in the Cartesian coordinate
system.

(ii) Calculate the product of (¢;(wx, wy)> and (o, ©,)
pixel by pixel. !

(iii) Take the inverse Fourier transform of the product
calculated in (ii).

(iv) Find the values (for T, and 7,) which maximises the
function calculated in (iii).

It is noted that all registration algorithms discussed in this
paper are implemented in a MATLAB (version 7)
environment on a PC with a dual Intel processor each with
2.67 GHz frequency.

5 Results and discussions

In this section, a set of examples is presented to demonstrate
the performance of the shape registration method proposed
here in comparison with other known registration methods in
various shape registration problems. In all of the experiments
presented in this paper, the moments up to the fifth degree
are used to compute the scale parameter s by using the
proposed method in Section 3.2. The higher the degree of
the employed moments is, the more accurately s is estimated.
However, this higher accuracy comes at the expense of
higher numerical complexity. The results of the technique
proposed here are compared with four well-known shape
registration methods in this paper. The first method is based
on contours representing shapes (e.g. see [7]). This method is
referred to as the contour-based method throughout this
section. Another method used here for comparison employs
SDFs to represent shapes. A gradient descent approach is
employed to compute the optimal solutions (see [8] for more
details). Throughout this section the method is termed as the
SDF-based method. The third method compared with our
results here is the registration method based on the iterated
projection method presented in [12]. Finally, we compare the
performance of our algorithm with that of a non-iterative
registration algorithm based on SDFs presented in [11].

In most of the examples, a distance term Dist is used to
measure the quality of registration. This term is defined as:

DiSt(qbsource’ ¢target) = f f |¢source - ¢ta:get|2 dx dy where

Xy
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Dsource AN Pyarger are the shape characteristic functions of
the two shapes to be registered. In other words, this
distance counts the number of un-overlapped pixels in both
shapes. Also the running time (¢) required to compute the
optimal registration parameters is used as a measure of
quality. For better visual demonstration, in the most of
examples in this paper, the contours of the source and
target shapes rather than their characteristic functions are
shown in the figures throughout this section.

5.1 Shapes with different topologies

In the example presented in this sub-section, two shapes with
different Euler characteristic numbers are used. These shapes
obviously have different topologies. In Fig. la, the observed
shape is an open ‘4’ with Euler number one, and the target
shape is a closed ‘4’ with Euler number zero.

As shown in Fig. 1b, the two shapes are completely
misaligned by using the contour-based method in [7]. This
shortcoming stems directly from the necessity to establish
correct point correspondence in order for this method to
work correctly. Such a requirement makes the algorithm
sensitive to topological changes due to the ambiguity of
establishing point correspondences in certain cases. Since in
this case the shapes have different topologies, such
correspondence may not be achievable. Fig. 1c¢ depicts the
result of applying the registration method in [8] to solve the
registration problem. This figure shows a typical example of
the local minima hurdle associated with this approach. In
Fig. 1d, the shapes in question are correctly registered by
using the approach proposed in this paper. This better result
can be attributed to the fact that the proposed approach
exploits the entire region bounded by the perimeter to
maximise the overlap between the two shapes. The
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Fig. 1 Registration of shapes with different topologies

a Initial shapes

b the result of attempting to register the shapes using the contour based
method in [7]

c the registration of the shapes by using the SDF-based method in [8]

d the two shapes superimposed optimally using the approach proposed here
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quantitative analysis associated with this experiment is listed
in Table 1.

5.2 Complex shapes containing various
sub-shapes

In the second example shown in Fig. 2, two complex shapes,
each having different number of components are registered.
The employment of contour method in [7] to register such
shapes for example by registering the individual sub-shapes
in the source shape to their counterparts in the target shape
may lead to a partial registration. The sub-shapes with no
counterparts therefore remain unregistered and the overall

shape integrity may be distorted. The algorithm in [8], on
the other hand, is capable of dealing with complex shapes.

However, by increasing the shape complexity, the chance
of falling into local minima increases as well. The time
required to find the final parameters as demonstrated in
Table 1 becomes also longer. In Fig. 2, the observed shape
is a clock face with conventional indicators, while the target
shape has compass point indicators.

Similarly, in Fig. 3, a complex shape containing the bone
shapes (sub-shapes) of an un-matured hand is registered to
another complex shape containing the bone shapes
(sub-shapes) of a matured one. We notice that the number of
sub-shapes (bones) in these two complex shapes is different.

Table 1 Numerical comparisons (similarity distance and time spent by the processor to register two shapes) among some registration

algorithms in the literature and the method proposed in this paper

Dist-Original.  Dist-in [7] Dist- in [8] Dist-Proposed Time-in [7] Time-in [8] Time-Proposed

(Pixel) (Pixel) (Pixel) (Sec.) (Sec.) (Sec.)
number 4 3664 2296 2722 1078 1.09 28.25 2.83
clock 5859 5162 6442 4775 3.13 29.18 9.361
hands-radiography 8140 8303 8191 6194 3.15 1175.8 4.86
similar-hands-1 7249 668 916 171 1.34 3543.5 2.89
similar hands-2 13935 894 814 200 1.57 47125 2.81
vertebrae-x-ray Av.=2244 Av.=345.2 Av.=862.4 Av.=339.2 Av.=1.05 Av.=470.5 Av.=3.06

B

Fig. 2 Registration of shapes with different number of components

a Initial shapes

b Registration using contour-based technique in [7]

¢ Registration using the SDF-based algorithm proposed in [8]
d Registration using the algorithm proposed here
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Fig. 3 Registration of two complex shapes containing various number of sub-shapes (bones)

a Initial shapes before registration

b Registration using the contour-based algorithm in [7]
¢ Registration using the SDF-based algorithm in [8]

d Registration using our registration algorithm

In Fig. 4, our registration method proposed here is
compared with the SDF-based-registration algorithm
investigated in [11]. Fig. 4a shows two hand-bones before
registration. Two shapes registered by the SDF-based-
algorithm in [11] are shown in Fig. 4b.

The two shapes registered by our registration method is
depicted in Fig. 4c. A visual inspection of Fig. 4 indicates
that the registration accuracy of the algorithm proposed here
is more than that of the algorithm presented in [11] (e.g.
compare the phalanges of the middle fingers of two
registered hands in Figs. 4b and c).

The distance term Dist for the two shapes in Fig. 4
before the registration is 9679. After the registration
using the algorithm in [11], the distance term Dist
decreases to 6616. The registration technique presented
in this paper on the other hand reduces the distance term
Dist to 5462 implying a more accurate registration. The
time taken by the algorithm of [11] is 2.42's, whereas
the time elapsed by the CPU when using the registration

IET Image Process., 2015, Vol. 9, Iss. 3, pp. 249-260
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algorithm proposed here is around 4.9 s during which the
algorithm takes only two iterations to converge.

The aforementioned experiments demonstrate that the
registration algorithm proposed here has the ability to
register two shapes, even if there is no direct (one to one)
correspondence among components forming the complex
shapes.

To study the robustness of our algorithm at the presence of
noise, binary noise is added to one of the clock shapes shown
in Fig. 5a to obtain the noisy shape of Fig. 56 with SNR4g =
—11.1. The source shape before registration is also shown in
Fig. 5¢. As shown in Fig. 5d, the registration is achieved with
good accuracy for complex shapes at the presence of the
excessive noise.

The target shape shown in Fig. 5a is contaminated with
various amounts of binary noise to produce shape images
with various SNRs. For a certain SNR, five different
ensembles of binary noise are added to the target shape
separately. For each noise ensemble, the registration
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Fig. 4 Registration of two complex shapes containing various number of sub-shapes (bones)

a Initial shapes before registration
b Registration using SDF algorithm in [11]
¢ Registration using the algorithm proposed here

between the noisy target shape and the source shape shown
in Fig. 5c¢ is performed and then the mean and variance of
the errors in rotation angle are measured for a certain SNR.
The other registration parameters are assumed to be fixed
with their optimal values in this experiment. The iterative
projection algorithm [12] is also applied to the noisy
target shapes to register with the source shape for
comparison purposes. Fig. 6 depicts how the errors in
rotation angle change by increasing the amount of binary
noise (i.e. by lowering SNRs of the noisy target shape)
for both algorithms. As shown in Fig. 6a, the registration
algorithm  proposed here outperforms the iterated
projection in the presence of excessive noise in the target
shape.

As depicted in Fig. 6b, our registration technique proposed
in this paper requires significantly lower computational time
than the iterated projection algorithm to register the noisy
target shape and the source shape. The bottom of Fig. 6b
also shows the CPU elapsed time for registration by using
our registration method in a more appropriate scale for a
better visual inspection.
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5.3 Similar shapes with known transformations
(accuracy of registration)

In the next example, similar shapes transformed by using
various known transformations are registered. This is to
ensure that maximum accuracy is achievable and
quantifiable. In Fig. 7, two different sets of transformation
parameters are used to transform the source shape, which is
a replica of the target shape. The algorithms in [7, 8] and
the algorithm proposed here are used to estimate the
registration parameters. As shown in this figure, it is
evident visually that the technique presented in this paper
delivers the highest matching of the two identical shapes.
These results are also presented in Table 1.

5.4 Experiment on databases

In this subsection, a set of 86 x-ray images available from the
database in the U.S. National Library of Medicine [17] are
registered. These images are segmented to extract the
shapes of the third cervical vertebra (C3). The algorithm
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Fig. 5 Shape registration for complex shapes contaminated in binary noise

a Original noiseless shape of a clock

b Noisy shape of the clock shown in (a) (SNR=-11.1)
¢ Initial shape of another clock before registration

d Shape registration result

proposed here along with the algorithms in [7, 8] are deployed
to register these 86 shapes for the sake of performance
comparison.

The quantitative assessment of this example is discussed in
Fig. 8. This figure shows the average of the distance Dist
between the target and the source shapes. For our method,
this distance is reduced to 15.11% of the original distance
before registration. It is also reduced to 15.38% for the
algorithm in [7], and to 38.4% for the algorithm in [8].

This example demonstrates a better performance of our
algorithm in registering vertebrae shapes in the database,
while at the same time (as seen in Fig. 8b) our method
outperforms the others in terms of the running time. The
results summarised in Table 1 clearly suggest that in all of
the experiments, the algorithm proposed here have
produced better registration performance compared to the
other two approaches. It is shown here that the proposed
algorithm is capable of registering shapes with various
Euler characteristic numbers leading to different topologies
and higher shape complexity.

In the final part of this sub-section, the registration method
proposed in this paper is applied on the shapes in the Swedish
Leaf database. The number of sub-leaves in some shapes in
this database varies from a shape to another. A
contour-based registration method therefore fails to register
these leaf shapes, since point correspondence between
the contours of the two shapes cannot be established.
The iterated projection method [12] is also applied to the
Swedish Leaf database. The difference between shapes
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before and after the registration is calculated by employing
the distance term Dist over the entire database. The results
are presented in Table 2. As can be seen from the table, the
average difference between shapes after the registration by
using our registration method is lower than that for the
iterated projection technique. The standard deviation of the
shape differences after the registration for the method
proposed here is significantly lower than that for the iterated
projection algorithm. This lower standard deviation in shape
differences for the registration method proposed here
demonstrates its better reliability over a large database. As
observed from this table, the registration technique
proposed here is significantly faster than the iterated
projection algorithm. The averaged elapsed CPU time over
the entire database by using our method is 1.94s. On the
other hand, the averaged CPU time taken by the iterated
projection scheme over the whole database is 377.06 s,
which is significantly slower than our method proposed here.

6 Conclusions

This paper presents a shape registration algorithm which
employs shape characteristic functions to represent shapes.
Our algorithm succeeds to register complex shapes where
the contour-based algorithm fails. Our registration algorithm
is also significantly faster than the gradient descent-based
algorithm employing SDFs [8] and the iterated
projection-based method [12]. In all experiments performed
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Fig. 6 Errors in rotational angle and CPU times elapsed for registration with respect to SNR (dB) for the clock shapes shown in Fig. 4 while

other parameters are considered to be fixed

a Errors in rotational angle in degrees for the iterative projection algorithm (solid line) and the method proposed here (dashed line)
b (top) CPU times elapsed for registration for the iterative projection algorithm (solid line) and the method proposed here (dashed line) (bottom) CPU times elapsed

for registration for the method proposed here with an appropriate scale

throughout this paper, no local minima in our registration
algorithm is observed. Our experiments presented in this
paper also indicate that the shape registration algorithm
proposed here is more robust than the iterated
projection-based registration scheme at the presence of
excessive noise. The results presented here suggest that the
algorithm proposed here is much faster than the algorithm
proposed in [8] and is as fast as the algorithm presented in
[7]. The results presented in this section demonstrate a
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promising prospect for the shape registration algorithm
proposed in this paper and indicate that this algorithm is
robust and fast and can register shapes with various
complexities.

Our algorithm takes advantage of Parseval theorem to
estimate the rotation and the translation parameters using
Fourier transform. The algorithm also uses the radial
moments to estimate the scaling parameter. This registration
technique is tested successfully on a variety of problems
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a Initial shapes, the source shape is generated by transforming the target shape using the parameters 8 =—60, s =0.7, T, =—90, T,,= 20

b Registration of the shapes in (a) by using the approach in [7]
¢ Registration of the shapes in (a) by using the method in [8]
d Registration of the shapes in (a) by using our method
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Fig. 8 Quantitative assessment of the registration results of shapes of the third cervical vertebra by using Dist and the time t

a Comparison of Dist using original positions (plus-curve) with Dist produced by our algorithm (square-curve) and the algorithms in [7] (circle-curve) and [8]

(star-curve)

b Time required for registration using our algorithm (dashed-curve), and the algorithms in [7] (star-curve) and [8] (circle-curve)

Table 2 Average and standard deviation of the shape
differences (Dist) as well as the average of the elapsed CPU time
measured for the registration method proposed here and the
iterated projection technique [12] applied on the Swedish Leaf
database

Average Standard Average
of Dist deviation of  elapsed CPU
Dist time (Sec)

before registration 3980.8 262.8 -
after registration 1972.4 362.6 1.94
with the method
proposed in this
paper
after registration 2071.6 940.5 377.06

with the iterated
projection technique

including complex shapes and shapes with various
topologies, which cannot be registered using contour-based
methods. The experimental results demonstrate that the
proposed registration algorithm is fast, accurate, stable, and
according to our experiments, does not fall into local
minima in contrast with other registration algorithms in the
literature. Furthermore, our technique is successfully
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exploited to register shapes in the databases of the Swedish
Leaves and the U.S. National Library of Medicine with a
better performance in comparison with the contour-based
and iterative projection-based registration algorithms. The
algorithm proposed here therefore can be a solution to a
wide range of shape registration problems encountered in
image processing and computer vision especially medical
problems. As a future work, this algorithm can be
generalised to register 2D and 3D volumetric grey-scale
images.
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