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A perching bird is able to rapidly decelerate at a high angle of attack while maintaining
lift and control. However, the underlying aerodynamic mechanism is poorly understood.
We perform a study on a simultaneously decelerating and pitching airfoil section as a simple
perching model. First, we use analytic arguments to establish the inertial non-circulatory
force on a wing section, and its dependence on the shape change number, τ̄∗, the ratio
between the rate of change of frontal dimension and the initial translational velocity. Next,
we report that forces measured on a towed and pitched airfoil at Re = 22000, and forces from
simulations at Re = 2000, are found to be well above non-circulatory predictions, exhibiting
high lift and drag. Flow-field visualizations, both from Particle Image Velocimetry and
simulations, reveal strong coherent vortical structures in the wake and near the body. At
a higher shape change number, vortices in the wake convect more quickly than at a lower
shape change number, generating higher drag. Additionally, separation of the LEV and
positive vorticity near the body is reduced at a higher shape change number, increasing
lift. Thus wake manipulation through rapid area change provides a means through which a
perching bird can maintain high lift and drag simultaneously while slowing to a controlled
stop.

Nomenclature

a Acceleration, m/s2 S Submerged span, m
BDIM Boundary Data Immersion Method SV Starting Vortex
c Airfoil chord, m t∗ Non-dimensional time
Cd Drag coefficient T Period of deceleration and pitching, s
Cl Lift coefficient U Instantaneous velocity, m/s
CF Chord-normal force coefficient U0 Initial velocity, m/s
F Force per unit span, N/m V Shape change velocity, m/s
LEV Leading-edge Vortex V0 Velocity of the frame of reference
ma Added mass x∗p Non-dimensional pivot position from leading edge
p Pressure, Pa α Angle of attack
PIV Particle Image Velocimetry Γ Vortex circulation, m2/s
q Fluid speed, m/s ρ Fluid density, kg/m3

r Distance between vortices, m σ∗ Deflation scaling parameter
r Position of the frame of reference τ̄∗ Time-averaged shape change number
Re Reynolds number Ω Angular velocity of the frame of reference
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I. Introduction

Birds achieve quick, precise maneuvers, such as banking, braking, and perching, by rapidly changing wing
area while pitching and accelerating their wings. Flapping-type Micro Aerial Vehicles (MAVs), often inspired
by birds, have been developed, but it is difficult for these machines to perform similar rapid maneuvers. Rapid
area change of control surfaces is an avenue yet to be explored in these vehicles, and its careful application
could narrow the performance gap between small man-made and natural flyers.

To perch successfully, birds must rapidly decelerate, requiring large drag forces. However, the loss of
speed and high angle of attack may lead to a loss of lift and control.1 Yet birds are quite adept at perching,
and the entire maneuver is well-controlled.2,3 The aerodynamic means by which birds are able to maintain
lift and drag simultaneously as the animal slows is as yet unknown.

During perching, birds rapidly rotate and expand their wings, quickly increasing frontal area.2,3 Recent
studies4–6 have drawn attention to the phenomenon of rapid area change of bodies in motion in fluid mediums,
showing that rapid area change can have a pronounced effect on drag, vorticity and added mass. For instance,
Wibawa et al.4 showed that boundary-layer vorticity is rapidly shed into the fluid for a vanishing airfoil.
Weymouth and Triantafyllou5 found that a shrinking cylinder recovers added-mass energy and exhibits
significant thrust during its collapsing phase. Weymouth and Triantafyllou6 showed that a squid-like deflating
body achieves much higher rates of acceleration and reduced drag as compared to non-deflating bodies.

These studies have all looked at the fluid dynamics of a body undergoing a rapid decrease in area.
However, the case of a body experiencing a rapid increase in area has seen comparatively little attention,
despite the potential to inform biological and technological designs.

Though bird perching is a three-dimensional problem, we can gain insight into the fluid dynamics of
rapid wing area change by considering an abstracted, two-dimensional configuration. Through analytical,
numerical and experimental methods, we show that the rapid change of an airfoil area is able to promote
high lift while also exhibiting high drag: precisely the combination required for controlled perching.

II. Analytical Arguments

Consider an airfoil initially at an angle of attack α = 0o and moving at a constant forward velocity
U0. As a simple model of a bird’s wing during perching maneuvers, this airfoil section is made to rapidly
rotate perpendicular to the translation direction, that is α = 90o, while simultaneously decelerating at a rate
a = U0/T to a full stop over time period T . This system and its kinematics are sketched in figure 1.

We parametrize the magnitude of the geometry change as τ̄∗ = V/U0, where V ≡ c/T is the average
speed at which the frontal width of the airfoil increases over the course of the maneuver. Substitution shows
that

τ̄∗ =
V 2

ac
, (1)

matching the shape change number defined in Weymouth and Triantafyllou,6 though we avoid their choice
of Ξ for notation. Note that τ̄∗ is the time-average of the instantaneous relative velocity of shape change,

τ∗ ≡ V (t)
2U(t) , over the maneuver.

Previous studies have shown that added-mass forces are important or even dominant in some rapid area
change problems at large τ̄∗.5,6 Potential flow theory provides a means to model the added-mass force on
airfoils. If a velocity potential Φ for flow past an airfoil is found, then the pressure difference between two
points can be computed using the unsteady Bernoulli equation,

∆p

ρ
=

1

2
(q22 − q21)− (V0 + Ω× r) · (∇φ2 −∇φ1) +

∂

∂t
(φ2 − φ1). (2)

In Eq. (2), subscripts 1 and 2 refer to points along the streamline of interest. To calculate the force on the
airfoil, we need only determine the potential at the airfoil surface and integrate using Eq. (2). The potential
owing to translation and reorientation of the airfoil can be superimposed with the potential owing to the
rapid rotation of the airfoil, yielding the final potential.

To calculate the added-mass force, we require only the velocity potential due to the instantaneous imper-
meable boundary condition at the body surface.7 Thus, we avoid considerations of bound circulation, flow
separation or circulation in the wake. We will show that τ̄∗ parameterizes the added-mass force, but that
this effect alone cannot generate the forces required for controlled perching.
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Figure 1: (a) A diagram showing the NACA0012 airfoil section with chord c and pivot point o at the one-
sixth chord position. The instantaneous velocity U at the pivot and angle of attack α are prescribed. (b)
The kinematics of the model problem plotted as a function of time t∗ = t/T , where T is the time scale of
the maneuver. The velocity is scaled by the initial value U0, while the angle is scaled by the final value π/2.
α is varied with a cycloidal function given in Eq. (14).

A. Potential flow solutions and the non-circulatory force

We first consider a flat-plate airfoil of chord c slowly rotating in a uniform ambient of flow speed U , such
that cα̇� U . The potential at the surface of the airfoil (y = 0) is

Φa(x, 0) =
Uc

2

(
2x

c
cosα± sinα

√
1− (2x/c)2

)
, (3)

where x is the position along the chord (x = 0 is the location of the half chord). The positive square root
refers to the top surface and the negative square root to the bottom surface. In the unsteady case, α and
U are time-dependent. However, Eq. (3) satisfies the boundary conditions at each instant (ignoring the
rotational speed) even when these parameters are time-dependent. Thus, Eq. (3) is the unsteady surface
potential for a decelerating and slowly-rotating, flat-plate airfoil.

For a flat-plate airfoil quickly rotating about a point at a distance cx∗p from its leading edge in an otherwise
quiescent fluid, the potential at the airfoil surface is

Φb(x, 0) = ±α̇ c
2

4

[
1− 2x∗p +

x

c
(2(1− 2x∗p)

2 − 1)
]√

1− (2x/c)2, (4)

where, again, the positive portion refers to the top surface and the negative portion to the bottom surface.
Because of the linearity of potential flow solutions, Eqs. (3) and (4) may be superimposed to yield the total
potential in the absence of circulation. We may now use Eq. (2) to calculate the pressure gradient between
the top and bottom surfaces, which in turn generates the force acting normal to the plate. The result is

F⊥ = ρ
πc2

4
[α̇ cos(α)U + sin(α)U̇ + cα̈(1/2− x∗p)], (5)

with the positive direction defined as towards the suction side. ρπc2/4 has units of mass per length, and is
the maximum added mass per unit span. Thus, the non-circulatory force in Eq. (5) is the total added-mass
force for this potential model, but we will use the term“non-circulatory force” henceforth to refer specifically
to Eq. (5) and its normalization. The total normalized non-circulatory force is

CF =
πc

2U2
∞

[
α̇ cos(α)U + sin(α)U̇ + cα̈(1/2− x∗p)

]
. (6)

Note that CF maps to lift and drag as

CL = CF cosα, CD = CF sinα. (7)

3 of 13

American Institute of Aeronautics and Astronautics

Delyle
Highlight



For small α and steady flow (U̇ = 0), Eq. (6) generates a lift,

CL =
πc

2U2
∞

(
α̇U −

c(2x∗p − 1)α̈

2

)
, (8)

which is identical to the added-mass lift originally derived by Theodorsen8 for small angles of attack in the
absence of plunge, as recently presented in Ol et al.9 Therefore, Eq. (6) can be thought of as the extension of
the non-circulatory portion of Theodorsen’s force model to large angles of attack and unsteady translation,
without plunge.

B. Dependence of non-circulatory forces on shape change number

Next we establish how Eq. (6) depends on τ̄∗. Over the course of a rotation from α = 0◦ to 90◦ in time T ,
the magnitude of α̇ can be estimated as

α̇ ∼ π

2T
= τ̄∗

πU0

2c
. (9)

Similarly, α̈ can be estimated as

α̈ ∝ π

2T 2
= τ̄∗2

πU2
0

2c2
, (10)

while we can write U̇ as

U̇ = τ̄∗
U2
0

c
, (11)

showing that τ̄∗ also parametrizes the rate of rotation, rotational acceleration and translational acceleration.
From these relations, we rewrite Eq. (6) as

CF = f(t;α)τ̄∗ + g(t;α)τ̄∗ + h(t, x∗p)τ̄
∗2, (12)

where f, g and h are functions of time, based on the kinematics of the problem, and refer to forces from the
entrainment, linear acceleration and rotational acceleration of added mass, respectively. h is also a function
of the pivot position x∗p, and will be maximal at x∗p = ±1 and minimal (zero) at x∗p = 1/2. Eq. (7) in
combination with Eq. (12) shows that the lift and drag should scale by no more than τ̄∗2, in the absence of
circulatory forces.

C. Comparison of added mass in expanding versus shrinking rapid area change problems

Though the non-circulatory forces in Eq. (5) depend on α̇, we can gain insight by first considering the
translational part. The added-mass reaction force inline with the body motion can be written as

FAM = − ∂

∂t
(mau) = −ṁau−mau̇, (13)

where u is the speed of the body and is positive in the direction of travel. By comparing Eq. (13) to (5),
we notice that the first term refers to the entrainment of added-mass momentum (ṁau) and the second to
the acceleration of the added mass (mau̇). Weymouth and Triantafyllou6 found that an accelerating and
deflating prolate spheroid saw a reduction in added mass through its maneuver (ṁa < 0). This had a twofold
effect in view of Eq. (13). The first was in achieving additional thrust by using the shed added mass as
a propellant (the −ṁau term). The second was in reducing parasitic drag throughout the maneuver (the
−mau̇ term). Both effects were beneficial for the performance goal of high acceleration.

For a bird trying to achieve rapid deceleration, however, there is a tradeoff. On the one hand, entrainment
of added-mass from frontal area expansion (ṁa > 0) would create drag through −ṁau. But this same
entrainment would increase the total added mass in time, generating a strong parasitic thrust late in the
maneuver via −mau̇. The rotational acceleration term in Eq. (5) cannot fully compensate in drag, as α̈
must be positive early in the maneuver at low angles of attack (generating lift) and negative late in the
maneuver at high angles of attack (generating thrust). Therefore, according to this perching model, a bird
needs to generate forces in other ways to achieve high drag.

In this analytical treatment, we have ignored circulatory effects, such as separation and wake effects.
These are more difficult to treat analytically, and therefore we will now explore them empirically instead.
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We performed a simple perching maneuver with an airfoil in the laboratory at different τ̄∗. Forces on the
airfoil were measured directly, while the flowfield was measured using Particle Image Velocimetry (PIV) to
evaluate circulatory effects. Two-dimensional simulations at a lower Reynolds number were also performed
to assess Reynolds number effects, as well as to achieve near-body information unavailable with PIV.

III. Experimental Setup

All laboratory experiments were performed in a free-surface towing facility at the University of Calgary.
The water channel test section is 38.6cm wide, and water level was maintained at a 42cm depth. An aluminum
NACA0012 airfoil with 48mm chord was positioned midway between the channel walls in a vertical orientation
(figure 2b and 2c) and pierced the free surface from above. The airfoil tip was 4mm from the bottom of the
test section to reduce tip effects. Thus the airfoil had a submerged span of 416mm and an aspect ratio of
8.7. The high aspect ratio further justifies the assumption of two-dimensional flow. A plastic skim plate of
112mm diameter and 2mm thickness was secured to the airfoil and sat 3mm below the water surface. This
skim plate eliminated the formation of free-surface funnel vortices. The airfoil was attached at one end to an
ATI Gamma force/torque balance. The force balance was attached to a two-phase stepper motor with 0.9◦

step angle. The pitching axis was c/6 from the leading edge. The apparatus was fixed to a Parker linear
traverse, which ran along the length of the water channel.

The airfoil first established a steady-state condition at α = 0◦ and speed U0 = 0.45 m/s for at least 10
chord lengths before beginning rotation and deceleration. The Reynolds number at the beginning of the
maneuver is therefore Re=22000, in the range relevant for small, highly-maneuverable birds. The start of
unsteady kinematics was synced through an induction sensor at a fixed position on the traverse track, which
detected the passing traverse stage. The kinematics follow those shown in figure 1. Rotation of the airfoil
was set at a prescribed rate according to the cycloidal function,

α(t) =
π

2

[
t∗ − sin(2πt∗)

2π

]
, 0 ≤ t ≤ 1, (14)

where t∗ = t/T = tV/c is the non-dimensional time. This function was so chosen because it has finite jerk
throughout. The translational deceleration was constant and was determined by the shape change number
(Eq. 11).

From Eq. (6), the prescribed kinematics were expected to yield a non-circulatory force perpendicular to
the plate,

CF =
π2

2

[
τ̄∗(1− t∗) sin2(πt∗) cosα− τ̄∗ sinα

π
+ τ̄∗2

π

3
sin(2πt∗)

]
. (15)

Using the relations in (7), the resulting lift and drag will be compared with measured forces in figure 3.

A. Force Measurements

Force measurements were taken at a 1000Hz sample rate (16bit sample depth). Recorded force data was
averaged across 10 trials for each test case. The force measurements were repeated for the same kinematics
once water had been drained from the channel in order to measure the non-hydrodynamic inertia of the
system. Force data was transformed from an airfoil-fixed frame to a lab-fixed frame, and the inertia was
subtracted. The transformed data was further smoothed with a two-degree Butterworth low-pass filter.
Filter frequency cutoff was chosen as 4Hz for τ̄∗ = 1/32 and 10Hz for τ̄∗ = 1/2. Filter frequency cutoffs
for intermediate τ̄∗ were determined by interpolating linearly between these values. This method was found
to best preserve peaks while eliminating noise. Force measurements were synchronized through the same
induction sensor on the traverse track that triggered the deceleration.

Force measurements were also performed on the same airfoil at a constant speed (0.45m/s) with the angle
of attack varying between trials. α was varied from 0◦ to 5◦ with 1◦ increments, and from 5◦ to 90◦ with 5◦

increments using a rotational stage (figure 2c). The same measurements were performed for negative values
of α to assess the symmetry of the setup. These measurements were used to make quasi-steady predictions
for force measurements. Force coefficients were computed as

CF =
2F

ρcS

U(α)2

U4
0

, (16)
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Figure 2: (a) PIV setup, showing a laser (A) projecting a laser sheet into the water tunnel from the side. The
airfoil (C), which is attached to the traverse stage (B), is translated through the laser sheet with prescribed
kinematics. A Photron SA4 high-speed camera (D) filmed the maneuver through the glass bottom of the
water channel. (b) The airfoil attachment used for PIV and force measurements. The airfoil (C) was attached
to a 6-component force/torque balance (F), which in turn was attached to a stepper motor (E). A plastic
skim plate (G) prevented the formation of free surface vortex funnels. The entire attachment was secured
to the stage of a linear traverse (B), which sat on top of the water channel. (c) The airfoil attachment used
for steady force measurements. The same airfoil (C), skim plate (G), and force balance (F) attachment as
the unsteady setup (b) was used. The force balance was attached to a rotational stage (H), which in turn
was secured to the traverse stage (B).

where F is the measured force, U(α) is the speed of the airfoil at a particular angle of attack in the unsteady
case, and U0 is the starting speed.

B. Particle Image Velocimetry (PIV)

A 1W, continuous-wave laser (λ = 532nm) projected a laser sheet into a plane orthogonal to the airfoil (figure
2a). This laser sheet was 21.1cm above the water channel floor. The water was seeded with silver-coated,
hollow glass spheres of 100µm diameter. These particles have a Stokes number of approximately 2.4× 10−3,
and therefore were assumed to accurately follow the fluid flow. As the airfoil passed through the laser sheet,
a Photron SA4 high-speed camera (1024× 1024 pixel resolution) captured images at 250 frames per second.
PIV data collection was synchronized with the same induction sensor on the traverse track that triggered
the profile deceleration.

Raw images were pre-processed with a min/max contrast normalization filter of size 14x14 pixels and a
sliding-average subtraction filter of 50 pixel width. Velocity fields were calculated with a multi-grid/multi-
pass cross-correlation algorithm using DaVis software (LaVision, v8.1.2). Velocity fields were averaged across
9 trials.

IV. Numerical Method

A set of preliminary two-dimensional simulations generated quantitative predictions of the model perching
problem described in section III. The Boundary Data Immersion Method (BDIM), a robust immersed
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boundary method suitable for dynamic fluid-structure interaction problems detailed in Weymouth et al.10

and Weymouth and Yue,11 was used for this purpose. Briefly, the full Navier-Stokes equations and the
prescribed body kinematics shown in figure 1 are convolved with a kernel of support ε = 2h, where h is the
grid spacing. The integrated equations are valid over the complete domain and allow for general solid-body
dynamics to be simulated. Previous work has validated this approach for a variety of dynamic rigid-body
problems such as translating airfoils4 and deforming-body problems.6

The Reynolds number based on the initial steady speed U0 is set to Re = U0L
ν = 2000 for all cases. A

non-inertial computational domain is used with dimensions 8c×8c, which translates with the body but does
not rotate. All cases use the no-slip and no-penetration boundary conditions on the solid/fluid interface.
No-penetration conditions are applied on the top and bottom walls and a convection exit condition is used.

The coupled BDIM equations are discretized using a finite-volume method (third-order convection and
second-order diffusion) in space and Heun’s explicit second-order method in time. An adaptive time-stepping
scheme is used to maintain stability. Table 1 presents a grid convergence study on the pressure force for the
τ̄∗ = 1/4 test case. The results converge with better than second-order accuracy overall and the maximum
difference in the solution between the fine and intermediate grid is only 7%. This verifies the high accuracy
of these viscous two-dimensional simulations and the fine grid level is used for the remainder of the paper.

Table 1: Numerical predictions for the peak pressure force lift and drag coefficients for τ̄∗ = 1/4 as a function
of the grid size h relative to the chord c.

h/c 0.04 0.02 0.01
CpL 1.26 1.68 1.81

CpD 0.85 1.13 1.22

V. Results

In section A, results from direct force measurements in the unsteady and quasi-steady cases are presented.
These are compared to the analytical non-circulatory force model (Eq. 15), as well as to forces from lower
Reynolds number simulations. In section B, velocity-field visualizations are presented from two test cases
(τ̄∗ = 1/4 and 1/2) using data from PIV at Re = 22000 and BDIM simulations at Re = 2000.

A. Force Measurements

The magnitude of both lift and drag increases with τ̄∗ (figure 3). The airfoil experiences a single peak in
lift between t∗ = 0.4 and t∗ = 0.5. This peak increases in magnitude with τ̄∗. Lower values of τ̄∗ approach
quasi-steady predictions.

During the rotational phase, the airfoil experiences a large spike in drag around t∗ = 0.5, as shown in
figure 3. The peak decays and drag transitions to a thrust around t∗ = 0.6. The relative magnitude of the
peak thrust relative to the peak drag increases with τ̄∗, with τ̄∗ = 1/32 exhibiting no thrust while τ̄∗ = 1/2
exhibits a peak thrust 3/4 the magnitude of the peak drag. At small τ̄∗, the results approach quasi-steady
predictions.

Non-circulatory (added-mass) forces (Eq. 15) are overlaid on the measured forces (figure 3). Measured
peak lift and drag are much greater than non-circulatory forces. Deviations are most significant at t∗ = 0.5,
where non-circulatory lift and drag are near 0 while measured lift and drag are close to maximal. Results
are closest to the non-circulatory model near the start and end of the maneuver.

Numerical results from the Re = 2000 simulations are qualitatively similar, but show some quantitative
differences (figure 4). The simulations are in phase with experiment, displaying peak lift and drag at around
t∗ = 0.4 and t∗ = 0.5, respectively. Numerical results also show a peak thrust at around t∗ = 0.8, which is
close in phase to the experimental results for τ̄∗ ≤ 1/4 but slightly off for τ̄∗ = 1/2.
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Figure 3: Lift and drag coefficients in non-dimensionalized time, plotted for varying τ̄∗. The magnitudes
of forces increase with τ̄∗. At lower τ̄∗, results approach quasi-steady predictions (dotted black line). The
predicted non-circulatory (added-mass) force for τ̄∗ = 1/2 (Eq. 15) is overlaid as a dotted red line. The
measured forces (solid red line) are well above these predictions. Lift coefficients are more than twice the non-
circulatory predictions for τ̄∗ = 1/2, and are positive for the entire maneuver. Peak drag is over four times
the non-circulatory force, but the parasitic thrust is greater than non-circulatory predictions. Nevertheless,
this observed parasitic thrust is counteracted by a much larger drag earlier in the maneuver.
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Figure 4: A comparison between measured force results (solid lines) at Re = 22000 and simulated results
(dotted lines) at Re = 2000 for 1/8 ≤ τ̄∗ ≤ 1/2. The phasing and magnitudes of drag are similar between
simulations and experiment. The phasing for lift is similar as well, however magnitudes of lift are similar
only in the τ̄∗ = 1/2 case, due to Reynolds-number effects.
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The magnitude of simulated lift is similar to measured lift for τ̄∗ = 1/2. However, peak lift for τ̄∗ = 1/4
is about 2/3 of the measured value, while for the τ̄∗ = 1/8 case it is about 1/2 of the measured value, due to
Reynolds-number effects. The magnitude of peak drag is very similar between simulations and measurements.
Peak thrust is similar between simulations and experiment for τ̄∗ = 1/4 and 1/8, but is reduced compared to
experiment for τ̄∗ = 1/2. The rapid jump in the simulated drag time-history at t∗ = 1 is due to simulating
the discontinuous deceleration profile (figure 1).

B. Velocity-Field Visualizations

Figure 5 shows the vorticity, derived from PIV at Re = 22000 and simulations at Re = 2000. For each
Re, results from τ̄∗ = 1/4 and 1/2 are shown. For the higher Re case at either τ̄∗, a strong leading-edge
vortex (LEV) forms. This LEV grows in size until separation occurs. Qualitatively, there is no apparent
distinction in the size and strength of the LEV between the two τ̄∗. During the motion, a streak of negative
sign (counterclockwise) vorticity sheds continuously off the trailing edge. A starting vortex (SV) forms at
the trailing edge by t∗ = 0.33. Towards the end of the maneuver, this vortex rolls up with the negative
vorticity shed off the trailing edge, forming a single, larger vortex. This vortex convects in the −ŷ direction.
This ŷ displacement from t∗ = 0.33 to t∗ = 1 is approximately equal in all cases. By t∗ = 1, a clockwise
stopping vortex has formed at the trailing edge.

Some differences can be seen between τ̄∗ = 1/4 and 1/2. The streak of negative vorticity off the trailing-
edge is shorter but stronger in the τ̄∗ = 1/2 case. The trailing-edge wake remains closer to the body at
higher τ̄∗. Instabilities in the streak are more obvious at the lower τ̄∗.

Simulations of the Re = 2000 case are similar to the Re = 22000 PIV measurements in several ways
(figure 5). For both shape change numbers, an LEV and SV form. A streak of negative vorticity is shed off
the trailing edge throughout the maneuver. At the end of the maneuver, a stopping vortex forms.

As in the higher-Re cases, there are more pronounced instabilities in the trailing-edge vorticity streak for
the lower shape change number, and the starting vortex and streak are stronger and more coherent at the
larger shape change number. The SV also convects in the −ŷ direction by a constant distance.

In contrast to the high Re cases, there are pronounced differences in the size of the LEV between τ̄∗ = 1/4
and 1/2. In particular, the LEV forms more quickly at the lower shape change number. LEV separation
begins around t∗ = 0.5 for τ̄∗ = 1/4 but is delayed until about t∗ = 0.67 for τ̄∗ = 1/2. Separation of positive
vorticity near the trailing edge is observed at t∗ = 0.67, but only at the lower τ̄∗.

VI. Discussion

The measured and simulated forces are well above non-circulatory potential flow predictions (figures 3
and 4). Furthermore, while non-circulatory forces can only provide positive lift for half the maneuver, the
experimentally-derived lift is positive for the majority or all of the maneuver, especially at large τ̄∗. The
non-circulatory drag was also predicted to be overwhelmed by parasitic thrust, but the measurements reveal
that, while thrust is present, it is not dominant. Circulatory effects, which were omitted from analytical
calculations, are thought to be responsible for these discrepancies.

Figure 5 shows that the trailing-edge wake is composed entirely of negative vorticity. Positive vorticity
is largely constrained to the LEV or else is distributed near the body. Due to Kelvin’s theorem, the net
circulation of the system must always be zero. Thus the total positive circulation close to the body is equal
and opposite to the negative circulation in the trailing-edge streak. If we treat the wake and LEV as a
superposition of vortex pairs, with the positive vortex in the LEV or near the body and the negative vortex
in the wake, we can gain insight into the circulatory generation of forces (figure 6). This is similar to the
method used by von Kármán and Sears in describing wake dynamics for a flat-plate airfoil.12

Any vortex pair with net zero circulation in a two-dimensional flow has an associated hydrodynamic
impulse,13

I = Γr̂i, (17)

where Γ is the circulation of one of the vortices, r is the distance between vortex centres, and î is a unit
vector perpendicular to a line connecting the vortex centres, and points along the average direction of fluid
motion between the vortex pair. Forces acting on the body come about in part from a reaction to the rate
of change of hydrodynamic impulse,13 as F = −ρİ. From Eq. (17), this results in the relation

F = −ρΓ̇r̂i− ρΓṙ̂i. (18)
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Figure 5: PIV (left) and simulated (right) vorticity fields show that the wing section generates vorticity at
the trailing and leading edge. This generation of vorticity, and the relative convection of coherent structures,
generates the large forces observed in figures 3 and 4. The airfoil is translating in the positive x-direction.
Columns 1 and 2 (from the left) are PIV at Re = 22000, while columns 3 and 4 are flow field simulations
Re = 2000. τ̄∗ = 1/4 and 1/2 are shown for each Re. Vorticity is non-dimensionalized by ω∗ = ωc/U0. The
dotted line at t∗ = 0.33 and 1 shows the approximate starting y position of the starting vortex, and the
arrows at t∗ = 1 indicate their displacement in y. This displacement is similar across τ̄∗ and Re. By Eq.
(20), this indicates that this circulatory drag should scale with τ̄∗. In the low-Re cases, separation of positive
vorticity near the trailing-edge can be seen at t∗ = 0.67 and τ̄∗ = 1/4, but not for τ̄∗ = 1/2. The reduced
separation at higher τ̄∗ would increase lift.
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Eq. (18) shows that vortex forces can be altered through the addition or elimination of circulation to or
from the vortex pair (Γ̇) and by the relative convection of a vortex in a pair relative to the other (ṙ).

The generation of circulation (Γ̇) occurs only at the surface of the body. During most of the maneuver,
generation of negative vorticity is constrained to the trailing edge, while generation of positive vorticity is
mostly constrained to the leading edge (figure 5). Thus, at the instant of vortex generation, î is oriented
normal to the airfoil’s chord (figure 6). Early in the maneuver, the net force points towards the suction side,
generating a net lift and drag. As the foil slows, this production rate drops to zero.

The total vorticity in the wake by t∗ = 1 appears approximately equal at τ̄∗ = 1/4 and 1/2 at a given Re.
This vorticity, along with equal positive vorticity near the leading edge, is generated in time T , the period
of rotation and deceleration. A total force will be produced, as

F = ρΓ̇c ∼ ρΓmax

T
c = ρΓmaxU0τ̄

∗, (19)

showing how both lift and drag could depend on τ̄∗ through to the generation of circulation.
The remaining contributions to force in Eq. (18) come about from ṙ. This is manifested in figure 5

and sketched in figure 6 by the displacement of the trailing-edge wake relative to positive circulation near
the body. We see from figure 5 that the trailing-edge streak translates predominantly in the −ŷ direction,
generating drag. This would counteract the low drag observed in the non-circulatory model (figure 4).

For τ̄∗ = 1/4 and 1/2 at both Re = 22000 and 2000, the distance of starting vortex convection in the y
direction is approximately equal (figure 5). Denoting the convection distance by dy as in figure 6, and noting
that it occurs in a constant time period ∼ T , we find that the induced y velocity of the starting vortex (vind)
is

vind ∼
dy
T

= τ̄∗U0
dy
c
. (20)

This would yield a drag Fd ∼ ρΓU0
dy
c τ̄
∗, indicating that this circulatory contribution to drag should scale

with the shape change number.
In the simulated flowfield (figure 5), we observe increased separation of positive vorticity near the body

at the lower shape change number. The low pressure suction from this positive vorticity would primarily
increase lift. Weymouth et al.14 introduced a deflation scaling parameter, which for an object undergoing
rapid area change is proportional to

σ∗ ∝ τ∗
√
Re. (21)

A higher value of this parameter indicates increased separation delay. We expect that lift would be enhanced
if the separation of the positive boundary layer vorticity is delayed until the end of the maneuver. This
parameter predicts that the delay depends strongly on τ∗, providing another means by which lift could scale
with the shape change number.

Eq. (21) also predicts that separation delay depends on Re, but only to the power of 1/2 while the
dependence on τ̄∗ is to the first power. This helps reconcile the discrepancy between simulated and measured
lift (figure 4), as the low Re simulations display reduced lift compared to the high Re measurements, but the
relative discrepancy decreases with increasing τ̄∗. Still, differences in lift between the higher and lower Re
cases may also be due to effects of transition at the higher Re, versus laminar flow at the lower Re.

An expanding and decelerating body experiences negative effects from non-circulatory forces, in contrast
to a deflating and accelerating body. However, the above heuristic arguments show how rapid area change
can generate positive lift and drag at all times though the manipulation of circulatory forces, counteracting
the parasitic added-mass thrust and negative lift seen in figure 3. Rigorous validation of these ideas awaits
their implementation into a robust and more comprehensive analytical model, which could be tested on the
current data.
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Figure 6: Sketch of how the manipulation of vortex impulse generates forces. The orientation of the airfoil is
the same as in figure 5. At t1, vortices are formed at the trailing and leading edge. The total impulse (I1) of
the vortex pair is the distance between these vortices (r1) multiplied by the positive circulation of one vortex
(Γ(t1)). The rate of change of the impulse (İ) through the generation of circulation causes a reaction force
F on the body. At t2, the airfoil has rotated and translated forward. The leading-edge vortex circulation
has increased, while the circulation of the starting vortex has not changed. However, the two vortices have
convected apart by a distance dy in the y direction. This has increased the impulse by ∆Iy. As a result,
the airfoil has experienced a reaction drag force Fx. Additional forces are produced from the generation and
convection of the remaining circulation in the wake.

VII. Conclusions

Flying animals execute high-precision maneuvers such as perching through rapid changes in wing area.
Yet, from an aerodynamic perspective, it is unclear how they can produce high lift and drag simultaneously.
As a simple perching model, we measured the forces and flowfields associated with simultaneously decelerating
and rotating an airfoil section through direct force measurements, Particle Image Velocimetry (PIV) and
simulations using the Boundary Data Immersion Method. Analytical arguments were used to show that
added-mass forces should scale with the shape change number, τ̄∗, a ratio between velocity of expansion and
initial velocity. The added-mass forces were predicted to yield significant peaks in lift and drag, but were
also predicted to generate forces counterproductive to perching, including a negative lift and parasitic thrust.
However, measured forces were well above non-circulatory predictions. Additionally, the lift was positive
throughout the maneuver, and though added-mass thrust was present, significantly greater drag was observed
earlier in the maneuver. These forces were observed to scale with shape change number, showing that rapid
area change can increase force generation in the case of a rapidly rotating and decelerating airfoil.

PIV and the simulated velocity field revealed large vortical structures near the body and in the wake.
Circulatory effects could generate forces through the generation of vorticity and the manipulation of the
relative position and distribution of negative vorticity in the wake. These forces, in view of the total
circulation and the relative movement of vortices in the flow field, were predicted to generate positive lift and
drag throughout the maneuver. Additionally, they were predicted to scale with τ̄∗. Thus, wake manipulation
through rapid area change can circumvent counterproductive non-circulatory effects in airfoil pitching and
deceleration. Rapid area change may therefore be a means by which a perching bird can maintain lift while
quickly braking to a controlled stop.
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12von Kármán, T. and Sears, W. R., “Airfoil theory for non-uniform motion,” Journal of Aeronautical Sciences, Vol. 5,
1938, pp. 379–390.

13Wu, J., Ma, H., and Zhou, J., Vorticity and Vortex Dynamics, Lecture notes in mathematics, Springer Berlin Heidelberg,
2006.

14Weymouth, G. D., Subramaniam, V., and Triantafyllou, M. S., “Octopus-like robot evades drag and recovers energy to
power an ultra-fast escape,” Physical Review Letters, under review.

13 of 13

American Institute of Aeronautics and Astronautics




