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Abstract: We revisit representative and widely used inverse-scattering 

fiber Bragg grating designs and shed physical insight into their 

characteristics. We first demonstrate numerically and experimentally that 

dispersionless square filters are actually dispersion compensated devices 

and we physically identify the spatially separated main (dispersive) 

reflector and dispersion compensator sections. We also look into the 

features of pure 2nd-order dispersion and 3rd-order dispersion compensator 

designs and discuss their physical importance. Finally, we use the gained 

physical insight to design strong symmetric gratings with dispersionless 

response from both sides. Using this knowledge we design and fabricate 

strong (>30dB) bidirectional dispersionless filters. 
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1. Introduction 

Since their first demonstration in 1978 [1], fiber Bragg gratings (FBGs) have found 

widespread usage in lab experiments and a plethora of applications across the photonics 

domain [2,3]. Their versatility stems from the ability to control very accurately their 
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reflection and dispersion characteristics by proper design. Linearly-chirped FBGs have been 

used extensively over the years for 2nd-order dispersion compensation in optical 

communication transmission systems [4,5]. Even with the current effectiveness of electronic 

dispersion compensation, FBG-based linear dispersion compensators are expected to continue 

to play a role in hybrid compensation schemes in future high speed optical systems [6,7]. In 

addition, linearly chirped FBG have been extensively used for pulse stretching and re-

compression in chirped-pulse amplification high power fiber laser systems [8]. Lately, 

linearly-chirped FBGs have also been used to provide normal total dispersion in dissipative 

dispersion-managed soliton mid-IR fiber laser systems, where fibers with normal dispersion 

do not exist [9]. They can also provide broadband dispersion compensation for the 

development of Fourier-domain mode-locked fiber lasers for long-range optical coherence 

tomography [10]. Pure 3rd-order dispersion compensation FBGs [11,12], on the other hand, 

can be potentially used for dispersion trimming in optical telecommunication systems and 

transform-limited ultrashort-pulse fiber lasers [13,14]. 

FBGs are in general quasi-periodic structures written permanently inside the fiber core 

using appropriate CW UV exposure [15] or more recently fs near-IR laser irradiation [16]. 

Fiber Bragg gratings are generally characterized by a refractive index variation given by: 

  0 0( ) ( )cos ( )n z n n z K z z    (1) 

where n0 is the background refractive index, Δn(z) is the amplitude distribution of the 

perturbation (apodization or refractive index modulation profile), φ(z) is the phase variation 

of the perturbation, and K0 = 2π/Λ0 where Λ0 is a reference period. The spatial phase variation 

φ(z) corresponds to an equivalent local period detuning or chirp given by [17]: 
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The local period distribution is Λ(z) = Λ0 + ΔΛ(z). The refractive index distribution of Eq. 

(1) is equivalent to a generalized coupling constant: 

 ( )

0( ) ( ) i zq z q z e   (3) 

where q0(z) = -i(π/λ0)Δn0(z) and λ0 = 2n0Λ0. Given the refractive index distribution n(z) or 

equivalent coupling constant q(z), the FBG analysis consists in deriving the reflection 

coefficient: 

 ( )

0( ) ( ) ir r e     (4) 

where r0(λ) is the reflection coefficient magnitude and θ(λ) the reflection phase. The latter is 

associated with the relative group delay by: 
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A number of methods, including Bloch modes [18], coupled-mode theory [19] or transfer-

matrix method [20], can be used for the analysis of general FBGs. In order to achieve 

optimum performance, in most applications the FBG main parameters, i.e. local strength and 

period detuning, should be tailored appropriately. Traditionally, improved designs were 

obtained by applying suitable apodization to both ends of otherwise uniform structures 

[21,22]. In most of these cases, however, the improvement on one characteristic, e.g. 

dispersion linearity, was usually achieved at the expense of another parameter, e.g. bandwidth 

utilization. 

In optimizing the filter response, a number of different refractive index profiles or 

coupling constants are considered and their impact on the FBG performance is evaluated 

#190362 - $15.00 USD Received 10 May 2013; revised 4 Jul 2013; accepted 5 Jul 2013; published 15 Jul 2013
(C) 2013 OSA 29 July 2013 | Vol. 21,  No. 15 | DOI:10.1364/OE.21.017472 | OPTICS EXPRESS  17474



against certain criteria. A much more efficient approach, however, is to use direct synthesis or 

inverse scattering (IS) of the required FBG [see Fig. 1)]. This consists in defining first the 

required reflection coefficient or impulse response and work backwards to define the 

corresponding generalized coupling constant q(z) or refractive index distribution n(z) and 

local detuning ΔΛ(z). A number of methods can be used for this purpose including Fourier 

Transforms [23], Integral [24] or Differential IS methods [25]. 

 

Fig. 1. General FBG analysis and synthesis schematic 

FBG device effectiveness took a leap forward with the introduction of efficient IS design 

algorithms. Such advanced approaches allowed a number of FBG performance characteristics 

to be optimized simultaneously. Layer-peeling, in particular, has been established as a major 

design algorithm for advanced grating-based devices [26–29]. Starting from the required 

optimum transfer function and applying causality, the required refractive-index modulation 

and chirp profile are obtained. The freedom to choose arbitrarily the response though comes 

at the expense of device complexity. IS algorithms usually result in intricate designs that 

depart considerably from established intuitive and straightforward configurations. A typical 

example is the multi-lobe FBG design with square dispersionless response, which enables 

dense wavelength-division-multiplexing (WDM) [30] and large number of concatenated add-

drop functions without substantial penalty [31]. However, such gratings are uni-directional 

and cannot be used from both sides, which severely compromises their use as add AND drop 

multiplexers. Other examples include pure 2nd- or 3rd-order dispersion compensators, as will 

be discussed in this work. 

So far in the literature emphasis has been placed primarily on the accuracy of the IS 

mathematical formulations and no attempt has been made to physically understand how these 

otherwise mathematically rigorous designs really work. In this paper, we revisit some of the 

most successful IS FBG designs and shed physical insight into their characteristics. We first 

demonstrate numerically and experimentally that dispersionless square filters are actually 

dispersion compensated devices and we physically identify the spatially separated main 

(dispersive) reflector and dispersion compensator sections. We also look into the features of 

pure 2nd- and 3rd-order dispersion compensator designs and discuss their physical 

importance. Finally, we use the gained physical insight to design strong symmetric gratings 

with dispersionless response from both sides. 

2. Physical Insight into Inverse-Scattering FBG Designs 

In this section we consider specific examples of dispersion-engineered optical devices based 

on IS FBG designs. The details of the layer-peeling IS design algorithms are well described in 

the literature [26–29] and are not repeated here. The interested readers can refer to these 

papers to acquaint themselves with the mathematical details. Any of these formulations can 

be used for the design resulting in FBG profiles with similar features. In this work we 

concentrate primarily on the physical significance of the designs. The desired reflection 

coefficient is generally given by: 
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where R0 is the peak reflectivity, λ0 is the center wavelength, Δλ = (λ -λ0) is the wavelength 

detuning and Δλ0 is the filter bandwidth. The integer m in the exponent of the super-Gaussian 

profile defines the “squareness” of the reflection spectrum. The reflection phase is generally 

given by: 
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where 
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2 3( ) ref D D             (8) 

and 

 
0 0ref n L c   (9) 

is a reference time delay used to make the transfer function in Eq. (6) causal. D2 and D3 

define the 2nd- and 3rd-order dispersion, respectively. 

2.1: Linear-Phase (Dispersionless) FBG Filters (D2 = D3 = 0) 

The reflection coefficient of a square linear-phase (dispersionless) grating is obtained by 

setting D2 = D3 = 0 in Eq. (8). 

 

Fig. 2. Dispersionless FBG characteristics: (a) Coupling constant (b) reflectivity & 

transmissivity and (c) reflection (left & right) and transmission group delays, (d) coupling 
constant (log scale) for varying reflectivity. 
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Figure 2(a) shows the coupling constant distribution for a square dispersionless FBG filter 

with R0 = 0.9995, Δλ0 = 0.4nm and m = 22. The coupling constant and the associated RI 

modulation profile is highly asymmetric. It consists of a main lobe (II) preceded and followed 

by secondary lobe series I & III of different heights and periodicity. Figure 2(b) shows the 

reflectivity and transmissivity spectra, while Fig. 2(c) shows the reflection group delay from 

left and right. It is evident that the filter is dispersionless only when light enters from the left. 

The reflection from the opposite side, on the other hand, is highly dispersive. This obviously 

compromises severely the ability to accomplish add and drop function by the same FBG. As 

in all FBGs, the group delay in transmission is the average of the two reflection group delays. 

The negative coupling constant is achieved by inserting π-phase shifts at the zero crossing 

points. Figure 2(d) plots the coupling constant (in log scale, in order to reveal small features) 

with varying peak reflectivity R0. It is shown that the coupling constant and, therefore, the 

associated RI distribution becomes progressively more asymmetric as the reflectivity is 

increased. It is observed that the periodicity of section I remains constant, while the size of 

section II and the periodicity of section III increase with R0. It should also be mentioned that 

the RI distribution is symmetric only for R00.1. 

Following this analysis, we can consider the complex RI modulation profiles of the 

dispersionless IS designs as consisting of two distinct parts, denoted as front and back parts. 

The front part comprises only the constant period preceding lobe series (section I). The back 

part, on the other hand, comprises the main lobe (section II) and the following lobe series 

(section III) [32–34]. We will show that these distinct parts, in addition to developing 

differently with increasing the peak reflectivity, contribute in different ways to the FBG 

overall reflectivity and dispersion. 

 

Fig. 3. Dispersionless IS FBG design (a) full coupling constant distribution (regions I + II + 

III), (b) truncated profiles II + III and (c) central lobe II. (d)-(f) show the corresponding 
transmissivities, reflectivities and group delays. 
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Figure 3(a) shows the full distribution (regions I + II + III) of the coupling constant for a 

dispersionless FBG, with R0 = 0.99, Δλ0 = 0.5nm and m = 22. Figure 3(b) and 3(c) show the 

truncated profiles (sections II + III) and the central lobe (section II), respectively. Figure 3(d)-

3(f) show the corresponding transmissivities, reflectivities and group delays, respectively. 

Compared to the full profile [Fig. 3(a) and blue lines], it is observed that truncating the front 

section I [Fig. 3(b) and green lines] results in minimum changes in the “squareness” of the 

transmissivity and reflectivity (the reflectivity is affected mostly below the 25dB level). In 

contrast, the effect on the group delay is much more pronounced. These results show that the 

front section I controls the group delay flatness. In other words, section I acts primarily as the 

“dispersion compensator” of the full IS FBG design. Finally, truncating section III and 

retaining lobe II only [Fig. 3(c) and red lines] results in a “non-square” transmission 

spectrum. In addition, typical side-lobes appear in the reflectivity spectrum, while there is no 

additional penalty in the group delay spectrum. It is then deduced that section III controls 

primarily the transmissivity “squareness” by reducing the transmission around the spectrum 

center and increasing it at the spectrum edges. Section III works primarily as “spectrum 

modifier” and does not affect the overall dispersion. The functionality of the different FBG 

parts has not been discussed before. 

 

Fig. 4. Inverse scattering dispersionless FBGs; Reflectivity and Group Delay spectra for 
(a)&(b) main reflector (sections II + III), (c)&(d) dispersion compensator (section I) and 

(e)&(f) entire grating (I + II + III), (blue lines: theory, red lines: experiment). 

To explore further the identified IS FBG design features, three different gratings, 

consisting of front part (section I), back part (II + III) and whole dispersionless FBG (I + II + 

III), were written using a modified “moving fiber-scanning beam” technique [35,36] and 

measured separately. Figure 4(a) and 4(b) show the reflectivity and reflection group delay, 

respectively, of the back part (II + III) alone. In agreement with previous observations, this 

part provides strong reflection and it is highly dispersive. Figure 4(c) and 4(d) show the 

reflectivity and group delay, respectively, of the front part (section I) alone. The front part 

provides negligible reflection and it is again highly dispersive with dispersion, however, of 

opposite sign to the front part. Figure 4(e) and 4(f) finally show the reflectivity and group 
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delay, respectively, of the whole FBG. Its reflectivity is shown to be largely the same with the 

one of the front part while its group delay is substantially flattened. The residual ripple is of 

small enough magnitude and period to cause any substantial penalty to high bit-rate data [37]. 

Figure 4(a)-4(d) include both the theoretical (blue lines) and experimental (red lines) results, 

showing very good agreement. The small discrepancy is due to slight inaccuracies in the 

amount of π-phase shifts required for the dispersionless IS designs. 

2.2 Pure 2nd-Order Dispersion Compensators (D2  0, D3 = 0) 

Layer-peeling IS algorithms are again the preferred design approach for fabrication of high 

performance FBG-based pure 2nd-order dispersion compensators. The reflection coefficient 

of a linear dispersion compensator defined by setting D2  0 and D3 = 0 in Eq. (8). 

As in the case of dispersionless FBGs, IS-based designs for 2nd-order dispersion 

compensators are complex with non-intuitive features. Figure 5(a) shows schematically the 

design reflectivity and time-delay spectrum of a 2nd-order dispersion compensating FBG. 

The parameters used were R0 = 0.99, Δλ0 = 0.6nm, m = 120 and D2 = 1500ps/nm. Figure 5(b) 

shows the apodization profile (coupling constant distribution) and chirp (local detuning) of 

the layer-peeling IS design. It is evident that both the apodization and local detuning 

variations are complex and departing considerably from standard and intuitive profiles used 

extensively in the past in order to minimize in-band group delay ripples [22]. Figure 5(c), on 

the other hand, shows the apodization profile (coupling constant) and local period detuning 

(chirp) distributions of a conventional, linearly-chirped FBG. The FBG total length is 18cm 

and the applied local period detuning is 0.2nm. The apodization profile is a super-gaussian 

function with exponent m = 120, L0 = 18cm and maximum coupling constant of 172m
1

. 

Figure 5(d) shows the resulting reflectivity and group-delay spectra of such grating. Despite 

the slight apodization, the reflectivity spectrum is undulating. In addition, the group delay 

shows strong ripples over the reflection bandwidth. 

 

Fig. 5. Reflectivity and group-delay spectrum of a 2nd-order dispersion compensating FBG (R0 
= 0.99, Δλ0 = 0.6nm, m = 120 and D2 = 1500ps/nm), (b apodization profile (coupling constant) 

and chirp (local detuning) of the layer-peeling IS design, (c) apodization profile (coupling 

constant) and local period detuning (chirp) distributions of a conventional, linearly-chirped 
FBG. The FBG total length is 18cm and the applied local period detuning is 0.2nm. The 

apodization profile is a super-gaussian function with exponent m = 120, L0 = 18cm and 

maximum coupling constant of 172m1, (d) reflectivity and group-delay spectra of the grating. 
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The physical significance of the features of the IS-based design can now be appreciated by 

comparing the coupling constants/local period variations and the reflectivities/group delay 

spectra, of a conventional linearly-chirped FBG [Fig. 5(c)&5(d)] and the IS-based pure 2nd-

order dispersion compensator [Fig. 5(a)&5(b)). It is realized that as compared to conventional 

linearly-chirped FBGs, by appropriately introducing the ripples in the FBG apodization and 

local period variation, the IS design takes the ripples out and linearizes the group delay 

response. It has been understood that the group delay and the associated reflectivity ripples in 

conventional linearly-chirped gratings are due to residual internal “cavities” formed by 

spectrally partially overlapping adjacent grating sections [38]. By introducing additional local 

detuning and changing the local grating coupling strength appropriately - in a 

mathematically rigorous way - the IS-based designs detune and reduce the spectral partial 

overlap of adjacent grating sections and linearize the group delay response. 

To demonstrate the aforementioned features, we have designed pure 2nd-order FBG 

dispersion compensators using layer-peeling IS approach and have fabricated them using the 

previously mentioned technique [39]. 

 

Fig. 6. (a) Coupling constant (left) and local period detuning (right) obtained with the layer-

peeling IS technique, for R0 = 0.9, Δλ0 = 0.4nm, m = 22 and D2 = 1100ps/nm. Theoretical and 

experimental (b) reflectivity spectra, (c) group delay and (d) group delay ripple (superimposed 
is also the reflectivity of a conventional tahn-apodized, linearly-chirped FBG with comparable 

reflectivity and dispersion). 

The design parameters were R0 = 0.9, Δλ0 = 0.4nm, m = 22 and D2 = 1100ps/nm. Figure 

6(a) shows the coupling constant envelope (left) and local period detuning (right) obtained 

with the layer-peeling IS technique. Figure 6(b) superimposes the theoretical and 

experimental reflectivity spectrum, showing excellent agreement. Superimposed is also the 

reflectivity of a conventional tanh-apodized, linearly-chirped FBG with comparable 

reflectivity and dispersion [22]. It is shown that the IS design results in a much squarer 

reflectivity spectrum. Figure 6(c) and (d) compare the corresponding experimental and 

theoretical group delay and group delay deviation (ripple), respectively. It is shown that 

experimental data based on IS design are again in excellent agreement with theory. The low 

level of noise on the experimental group delay ( ± 10 ps peak to peak) has a very short 

spectral period (~10 pm) and is not expected to have a significant effect on the transmission 
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of high speed optical signals [37] [40]. The conventionally apodized, linearly-chirped FBGs, 

on the other hand, show substantial group delay ripples, as a result of residual internal 

reflections. 

2.3 Pure Third-Order Dispersion Compensators (D2 = 0, D3  0) 

The reflection coefficient of a pure 3rd-order dispersion compensator is defined by setting D2 

= 0 and D3  0 in Eq. (8). Figure 7(a) shows the target reflectivity (left) and the corresponding 

group delay (right), for R0 = 0.9, Δλ0 = 5nm, m = 20 and D3 = 20ps/nm
2
. Figure 7(b) shows 

the coupling constant distribution along the fiber length obtained by applying layer-peeling IS 

approach. The coupling constant is real, which implies that the pure 3rd-order DC is 

unchirped. In addition, the apodization profile is super-structured with a large number of 

lobes with decreasing amplitude and length the further away from the main lobe. The fact that 

a dispersion compensating design appears to be un-chirped is a surprising and non-intuitive 

result. 

 

Fig. 7. (a) Reflectivity (left) and the corresponding group delay (right), for R0 = 0.9, Δλ0 = 

5nm, m = 20 and D3 = 20ps/nm2, (b) coupling constant distribution along the fiber length 

obtained by the layer-peeling IS approach. 

 

Fig. 8. Position (group delay) and local period (wavelength) interrelation schematics for (a) 

even-order and (b) 3rd-order DC designs. 

To shed light into this apparent paradox, we first consider linearly-chirped gratings, where 

it is well established that the group-delay dispersion emanates from the fact that different 

wavelengths are reflected from different physical positions along the grating length. This is 

shown schematically in Fig. 8(a), where the local period (chirp) or equivalent reflected 

wavelength is plotted against grating position or equivalent group delay. In a monotonically 

varying group delay (2nd- or 4th-order dispersion) the effective reflection points are to large 

extent spatially separated. As can be seen in Fig. 7(a), however, in pure 3rd-order DC 

wavelengths placed symmetrically around the reflection bandwidth center experience the 

same group delay. From a physical perspective this means that they are reflected from the 

same position along the grating. From Fig. 8(b) it is evident that since wavelengths λ0 ± Δλ(z) 

reflect from the same position z, the corresponding partial gratings with local periods Λ0 ± 
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ΔΛ(z) are superimposed. This superposition results in a Moiré grating with short period Λ0 

and a modulation with much longer period 2

0( ) ( )M z z    . This eventually results in a 

complex grating with constant period Λ0 throughout and a superstructure period changing 

along the FBG grating. These observations provide the physical explanation of the features of 

the IS designs for pure 3rd-order DCs. Pure 3rd-order dispersion compensating gratings have 

been demonstrated experimentally [11,12]. 

3. Bidirectional Dispersionless FBG Designs 

To overcome the uni-directionality limitations of IS dispersionless FBG designs, discussed 

above, modifications to the design process have been proposed. They involve fitting the target 

dispersion profile, utilizing a distortion functional for the group delay minimization, and 

using symmetry relations and IS to design symmetric FBGs [41,42]. Here we propose a 

simpler approach based on existing uni-directional designs and the physical insight gained 

from the analysis in Section 2.1. Using this insight has enabled the design and fabrication of 

high reflectivity (>30dB) bidirectional, dispersionless FBGs, for the first time. 

 

Fig. 9. (a) Unidirectional asymmetric design obtained by application of layer-peeling IS 

algorithm, (b) bidirectional symmetric design obtained by replacing section III by section I. (c) 
reflectivity and transmissivity of the symmetric (solid lines) and original asymmetric (dashed 

lines) designs. (d) group delays in reflection (both sides) and transmission for the symmetric 

design. 

The starting point is the standard, unidirectional design obtained by application of layer-

peeling IS algorithm, shown in Fig. 9(a). As explained in Section 2.1, section II is the main 

dispersive reflector while section III contributes as a small perturbation only to the reflectivity 

spectrum squareness, leaving the dispersion largely unaffected. On the other hand, section I 

provides primarily the required dispersion compensation and leaves the reflectivity spectrum 

almost unchanged. These observations allow us to propose the truncation of section III and its 

replacement with the dispersion-compensating section I. In addition, in order to make the 

design totally symmetric, we symmetrize the main lobe I around its center. This is a small 

perturbation, which does not affect the final result significantly. The resulting symmetric 

design is shown in Fig. 9(b). Our profile shows strong similarity with the designs obtained 
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with the much more involved design procedures discussed in the literature [41,42]. Figure 

9(c) shows the obtained reflectivity and transmissivity of the symmetric (solid lines) and 

original asymmetric (dashed lines) designs. Compared to the asymmetric design, the 

symmetric design shows slightly stronger and more rounded transmission spectrum. This is a 

result of the truncation of part III, as discussed before in Section 2.1. Figure 9(d) shows the 

group delays in reflection (both sides) and transmission for the symmetric design, showing 

flat group delays from both sides. The group delays of the asymmetric design are similar to 

the ones shown in Fig. 2(c) and are not included here. 

To demonstrate the bidirectional dispersionless response, we have fabricated the new 

symmetric designs using the modified “moving fiber-scanning beam” technique [35,36]. The 

symmetric profile is shown in Fig. 10(a) (red line). It should be stressed that these IS-based 

symmetric profiles are considerably different to sinc profile, which are known to provide 

bidirectional dispersionless response only at low reflectivities (<~10%). In Fig. 10(a) we have 

also included the sinc profile (blue line) with the same main lobe, for comparison. Figure 

10(b) and 10(c) show the corresponding design and experimentally obtained reflectivities and 

the group delays from both sides. It is shown that our symmetric design gives almost identical 

dispersionless response from both sides, in excellent agreement with theory. 

 

Fig. 10. Dispersionless bidirectional FBG (a) normalized coupling constant profile (red line) 

and sinc profile (blue line) ((b) reflectivity (design – green & experiment - red) and (c) time 
delay from front (red), back (blue) sides and design (green). 

4. Summary - Conclusions 

We have revisited some of the most successful IS FBG designs and, for the first time, we 

have shed physical insight into their coupling constant profile, as well as, their reflectivity 

characteristics. We first demonstrated numerically and experimentally that dispersionless, 

square FBG filters are actually dispersion compensated devices and we physically identified 

the spatially separated main (dispersive) reflector and dispersion compensator sections. We 

also looked into the features of pure 2nd-order dispersion and 3rd-order dispersion 

compensator designs and discussed their physical importance. We showed that their non-

intuitive apodization profile features can be explained using fundamental physical arguments. 

Finally, we have used this knowledge to design and fabricate for the first time strong (>30dB) 

bidirectional gratings with dispersionless response from both sides, suitable for simultaneous 

add AND drop functions out of the same device. 
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