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We calculate the masses of bottom mesons using an improved relativistic action for the b-quarks and the

RBC/UKQCD Iwasaki gauge configurations with 2þ 1 flavors of dynamical domain-wall light quarks. We

analyze configurations with two lattice spacings: a�1 ¼ 1:729 GeV (a � 0:11 fm) and a�1 ¼ 2:281 GeV

(a � 0:086 fm). We use an anisotropic, clover-improved Wilson action for the b-quark, and tune the three

parameters of the action nonperturbatively such that they reproduce the experimental values of theBs andB
�
s

heavy-light meson states. The masses and mass splittings of the low-lying bottomonium states (such as the

�b and�) can then be computed with no additional inputs, and comparison between these predictions and

experiment provides a test of the validity of our method. We obtain bottomonium masses with total

uncertainties of �0:5–0:6% and fine-structure splittings with uncertainties of �45–55%: for all cases we

find good agreement with experiment. The parameters of the relativistic heavy-quark action tuned for

b-quarks presented in this work can be used for precise calculations of weak matrix elements such as

B-meson decay constants andmixing parameters with lattice discretization errors that are of the same size as

in light pseudoscalarmeson quantities. This general method can also be used for charmedmesonmasses and

matrix elements if the parameters of the heavy-quark action are appropriately tuned.

DOI: 10.1103/PhysRevD.86.116003 PACS numbers: 11.15.Ha, 12.38.Gc, 14.40.Nd, 14.40.Pq

I. INTRODUCTION

Precise knowledge of the mass spectrum, decay, and
mixing properties of hadrons containing one or more
bottom or charm quarks is essential to advancing our
understanding of the parameters of the Standard Model.
Lattice quantum chromodynamics (QCD) provides meth-
ods to compute these quantities from first principles.
Conventional lattice calculations with heavy quarks are
challenging, however, because it is impractical to use a
sufficiently small lattice spacing to control the OðmaÞn
discretization errors directly.

One way to address this challenge is to adapt the lattice
description of heavy quarks to correctly describe heavy-
quark physics in a carefully circumscribed kinematic
range. Such approaches include heavy-quark effective the-
ory (HQET) [1] in which the limit of infinite quark mass is
considered and the continuum limit of the lattice theory
reproduces the continuum heavy-quark effective theory.
A second method is nonrelativistic QCD (NRQCD) [2,3]
in which the mass of the heavy quark is assumed to be

much greater than the inverse lattice spacing but the
momentum dependence of the heavy-quark energy is
included in the nonrelativistic limit. Each of these
approaches has its own limitations. Specifically, radiative
corrections to the coefficients of the NRQCD Lagrangian
contain power-law divergences that blow up in the limit
ma ! 0, while HQET cannot deal with quarkonia.
The Fermilab or relativistic heavy quark (RHQ) method

[4–6] provides a more complete framework for heavy-quark
physics. It applies for all values of the heavy-quarkmassmQ,

for both heavy-heavy and heavy-light systems, and allows a
continuum limit. The improved RHQ action accurately
describes energies and amplitudes of on-shell states contain-
ing heavy quarks whose spatial momentum ~p is small com-
pared to the lattice spacing. It can be shown [6] that all errors
of order j ~paj, ðmQaÞn, and j ~pajðmQaÞn for all non-negative
integersn can be removed if an anisotropic, clover-improved
Wilson action is used for the heavy quark. This action
depends on three relevant parameters: the bare quark mass
m0, an anisotropy parameter �ðm0aÞ and the coefficient
cPðm0aÞ of an isotropic Sheikholeslami and Wohlert term.
In order to exploit this RHQ approach, values for these

three parameters are needed. The bare charm- or bottom-
quark mass, m0, must be determined from experiment,
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usually by equating the known mass of a physical state
containing one or two heavy quarks with the mass deter-
mined from a lattice calculation with the RHQ action. The
remaining two parameters, � and cP, may be estimated
from lattice perturbation theory or determined with a
nonperturbative technique. We cannot use the nonpertur-
bative method of Rome-Southampton [7] to tune cP
and � because the Rome-Southampton approach depends
on evaluating off-shell amplitudes, whereas the three-
parameter RHQ action only controls discretization errors
for on-shell states. On-shell step-scaling methods can be
used, either via the Schrödinger functional approach or a
simple comparison of small volume spectra between cal-
culations with varying lattice scale but identical physical
volumes [8]. Both of these step-scaling approaches, how-
ever, involve substantial computational effort, requiring a
series of carefully matched finite-volume simulations with
varying lattice spacing.

In the work reported here, we use another approach and
determine the two remaining parameters � and cP non-
perturbatively by imposing two simple conditions. The
first condition is the often-exploited requirement that the
energy of a specific heavy-heavy or heavy-light state
depend on that state’s spatial momentum in a fashion
consistent with continuum relativity: Eð ~pÞ2 ¼ ~p2 þM2.
The second constraint is that a specific mass splitting agree
with its experimental value. For the case of bottom, a
natural choice is the B�

s � Bs mass splitting. Thus, using
the bottom system as an example and including the bare
quark mass m0, we determine our three parameters m0,
�ðm0aÞ, and cPðm0aÞ by requiring that experimental values
are obtained for mBs

and mB�
s
and that EBs

has the proper

dependence on ~pBs
.

As is described below, these three conditions are straight-
forward to impose and yield quite precise results for the
three unknown parameters. This approach has the disad-
vantage that a possible experimental prediction from lattice
QCD, a nontrivial spin-spin splitting, cannot be made. With
this approach, however, we can immediately determine the
masses of a large number of heavy-heavy and heavy-light
states. These results can be viewed as tests of QCD and can
be used to explore the accuracy and limitations of the RHQ
approach. Finally, once the RHQ action has been deter-
mined by fixing these three parameters, it can be used
to compute phenomenologically important charm and bot-
tom decay constants and mixing matrix elements, which
are needed for determinations of Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements and constraints on the
CKM unitarity triangle.

In this paper we present results for the bottom system.
Our calculation is performed on the 2þ 1-flavor, domain-
wall fermion ðDWFÞ þ Iwasaki gauge-field ensembles
generated by the LHP, RBC, and UKQCD Collaborations
with several values of the light dynamical quark mass
at two lattice spacings, a � 0:11 fm and a � 0:086 fm

[9,10]. For the heavy-light mesons, the heavy quark will
typically carry a small spatial momentum, j ~pj � �QCD.

Thus, for these systems the expected j ~paj2 errors are of the
same size as those encountered in calculations involving
only light quarks. For heavy-heavy systems, however, the
spatial momenta will be larger: j ~pj � �smQ, where mQ is

the heavy-quark mass and �s the strong interaction cou-
pling constant evaluated at a scale appropriate for such a
bound state. While for charmonium �smQ may be on the

order of �QCD, this is not the case for bottomonium where

discretization errors are expected to be three to four times
larger due to the larger b-quark mass (mb=mc � 3:3). Thus
we choose to tune the RHQ action for b-quarks using
bottom-light states in order to minimize systematic uncer-
tainties. In particular, we match the experimentally mea-
sured masses of the bottom-strange states Bs and B�

s in
order to avoid the need to perform a chiral extrapolation in
the valence light-quark mass. Once we have determined the
values of the parameters fm0; cP; �g we make predictions
for the masses and mass splittings of several low-lying
bottomonium states: �B, �, �b0, �b1, and hb. Our results
agree with experiment within estimates of systematic
uncertainties, confirming the validity of the RHQ approach
and bolstering confidence in future computations of weak
matrix elements with the RHQ action.
This work was begun by Li, who presented preliminary

values for the RHQ parameters and bottomonium masses
on the coarser a � 0:11 fm ensemble at Lattice 2008 [11].
We improve upon his results in several ways, most notably
in determining the RHQ parameters solely from quantities
in the bottom-strange system. (Li used a hybrid of bottom-
strange and bottomonium observables for the tuning.) This
reduces the systematic errors in the resulting parameters
due to heavy-quark discretization effects, as discussed
above. We also significantly increased the statistics, more
than quadrupling the number of configurations analyzed,
and optimized the spatial smearing wave function used for
the b-quarks in order to reduce excited-state contamination
in the bottom-strange two-point correlators. More recently
Peng extended this work to the finer a � 0:086 fm ensem-
bles and presented preliminary values for the RHQ pa-
rameters and bottomonium masses at Lattice 2010 [12].
Again, we polish this result with increased statistics and
improved b-quark smearings.
This paper is organized as follows. In Sec. II we

first present the form of the relativistic heavy-quark action
used in this work. We then describe the numerical strategy
used to determine the three parameters m0, �ðm0aÞ, and
cPðm0aÞ. Next, in Sec. III we present the tuning of the
RHQ parameters for bottom. We give the actions and
parameters used in our numerical simulations, and then
discuss the fits of heavy-light meson two-point correlators
needed to extract the lattice values of the Bs and B

�
s meson

masses. Using this data we tune the parameters of the RHQ
action such that it applies to b-quarks. In Sec. IV we use the
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resulting RHQ parameters to predict the masses of several
bottomonium states and compare the results with experi-
ment. Finally, we summarize our results and discuss future
plans in Sec. V.

II. FRAMEWORK OF THE CALCULATION

A. Heavy-quark action

The relativistic heavy-quark method provides a consis-
tent framework for describing both light quarks (am0 � 1)
and heavy quarks (am0 * 1) [4–6]. This approach relies
upon the fact that, in the rest frame of bound states con-
taining one or more heavy quarks, the spatial momentum
carried by each heavy quark is smaller than the mass of the
heavy quark: for heavy-heavy systems j ~pj � �sm0 and for
heavy-light systems j ~pj ��QCD. Then one can perform

the usual Symanzik expansion in powers of the spatial
derivative Di (which brings down powers of a ~p). One
must, however, include terms of all orders in the mass
m0a and the temporal derivative D0. This suggests that a
suitable lattice formulation for heavy quarks should break
the axis-interchange symmetry between the spatial and
temporal directions.

In this work we use the following anisotropic clover-
improved Wilson action for the b-quarks:

Slat ¼ a4
X
x;x0

�c ðx0Þ
�
m0 þ �0D0 þ � ~� � ~D� a

2
ðD0Þ2

� a

2
�ð ~DÞ2 þX

�;�

ia

4
cP���F��

�
x0x
c ðxÞ; (1)

where

D�c ðxÞ ¼ 1

2a
½U�ðxÞc ðxþ �̂Þ �Uy

�ðx� �̂Þc ðx� �̂Þ�;
(2)

D2
�c ðxÞ ¼ 1

a2
½U�ðxÞc ðxþ �̂Þ þUy

�ðx� �̂Þc ðx� �̂Þ
� 2c ðxÞ�; (3)

F��c ðxÞ¼ 1

8a2
X

s;s0¼�1

ss0½Us�ðxÞUs0�ðxþs�̂ÞUy
s�ðxþs0�̂Þ

	Uy
s0�ðxÞ�H:c:�c ðxÞ; (4)

and �� ¼ �y
�, f��; ��g ¼ 2	��, and ��� ¼ i

2 ½��; ���.
Christ, Li, and Lin showed in Ref. [6] that one can absorb
all positive powers of the temporal derivative by allowing
the coefficients cPðm0aÞ and �ðm0aÞ to be functions of
the bare quark mass m0a. Thus, by suitably tuning the
three coefficients in the action—the bare quark mass
m0a, the anisotropy parameter � , and the clover coefficient
cP—one can eliminate errors of Oðj ~pjaÞ, Oð½m0a�nÞ, and
Oðj ~paj½m0a�nÞ from on-shell Green’s functions. The
resulting action can be used to describe heavy quarks

with m0a * 1 with discretization errors that are compa-
rable to those for light-quark systems.
The relativistic heavy-quark formulation based on

Ref. [6] and used in this work is one of several variations.
This general approach was first introduced by El-Khadra,
Kronfeld, and Mackenzie in Ref. [4], and has been used
recently by the Fermilab Lattice and MILC Collaborations
for many phenomenological applications, such as decay-
constant and form-factor computations [13–16]. In prac-
tice, however, Fermilab/MILC use a different approach to
tune the parameters in the action, Eq. (1), than our method
described below in Sec. II B. They fix the anisotropy
parameter � to unity and the clover coefficient cP to its
tree-level mean-field-improved lattice perturbation theory
value (1=u30), and then tune only the hopping parameter 

(which is equivalent to the bare quark mass) nonperturba-
tively [17]. The Tsukuba group uses a slightly different
formulation of the action in which they do not use field
rotations to eliminate redundant operators [18]; hence their
version of the action has four unknown coefficients rather
than the three in the RHQ or Fermilab variants. For on-
shell Green’s functions the Tsukuba and RHQ/Fermilab
actions are equivalent. In practice, however, the inclusion
of redundant couplings means that one cannot nonpertur-
batively tune all four parameters simultaneously by only
adjusting the energies of heavy hadrons because one will
run into flat directions in parameter space, as was shown in
Ref. [6]. Hence they rely upon lattice perturbation theory
for quark-quark scattering amplitudes to determine at least
one of the coefficients [18].
Because the lattice action breaks Lorentz symmetry,

mesons receive corrections to their energy-momentum
dispersion relation due to lattice artifacts:

ðaEÞ2 ¼ ðaM1Þ2 þ
�
M1

M2

�
ða ~pÞ2 þOð½a ~p�4Þ: (5)

The quantities M1 and M2 are known as the rest mass and
kinetic mass, respectively,

M1 ¼ Eð ~p ¼ 0Þ; M2 ¼ M1 	
�
@E2

@p2
i

��1

~p¼0
; (6)

and will generally be different for generic values of
the parameters fm0a; cP; �g. We will exploit this fact in
the RHQ tuning procedure described in the following
subsection.

B. Parameter tuning methodology

We tune the values for the RHQ parameters fm0a; cP; �g
to describe bottom or charm quarks by requiring that
calculations of specified physical on-shell quantities with
the action in Eq. (1) correctly reproduce the experimentally
measured results. In particular, for b-quarks we determine
the RHQ action using the bottom-strange system because
both discretization errors and chiral extrapolation errors
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are expected to be small. We match the experimental
values of the spin-averaged Bs meson mass,

�MBs
¼ 1

4
ðMBs

þ 3MB�
s
Þ; (7)

and hyperfine splitting,

�MBs
¼ MB�

s
�MBs

: (8)

We also require that the Bs meson rest and kinetic masses
are equal,

M
Bs

1

M
Bs

2

¼ 1; (9)

so that the Bs meson satisfies the continuum energy-
momentum dispersion relation E2

Bs
ð ~pÞ ¼ ~p2

Bs
þM2

Bs
.

(Note that throughout this work we denote meson masses
with a capital ‘‘M’’ and quark masses with a lowercase
‘‘m’’ in order to avoid confusion in situations where the
context is insufficient.) We could in principle have used
other states (e.g., scalar or vector mesons), other mass
splittings (e.g., the spin-orbit splitting), or even other
systems (e.g., heavy-heavy mesons) to tune the parame-
ters of the RHQ action, since the same parameters should
describe b-quarks in all of these arenas. Instead, however,
we can make predictions for these quantities using the
tuned values of fm0a; cP; �g and use them to test the
validity of our approach.

We determine the tuned values of fm0a; cP; �g nonper-
turbatively using an iterative procedure. The bottom-
strange meson masses in general will have a nonlinear
dependence on the RHQ parameters. We choose to work
in a region sufficiently close to the true parameters such
that the following linear approximation holds:

�MBs

�MBs

M
Bs
1

M
Bs
2

2
66664

3
77775 ¼ J �

m0a

cP

�

2
664

3
775þ A; (10)

where J is a 3	 3matrix containing the linear coefficients
(analogous to the slope in the 1	 1 case) and A is a three-
element column vector containing the constants (analogous
to the intercept). For a single step of the iteration procedure

we compute the quantities f �MBs
;�MBs

;M
Bs

1 =M
Bs

2 g at seven
sets of parameters (see Fig. 1) in which we vary one of
the three parameters fm0a; cP; �g by a chosen range
��fm0a;cP;�g (not to be confused with the statistical errors

in the tuned parameters fm0a; cP; �g) while holding the
other two fixed:

m0a

cP

�

2
664

3
775;

m0a� �m0a

cP

�

2
664

3
775;

m0aþ �m0a

cP

�

2
664

3
775;

m0a

cP � �cP

�

2
664

3
775;

m0a

cP þ �cP

�

2
664

3
775;

m0a

cP

� � ��

2
664

3
775;

m0a

cP

� þ ��

2
664

3
775: (11)

This allows us to test whether or not the ‘‘box’’ of parame-
ter space defined by the seven parameter sets in Fig. 1 is in
the linear region such that Eq. (10) applies. If indeed we are
in the linear region, we then compute the matrix J and
vector A via a simple finite difference approximation of the
derivatives:

J ¼
�
Y3 � Y2

2�m0a

;
Y5 � Y4

2�cP

;
Y7 � Y6

2��

�
; (12)

A ¼ Y1 � J 	 ½m0a; cP; ��T; (13)

where Yi is the three-element column vector containing the
values of meson masses and splittings measured on the ith
parameter set listed in Eq. (11):

Yi ¼ ½ �MBs
;�MBs

;M
Bs

1 =M
Bs

2 �Ti : (14)

Finally, the tuned RHQ parameters are given by

m0a

cP

�

2
664

3
775

RHQ

¼ J�1 	
�MBs

�MBs

M
Bs
1

M
Bs
2

2
66664

3
77775

PDG

� A

0
BBBB@

1
CCCCA: (15)

We consider the RHQ parameters fm0a; cP; �g to be
‘‘tuned’’ when all three of the values obtained via
Eq. (15) are within the ‘‘box’’ defined by the seven pa-
rameter sets in Fig. 1. This condition ensures that we are
interpolating, rather than extrapolating, to the tuned point.
If the result for any of the parameters fm0a; cP; �g lies
outside the box, we re-center the box around the result of

5.6 5.8 6.0 6.2
8.208.308.408.50

2.9

3.1

3.3

3.5

FIG. 1 (color online). Location of the seven sets of parameters
used to obtain the tuned values of fm0a; cP; �g.
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Eq. (15) and perform another iteration step. We repeat this
procedure until all three tuned RHQ parameters lie inside
the box.

Once the RHQ parameters have been tuned, we can use
them to predict the masses of other heavy-light and heavy-
heavy meson states, and ultimately to compute heavy-light
meson weak matrix elements. We compute the desired
quantities on the same seven sets of parameters used for
the final iteration of the tuning procedure. We then propa-
gate the statistical errors in the tuned RHQ parameters to
these quantities using the jackknife method: this accounts
for correlations between the parameters m0, cP, and � .

III. LATTICE CALCULATION OF RHQ
PARAMETERS FOR BOTTOM

A. Lattice simulation parameters

The parameters of the RHQ action suitable for describ-
ing b-quarks depend upon the choice of actions for the
gauge fields and sea quarks. In this work we perform our
numerical lattice computations on the ‘‘2þ 1’’-flavor
domain-wall fermion ensembles generated by the LHP,
RBC, and UKQCD Collaborations [9,10]. These lattices
include the effects of three light dynamical quarks: the two
lighter sea quarks are degenerate and we denote their mass
by ml, while the heavier sea quark, whose mass we denote
by mh, is a little heavier than the physical strange quark.
The RBC/UKQCD lattices combine the Iwasaki action for
the gluons [19] with the five-dimensional domain-wall
action for the fermions [20,21]. Use of the Iwasaki gauge
action in combination with domain-wall sea quarks allows
for adequate tunneling between topological sectors [22],
and in combination with domain-wall valence quarks
reduces chiral symmetry breaking and the size of the
residual quark mass as compared to the Wilson gauge
action [23].

We compute the RHQ b-quark parameters on several
ensembles with different light sea-quark masses: this
allows us to study the sea-quark mass dependence, which
we find to be statistically insignificant. We also determine
the parameters at two lattice spacings: we refer to the
coarser ensembles with a � 0:11 fm as the ‘‘243’’

ensembles and the finer ensembles with a � 0:086 fm as
the ‘‘323’’ ensembles. Use of two lattice spacings allows us
to take a naive continuum limit of physical quantities such
as meson masses and splittings, although we still include
a conservative power-counting estimate of the residual
Oðj ~paj2Þ discretization errors from the RHQ action that
may not be removed with this approach. Table I shows the
parameters of the ensembles used for the RHQ parameter
tuning and bottomonium spectroscopy presented in this
work. On the finer lattice spacings we double the statistics
by performing two fermion inversions per gauge configu-
ration with the origins of the quark sources separated by
half of the temporal lattice extent.
The ensembles listed in Table I have already been uti-

lized to study the light pseudoscalar meson sector; we
can therefore take advantage of many results from this
earlier work. The amount of chiral symmetry breaking in
the light-quark sector can be parametrized in terms of an
additive shift to the bare domain-wall quark mass called
the residual quark mass. At the values of M5 ¼ 1:8 and
Ls ¼ 16 used by RBC/UKQCD, the size of the residual
quark mass is quite small: amres ¼ 0:003152ð43Þ on the
243 ensembles and amres ¼ 0:0006664ð76Þ on the 323

ensembles [10]. In order to compute the masses of Bs

and B�
s mesons for the tuning procedure we also need the

value of the physical strange-quark mass on these ensem-
bles. This was already determined in Ref. [10]: ams ¼
0:0348ð11Þ on the 243 ensembles and ams ¼ 0:0273ð7Þ
on the 323 ensembles. [In practice we use slightly different
values of the strange-quark mass (ams ¼ 0:0343 on the
243 ensembles and ams ¼ 0:0272 on the 323 ensembles)
because we began this work before the light pseudoscalar
meson analysis in Ref. [10] was finalized. These values,
however, are within the stated statistical errors.] Finally, we
must convert lattice meson masses into physical units for
the tuning procedure and for comparison between predic-
tions and experiment. The lattice scale was determined
from the � mass to be a�1 ¼ 1:729ð25Þ GeV on the 243

ensembles and a�1 ¼ 2:281ð28Þ GeV on the 323 ensem-
bles [10]. These values are consistent with an independent
determination of the 243 and 323 lattice spacings using the
�ð2SÞ ��ð1SÞ mass splitting by Meinel [24].

TABLE I. Lattice simulation parameters used in our determination of the RHQ parameters for
b-quarks and in our predictions for the bottomonium masses and mass splittings. The columns
list the lattice volume, approximate lattice spacing, light (ml) and strange (mh) sea-quark masses,
unitary pion mass, and number of configurations and time sources analyzed.

# time

ðL=aÞ3 	 ðT=aÞ � a (fm) aml amh M� (MeV) # configs. sources

243 	 64 0.11 0.005 0.040 329 1636 1

243 	 64 0.11 0.010 0.040 422 1419 1

323 	 64 0.086 0.004 0.030 289 628 2

323 	 64 0.086 0.006 0.030 345 889 2

323 	 64 0.086 0.008 0.030 394 544 2
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B. Heavy-light meson correlator fits

We extract the Bs and B�
s meson energies from the

exponential behavior of the following two-point correla-
tion functions:

CBs
ðt; t0; ~pÞ ¼

X
~y

eip� ~yhOy
Pð ~y; tÞ ~OPð~0; t0Þi; (16)

CB�
s
ðt; t0; ~pÞ ¼ 1

3

X
i

X
~y

eip� ~yhOy
Vi
ð ~y; tÞ ~OVi

ð~0; t0Þi; (17)

where OP and OVi
are the pseudoscalar and vector heavy-

strange meson interpolating operators, respectively:

OP ¼ �b�5s; OVi
¼ �b�is; (18)

and the index ‘‘i’’ denotes the three spatial directions. We
will explain the meaning of the tilde on some of the
operators in Eqs. (16) and (17) later in this section. At
sufficiently large times, excited-state contributions to these
correlators will die away and the correlators will fall off as
an exponential function of the meson ground-state energy
exp½�Eð ~pÞðt� t0Þ�. We can therefore obtain the ground-
state energy from the following ratio of correlators:

Eeffð ~pÞ ¼ lim
t
t0

cosh�1

�
Cðt; t0; ~pÞ þ Cðtþ 2; t0; ~pÞ

2Cðtþ 1; t0; ~pÞ
�
; (19)

which we refer to as the ‘‘effective energy’’. In the above
equation and throughout the remainder of this work, meson
masses and energies are given in lattice units (where the
factor of ‘‘a’’ is implied) unless other units (e.g., GeV) are
specified.

We use the Chroma lattice QCD software system to
compute the heavy- and strange-quark propagators, as
well as the two-point correlation functions [25]. In order
to minimize autocorrelations between data on nearby con-
figurations, we translate the gauge field by a randomly
chosen four-dimensional vector before computing the
strange-quark and b-quark propagators. We generate the
domain-wall light-quark propagators with a local (point)
source: this allows them to be re-used for a future compu-
tation of B-meson decay constants and mixing matrix
elements. In order to suppress excited-state contamination
we generate the b-quark propagators with a gauge-
invariant Gaussian source for the spatial wave function
[26,27],

~bð ~x; tÞ ¼ X
~y

Sð ~x; ~y;�;NÞbð ~y; tÞ; (20)

where the smearing function Sð ~x; ~yÞ depends upon the
width � and the number of smearing iterations N:

Sð ~x; ~y;�;NÞ ¼
�
1þ �2

4N
r2

~x; ~y

�
N
; (21)

r2
~x; ~y ¼

X3
k¼1

ðUkðxÞ	~xþk̂; ~y þUy
k ð ~x� k̂Þ	~x�k̂; ~y � 2	~x; ~yÞ:

(22)

As long as the parameters (�, N) satisfy the criteria N >
3�2=2, the source is spatially smooth and a good approxi-
mation to a Gaussian. For the free-field case (U ¼ 1) with
large N and small �, the root-mean-squared (rms) radius

rrms �
ffiffiffi
3

p
�=2 is independent of N. Heavy-light meson

interpolating operators with a Gaussian-smeared b-quark
are labeled with a tilde in Eqs. (16) and (17). We use a
point sink, however, for both the strange and b-quark in the
sink meson interpolating field because we find that this
source-sink combination minimizes statistical errors in the
correlators.
Before beginning the iterative procedure to tune the

RHQ parameters described in Sec. II B we compute the
zero-momentum heavy-light meson pseudoscalar correla-
tor [Eq. (16) with Bs ! Bl] for several values of the
Gaussian radius: these are given in Table II. Because we
expect both the light-quark and b-quark mass dependence
of the optimal smearing choice to be mild, for each lattice
spacing we analyze data on a single sea-quark ensemble
and with a single light-quark mass and set of RHQ
parameters fm0a; cP; �g. For the smearing study on the
243 ensembles we use the preliminary results for the
RHQ parameters in the chiral limit from Ref. [28],
fm0a; cP; �g ¼ f7:38; 3:89; 4:19g, which are similar to the
earlier values presented at Lattice 2008 [11]. We analyze
the unitary point on the aml ¼ 0:005 ensemble. Figure 2
shows the heavy-light pseudoscalar meson effective mass
[Eeffð ~p ¼ 0Þ] for several choices of the Gaussian radius
(including the limit of a point source). The correlator
generated with a b-quark spatial wave function with a
rms radius of rrms ¼ 0:777 fm clearly has the longest
plateau with the earliest onset; we therefore choose to
use this spatial wave function for the RHQ parameter
tuning on the 243 ensembles. One might worry that the
extremely long plateau in Fig. 2 is due to cancellations
between excited states with positive and negative

TABLE II. Root-mean-squared radii and corresponding
Chroma Gaussian smearing parameters [defined in Eq. (21)]
considered here. The parameters shown in bold are used to
obtain the RHQ parameters in the following subsection.

a � 0:086 fm a � 0:11 fm

rrms (fm) � N � N

0.137 1.39 5 1.83 5

0.275 2.78 15 3.6 25

0.518 5.24 5 6.92 80

0:777 7:86 100 10:36 170
1.035 10.48 175

1.047 13.98 310
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amplitudes, and does not correspond to the true ground-
state mass. Figure 3 therefore shows a comparison of the
pseudoscalar meson effective mass in which the b-quark
has a smeared source and point sink and one in which the
b-quark has both a smeared source and sink. The two
effective masses agree within statistical errors, suggesting
that we have obtained the true plateau.

For the smearing study on the 323 ensemble we
analyze the unitary point on the aml ¼ 0:004 sea-quark
ensemble. We use the RHQ parameters fm0a; cP; �g ¼
f3:70; 3:60; 2:20g, which are close to the preliminary results
on the aml ¼ 0:004 ensemble in Ref. [12]. As in the case
of the 243 ensembles, the Gaussian radius of rrms ¼
0:777 fm leads to the best plateau, so we use it for the
RHQ parameter tuning procedure. This is consistent with
expectations that the size of the B-meson in physical units
should be independent of the lattice spacing.

We estimate the errors in the correlation functions and
in the fitted meson energies using a single-elimination
jackknife procedure. This allows us to propagate the sta-
tistical uncertainties including correlations between the
parameters fm0a; cp; �g into subsequent steps of the RHQ

parameter tuning procedure. We find no evidence of resid-
ual autocorrelations between subsequent trajectories, as
measured by comparing the errors between binned
and unbinned data. We perform the �-squared minimiza-
tion including the full covariance matrix, and choose fit
ranges that yield acceptable correlated confidence levels
(p-value1 * 10%).
Because the Bs and B�

s meson energies are largely
insensitive to the sea-quark mass, we expect the excited-
state contamination to die off and the onset of the ground-
state plateau to occur at around the same location on all
sea-quark ensembles for a given lattice spacing. We there-
fore choose the same fit range for all sea-quark ensembles
on a given lattice spacing. The requirement that we obtain a
constant fit to the effective energy with a good correlated
confidence level using the same fitting range for all ensem-
bles helps to ensure that we obtain the true ground-state
energy, and are not misled by ‘‘wiggles’’ in the plateau that
are due to fluctuations in the gauge field, but are different
on each ensemble. We do not, however, expect excited-
state contributions to be the same for all momenta, and, in
fact, we observe an earlier onset for the plateau in the zero-
momentum effective energy than for the other momenta.
Table III shows the fitting ranges used on the 243 and 323

ensembles. Figure 4 shows the Bs and B�
s meson effective

energies for lattice momenta up to ða ~pÞ2 ¼ 3 on the
aml ¼ 0:005 243 ensemble. Effective energy plots for the
other 243 and 323 ensembles look similar.

C. Determination of bottom-quark parameters

We begin our iterative tuning procedure using the pre-
liminary values for fm0a; cP; �g determined in the pilot
studies of Refs. [12,28]. We compute the Bs and B

�
s meson

energies for seven sets of parameters surrounding these
values. We choose ranges for the RHQ parameters that are

5 10 15 20 25
3.03
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3.09

3.12

3.15

time slice

Sm−Pt: r
rms

 ≈ 1.035 fm

Sm−Pt: r
rms

 ≈ 0.777 fm

Sm−Pt: r
rms

 ≈ 0.518 fm

Sm−Pt: r
rms

 ≈ 0.257 fm

Pt−Pt

FIG. 2 (color online). Pseudoscalar meson effective mass for
several choices for the Gaussian radius of the b-quark in the
heavy-light meson interpolating operator. Results are shown for
the unitary point on the aml ¼ 0:005 243 ensemble with RHQ
parameters fm0a; cP; �g ¼ f7:38; 3:89; 4:19g.
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3.03

3.06

3.09

3.12

3.15

time slice

Sm−Sm
Sm−Pt

FIG. 3 (color online). Pseudoscalar meson effective mass for
the b-quark Gaussian radius rrms ¼ 0:777 fm. The full symbols
correspond to correlators in which the b-quark is generated with
a Gaussian spatial wave function but has a point sink, and the
open points correspond to correlators in which the b-quark has a
Gaussian spatial wave function at both the source and sink. The
effective masses agree, but the smeared-point data has smaller
statistical errors.

TABLE III. Time ranges used in plateau fits of the Bs and B�
s

effective energies. We use different ranges for zero and nonzero
momenta, but use the same range for all sea-quark masses at a
given lattice spacing.

fit range

~p ¼ 0 ~p � 0

a � 0:11 fm [10, 25] [10, 25]

a � 0:086 fm [11, 21] [14, 21]

1We adopt the PDG convention that the p-value is the proba-
bility of finding a �2 value greater than that obtained in the fit;
hence a larger p-value denotes a stronger compatibility between
the data and the fit hypothesis [29].
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larger than the statistical errors obtained in the preliminary
studies, yet are small enough that the dependence of the
meson masses on fm0a; cP; �g is approximately linear.
We then determine the ratio of the rest mass to the
kinetic mass for these seven parameter sets by fitting the
nonzero-momentum data for the Bs meson to the energy-
momentum dispersion relation, Eq. (5). Finally, we deter-
mine the predicted values of the RHQ parameters from
Eq. (15) using the experimentally measured meson masses
MBs

¼ 5:366 GeV and MB�
s
¼ 5:415 GeV [29]. We find

that the resulting values of fm0a; cP; �g lie outside the
‘‘box’’ determined by the seven parameter sets. We there-
fore re-center the box around the newly determined values
and repeat the procedure. We find that we need to iterate
once or twice before the values of fm0a; cP; �g settle down
and remain inside the box. Here we only show results for
the final iteration, since plots for intermediate iterations
look similar. The final sets of parameters used to obtain the
tuned values of fm0a; cP; �g on the 243 and 323 ensembles
are given in Table IV.

Figure 5 shows the energy-momentum dispersion rela-
tion fit for both the Bs and B�

s mesons on the aml ¼ 0:005

243 ensemble. Dispersion relation plots for the other sea-
quark masses, RHQ parameter sets, and lattice spacing
look similar. The slopes (M1=M2) of the Bs and B�

s

energy-momentum dispersion relations agree with unity
(and hence with each other) within errors in the region of
the parameter space near the tuned values of fm0a; cP; �g.
We choose to use the pseudoscalar meson data, However,
for the parameter tuning because it has smaller statistical
errors. We perform a one-parameter linear fit in which we
fix the intercept to go through the measured value of the
rest mass Eð ~p ¼ 0Þ and allow the slope to vary. We include
data with lattice momenta through ðapÞ2 ¼ 3, and see no

5 10 15 20 25 30
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time slice
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5 10 15 20 25 30
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FIG. 4 (color online). Heavy-strange pseudoscalar meson (blue circles) and vector meson (red triangles) effective energies on the
aml ¼ 0:005 243 ensemble with RHQ parameters fm0a; cP; �g ¼ f8:40; 5:80; 3:20g. From upper-left to lower-right the six plots show
spatial momenta ða ~pÞ2 ¼ 0 through ða ~pÞ2 ¼ 3. For each plot the shaded horizontal band shows the fit range used and the fit result with
jackknife statistical errors.

TABLE IV. Final ‘‘box’’ of parameters used to obtain the
tuned values of fm0a; cP; �g (see Fig. 1). In each column the
first number is the central value of the parameter and the second
number is the variation.

m0a cP �

a � 0:11 fm 8:40� 0:15 5:80� 0:45 3:20� 0:30
a � 0:086 fm 3:98� 0:10 3:60� 0:30 1:97� 0:15
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evidence for higher-order, e.g., Oð½ap�4Þ, lattice discreti-
zation effects at these values of the momenta. We account
for correlations between data points by propagating the
jackknife values of the energies from the two-point fits
described in the previous subsection. As a cross-check we
compare the fit result with those of a two-parameter fit in
which we allow both the slope and intercept to vary: we
find that the results are consistent, and choose to use the
one-parameter fit because it leads to smaller statistical

errors in M
Bs

1 =M
Bs

2 .
In order to reliably determine the RHQ parameters via

Eq. (15) we must be interpolating in a regime in which the

bottom-strange meson observables f �MBs
;�MBs

;M
Bs

1 =M
Bs

2 g
depend linearly upon the parameters in the action
fm0a; cP; �g. We test this assumption and look for signs
of curvature by computing the observables for three differ-
ent boxes of seven parameters with sizes ��fm0a;cP;�g,
�2�fm0a;cP;�g, and �3�fm0a;cP;�g (except for the parameter

m0a on the 243 ensemble, for which the largest box is
�4�m0a). We then determine the predicted values of the

RHQ parameters for each of the three boxes: we find that
the difference is negligible within statistical errors.

Figure 6 shows the dependence of the spin-averaged
mass, hyperfine splitting, and rest mass over kinetic mass
on the parameters m0a, cP, and � , respectively, on the
aml ¼ 0:005 243 ensemble. We plot these dependencies
because these are the parameters to which each observ-
able is most sensitive. The bottom-strange observables

f �MBs
;�MBs

;M
Bs

1 =M
Bs

2 g depend linearly on the parameters

fm0a; cP; �g throughout the range. The analogous plots for
the other sea-quark ensembles look similar.
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0.15

0.2

0.25
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0.35

0.4

FIG. 5 (color online). Bs (blue circles) and B�
s (red triangles)

meson squared-energy difference versus spatial momentum-
squared on the aml ¼ 0:005 243 ensemble for the RHQ parame-
ter values fm0a; cP; �g ¼ f8:40; 5:80; 3:20g. The slope of the data
gives the ratio of the meson rest mass over the kinetic mass
ðM1=M2Þ. Data points shown with an open symbol are not
included in the fit.
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FIG. 6 (color online). Spin-averaged mass versus m0a (upper
plot), hyperfine splitting versus cP (center plot), and rest mass
over kinetic mass versus � (lower plot) on the aml ¼ 0:005 243

ensemble. The solid vertical lines with shaded gray error
bands denote the tuned values of the RHQ parameters with
jackknife statistical errors. For each quantity, the dashed
line shows the dependence on m0a, cP, or � calculated from
Eqs. (10)–(14).
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Table V shows the nonperturbatively tuned RHQ pa-
rameters fm0a; cP; �g obtained on the two 243 ensembles.
We do not observe any statistically significant sea-quark-
mass dependence. Hence instead of extrapolating the RHQ
parameters to the physical light-quark masses, we simply
take an error-weighted average of the two values to obtain
our final preferred results. Similarly, Table VI shows the
nonperturbatively tuned RHQ parameters on the three 323

ensembles and the corresponding weighted average.

D. Comparison with perturbation theory

It is useful to compare the nonperturbatively determined
values of the RHQ parameters with those computed in
lattice perturbation theory. First, this provides a consis-
tency check of the nonperturbative tuning procedure.
Second, this allows us to see how well the perturbative
estimates are working in a case where we know the true
nonperturbative value. Reasonable agreement between the
two approaches bolsters confidence in our ability to rely on
lattice perturbation theory in future situations where we do
not have nonperturbative matching factors available.

We calculate the RHQ parameters cP and � at one-loop
in mean-field-improved lattice perturbation theory [30].
We extend the tree-level calculation of Ref. [6] following
the one-loop calculation for the Tsukuba version of the
RHQ action in Ref. [18]: our automated lattice perturbation
theory framework reproduces the results of these works.
We summarize the elements of the perturbative calculation
here, but the details will be given in a separate publication
[31]. The clover coefficient cP is obtained by matching the
lattice quark-gluon vertex to the continuum counterpart in

the on-shell limit, where the quarks’ four-momenta satisfy
p2 ¼ �m2

p with heavy-quark pole mass mp. At intermedi-

ate steps of the calculation infrared divergences are regu-
lated with a nonzero gluon mass �: the final results are
obtained in the limit � ! 0. Similarly, the anisotropy
parameter � is obtained by requiring that the lattice
heavy-quark dispersion relation, extracted from the
momentum dependence of the pole in the heavy-quark
propagator at one-loop, agrees with the continuum. We
implement the mean-field improvement in two ways.
First we use the nonperturbative value of the fourth root

of the plaquette, u0 ¼ P1=4, to re-sum tadpole contribu-
tions as in Ref. [30]. We also use the value of the spatial
link field in Landau gauge to estimate u0. A comparison of
these two approaches is useful for ascertaining the system-
atic uncertainty due to the ambiguity in how to implement
the tadpole resummation. The lattice perturbation theory
calculations of cP and � also use the nonperturbatively
determined values of the bare quark mass m0a and the
2	 1 rectangle R as inputs. The latter allows for a refined
resummation of tadpole contributions in improved gauge
actions [32].
Figure 7 compares results on the 243 ensembles in both

unimproved and mean-field-improved lattice perturbation
theory with the nonperturbatively determined values.
The results on the 323 ensembles look qualitatively similar.
The unimproved results are expanded in the bare lattice
coupling g20 ¼ 6=
. The improved results are expanded

either in the mean-field-improved lattice coupling ~g20 ¼
6=
=ðc0Pþ 8c1RÞ with c0 ¼ 1� 8c1 and c1 ¼ �0:331,

or the MS coupling at scale 1=a. The use of mean-field-
improved lattice perturbation theory brings the perturba-
tive results into better agreement with the nonperturbative
values. It also reduces the size of the one-loop corrections,
thereby appearing to improve the convergence of the per-
turbative series, although one cannot be entirely sure that
this trend persists to higher orders. In the case of cP, the
unimproved one-loop corrections are very large (approxi-
mately a factor of 1.5) but are reduced to a more sensible
level by resumming tadpole contributions, whereas in
the case of � the unimproved one-loop corrections are
already close to the naive power-counting estimate of

�MS
S ð1=a243Þ � 23%, and the mean-field-improved one-

loop corrections are even smaller.
We can use the results shown in Fig. 7 to estimate

the uncertainties in the values of cP and � calculated in
lattice perturbation theory. We consider two approaches for
obtaining the error. A naive power-counting estimate of the
size of the neglected two-loop corrections would lead to a
predicted error of �2

S � 5%. As mentioned earlier, how-

ever, there is an ambiguity in how to estimate the tadpole
factor u0 used in the resummation procedure. This is not
strictly a measure of the size of higher-order corrections,
but taking the difference between the values of cP and �
computed at one-loop using u0 from the plaquette and from

TABLE V. Tuned RHQ parameter values on the 243 ensembles
determined using the parameter sets in Table IV. Because we do
not observe any statistically significant sea-quark-mass depen-
dence, we obtain the final preferred values from an error-
weighted average of the two sets of results.

m0a cP �

aml ¼ 0:005 8.43(7) 5.7(2) 3.11(9)

aml ¼ 0:01 8.47(9) 5.8(2) 3.1(1)

average 8.45(6) 5.8(1) 3.10(7)

TABLE VI. Tuned RHQ parameter values on the 323 ensem-
bles determined using the parameter sets in Table IV. Because
we do not observe any statistically significant sea-quark-mass
dependence, we obtain the final preferred values from an error-
weighted average of the three sets of results.

m0a cP �

aml ¼ 0:004 4.07(6) 3.7(1) 1.86(8)

aml ¼ 0:006 3.97(5) 3.5(1) 1.94(6)

aml ¼ 0:008 3.95(6) 3.6(1) 1.99(8)

average 3.99(3) 3.57(7) 1.93(4)
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the spatial Landau link gives a larger estimate of the error
in cP (� 10–12:5%) than the naive power-counting
approach. We therefore take this difference to be the error
in the perturbatively calculated value of cP, but take �

2
S �

5% to be the error in the perturbatively calculated value of
� . For the central values we quote the average of the

one-loop mean-field-improved values expanded in the

MS coupling at scale 1=a and computed with u0 obtained
from the plaquette and from the spatial Landau link.
Our final perturbative estimates for cP and � on the 243

and 323 ensembles are given in Table VII. They agree
with the nonperturbatively determined values given in
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FIG. 7 (color online). Lattice perturbation theory calculations of cP (left plot) and � (right plot) on the 243 ensembles [31], where
tree-level (T) and one-loop (1) results are shown. The subscripts P and U denote that tadpole contributions are resummed using the
fourth root of the plaquette (P), or the value of the spatial link field in Landau gauge (U), respectively. The subscripts L and M denote
that the one-loop result is expanded in the mean-field-improved lattice coupling (L), or theMS coupling (M), respectively. In each plot,
the horizontal line indicates our choice of central value for cP or � while the solid horizontal band denotes our estimate of the
uncertainty with errors due to the truncation of the perturbative series and errors due to the uncertainty inm0a added in quadrature. For
comparison, the nonperturbatively determined values are shown at the far right with statistical errors (solid inner error bar) and
statistical and systematic errors added in quadrature (dashed outer error bar).

TABLE VII. One-loop mean-field-improved lattice perturbation theory predictions for
the RHQ parameters cP and � (right panel) [31]. The nonperturbative inputs used in the
calculation—the bare heavy-quark mass m0a, the plaquette P, the 2	 1 rectangle R, and the
spatial link in Landau gauge L—are given in the center panel. The errors in cP and � are
due to the truncation of lattice perturbation theory and the uncertainty in m0a, respectively. The
jackknife statistical errors in P, R, and L are negligible.

nonperturbative inputs perturbative estimates

m0a P R L cP �

a � 0:11 fm 8.45 0.588 0.344 0.844 4.8(6)(2) 3.2(2)(1)

a � 0:086 fm 3.99 0.616 0.380 0.861 3.04(28)(7) 2.10(11)(5)

TABLE VIII. Tuned values of the RHQ parameters on the 243 and 323 ensembles. The central
values and statistical errors are from Tables V and VI. The systematic error estimates are
obtained using the same approach as for the bottomonium masses and mass splittings described
in Sec. IVC. The errors listed in m0a, cP, and � are from left to right: statistics, heavy-quark
discretization errors, the lattice scale uncertainty, and the uncertainty in the experimental
measurement of the Bs-meson hyperfine splitting, respectively. Errors that were considered
but were found to be negligible are not shown. For the scale uncertainty we quote smaller errors
on the 323 ensembles because the lattice spacing is determined more precisely than on the 243

ensembles.

m0a cP �

a � 0:11 fm 8.45(6)(13)(50)(7) 5.8(1)(4)(4)(2) 3.10(7)(11)(9)(0)

a � 0:086 fm 3.99(3)(6)(18)(3) 3.57(7)(22)(19)(14) 1.93(4)(7)(3)(0)
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Table VIII in all cases. In order to provide a fair compari-
son, we include an estimate of systematic errors for both
the perturbatively calculated and nonperturbatively com-
puted values. The largest source of uncertainty in the
lattice perturbation theory determinations is the error due
to neglected terms in the coupling-constant expansion of
Oð�2

SÞ and higher. In contrast, the largest source of uncer-

tainty in the nonperturbative determinations of cP and � is
heavy-quark discretization errors from neglected operators
in the action of Oða2p2Þ and higher (for m0a the uncer-
tainty in the lattice scale dominates). The good agreement
between lattice perturbation theory and the nonperturba-
tive tuning procedure suggests that one-loop mean-
field-improved lattice perturbation theory is sufficiently
reliable that it can be used in situations where the non-
perturbative matching factors are not available, such as in
our future computations of decay constants and mixing
matrix elements.

IV. BOTTOMONIUM MASS PREDICTIONS

Given the determinations of the RHQ parameters
described in the previous section, we can now make pre-
dictions for other states involving b-quarks, such as botto-
monium masses and splittings. Comparison of the results
with experiment then provides a check of the relativistic
heavy-quark framework and tuning methodology.

A. Heavy-heavy meson correlator fits

We extract the bottomonium meson masses from the
following zero-momentum meson two-point correlation
functions:

C �bbðt; t0Þ ¼
X
~y

hO�y
�bb
ð ~y; tÞ ~O�

�bbð~0; t0Þi; (23)

where O�
�bb
is the b �b meson interpolating operator for the

state with spin structure �,

O�
�bb
¼ �b�b: (24)

Table IX shows the interpolating operators used in the
computation of the bottomonium two-point functions.
Again, the tilde over the interpolating operator in Eq. (23)

denotes that the b-quark in the operator was generated with
a Gaussian-smeared source.
Plots of the effective energy, Eq. (19), for the bottomo-

nium correlators show that excited-state contamination is
significant for the choice of smearing that we used to
obtain the RHQ parameters. In fact, on the 323 ensembles
excited-state contamination appears to persist over the
entire time range up to the temporal midpoint of the lattice,
making a clean determination of the ground-state mass
difficult. We therefore choose to use a different smearing
for the b quarks in the bottomonium correlators than for
those in the bottom-strange correlators. We perform a
similar smearing study to that described for bottom-strange
states in Sec. III B. Figure 8 shows the � (vector) and
�b0 (scalar) meson effective masses on the aml ¼ 0:005
243 ensemble for several choices of the Gaussian
radius and values of the RHQ parameters fm0a; cP; �g ¼
f8:40; 5:80; 3:20g. The correlator generated with a b-quark
spatial wave function with rrms ¼ 0:137 fm has the longest
plateau with the earliest onset; we therefore choose to use
this spatial wave function to compute the bottomonium
masses and mass splittings on the 243 ensembles. We
perform an analogous smearing test on the aml ¼ 0:004
323 ensemble with RHQ parameters fm0a; cP; �g ¼
f3:70; 3:60; 2:20g. Again, we find that the Gaussian spatial
wave function with rrms ¼ 0:137 fm is best. Physically one

TABLE IX. Interpolating operators used to compute the �bb
two-point correlation functions. We average correlators over
equivalent directions for the vector, axial-vector, and tensor
states.

meson operator

�b �5

� �i

�b0 1

�b1 �i�5

hb �i�j
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FIG. 8 (color online). � (upper plot) and �b0 (lower plot)
effective mass for several choices for the Gaussian radius of
the b-quark in the heavy-light meson interpolating operator.
Results are shown for the aml ¼ 0:005 243 ensemble with
RHQ parameters fm0a; cP; �g ¼ f8:40; 5:80; 3:20g.
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expects a �bb meson to have a narrower spatial wave
function than a �bs meson, and this is consistent with our
observations. We find an optimal wave function that is
approximately half as wide as the bottomonium rms radius
rRichardsonrms ¼ 0:224ð23Þ fm computed from the Richardson
potential model [33].

Using the optimized b-quark smearing, we then compute
the bottomonium correlators, Eq. (23), on each ensemble
for the final set of seven RHQ parameters used in the
iterative tuning procedure. This enables us to propagate
the statistical uncertainties in the RHQ parameters from
the tuning procedure into our determinations of the botto-
monium masses and mass-splittings. We determine the
ground-state meson masses from constant fits to the effec-
tive mass. We observe similar excited-state contamination
in the �b and� states, so we choose a fit range that yields a
good correlated confidence level for fits to both effective
masses. Similarly, we use the same fit range for the �b0,
�b1, and hb states. Finally, because we do not expect any
significant sea-quark mass dependence, we use the same fit
range for all sea-quark ensembles with the same lattice
spacing. These constraints help to ensure that we are not
fooled by false plateaus due to fluctuations in the gauge
field, which will differ among uncorrelated ensembles.
Table X gives the fit ranges to determine the various meson
masses on the two lattice spacings. Figure 9 shows sample
bottomonium effective masses and mass splittings on the
aml ¼ 0:005 243 ensemble. Plots for other sea-quark
ensembles (including at the finer lattice spacing) and other
values of the RHQ parameters look similar.

B. Determination of bottomonium masses
and fine-structure splittings

We determine the predicted values of the bottomonium
masses at the tuned RHQ parameters using equations
similar to Eqs. (12)–(15),

MRHQ

bb
¼ JM 	

m0a

cP

�

2
664

3
775

RHQ

þ AM; (25)

where the 1	 3matrix JM and constant AM are determined
from a finite difference approximation of the derivatives:

JM ¼
�
M3 �M2

2�m0a

;
M5 �M4

2�cP

;
M7 �M6

2��

�
; (26)

AM ¼ M1 � JM 	 ½m0a; cP; ��T; (27)

andMi is the �bb meson mass measured on the ith parame-
ter set listed in Eq. (11). (Note that the values of Mi, JM,
and AM are different for each bottomonium state.) For
each jackknife set we use the values of the tuned RHQ
parameters fm0a; cP; �gRHQ determined on that jackknife
set, thereby preserving correlations between the three
parameters m0a, cP, and � . Hence the jackknife statistical
errors in the �bb meson masses determined via Eq. (25)
already include the uncertainty due to the statistical errors
in the tuned RHQ parameters.
The use of Eqs. (26) and (27) requires that we are in a

regime in which the bottomonium masses depend linearly
on the RHQ parameters. We test this assumption and
look for signs of curvature by computing the bottomonium
masses for three different boxes of seven parameters with
sizes ��fm0a;cP;�g, �2�fm0a;cP;�g, and �3�fm0a;cP;�g.
Figures 10 and 11 show the seven bottomonium masses
and splittings (M�b

, M�, M� �M�b
, M�b0

, M�b1
, M�b1

�
M�b0

, and Mhb) versus m0a, cP, and � on the aml ¼ 0:005

243 ensemble: plots for the aml ¼ 0:004 323 ensemble
look similar. The statistical errors in the �bb meson masses
are approximately ten times smaller than those of the
bottom-strange meson masses, and we can resolve a non-
linear dependence of the �bb meson masses on the RHQ
parameters within statistical errors. This curvature is most
pronounced in the hyperfine splitting M� �M�b

, and the

dependence is strongest upon the parameter � . The nonlinear
dependence ismild, however, within the region of parameter
space defined by the innermost box of parameters. Hence
we expect that the use of Eq. (25) in this region will lead to
only a small error in the bottomonium mass predictions.
Nevertheless, wewill include a systematic uncertainty in our
predictions for the bottomonium meson masses due to qua-
dratic and higher-order corrections to Eq. (25).
Once we have the results for the bottomonium masses

and mass splittings at fixed sea-quark mass and lattice
spacing, we must extrapolate to the physical light-quark
masses and the continuum limit. Because the �bb states
contain no valence light quarks, we expect only a weak
light-quark mass dependence and a correspondingly mild
chiral extrapolation. In practice, as shown in Table XI, we
do not observe any statistically significant dependence of
the observables on the light sea-quark masses at either
lattice spacing. We therefore compute the error-weighted
average of each mass and mass splitting over the different
sea-quark ensembles at the two lattice spacings.
Because the domain-wall fermion action is

OðaÞ-improved, the leading lattice discretization effects
from the light-quark and gluon sector are proportional to
a2. With the relativistic heavy-quark formalism, heavy-quark

TABLE X. Time ranges used in plateau fits of the bottomo-
nium effective masses. We use different ranges for the �b and �
states than for the � and h states, but use the same range for all
sea-quark masses at a given lattice spacing.

fit range

�b & � �b0, �b1, & hb

a � 0:11 fm [15, 30] [4, 12]

a � 0:086 fm [13, 30] [7, 20]
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discretization errors depend on the lattice spacing as
unknown functions ofm0a [with coefficients ofOð1Þ] whose
behavior is only known in the asymptotic limits of very
large and very small m0a; hence they do not have to scale
as a2. As discussed in the following section, however, we
estimate that gluon discretization errors in the bottomo-
nium masses are larger than both light-quark and heavy-
quark discretization errors, and consequently dominate the

scaling behavior of the masses. We therefore extrapolate
the bottomonium masses to the continuum linearly in a2 in
order to remove gluon discretization errors. We estimate
the remaining systematic uncertainty from heavy-quark
discretization errors using power-counting, discussed
below. Figure 12 shows the continuum extrapolation of
the five bottomonium masses along with the experimen-
tally measured values for comparison.
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FIG. 9 (color online). Bottomonium masses and mass splittings on the aml ¼ 0:005 243 ensemble with RHQ parameters
fm0a; cP; �g ¼ f8:40; 5:80; 3:20g. The meson states shown in each plot are specified in the legend. For each plot the shaded horizontal
band shows the fit range used and the fit result with jackknife statistical errors.
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In contrast, light-quark and gluon discretization errors
largely cancel in the fine-structure splittings, so the scaling
behavior is dominated by the heavy-quark discretization
errors. With data at only two lattice spacings, however, we
cannot resolve quadratic or more complicated m0a depen-
dence. We therefore choose not to extrapolate the fine-
structure splittings, and instead quote the results obtained

on the finer 323 ensembles as our central values. Again, we
estimate the residual systematic uncertainty from heavy-
quark discretization errors using power-counting.

C. Estimation of systematic errors

We now discuss the sources of systematic uncertainty
in the bottomonium masses and splittings. Table XII
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FIG. 10 (color online). Bottomonium masses versusm0a (upper plots), cP (center plots), and � (lower plots) on the aml ¼ 0:005 243

ensemble. The meson states shown in each plot are specified in the legend. The solid vertical lines with shaded gray error bands denote
the tuned values of the RHQ parameters with jackknife statistical errors. For each quantity, the dashed line in the same color as the
plotting symbol shows the dependence on the RHQ parameters calculated from Eqs. (25)–(27).
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presents the total statistical and systematic error budget for
each quantity.

1. Statistics

We propagate the statistical errors through the entire
multistep analysis procedure via a single-elimination jack-
knife procedure. Hence the statistical errors include the

uncertainty due to the statistical errors in the tuned RHQ
parameters, including correlations betweenm0a, cP, and � .

2. Heavy-quark discretization errors

The RHQ action gives rise to nontrivial lattice-spacing
dependence in physical quantities in the region m0a� 1.
Thus, instead of including additional functions of m0a in
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FIG. 11 (color online). Bottomonium mass splittings versus m0a (upper plots), cP (center plots), and � (lower plots) on the
aml ¼ 0:005 243 ensemble. The hyperfine splitting M� �M�b

is shown on the left and the splitting M�b1
�M�b0
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right. The solid vertical lines with shaded gray error bands denote the tuned values of the RHQ parameters with jackknife statistical
errors. For each quantity, the dashed line shows the dependence on the RHQ parameters calculated from Eqs. (25)–(27).
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the combined chiral-continuum extrapolation, we estimate
the size of discretization errors from the heavy-quark
sector with power-counting. We follow the method out-
lined by Oktay and Kronfeld in Ref. [34], in which they
outline a general framework that applies to both heavy-
heavy and heavy-light systems.

We consider a nonrelativistic description of the heavy-
quark action because both the lattice and continuum theo-
ries can be described by effective Lagrangians built from
the same operators. Discretization errors arise due to
mismatches between the short-distance coefficients of
higher-dimension operators in the two theories. More pre-
cisely, for each operator Oi in the heavy-quark effective
Lagrangian, the associated discretization error is given by

errorHQ
i ¼ ðClati � Cconti ÞhOHQ

i i: (28)

The ‘‘mismatch functions’’ fi � Clati � Cconti are functions
of the parameters of the lattice heavy-quark action. They
have been calculated at tree level for the anisotropic clover-
improved Wilson action in Ref. [34]. The operators Oi in
Eq. (28) specify the Oða2Þ errors present in the heavy-
quark action and their expectation values hOii depend on
the physical quantity of interest. When the sizes of opera-
tors in the heavy-quark action are estimated with power-
counting appropriate to heavy-light meson systems, this
framework leads to HQET. Similarly, when the sizes of
operators in the nonrelativistic heavy-quark action are
estimated with power-counting suitable for heavy-heavy
meson systems, it leads to NRQCD.

We consider two sources of heavy-quark discretization
errors in the bottomonium system. The first is directly from
operators that contribute to bottomonium masses and fine-
structure splittings. The second is indirect contributions
from discretization errors in the RHQ parameters; these are
due to heavy-quark discretization errors in the Bs and B�

s

energies used in the tuning procedure. We discuss each
source briefly in turn and present the final error estimates
here. Details are provided in Appendices A, B, and C.

To estimate the ‘‘direct’’ heavy-quark discretization
errors, we compute the values of the mismatch functions

for our lattice simulation parameters and estimate the sizes
of the matrix elements of the higher-dimension operators
Oi in Eq. (28) with power-counting appropriate to heavy-
heavy meson systems. We use a�1 ¼ 2:281 GeV [10],
which is the lattice scale on our finer 323 ensembles, and
mb ¼ 4:2 GeV [29]. The RHQ parameters on the 323

lattices are given by fm0a; cP; �g ¼ f3:99; 3:57; 1:93g. We
also need an estimate for the b-quark velocity v in the �bb
mesons. Following Ref. [2], we expect that the mass dif-
ference between the �ð1SÞ and �ð2SÞ states, which is
roughly 500MeV, should be of the same size as the average
kinetic energy, E�mbv

2. Taking the quark mass to be half
the meson mass gives an estimate for the b-quark velocity
squared of v2 � 0:1.
The numerical estimates of the relevant mismatch func-

tions are given in Appendix A. Because the b quarks in the
�bb mesons are nonrelativistic, we estimate the size of
operators using the ‘‘NRQCD’’ power-counting formu-
lated in Ref. [3]:

~D�mbv; g ~E�m2
bv

3;

g ~B�m2
bv

4; g2 � v;
(29)

where the expansion parameter v is the spatial velocity of
the b quarks. Thus, in NRQCD, an operator’s numerical
importance is determined by the order in the heavy-
quark velocity v, rather than the dimension. Within the
NRQCD power-counting framework, b �bmeson masses are
approximately M� 2mb, generic mass splittings such as
M�ð2SÞ �M�ð1SÞ are �mbv

2, and fine-structure split-
tings such as the hyperfine, spin-orbit, and tensor splittings
are �mbv

4.
In the RHQ approach we tune the coefficients of the

dimension-five operators in the Symanzik effective theory
nonperturbatively; hence the leading heavy-quark discre-
tization errors come from operators of dimensions six and
seven in the Symanzik effective theory (or alternatively
the heavy-quark effective Lagrangian) that are omitted
from the lattice action. The dominant errors in the b �b
meson masses come from operators that are of Oðv4Þ in
the NRQCD power-counting. In Appendix B, we estimate

TABLE XI. Bottomonium masses and mass splittings on the five sea-quark ensembles and averaged for each lattice spacing. For the
masses, we extrapolate the results on the two lattice spacings to the continuum limit linearly in a2 as described in the text. Errors shown
are statistical only, but include the uncertainty due to the statistical errors on the tuned RHQ parameters.

a � 0:11 fm a � 0:086 fm continuum

mass [MeV] aml ¼ 0:005 aml ¼ 0:01 average aml ¼ 0:004 aml ¼ 0:006 aml ¼ 0:008 average

M�b
9328(14) 9327(18) 9328(11) 9326(18) 9341(15) 9347(18) 9338(10) 9350(33)

M� 9367(14) 9367(17) 9367(11) 9379(16) 9388(13) 9395(16) 9388(9) 9410(30)

M� �M�b
38.8(2.3) 40.6(2.5) 39.6(1.7) 53.1(3.0) 47.3(2.4) 48.2(3.4) 49.2(1.6) —

M�b0
9853(15) 9848(18) 9851(12) 9816(19) 9836(15) 9837(20) 9831(10) 9808(35)

M�b1
9884(15) 9882(19) 9883(12) 9853(19) 9873(15) 9875(20) 9868(10) 9851(35)

M�b1
�M�b0

31.2(1.8) 33.5(2.0) 32.3(1.3) 37.8(2.7) 36.6(2.2) 38.8(2.6) 37.5(1.4) —

Mhb 9895(16) 9894(19) 9895(12) 9866(19) 9884(16) 9887(21) 9879(10) 9862(36)
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the size of their contributions to bottomonium masses to be
�0:34%. Contributions from operators of Oðv4Þ cancel in
the fine-structure splittings, such that the dominant errors
come from operators that are of Oðv6Þ. In Appendix B,
we estimate the size of their contributions to hyperfine split-
tings to be�32% and to �-state splittings to be�43%. The
errors in the hyperfine splittings are smaller because they

only come from operators containing the term ~� � ~B (and

permutations thereof), where ~B is the chromomagnetic field.
To estimate the ‘‘indirect’’ heavy-quark discretization

errors from the bottom-strange mesons used in the RHQ
tuning procedure, we use the same values of the mismatch
functions but estimate the sizes of operator matrix ele-
ments with power-counting appropriate to heavy-light
meson systems. We consider separately heavy-quark

discretization errors in the three input quantities: the
spin-averaged rest mass �MBs

, the hyperfine splitting

�MBs
, and the ratio of rest-to-kinetic masses M

Bs

1 =M
Bs

2 .

The b-quarks in B hadrons typically carry a spatial
momentum j ~pj � �QCD, the scale of the strong interac-

tions. Therefore we estimate the size of operators using
HQET power-counting, which in the continuum is an
expansion in j ~pj=mb. The lattice introduces an additional
scale, a. Following Ref. [34], we therefore expand in
powers of �, where � is either of the small parameters

�� a�QCD; �QCD=mQ: (30)

Within the HQET power-counting framework, �bl meson
masses are approximatelyM�mb and hyperfine splittings
are ��2

QCD=2mb.

0.000 0.005 0.010 0.015
9.30

9.35

9.40

9.45

9.50

ϒ

η
b

exp.

a = 0

ml
sea

 = 0.004

ml
sea

 = 0.006

ml
sea

 = 0.008

ml
sea

 = 0.005

ml
sea

 = 0.010

a2 [fm2]

M
 [G

eV
]

0.000 0.005 0.010 0.015
9.75

9.80

9.85

9.90 χ
b1

χ
b0

a2 [fm2]

M
 [G

eV
]

0.000 0.005 0.010 0.015
9.75

9.80

9.85

9.90 h
b

a2 [fm2]

M
 [G

eV
]

FIG. 12 (color online). Continuum extrapolation of bottomonium masses and mass splittings. Upper left plot:� (filled blue symbols)
and �b (open red symbols) masses versus squared lattice spacing. Upper right plot: �b1 (open green symbols) and �b0 (filled pink
symbols) masses versus squared lattice spacing. Lower plot: hb mass versus squared lattice spacing. On each plot the two lattice
spacings a � 0:086 fm and a � 0:11 fm are indicated by vertical black dash-dotted lines. Data points at different light sea quark
masses but the same lattice spacing are shown with an offset for clarity. The average values at each lattice spacing are given as shaded
error bands in the same color as the symbols, and a linear extrapolation in a2 of the averaged values leads to the continuum limit results
denoted by circles. On the data points we show statistical errors only. On the continuum-extrapolated values we denote the statistical
errors with solid error bars and the total statistical plus systematic errors with additional dashed error bars. For comparison we show the
experimentally measured values as stars.
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As for the estimates above, we use the lattice-spacing
and RHQ parameters on the 323 ensembles along with the
experimentally measured b-quark mass. We also need an
estimate for the b-quark momentum �QCD in the heavy-

strange mesons. We choose�QCD ¼ 500 MeV because fits

to moments of inclusive B-decays using the heavy-quark
expansion suggest that the typical QCD scale that enters
heavy-light quantities tends to be larger than for light-light
quantities [35].

The dominant errors in the Bs and B
�
s meson rest masses

come from operators that are ofOð�2Þ in the HQET power-
counting. In Appendix C, we estimate the size of their

contributions to MBð�Þ
s

1 to be �0:05%. This is comparable

to the size of the statistical errors in the effective masses
computed in our numerical simulations (see the example
fits in Fig. 4). As can be seen from Fig. 6, such a small
variation in the spin-averaged mass leads to a statistically
negligible shift in the tuned value of m0a (i.e., well within
the vertical gray error band). Hence we neglect heavy-
quark discretization effects in �MBs

when determining the

size of heavy-quark discretization errors in the tuned RHQ
parameters.

The dominant errors in the Bs hyperfine splitting come
from operators that are of Oð�3Þ in the HQET power-
counting. In Appendix C, we estimate the size of their
contributions to �MBs

to be�4:4%. This is approximately

twice as large as the statistical errors in the hyperfine
splittings computed in our numerical simulations. As can
be seen from Fig. 6, a variation of this size leads to a
statistically significant shift in the tuned value of cP, so we
must propagate it to an uncertainty in the tuned RHQ
parameters. We estimate this error by varying the value of
�MBs

used in the RHQ parameter-tuning procedure by

�4:4% and then recomputing the bottomonium masses and
mass splittings. For each mass or mass splitting we take the
largest variation observed on any of the sea-quark ensembles.
Wefind that a�4:4% error�MBs

leads to a�0:0–0:1% error

in the bottomonium masses, a�8:8% error in the hyperfine
splitting, and a�6:2% error in the �-state splittings.

Discretization errors in the Bs kinetic meson mass arise
from both the constituent quarks’ kinetic energies and the

binding energy. In Appendix C, we estimate their size to be
�2:6% following the method of Ref. [17]. This is compa-
rable to the size of the statistical errors in the Bs meson
kinetic masses computed in our numerical simulations (see
the example fits in Fig. 5). As can be seen from Fig. 6,
a variation of this size leads to a statistically significant
shift in the tuned value of � , so we must propagate it to an
uncertainty in the tuned RHQ parameters. To estimate the
resulting error we follow the same procedure as described
above for the discretization errors in the hyperfine splitting.

We find that a �2:6% error MBs

1 =MBs

2 leads to a

�0:1–0:2% error in the bottomonium masses, a �3:6%
error in the hyperfine splitting, and a �1:0% error in the
�-state splittings.
To obtain the total heavy-quark discretization errors in

the bottomonium masses and mass splittings, we add
the direct errors and the indirect errors in quadrature.
Numerically, the indirect errors due to discretization errors
in the RHQ parameters turn out to be smaller than the direct
errors for the �bb-meson masses, and significantly smaller
than the direct errors for the fine-structure splittings.

3. Light-quark and gluon discretization errors

We estimate the size of light-quark and gluon discreti-
zation errors following the same approach as described for
heavy-quark errors in the previous subsection. In this case,
the dimension-six and higher-order light-quark and gluon
operators in the Symanzik effective Lagrangian have no
counterpart in the continuum QCD Lagrangian. [There are
no dimension-five operators because both the light-quark
and gluon actions are OðaÞ-improved.] Thus the coeffi-
cients of the continuum operators in the ‘‘mismatch func-
tions’’ defined in Eq. (28) are Cconti ¼ 0. Further, the
coefficients of the lattice operators are not expected to be
suppressed by any powers of the heavy-quark mass 1=mQ.

Thus we take them to be Clati ¼ 1. The light-quark and
gluon discretization errors are then given by expectation
values of light-quark and gluon operators between heavy-
heavy ( �QQ) meson states, i.e.,

error
LQ;g
i ¼ hOLQ;g

i i; (31)

TABLE XII. Error budget for bottomonium masses and mass splittings. The estimates of the
size of each systematic uncertainty are given in the main text. Each error is given as a
percentage, and we obtain the total systematic uncertainty by adding the individual systematic
uncertainties in quadrature. Errors that were considered but were found to be negligible (i.e.,
light-quark and gluon discretization errors, strange-quark mass uncertainty, and linear approxi-
mation) are not shown.

M�b
M� M�-M�b

M�b0
M�b1

M�b1
-M�b0

Mhb

statistics 0.4 0.3 3.3 0.4 0.4 3.7 0.4

discretization errors 0.4 0.3 47.3 0.4 0.4 55.2 0.4

input scale uncertainty 0.2 0.2 3.2 0.1 0.1 1.0 0.1

experimental inputs 0.0 0.1 6.2 0.0 0.0 4.3 0.0

total systematic 0.4 0.4 47.8 0.4 0.4 55.4 0.4
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where we estimate their size using the NRQCD power-
counting, Eq. (29).

The largest discretization errors in bottomonium masses
from the light-quark and gluon sector will arise from
operators with only gluons. This is because any operators
containing light-quark fields must extract light quarks from
the sea, and their expectation values between �QQ meson
states will be suppressed relative to contributions from
purely gluonic operators by at least �s � v. A typical
dimension-six gluon operator in the Symanzik effective
Lagrangian is

Oglue ¼ tr½F��D
2F���: (32)

Within the NRQCD power-counting we expect its size
to be

hOglueiNRQCD � a2m3
bv

4; (33)

where two powers of mv come from the derivative opera-
tors, and we estimate the size of F2 to be the typical kinetic
energymv2. On the 243 (323) ensembles the corresponding
errors in the bottomonium masses are

errorglue � a2m3v4=2mb ¼ 3:0%ð1:7%Þ; (34)

which are several times larger than the estimated sub-
percent contributions of heavy-quark discretization errors.
Thus we conclude that, for bottomoniummasses, theOða2Þ
light-quark and gluon discretization errors will dominate
the scaling behavior, and we can remove them by extrap-
olating to the continuum limit in a2. The statistical errors in
the continuum-limit values reflect the uncertainty on the
slope in a2.

Contributions from light-quark and gluon operators to
the bottomonium fine-structure splittings are comparable
to the heavy-quark discretization errors estimated in the
previous section. The dimension-six light-quark and gluon
operators in the Symanzik effective Lagrangian are not
explicitly spin-dependent [34,36]. Therefore the matrix ele-
ments of these operators between ground-state �bb mesons
with different spins will only differ due to the different light-
quark and gluonic wave functions of the two spin states. The
gluon field varies with the meson spin at Oðv2Þ [37]. Using
the size of a typical gluon operator expectation value from
Eq. (33) above, we estimate the uncertainty in the fine-
structure splittings from light-quarks and gluons to be

errorglue � v2 	 a2m3
bv

4=mbv
4 ¼ 34% (35)

on the finer 323 ensembles. We add this error in quadrature
to the heavy-quark discretization error estimate from
Sec. IVC2 to obtain the total discretization error given in
Table XII.

4. Input strange-quark mass

We tune the parameters of the RHQ action from the
bottom-strange system using the determination of the bare

strange-quark mass on the two lattice spacings from RBC/
UKQCD’s analysis of the light-pseudoscalar meson sector
in Ref. [10]. Hence the uncertainty in the bare strange-
quark mass leads to a systematic error in the RHQ parame-
ters, and consequently in the bottomonium masses and
mass splittings. We estimate this error by varying the
valence strange-quark mass in the Bs and B�

s meson corre-
lators used for the tuning procedure, Eqs. (16) and (17),
and then recomputing the bottomonium masses and mass
splittings.
Figure 13 shows the dependence of the meson masses

and mass splittings on the valence strange-quark mass used
to tune the parameters of the RHQ action on the aml ¼
0:005 243 ensemble. The results at the three strange-quark
mass values are consistent within statistical error, and
analogous plots on the aml ¼ 0:004 323 ensemble look
similar. Because the � 1:2% uncertainty in ms leads to a
0.1% or less change in the bottomoniummasses and a 0.3%
or less change in the mass splittings, we can safely neglect
its effect from our error budget.

5. Input scale uncertainty

At first glance, the value of the lattice spacing in physi-
cal units enters the computation of the bottomonium
masses and mass splittings in two ways. It first enters
indirectly through the parameters of the RHQ action,
which we tune by matching the values of the Bs and B�

s

meson masses obtained on the lattice to the experimentally
measured values from the PDG [29]. It then enters directly
when we convert the lattice values of the bottomonium
masses and mass splittings into GeV in order to compare
with experiment. In fact, however, the RHQ-parameter
tuning procedure allows us to avoid this second source of
scale uncertainty. This is because our lattice calculation of
the mass M �bb of a

�bb meson gives directly the dimension-
less ratio M �bb=MBs

at the tuned values of the RHQ

parameters fm0a; cP; �g without further reference to the
lattice scale. By construction, at the tuned point the
Bs-meson mass is fixed to the experimentally measured
value; hence we can precisely obtain the bottomonium
mass or mass splitting in GeV by multiplying the ratio
by MBs

¼ 5:3366 GeV [29]. We therefore need only con-

sider the implicit dependence on the lattice spacing due to
the RHQ parameters when estimating the scale uncertainty
in the �bb-meson masses.
The absolute lattice scale (a�1) has a quoted statistical

error of �1% (1.5%) on the 323 (243) lattices [10], where
the errors on the two lattice spacings are highly correlated
because they come from a single fit to data at both lattice
spacings. We estimate the corresponding error in the bot-
tomonium states by varying the lattice scale a�1 used in the
RHQ parameter tuning procedure by plus and minus a
statistical sigma on each sea-quark ensemble. For each
bottomonium mass or mass splitting, we then take the
largest variation on any of the ensembles to be the error
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due to the uncertainty in the lattice scale. We find that the
resulting uncertainty in the meson masses is 0.2% or less,
and in the mass splittings is�1–3%; these errors are given
in Table XII.

6. Experimental inputs

We tune the parameters of the RHQ action by using
the experimental measurements of the spin-averaged Bs

meson mass and hyperfine splitting. The Bs and B�
s meson

masses are both known to sub-percent precision [29], so
the experimental error in �MBs

contributes a negligible

uncertainty to the tuned values of the RHQ parameters.
The experimental error in the hyperfine splitting �MBs

¼
49:0ð1:5Þ MeV [29], however, is �3:1% and cannot be
neglected. We estimate the error in the bottomonium
masses and mass splittings due to the experimental uncer-
tainty in the Bs meson hyperfine splitting by varying the
value of �MBs

used in the RHQ tuning procedure by plus

and minus 1.5 MeV. For each bottomonium mass or mass
splitting, we then take the largest variation on any of the
ensembles to be the corresponding error. We find that the
resulting uncertainty in the meson masses is 0.1% or less,
and in the mass splittings is�4–6%; these errors are given
in Table XII.

7. Linear approximation

We interpolate to the tuned values of the RHQ parame-
ters assuming a linear dependence upon fm0a; cP; �g.
Hence any deviation from linearity must be accounted
for in the systematic error budget. In practice, as shown
in Fig. 6, we do not see any statistically significant devia-
tion from linearity for the heavy-strange states over a wide
range of RHQ parameters. Nor do we observe any statis-
tically significant curvature for the � states or the hb (see
the right-hand plots in Fig. 10). Thus the systematic
uncertainty in the � states and the hb due to nonlinear
dependence upon the RHQ parameters is negligible. We
can resolve nonlinear dependence of � and �b meson
masses and the hyperfine splitting within the statistical
errors in the measured effective masses, as shown in
Figs. 10 and 11. The statistical errors in these data points,
however, are almost two orders of magnitude smaller than
the statistical errors in the � and �b meson masses and the
hyperfine splitting interpolated to the tuned RHQ parame-
ters given in Table XI; this is because the interpolated
values include the uncertainty due to the statistical errors
in fm0a; cP; �g. Hence we conclude that the systematic
error due to deviations from linearity is negligible for all
bottomonium quantities considered here.

V. RESULTS AND CONCLUSIONS

The relativistic heavy-quark formalism enables the
description of systems involving b-quarks, such as
B-mesons and bottomonium states, on currently available
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FIG. 13 (color online). Bottomonium masses and mass split-
tings versus the valence strange-quark mass in the bottom-
strange meson correlators used to tune the parameters of the
RHQ action. Results are shown for the aml ¼ 0:005 243 en-
semble. The meson states shown in each plot are specified in the
legend. For each quantity, the thicker line in the same color as
the plotting symbol is an uncorrelated linear fit used to obtain the
slope �M �bb=�ms. The vertical solid line with gray error band
denotes the value of the physical strange-quark mass obtained in
Ref. [10]. For each quantity, the two horizontal dashed lines
show where the linear fit crosses the edges of the error band,
thereby indicating the error due to the uncertainty in the strange-
quark mass.
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lattice spacings with lattice discretization errors from the
heavy-quark sector of the same size as those from the light-
quark sector. We have determined the b-quark parameters
for the RHQ action on the RBC/UKQCD 2þ 1-flavor
domain-wall lattices with lattice spacings a � 0:11 fm
and a � 0:08 fm. This is a continuation of and improve-
ment upon the work of Li and Peng, who each presented
preliminary results for B-mesons and bottomonium at
conferences [11,12].

In this work we tune the three parameters fm0a; cP; �g
using the bottom-strange system, where discretization
errors are expected to be of Oð½ ~pa�2Þ with j ~pj � �QCD.

We obtain the parameters nonperturbatively by imposing
three simple conditions: that the masses of the Bs and B�

s

mesons agree with the experimental measurements, and
that the Bs meson on the lattice obey the continuum
relativistic dispersion relation E2 ¼ ~p2 þM2. We then

test the reliability of the tuned parameters and the validity
of the relativistic heavy-quark approach by making pre-
dictions for the masses and mass splittings of several
bottomonium states.
As shown in Fig. 14 and Table XIII, we obtain botto-

monium masses with �0:5–0:6% total uncertainties and
mass splittings with�45–55% uncertainties, and find good
agreement between our predicted values and experiment
for all the quantities that we study. In fact, the preliminary
work of Li successfully predicted the mass of the hb meson
[11] before it was first observed by the Belle Collaboration
[42], thereby lending further credence to the relativistic
heavy-quark formalism. We also find agreement with cal-
culations of M�b

, the hyperfine splitting M� �M�b
, and

Mhb using the NRQCD formalism for the b-quark [24,43]

and with a calculation of the hyperfine splitting using the
Fermilab formalism [39]. Both the HPQCD and Fermilab/
MILC works use the MILC Collaboration’s gauge configu-
rations with 2þ 1 flavors of Asqtad-improved staggered
sea quarks [44]: our study of �bb meson spectroscopy using
three flavors of dynamical domain-wall light quarks pro-
vides a fully independent check of these results. Although
the calculation by Meinel [24] uses the same RBC/
UKQCD domain-wallþ Iwasaki configurations as in this
paper, our result is still largely independent of his work
because statistical errors (which are somewhat correlated
between the two results) are not the primary source of
uncertainty.
Given the successful predictions of the bottomonium

states, we now plan to use the nonperturbatively tuned
parameters of the RHQ action to calculate B-meson
weak matrix elements of interest to flavor physics phe-
nomenology. We are currently computing the leptonic
decay constants fB and fBs

and the neutral B0 � �B0 mixing

parameters [45]. These calculations are particularly timely
given the observed approximately 3� tension in the CKM
unitarity triangle [46–49] which currently favors the pres-
ence of new physics in Bd-mixing or B ! �� decays.
Eventually we would also like to use the RHQ framework
to calculate more challenging quantities such as B ! �‘�

and B ! Dð�Þ‘� semileptonic form factors, which are
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FIG. 14 (color online). Comparison of predicted bottomonium
masses (left panel) and mass splittings (right panel) with experi-
ment. For the bottomonium masses we extrapolate the results on
the two lattice spacings to the continuum linearly in a2, whereas
for the fine-structure splittings we take the results on the finer
323 ensembles as our central value. The solid error bars on the
data points show the statistical errors. For our preferred results,
we also show the systematic errors added in quadrature as
dashed error bars.

TABLE XIII. Comparison of predicted bottomonium masses and mass splittings with experiment and, where possible, with other
2þ 1-flavor lattice calculations. The HPQCD and Meinel calculations use the NRQCD action for the b-quarks [3], while the Fermilab/
MILC calculation uses the Fermilab action [4]. For our results, the first error is statistical and the second is systematic; for the other
results we add the errors in quadrature and quote the total. All results are given in MeV.

this work Experiment HPQCD [38] Fermilab/MILC [39] Meinel [24]

M�b
9350(33)(37) 9390.9(2.8) [29] 9390(9) 9400.0(7.7)

M� 9410(30)(38) 9460.30(26) [29]

M�-M�b
49(02)(23) 69.3(2.8) [29] 70(9) 54:0

�þ12:5
�12:4

�
60.3(7.7)

M�b0
9808(35)(39) 9859.44(52) [29]

M�b1
9851(35)(39) 9892.78(40) [29]

M�b1
-M�b0

38(01)(21) 33.3(5) [40]

Mhb 9862(36)(39) 9899.1(1.1) [41] 9905(7) 9899.8(1.0)
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needed to extract the CKM matrix elements jVubj and
jVcbj, respectively, from exclusive channels. Like the
Fermilab interpretation, our relativistic heavy-quark for-
malism applies to any value of the quark mass, and allows
for a continuum limit. (This is in contrast to the NRQCD
formalism, for which errors increase away from the infinite
heavy-quark limit.) Hence the same framework can be used
for charm quarks, which are neither particularly heavy
compared to �QCD nor light enough to be treated with a

standard lattice light-quark formulation with OðmcaÞ2
errors that are well-controlled. Treatment of both b- and
c-quarks within the same framework allows for further tests
of the methodology. We therefore also plan to tune the
parameters of the relativistic heavy-quark action for charm
quarks, such that we can compute the leptonic decay con-
stants fD and fDs

, as well as other weak matrix elements

such as the short-distance contribution toD0 � �D0 mixing.
This work demonstrates the validity of the relativistic

heavy-quark action on bottom systems and opens a practical
approach to obtain bottom and charmweakmatrix elements
with high precision given the computer resources currently
available. Lattice QCD calculations of heavy-light weak
matrix elements provide critical inputs to theCKMunitarity
triangle analysis. Hence determinations with a variety of
methods and independent sources of systematic uncertainty
will be essential to definitively uncovering new physics in
the flavor sector. Use of the relativistic heavy-quark formal-
ism for b-quarks on the RBC/UKQCD dynamical domain-
wall lattices will provide phenomenologically important,
independent determinations of key heavy-light weakmatrix
elements with comparable errors to other methods.
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APPENDIX A: HEAVY-QUARK
MISMATCH FUNCTIONS

In this section we collect the forms of the mismatch
functions used to estimate the size of heavy-quark

discretization errors in heavy-heavy and heavy-light sys-
tems for the RHQ action.
For each operator in the heavy-quark effective

Lagrangian, the ‘‘mismatch function’’ is defined as the
difference between the short-distance coefficients in the
lattice and continuum theories. Hence the mismatch func-
tions depend upon the parameters of the lattice action. The
mismatch functions have been calculated at tree level for
the anisotropic clover-improvedWilson action in Ref. [34],
but we present them here for completeness. Although
Oktay and Kronfeld derive general expressions for cE �
cB and rs � 1 and include dimension-six and higher-order
operators in the lattice action, here we show the mismatch
functions specific to the RHQ action. We obtain these
expressions from those in Ref. [34] by setting cE ¼ cB ¼
cP=� and rs ¼ 1, and setting the coefficients of the
dimension-six and higher-order operators to zero.
There are five relevant tree-level mismatch functions

that enter our estimates of heavy-quark discretization
errors

fEðm0a; cP; �Þ ¼ 1

8m2
Ea

2
� 1

8m2
2a

2
; (A1)

The first is where

1

m2a
¼ 2�2

m0að2þm0aÞ þ
�

1þm0a
; (A2)

1

4m2
Ea

2
¼ �2

½m0að2þm0aÞ�2
þ �cP

m0að2þm0aÞ : (A3)

The function fE vanishes when the ‘‘chromoelectric mass’’
mE equals the b-quark’s kinetic mass m2. The second tree-
level mismatch function is

fw4
ðm0a; cP; �Þ ¼ 1

6
w4; (A4)

where

w4 ¼ 2�2

m0að2þm0aÞ þ
rs�

4ð1þm0aÞ : (A5)

The short-distance coefficient w4 multiples the Lorentz-
symmetry-violating p4

i term in the lattice b-quark’s
energy-momentum dispersion relation; hence the mis-
match function fw4

vanishes when w4 ¼ 0. The third

tree-level mismatch function is

fm4
ðm0a; cP; �Þ ¼ 1

8m3
4a

3
� 1

8m3
2a

3
; (A6)

where

1

m3
4a

3
¼ 8�4

½m0að2þm0aÞ�3
þ 4�4 þ 8�3ð1þm0aÞ

½m0að2þm0aÞ�2

þ �2

ð1þm0aÞ2
: (A7)
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The short-distance coefficient 1
m3

4
a3

multiplies the ð ~p2Þ2
term in the b-quark’s energy-momentum dispersion rela-
tion, so the mismatch function fm4

vanishes when m4 ¼
m2. The fourth tree-level mismatch function is

fw0
B
ðm0a; cP; �Þ ¼ 1

12
w0

B; (A8)

where

w0
B ¼ cP

1þm0a
: (A9)

The coefficient w0
B leads to a spin-dependent contribution

to the lattice quark-gluon vertex, so the mismatch function
fw0

B
vanishes when w0

B ¼ 0. The fifth tree-level mismatch

function is

fmB0 ðm0a; cP; �Þ ¼ 1

4m3
B0a3

� 1

4m3
2a

3
; (A10)

where

1

m3
B0a3

¼ 1

m3
4a

3
� �2 � �cP

ð1þm0aÞ2
: (A11)

The function fmB0 vanishes when m4 ¼ m2 (as above) and

cP ¼ � .
To estimate the size of heavy-quark discretization errors

in our numerical simulations, we evaluate the mismatch
functions in Eqs. (A1), (A4), (A6), (A8), and (A10)
at the tuned values of the RHQ parameters given in
Tables V and VI. For the 243 ensembles we use
fm0a; cP; �g ¼ f8:45; 5:8; 3:10g and for the 323 ensembles
we use fm0a; cP; �g ¼ f3:99; 3:57; 1:93g. The results are
presented in Table XIV. Because the size of the heavy-
quark discretization errors is sensitive to the numerical
values of the tree-level mismatch functions, we have also
tried evaluating Eqs. (A1), (A4), (A6), (A8), and (A10) at
the tree-level values of the RHQ parameters fm0a; cP; �g.
We find that the results are similar to those in Table XIV.
We therefore conclude that the mismatch functions given
in Table XIV reflect the typical size of such coefficients for
our simulations, and use them for estimating the heavy-
quark discretization errors in the following appendices.

APPENDIX B: DISCRETIZATION ERRORS
IN HEAVY-HEAVY MESON MASSES AND

FINE-STRUCTURE SPLITTINGS

In this section we estimate the size of heavy-quark
discretization errors in heavy-heavy mesons and fine-
structure mass splittings using the framework described
in Sec. IVC 2. To estimate the numerical size of the
operator matrix elements, we use the NRQCD power-
counting given in Eq. (29), and for the size of the
coefficients we use the mismatch functions on the 323

ensembles given in Table XIV.

1. Masses

Here we consider operators ofOðv4Þ, which produce the
dominant discretization errors in bottomonium masses.
Oktay and Kronfeld enumerate all dimension-six and -seven
bilinear operators in the heavy-quark effective Lagrangian
consistent with symmetries in Table III of Ref. [34]. We do
not need to consider contributions from dimension-eight
bilinears because they will be of Oðv6Þ or higher.

a. Oða2Þ errors
There are two dimension-six bilinears that are of Oðv4Þ

in the NRQCD power-counting:

�hf� �D;� �Egh; (B1)

�h�4ðD �E�E �DÞh: (B2)

The expected size of these operators is

hOEiNRQCD � a2m3
bv

4: (B3)

At tree level the coefficients of these operators are both
equal to fE, [Eq. (A1)]. We therefore estimate the contri-
bution to the error from each of these operators to be

errorE ¼ fEhOEiNRQCD=2mb � 0:15%; (B4)

where we obtain the relative error in the b �b meson masses
by dividing by 2mb, the size of the meson masses in the
NRQCD power-counting.

b. Oða3Þ errors
There are two dimension-seven bilinears that are also of

Oðv4Þ in the NRQCD power-counting:

�hD4
i h; (B5)

�hðD2Þ2h; (B6)

and the expected size of these operators is

hO4iNRQCD � a3m4
bv

4: (B7)

At tree level the mismatch function for the first operator is
given by fw4

[Eq. (A4)], so we estimate its contribution to

the error in �bb meson masses to be

TABLE XIV. Tree-level mismatch functions for the nonpertur-
batively tuned parameters of the RHQ action on the 243 and 323

ensembles.

fE fw4
fm4

fw0
B

fmB0

a � 0:11 fm 0.0640 0.0499 0.0353 0.0505 0.0934

a � 0:086 fm 0.0864 0.0681 0.0521 0.0596 0.1359
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errorw4
¼ fw4

hO4iNRQCD=2mb � 0:21%: (B8)

The tree-level mismatch function for the second operator is
given by fm4

[Eq. (A6)], so we estimate its contribution to

the error in �bb meson masses to be

errorm4
¼ fm4

hO4iNRQCD=2mb � 0:16%: (B9)

c. Total error

We obtain the total heavy-quark discretization error in
the �bb meson masses by adding the errors from the differ-
ent operators in quadrature, including OE twice because
there are two such operators:

error
M

bb

total ¼ ð2	 error2E þ error2m4
þ error2w4

Þ1=2�0:34%:

(B10)

2. Hyperfine splittings

Only spin-dependent operators containing the term ~� �
~B, where ~B is the chromomagnetic field (and permutations
thereof), contribute to hyperfine splittings such as the mass
difference M� �M�b

[50,51]. There are five dimension-

seven bilinear operators of this form in the heavy-quark
effective action at Oðv6Þ:X

i�j

�hfD2
j ; i�iBigh; (B11)

�hfD2; i� �Bgh; (B12)

X
i�j

�h i�iDjBiDjh; (B13)

�h� �Di� �B� �Dh; (B14)

�hDii� � BDih: (B15)

Only the first two operators in Eqs. (B11) and (B12) have
nonzero matching coefficients at tree level [34]. The
matching coefficients of the remaining three operators in
Eqs. (B13)–(B15) are zero at tree level [34], and have not
been computed to one-loop. Higher-dimension operators in
the heavy-quark effective Lagrangian such as �hfD2;� �
ðD	E�E	DÞgh also contribute to hyperfine splittings
at Oðv6Þ, but the full set of dimension-eight heavy-heavy
bilinears has not been worked out in the literature.

Given our incomplete knowledge of the Oðv6Þ bilinear
operators and corresponding mismatch functions, we use a
more naive error estimation procedure for the bottomo-
nium hyperfine splittings. The leading contribution to the
hyperfine splittings is�mv4, so contributions ofOðv6Þ are
suppressed by a factor of v2 � 0:1. Hence we expect that
neglected Oðv6Þ operators lead to 10% errors in hyperfine

splittings. We can check this estimate for the two cases in
which the mismatch functions are known, as shown below.

a. Oða3Þ errors
The expected size of the operators in Eqs. (B11) and

(B12) is

hO��BiNRQCD � a3m4
bv

6: (B16)

The tree-level mismatch function for the first operator is
given by fw0

B
[Eq. (A8)], so we estimate its contribution to

the error to be

errorw0
B
¼ fw0

B
hO��BiNRQCD=mbv

4 � 3:72%; (B17)

where we obtain the relative error in �bb meson hyperfine
splittings by dividing by mbv

4, the size of the hyperfine
splittings in the NRQCD power-counting. The tree-level
mismatch function for the second operator is given by fmB0
[Eq. (A10)], so we estimate its contribution to the error in
bottomonium hyperfine splittings to be

errormB0 ¼ fmB0 hO��BiNRQCD=mbv
4 � 8:48%: (B18)

Both of these estimates are consistent with the naive
power-counting expectation of 10% based on the order in
the b-quark velocity v.

b. Total error

There are five dimension-seven and an unknown number
of dimension-eight operators in the heavy-quark effective
action that contribute to the hyperfine splittings atOðv6Þ in
the NRQCD power-counting. If we assume that there are
the same number of Oðv6Þ operators at dimensions seven
and eight, we arrive at the estimate

error
�MHF

total ¼ ð10	 ðv2Þ2Þ1=2 ¼ 31:62%: (B19)

3. �-state splittings

The fine-structure splitting between � mesons
ðM�b1

�M�b0
Þ is a linear combination of the spin-orbit

and tensor splittings:

�spin-orbit
M ¼ 1

9
ð5M�b2 � 2M�b0 � 3M�b1Þ; (B20)

�tensor
M ¼ 1

9
ð3M�b1 �M�b2 � 2M�b0Þ: (B21)

Hence it receives contributions from both the spin-

dependent operators containing � � ~B considered above
(which lead to the tensor splitting [50]) and from spin-

dependent operators containing ~D	 ~E where ~E is the
chromoelectric field (which lead to the spin-orbit split-
ting [51]).
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a. Oðv4Þ errors
There is one relevant bilinear at dimension six which is

of Oðv4Þ in the NRQCD power-counting:

�hf� �D;� �Egh: (B22)

We estimate the size of its contribution to the error in the
�-state splittings to be

errorv4 ¼ fEhOEiNRQCD=mbv
4 � 29:30%: (B23)

Note that the contribution of this operator to the �-state
splittings is not as large as the order in the b-quark velocity
v would suggest because of the small numerical size of fE.

b. Oðv6Þ errors
The same Oðv6Þ operators that contribute to the hyper-

fine splittings also contribute to the splitting between the �
states. We therefore estimate their contributions to be the
same size as for the hyperfine splittings:

errorv6 ¼ 31:62%: (B24)

c. Total error

We obtain the total heavy-quark discretization error in
the �-state splittings by adding theOðv4Þ andOðv6Þ errors
in quadrature, yielding

error
�M�

total ¼ ðerror2
v4 þ error2

v6Þ1=2 ¼ 43:11%: (B25)

APPENDIX C: DISCRETIZATION ERRORS IN
HEAVY-STRANGE MESON MASSES AND

HYPERFINE SPLITTING

In this section we estimate the size of heavy-quark dis-
cretization errors in the heavy-strange meson quantities—
the spin-averaged mass, hyperfine splitting, and ratio of
rest-to-kinetic masses—used in the RHQ parameter tuning
procedure. Again we use the framework described in
Sec. IVC2. To estimate the numerical size of the operators,
we use the HQET power-counting given in Eq. (30), and for
the size of the coefficients we use the mismatch functions
on the 323 ensembles given in Table XIV.

1. Rest mass

Because we tune the coefficients of the dimension-
five operators in the RHQ action nonperturbatively, the
leading discretization errors come from operators of
dimension-six and higher in the effective theory. There
are two dimension-six bilinears of Oð�2Þ in the HQET
power-counting:

�hf� �D;� �Egh; (C1)

�h�4ðD �E�E �DÞh: (C2)

The estimated size of these operators is

hOEiHQET � a2�3
QCD: (C3)

We do not consider operators of dimension-seven and
higher because they are all at least of Oð�3Þ. At tree level
the coefficients of the operators in Eqs. (C1) and (C2) are
both given by Eq. (A1), so we estimate their contributions
to the error in the spin-averaged Bs meson rest mass to be

errorE ¼ fEhOEiHQET= �MBs
� 0:04%: (C4)

By construction, we tune the RHQ parameters such that
the spin-averaged rest mass equals the experimental value
of 14 ðMBs

þ 3M�
Bs
Þ, so we obtain the relative error inM1 by

dividing by �MBs
¼ 5:4028 GeV. We obtain the total

heavy-quark discretization error in the spin-averaged Bs

meson rest mass by adding the contributions from the two
operators in quadrature, which yields

error
M1;Bs

total ¼ ð2	 error2EÞ1=2 ¼ 0:05%; (C5)

or �3 MeV.

2. Kinetic mass

Discretization errors in the kinetic meson massM2 arise
from both the constituent quarks’ kinetic energies and from
the binding energy. The Appendix of Ref. [17] provides a
semiquantitative estimate of the discretization error in M2

(see also Ref. [52]). Although this estimate is made assum-
ing that both quarks in the meson are nonrelativistic, the
result is interpreted a posteriori under the assumption that
the strange quark is light and relativistic. We follow the
same approach here.
The tree-level discretization error in M2 through Oðv4Þ

in the nonrelativistic expansion is given by [17]

	M2 ¼ 1

3m2

h ~p2i
2

�
5

�
m3

2

m3
4

� 1

�
þ 4w4ðm2aÞ3

�
; (C6)

where this result applies to S-wave states. Note that the
	M2 is zero if the masses m4 ¼ m2 and the Lorentz-
symmetry-violating coefficient w4 ¼ 0. To estimate the
numerical size of the discretization error in M2 we replace
h ~p2i with �2

QCD following the HQET power-counting pre-

scription and use the expressions for m2, m4, and w4 given
in Eqs. (A2), (A5), and (A7). By construction, we tune the
RHQ parameters such that the kinetic meson mass equals
the experimental value of the Bs meson mass, so we obtain
the relative error in M2 by dividing by MBs

¼ 5:366 GeV.

We obtain

error
M2;Bs

total ¼ 2:59%; (C7)

or �139 MeV.
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3. Hyperfine splitting

The bottom-strange hyperfine splitting receives contri-
butions from spin-dependent operators containing the term

~� � ~B where ~B is the chromomagnetic field (and permuta-
tions thereof) [50,51]. The leading contribution is from the
dimension-five operator �hi� �Bh and is of Oð�Þ in the
HQET power-counting. Because we tune the coefficient
of this operator nonperturbatively, there are no associated
discretization errors. Thus we consider discretization
errors from operators of Oð�2; �3Þ. There are five

dimension-seven bilinear operators of the type ~� � ~B in
the heavy-quark effective action at Oð�3Þ; these are given
in Eqs. (B11)–(B15). Operators of dimension-eight and
higher in the heavy-quark effective Lagrangian are all of
Oð�4Þ or higher in the HQET power-counting.

a. Oða3Þ errors
The expected size of the operators in Eqs. (B11) and

(B12) is

hO��BiHQET � a3�4
QCD: (C8)

By construction, we tune the RHQ parameters such that we
reproduce the experimental value of the bottom-strange
hyperfine splitting M�

Bs
�MBs

. Hence we divide the con-

tributions of these operators by�MBs
¼ 49 MeV to obtain

the relative error in the Bs hyperfine splitting. The tree-
level mismatch functions for the two operators are fw0

B

[Eq. (A8)] and fmB0 [Eq. (A10)], so we estimate their

contribution to the error in the bottom-strange hyperfine
splitting to be

error w0
B
¼ fw0

B
hO��BiHQET=�MBs

� 0:64%; (C9)

errormB0 ¼ fmB0 hO��BiHQET=�MBs
� 1:46%: (C10)

b. Oð�sa
3Þ errors

The expected size of the operators in Eqs. (B13)–(B15)
is also

hO��BiHQET � a3�4
QCD: (C11)

The mismatch functions of these operators, however,
vanish at tree level [34]. Because they have not been
computed to one-loop, we simply estimate their size to

be �MS
s ð1=a323Þ ¼ 0:22. Under this assumption, we esti-

mate that the contribution of each of these operators to the
bottom-strange hyperfine splitting is

error�s
¼ �shO��BiHQET=�MBs

� 2:36%: (C12)

This estimate is likely conservative, given that we
would naively expect Oð�sa

3Þ errors to be smaller than
Oða3Þ errors, due to the fact that we have not considered
any possible suppression from the one-loop mismatch
functions.

c. Total error

We obtain the total heavy-quark discretization error
in the bottom-strange hyperfine splitting by adding the
errors from the different operators in quadrature, includ-
ing error�s

three times because there are three one-loop

operators:

error
�MBs

total ¼ ðerror2w0
B
þ error2mB0 þ 3	 error2�s

Þ1=2

� 4:40%; (C13)

or �2 MeV.
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