
 

ABSTRACT: Proof-mass actuators are highly advantageous for active control of structures, due to their large force-to-weight 

ratio and their ability to provide inertia without a ground reference. These devices comprise a proof-mass suspended in a 

magnetic field that is accelerated by an input voltage, in order to provide a reaction force on the actuator casing and the structure 

itself. However, if the input voltage is large, the proof-mass will hit the end-stops, thereby imparting large shocks to the 

structure that may destabilise the closed-loop system.  

To ensure that the closed-loop system is asymptotically stable, a control law that counteracts the destabilising effects of 

stroke saturation must be designed. First, a numerical study is conduced, where a dynamic model of a Micromega IA-01 proof-

mass actuator is coupled to a flexible structure in a collocated pure-gain velocity-feedback closed-loop configuration. Using 

Lyapunov’s direct method, it is shown that stroke saturation greatly reduces the closed-loop stability margin, due to large 

increases in the kinetic energy as the proof-mass moves from one end stop to the other. Finally, an alternative on-off feedback 

control strategy is briefly investigated, and its merits and drawbacks are discussed.  
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1 INTRODUCTION 

The ever-increasing demand for smart, flexible structures in 

recent times has necessitated the use of active control as a 

means of damage detection and limiting structural vibration. 

Passive control methods typically add mass to the structure, 

which conflicts with the requirements for lightness and 

flexibility, and is not usually effective at low frequencies. In 

order to apply active control to a structure, its velocity or 

displacement is fed back to a collocated actuator to generate a 

control force, such that the effective stiffness or damping of 

the closed-loop system is increased in relation to the open-

loop system [1].  

Proof-mass actuators, which generate a control force by 

means of accelerating an inertial mass in response to an input 

voltage, are highly advantageous for this purpose, due to their 

ability to provide a large inertial force without a ground 

reference [2]. However, one significant drawback of these 

actuators is that the displacement of the proof-mass is limited 

by the actuator stroke length; therefore, if the input voltage is 

large, the proof-mass will collide with the end stops and the 

displacement amplitude is saturated [3]. This phenomenon is 

known as stroke saturation.   

In general, stroke saturation is detrimental to the 

performance of the closed-loop system, for a number of 

reasons. Firstly, large impulses are generated from the 

collisions of the proof-mass and the end stops, which are 

transmitted to the structure and may result in damage. 

Secondly, it limits the effect of active control. Thirdly, it has 

been observed experimentally that stoke saturation can 

destabilise the closed-loop system [4]. This is problematic for 

systems that are frequently subjected to large disturbances, 

such as seismic excitation, and so it is desirable that the 

closed-loop system remains stable for large inputs [5]. 

Furthermore, destabilization is particularly severe in MIMO 

systems that utilise multiple actuators, since instability in one 

loop will induce instability in the other loops [6] 

In this study, the stability of a nonlinear proof-mass actuator 

coupled to a linear structure in a two-degree-of-freedom 

closed-loop configuration is investigated. Recently, 

Wilmshurst et al. [7] modelled a proof-mass actuator [8] using 

a lumped parameter system, based on experimental 

measurements and previous work by Baumann and Elliott [4]. 

It was found that a piecewise linear stiffness model was able 

to reasonably emulate the dynamics of a stoke-saturated 

actuator, which were obtained using experimental 

measurements. Section 2 covers the theoretical aspects of the 

study, and shows that the closed-loop system exhibits limit-

cycle oscillations, even if the Nyquist gain and phase margins 

are not exceeded. Section 3 describes the application of 

Lyapunov’s direct method to the nonlinear system, where it is 

found that the instabilities can be related to a sequence of 

events that results in a large increase in the kinetic energy of 

the proof-mass as it moves from one end stop to the other. 

Section 4 briefly investigates the effect of on-off feedback 

control on the overall closed-loop stability. Conclusions and 

future work are stated in Section 5.  

2 THEORY  

The general state-space equation for the nonlinear actuator 

dynamics is,  

    pfBf(x)x       (1) 
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where 
T

pp ]x x [x  is the actuator displacement and 

velocity respectively, f(x) represents the nonlinear system 

equations, B is the input matrix and pf is the primary input 

signal. The linear piecewise model obtained in [7] can be 

written as,  
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Here, pm  is the mass of the internal proof-mass, pk and pc  

are the stiffness and damping terms of the actuator 

suspension, satk  is the equivalent stiffness associated with 

stroke saturation, d is the stroke length, and g is the actuator 

gain. By incorporating this model in the actuator-structure 

configuration, as shown in Figure 1, the closed-loop system 

dynamics can be described using, 

 sp ff sp BBf(x)x   (4) 

where  ]x  x  x  x  T
ppss

[x  represents the respective  

displacements and velocities of the structure and actuator, 

f(x) is a vector of nonlinear equations that describes the 

open-loop dynamics, sp BB ,  are the input and control 

matrices respectively, and sp f,f are the input force and 

control signal respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Actuator-structure configuration. 

From Figure 1, the closed-loop dynamics can be written as, 
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where ss c,k are the stiffness and damping coefficients of the 

structure, )(xk tottot is the total nonlinear stiffness of the 

proof-mass suspension, and sprel xxx   is the relative 

displacement between the proof-mass and the structural mass. 

Since the output structural velocity sx   is fed back to the 

system, the control signal sf  is,  

                   0100 ,hf             s  vv C    xC (6) 

where h is the feedback control gain. By incorporating the 

control force into f(x) , a new set of nonlinear equations g(x) 

is obtained that describes the closed-loop dynamics,   

             pfpBg(x)x                                   (7) 

where 

  

)x )h c(xc)x,(xk(
m

1

)xc)x,(xkx cxk(
m

1

x

x

  

sppppstot

p

pppstotsvss

s

p

s



































  g(x)   (8) 

vc  being hps cc  . By comparing Eq. (8) with Eq. (5), it 

is apparent that the control signal has the effect of increasing 

the damping of the structure whilst increasing the effective 

negative damping of the proof-mass. The result is that the 

structural vibration will decrease at the expense of the proof-

mass vibration, which may destabilize the closed-loop system 

if the control gain is too large.  

Provided that the relative displacement is small 

( d  x rel  ), the open-loop dynamics can be described using 

the second-order realization, 

                                 fKqqCqM                           (9) 
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The nonlinear state equations f(x)can then be linearized 

to Ax , where,  
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By setting u to zero and using the control signal v as the 

input, the open-loop input-output transfer function ω)(Gs j is 

obtained by applying Eq. (11) to Eq. (4) and taking the 

Fourier transform, 

                          vv BAIC
-1

s )-ω(ω)(G jj                    (12) 

To assess the stability of the linearized closed-loop system, 

the Nyquist plot ω)(hG- s j is shown in Figure 2 using the 

parameters in Table 1 and a control gain 20h  . Here, it is 

apparent that the system is conditionally stable at 9.8 Hz; 

increasing the control gain will eventually result in the locus 

encircling the (-1, 0) point, thereby destabilizing the closed-

loop system. This particular frequency corresponds to the 

peak resonance frequency of the actuator when attached to the 

flexible structure. 

 

Table 1. Parameter values. 

 

Parameter Value 

sm  0.05 kg 

sc  0.32 Ns/m 

sk  5000 N/m 

pm  0.032 kg 

pc  1.3 Ns/m 

pk  124 N/m 

satk  1.3 x 10
6 
N/m 

d  1 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Nyquist plot of the linearized system.  

The maximum stable feedback gain sh of the closed-loop 

system is obtained from the Nyquist plot as, 

                                 168
1186.0

20
h s                             (13) 

Thus, the linearized system is stable if shh  . This gain 

margin is relatively large, and so it should be possible to 

implement a reasonable increase in the effective structural 

damping that is well within the stability limits.  

However, if the relative displacement between the proof-

mass and the structural mass is sufficiently large, the actuator 

becomes stroke-saturated, and shh  is no longer a sufficient 

condition for global closed-loop stability. This is apparent 

from the presence of limit-cycle oscillations observed in the 

closed-loop dynamics, even if h is well below the linear 

stability threshold sh . As an example, the absolute and 

relative displacement-time histories of the structural mass and 

proof-mass, as specified in Table 1, are simulated using 

MATLAB’s ode45 solver, as shown in Figure 3. The 

structural mass is excited by a 20 N impulse, with a duration 

of 5 milliseconds, and the control gain is 10h  . Here, it can 

be seen that the closed-loop system is unstable, and that the 

relative displacement enters a limit-cycle oscillation.  

 
Figure 3. Time series depicting the displacement responses 

of the proof-mass and the structure. 

 

A crude indication of the nonlinear relative closed-loop 

stability is obtained by approximating the state matrix A  for 

a given state vector as follows,  
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The eigenvalues of )  A(x, h , denoted as )h,x(λ reli , are 

then ascertained over different values of relx and h, and the 

real part is analysed to ensure that the stability criterion 

0)}h,x(Re{λ reli  is satisfied. An illustration of these 

eigenvalues, as shown in Figure 4, reveals that the real part 

increases abruptly once the stroke limit d is exceeded. This 

phenomenon becomes more pronounced as h increases, such 

that the real part of the eigenvalues becomes positive around 

the stroke limit for control gains as small as small as 10h  . 

In this case, the closed-loop system may become unstable and 

enter a limit-cycle oscillation, as illustrated in Figure 3. 

 

 
Figure 4. Real part of eigenvalues iλ against relx and h. 

 

Clearly, stroke saturation is highly detrimental to the closed-

loop stability margin, which is reduced by an approximate 

factor of 17.    

 

3 LYAPUNOV ENERGY ANALYSIS 

 

In order to minimize the effect of stroke saturation on the 

closed-loop stability margin, it is necessary to consider the 

underlying physical behaviour of the system, such that an 

appropriate control law can be devised. For this purpose, we 

utilize Lyapunov’s direct method [9] to assess the closed-loop 

stability and to identify the physical causes of destabilization. 

Here, the total mechanical energy E is chosen as the basis of 

the Lyapunov function (x)V  to provide physical intuition. 

The total mechanical energy is the sum of the structural 

kinetic energy sT , the proof-mass kinetic energy pT , and the 

total potential energy U . From Eq. (4), the appropriate 

expressions for these terms are, 
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The Lyapunov function is then defined in the quadratic 

format Px,x(x)
TV  where, 
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For local asymptotic stability to be assured, the Lyapunov 

function must satisfy LaSalle’s invariance principle [10], 

which can be summarised by the following conditions, 

 

(1) 0V (x)  if and only if 0x   

(2) 0V (x)  for set , 0x    

(3) 0V (x)  if and only if  

(4) 0V (x)  for set , 0x    

 

First, we consider the local stability of the linear region of the 

closed-loop system, with set d}x,:S rel  x{x . Here, it 

is apparent that the set satisfies conditions (1) and (2), since 

P is positive-definite. The Lie derivative of the Lyapunov 

function can be expressed as, 

                                   qCq h
T

-(x)  V                                (20) 

which clearly satisfies condition (3). For condition (4) to be 

satisfied, hC should be a positive-definite matrix, which is 

true for the open loop. However, it is apparent from Eq. (15) 

that the feedback control disrupts the symmetry of hC , and so 

it is necessary to utilize Cholesky decomposition to determine 

the positive-definiteness of hC . Here, hC is expressed by a 

lower triangular matrix cL  that satisfies 
T

cch LLC  . 

Provided that the diagonal terms of cL are non-negative, then  

hC is positive-definite and Eq. (20) satisfies conditions (3) 

and (4). These diagonal terms are plotted against the feedback 

control gain in Figure 5. Surprisingly, one of the diagonal 

terms becomes negative at 0.89h  , which implies that the 

closed-loop system becomes unstable when 0.89h  . This 

result is inconsistent with the gain margin stated in Eq. (13), 

where h must exceed 168 for instability to occur.  

The reason for this discrepancy is that the total mechanical 

energy of the system can increase with time without inducing   



 
Figure 5. Diagonal terms of cL against h. 

 

 

closed-loop destabilization. This is illustrated in Figure 6, 

where the total closed-loop energy is shown against time, with 

an impulse excitation of 20 N and a control gain 

.20h  Here, it is apparent that whilst the total energy decays 

asymptotically towards zero, the feedback control is sufficient 

to increase the total energy at certain times. It is believed that 

these regions of potential instability are caused by a large 

increase in the kinetic energy of the proof-mass as it moves 

from one side of the stroke to the other, since the feedback 

control amplifies the proof-mass vibrations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Total energy of the closed-loop system against time. 

Although the total energy decays asymptotically to zero, the 

feedback control increases the energy at certain times. 

 

It is evident from this analysis that although the total 

mechanical energy is useful for revealing the underlying 

physics of the actuator-structure system, it not a suitable 

Lyapunov function for assessing closed-loop stability. To 

overcome this problem, an alternative form of the Lyapunov 

function is sought. First, the Lie derivative of the Lyapunov 

function is defined in the more generalized form,  

                                    Qx
T

x(x) V                                 (21) 

 

such that (x)V is dependent on x  rather than q . The matrix 

Q  is related to P  via the Lyapunov equation, 

                                 QPAPA
T                               (22) 

It should be noted that this formularization is only valid 

within the linear regime of the actuator. In this case, Q  is 

specified as the identity matrix I  and P is obtained from Eq. 

(22). Since the Lyapunov function is quadratic and Q  is 

negative-definite, conditions (1), (3) and (4) are satisfied. 

Therefore, if the P matrix is positive-definite, then condition 

(2) is satisfied and the closed-loop system is asymptotically 

stable. This is assessed by obtaining the eigenvalues of P and 

establishing the real part is negative. An illustration of the 

eigenvalues against the feedback control gain, as shown in 

Figure 6, indicates that P is positive-definite up to 168h  , 

which is consistent with Eq. (13). 

 

 
Figure 7: Eigenvalues of P against h. 

 

Now that it has been established that the closed-loop system is 

locally stable if 168,h  the global closed-loop stability is 

assessed, with no restrictions on x.  Here, the effects of stroke 

saturation are accounted for using the general Lyapunov 

function in Eq. (19). The Lie derivative is specified in Eq. 

(20), such that the regions of potential instability observed in 

Figure 5 remain present. However, whilst the regions of 

potential instability are not sufficient to destabilize the closed-

loop system in the linear regime, they have a significant effect 

whenever stroke saturation occurs. This is apparent in Figure 

8, which illustrates the total mechanical energy of the closed-

loop system, accounting for stroke saturation. In this case, the 

total energy increases over time, resulting in a limit-cycle 

oscillation.      

To further investigate the underlying physics of the 

actuator-structure configuration, the energy curve shown in 

Figure 8 is sub-divided into the energy groups defined in Eqs. 

(16-18). By analysing these individual contributions, as shown 

in Figure 8, it is evident that there are several features of 

interest. Firstly, the stroke saturation phenomenon has the 

initial effect of reducing the total energy of the system, which 

is mostly transferred as kinetic energy to the structural mass. 

Secondly, the total potential energy rises to a maximum once 

the impulses associated with stroke saturation have decayed. 

Thirdly, the increase in the total energy E can be attributed to  



 
Figure 8. Total energy of the closed-loop system, in 

response to a 20 N impulse. The control gain is 20h  . 

 

 
Figure 9. Contributions of proof-mass kinetic energy 

,Ts structural energy pT and potential energy U to the total 

energy E  in Figure 8 over a restricted period of time. 

 

the kinetic energy of the proof-mass, as with the linear case. 

Therefore, we can determine from this analysis that stroke 

saturation destabilizes the closed-loop by accentuating 

potential instabilities that are already present in the underlying 

linear system. Furthermore, instability only occurs once the 

proof-mass has undergone stroke saturation, as indicted by the 

arrows in Figure 9, and, with the aid of the control signal, 

moves rapidly from one end stop to the other.  This needs to 

be taken into account when considering a control strategy, 

which is discussed in the next section.  

In order to establish a link between stroke saturation and the 

accentuation of the instability regions, it is necessary to 

examine the total potential energy of the closed-loop system. 

Since stroke saturation is modelled as a series of purely elastic 

collisions, the maximum potential energy during each cycle is 

greater than that of the underlying linear system, as 

demonstrated in Figure 10.  

In addition, Figure 9 shows that the potential energy is 

converted into the kinetic energy of the proof-mass once the 

collisions have subsided. Therefore, the increased levels of 

potential energy due to stroke saturation results in the 

accentuation of the instability regions caused by the kinetic 

energy of the proof-mass, in conjunction with the feedback 

control. This describes the sequence of events that lead to the 

destabilization of the closed-loop system. 

 

 
Figure 10. Potential energy of the open-loop system, with 

and without stroke saturation. 

By considering other common types of actuator nonlinearities, 

such as an amplitude-dependent suspension stiffness, it can be 

seen that the issue of destabilization is not limited to stroke 

saturation; any type of hardening nonlinearity that increases 

the potential energy is capable of inducing instability in the 

closed-loop system. Therefore, these findings confirm that 

weak nonlinearities in a dynamic system have the potential to 

detrimentally affect the stability margin of the closed-loop 

system, and can invalidate the predictions made using linear 

Nyquist theory. 

4 CONTROL STRATEGY SIMULATIONS  

From the analysis of the previous section, it is apparent that 

stroke saturation, in conjunction with the feedback control, 

destabilizes the closed-loop system by increasing the potential 

energy, which in turn increases the kinetic energy of the proof 

mass. Since the open-loop system is globally asymptotically 

stable, one of the simplest possible control strategies, in 

principle, is to switch off the feedback control at critical 

moments in each cycle, such that the increase in pT is 

prevented. This strategy is a variation of on-off control [11], 

and is advantageous for increasing the closed-loop stability 

margin whilst retaining good control performance in the linear 

regime. However, the implementation of this control strategy 

requires careful consideration if these objectives are to be 

achieved.  

First, it is necessary to detect the onset of stroke saturation 

in the displacement-time signals, such that the feedback 

control can be switched off to counteract the destabilizing 

effects. This could be accomplished, for example, by placing 

an accelerometer on the actuator casing and examining the 

resulting signal for large, abrupt variations that represent the 

impacts associated with stroke saturation. To remove the 

contributions of higher-order modes within the frequency 

range of the impacts, the control signal should be low-pass 

filtered before being applied to the actuator. In addition, it is 

necessary to band-pass filter the accelerometer signal to 

prevent aliasing and to remove the intended low-frequency 

control signal from the detection process. For these purposes, 



two 10
th

 order Butterworth low-pass and band-pass filters 

were utilized in this simulation, with a cut-off frequency of 10 

k-rad/s for the low-pass filter and a bandwidth of 10 k-rad/s to 

100 k-rad/s for the band-pass filter. A simple detection 

threshold can then be set up for the remaining high-frequency 

impacts in the signal.   

The next step is to ensure that once stroke saturation is 

detected, the feedback control is switched off at suitable 

moments in time to prevent pT from increasing. This presents 

a number of challenges. Firstly, stroke saturation comprises 

multiple transient impacts, which results in chattering as the 

signal moves from one impact to the next. Secondly, the 

deactivation of the feedback control should be aligned with 

potential increases in pT , and it is therefore inappropriate to 

directly switch off the control signal during stoke saturation. 

Thirdly, the duration of the feedback control deactivation 

should depend on the time taken for the proof-mass to move 

from one end stop to the other, as opposed to the duration of 

the stroke saturation phenomenon.  

To overcome these difficulties, the accelerometer signal is 

“held” for a user-defined length of time  once the detection 

threshold is exceeded, and a delay   is then applied to aid 

synchronization. This results in an “on-off” detection signal 

that is zero if the control is on and unity if the control is off.  

The choice of  is a trade-off between control performance 

and closed-loop stability; the larger the value of  , the longer 

the time that feedback control is switched off, resulting in 

greater assurance of closed-loop stability at the expense of 

worsening the control performance in the linear regime. 

Therefore, the smallest possible value of  that assures 

closed-loop stability up to the linear Nyquist threshold should 

be chosen. Figure 10 illustrates the effect of different values 

of  on the detection signal.  

 

 
Figure 10. Detection signal for three different values of 

 after detection at t = 0. For the sake of illustration,  is set 

to be 7 milliseconds. 

 

In this case,   is defined as 7  milliseconds as a 

compromise between performance and stability. 

Since the increases in pT occur a short time st  after the 

onset of stroke saturation, it is necessary to apply a delay  to 

synchronize the detection signal with these increases. The 

time period st varies with each cycle, and therefore it is not 

possible to achieve true alignment for the detection signal 

using a constant delay time. Nevertheless, an approximation 

of the ideal delay time can be accomplished by examining the 

total energy of the closed-loop system and establishing what 

value of  results in the fastest decay time. This is shown in 

Figure 11 for a control gain ,100h  an excitation impulse of 

20 N, and a variety of delay times. The delay ms 5  is 

chosen as the best parameter value for stabilizing the closed-

loop system In addition, the relative displacement is shown in 

relation to the appropriate detection signal in Figure 12. 

 

 

Figure 11. Total energy of the closed-loop system with on-

off control. If no delay is applied to the detection signal, the 

system is unstable, whereas a 5 millisecond delay results in a 

stable system with a fast decay time. 

 

Figure 12. Synchronization of the detection signal (dashed 

line) with the relative displacement (solid line). Whereas a 

delay of 2 milliseconds results in control deactivation during 

stroke saturation, a delay of 5 or 7 milliseconds results in 

control deactivation whilst the proof-mass moves from one 

end stop to the other, as intended. 

 

In order to demonstrate that the closed-loop system remains 

stable near the linear Nyquist threshold, two examples are 

illustrated in Figure 13, which shows a comparison of the 



relative displacement-time signals obtained using on-off 

control and conventional velocity feedback control 

respectively. The first example features a relatively large 

control gain 150h  and an excitation amplitude of 50 N, 

whereas in the second example, the control gain 165h  is 

very close to the linear Nyquist threshold, and a smaller 

excitation amplitude of 40 N is utilized. Here, it is apparent 

that the conventional velocity feedback control results in an 

unstable system and a limit-cycle oscillation, whereas the on-

off control is able to stabilize the closed-loop system.    

It should be noted that the methods used to implement the 

on-off control are fairly crude and based on little more than 

the trial-and-error of the time parameters. However, they are 

sufficient for demonstrating that on-off control has the 

potential to prevent stroke saturation destabilizing the closed-

loop system.    

 

 
Figure 13. Relative displacement of the closed-loop system 

using conventional velocity feedback control (VFC) and on-

off control. In the two examples described in the text, the VFC 

results in a limit-cycle oscillation, whereas the on-off control 

ensures the relative displacement decays asymptotically to 

zero. 

 

To summarize, the application of on-off control is perhaps 

best suited to inherently linear or weakly nonlinear systems 

that are only occasionally subjected to large disturbances. In 

this case, the controller can perform as intended in the linear 

regime, whilst the closed-loop system remains stable when 

large disturbances occur. However, on-off control may not be 

suited to systems that regularly feature large excitation 

amplitudes that need to be controlled, since the controller 

emphasizes closed-loop stability rather than control 

performance. Furthermore, the dynamics of a closed-loop 

system with on-off feedback control are extremely complex, 

and it is difficult to develop a rigorous proof of closed-loop 

stability. To overcome these problems, additional control 

strategies, such as including the relative or structural 

displacement in the control signal, should also be considered.  

 

5 CONCLUSIONS  

 

This paper presents an analysis on the stability of a stroke-

saturated actuator when coupled to a flexible structure. Whilst 

the underlying linear system is conditionally stable, 

accounting for stroke saturation greatly reduces the closed-

loop stability margin, resulting in limit-cycle oscillations. It 

was found that the total energy of the closed-loop system 

increases with the kinetic energy of the proof-mass when it 

moves from one end stop to the other, with the aid of the 

feedback control. The resulting regions of potential instability 

have little effect for the underlying linear closed-loop system. 

However, the increased potential energy levels associated 

with stroke saturation are sufficient to destabilize the closed-

loop system through these instability regions. 

A simple on-off controller was considered for the purpose 

of stabilizing the closed-loop system when stroke saturation 

occurs. It was found that by carefully choosing the hold time 

and delay time of the stroke saturation detection signal, the 

control is deactivated as the kinetic energy of the proof-mass 

increases, thereby stabilizing the closed-loop system. 

Future work will involve utilizing a more rigorous approach 

to prove that on-off control can stabilize the closed-loop 

system, and comparing the on-off control with other possible 

nonlinear controllers with regards to simplicity, stability, and 

performance.  
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