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Abstract: We revisit representative and widely used inverse-scattering
fiber Bragg grating designs and shed physical insight into their
characteristics. We first demonstrate numerically and experimentally that
dispersionless square filters are actually dispersion compensated devices
and we physically identify the spatially separated main (dispersive)
reflector and dispersion compensator sections. We also look into the
features of pure 2nd-order dispersion and 3rd-order dispersion compensator
designs and discuss their physical importance. Finally, we use the gained
physical insight to design strong symmetric gratings with dispersionless
response from both sides. Using this knowledge we design and fabricate
strong (>30dB) bidirectional dispersionless filters.
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1. Introduction

Since their first demonstration in 1978 [1], fiber Bragg gratings (FBGs) have found
widespread usage in lab experiments and a plethora of applications across the photonics
domain [2,3]. Their versatility stems from the ability to control very accurately their
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reflection and dispersion characteristics by proper design. Linearly-chirped FBGs have been
used extensively over the years for 2nd-order dispersion compensation in optical
communication transmission systems [4,5]. Even with the current effectiveness of electronic
dispersion compensation, FBG-based linear dispersion compensators are expected to continue
to play a role in hybrid compensation schemes in future high speed optical systems [6,7]. In
addition, linearly chirped FBG have been extensively used for pulse stretching and re-
compression in chirped-pulse amplification high power fiber laser systems [8]. Lately,
linearly-chirped FBGs have also been used to provide normal total dispersion in dissipative
dispersion-managed soliton mid-IR fiber laser systems, where fibers with normal dispersion
do not exist [9]. They can also provide broadband dispersion compensation for the
development of Fourier-domain mode-locked fiber lasers for long-range optical coherence
tomography [10]. Pure 3rd-order dispersion compensation FBGs [11,12], on the other hand,
can be potentially used for dispersion trimming in optical telecommunication systems and
transform-limited ultrashort-pulse fiber lasers [13,14].

FBGs are in general quasi-periodic structures written permanently inside the fiber core
using appropriate CW UV exposure [15] or more recently fs near-IR laser irradiation [16].
Fiber Bragg gratings are generally characterized by a refractive index variation given by:

n(z) =n, +An(z) cos[ K,z + ¢(2)] 1)

where ng is the background refractive index, An(z) is the amplitude distribution of the
perturbation (apodization or refractive index modulation profile), ¢(z) is the phase variation
of the perturbation, and Kq = 27t/4, where A, is a reference period. The spatial phase variation
¢(2) corresponds to an equivalent local period detuning or chirp given by [17]:

A_gd_(p (2)
27 dz

The local period distribution is A(z) = Ay + 44(z). The refractive index distribution of Eq.
(1) is equivalent to a generalized coupling constant:

a(2) =g (2)e™ @)

where Qo(z) = -i(n/lg)4ng(z) and Ay = 2nedo. Given the refractive index distribution n(z) or
equivalent coupling constant q(z), the FBG analysis consists in deriving the reflection
coefficient:

AA(Z) =-

r(2) =n(1)e"? (4)

where ro(4) is the reflection coefficient magnitude and 6(1) the reflection phase. The latter is
associated with the relative group delay by:

o0 _ njido
ow 27zc dA

A number of methods, including Bloch modes [18], coupled-mode theory [19] or transfer-
matrix method [20], can be used for the analysis of general FBGs. In order to achieve
optimum performance, in most applications the FBG main parameters, i.e. local strength and
period detuning, should be tailored appropriately. Traditionally, improved designs were
obtained by applying suitable apodization to both ends of otherwise uniform structures
[21,22]. In most of these cases, however, the improvement on one characteristic, e.g.
dispersion linearity, was usually achieved at the expense of another parameter, e.g. bandwidth
utilization.

In optimizing the filter response, a number of different refractive index profiles or
coupling constants are considered and their impact on the FBG performance is evaluated

At(A) = (%)
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against certain criteria. A much more efficient approach, however, is to use direct synthesis or
inverse scattering (IS) of the required FBG [see Fig. 1)]. This consists in defining first the
required reflection coefficient or impulse response and work backwards to define the
corresponding generalized coupling constant q(z) or refractive index distribution n(z) and
local detuning 44(z). A number of methods can be used for this purpose including Fourier
Transforms [23], Integral [24] or Differential IS methods [25].

refractive index n(z)

- ) reflection coefficient r(A)
coupling coefficient g(z)

impulse response h(t)

W

Fig. 1. General FBG analysis and synthesis schematic

FBG device effectiveness took a leap forward with the introduction of efficient IS design
algorithms. Such advanced approaches allowed a number of FBG performance characteristics
to be optimized simultaneously. Layer-peeling, in particular, has been established as a major
design algorithm for advanced grating-based devices [26-29]. Starting from the required
optimum transfer function and applying causality, the required refractive-index modulation
and chirp profile are obtained. The freedom to choose arbitrarily the response though comes
at the expense of device complexity. IS algorithms usually result in intricate designs that
depart considerably from established intuitive and straightforward configurations. A typical
example is the multi-lobe FBG design with square dispersionless response, which enables
dense wavelength-division-multiplexing (WDM) [30] and large number of concatenated add-
drop functions without substantial penalty [31]. However, such gratings are uni-directional
and cannot be used from both sides, which severely compromises their use as add AND drop
multiplexers. Other examples include pure 2nd- or 3rd-order dispersion compensators, as will
be discussed in this work.

So far in the literature emphasis has been placed primarily on the accuracy of the IS
mathematical formulations and no attempt has been made to physically understand how these
otherwise mathematically rigorous designs really work. In this paper, we revisit some of the
most successful IS FBG designs and shed physical insight into their characteristics. We first
demonstrate numerically and experimentally that dispersionless square filters are actually
dispersion compensated devices and we physically identify the spatially separated main
(dispersive) reflector and dispersion compensator sections. We also look into the features of
pure 2nd- and 3rd-order dispersion compensator designs and discuss their physical
importance. Finally, we use the gained physical insight to design strong symmetric gratings
with dispersionless response from both sides.

2. Physical Insight into Inverse-Scattering FBG Designs

In this section we consider specific examples of dispersion-engineered optical devices based
on IS FBG designs. The details of the layer-peeling IS design algorithms are well described in
the literature [26—29] and are not repeated here. The interested readers can refer to these
papers to acquaint themselves with the mathematical details. Any of these formulations can
be used for the design resulting in FBG profiles with similar features. In this work we
concentrate primarily on the physical significance of the designs. The desired reflection
coefficient is generally given by:
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r(a) =R, expM2%J Jexp[+iAe(/1)] (6)

where Ry is the peak reflectivity, 4, is the center wavelength, A4 = (1 -4¢) is the wavelength
detuning and A4, is the filter bandwidth. The integer m in the exponent of the super-Gaussian
profile defines the “squareness” of the reflection spectrum. The reflection phase is generally
given by:

27c

0(AL) = -5 j Ar(A)dAA @)
A
where
A7(AL) = Az, +D,AL+ DAL’ (8)
and
At =nyL,/cC 9)

is a reference time delay used to make the transfer function in Eq. (6) causal. D, and Dj
define the 2nd- and 3rd-order dispersion, respectively.

2.1: Linear-Phase (Dispersionless) FBG Filters (D, = D3 = 0)

The reflection coefficient of a square linear-phase (dispersionless) grating is obtained by
setting D, = D3 = 0 in Eq. (8).
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Fig. 2. Dispersionless FBG characteristics: (a) Coupling constant (b) reflectivity &
transmissivity and (c) reflection (left & right) and transmission group delays, (d) coupling
constant (log scale) for varying reflectivity.
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Figure 2(a) shows the coupling constant distribution for a square dispersionless FBG filter
with Ry = 0.9995, Aly = 0.4nm and m = 22. The coupling constant and the associated RI
modulation profile is highly asymmetric. It consists of a main lobe (I1) preceded and followed
by secondary lobe series | & 1l of different heights and periodicity. Figure 2(b) shows the
reflectivity and transmissivity spectra, while Fig. 2(c) shows the reflection group delay from
left and right. It is evident that the filter is dispersionless only when light enters from the left.
The reflection from the opposite side, on the other hand, is highly dispersive. This obviously
compromises severely the ability to accomplish add and drop function by the same FBG. As
in all FBGs, the group delay in transmission is the average of the two reflection group delays.
The negative coupling constant is achieved by inserting n-phase shifts at the zero crossing
points. Figure 2(d) plots the coupling constant (in log scale, in order to reveal small features)
with varying peak reflectivity Ro. It is shown that the coupling constant and, therefore, the
associated RI distribution becomes progressively more asymmetric as the reflectivity is
increased. It is observed that the periodicity of section | remains constant, while the size of
section Il and the periodicity of section 1l increase with Ry. It should also be mentioned that
the RI distribution is symmetric only for Ry<0.1.

Following this analysis, we can consider the complex Rl modulation profiles of the
dispersionless IS designs as consisting of two distinct parts, denoted as front and back parts.
The front part comprises only the constant period preceding lobe series (section I). The back
part, on the other hand, comprises the main lobe (section I1) and the following lobe series
(section 111) [32-34]. We will show that these distinct parts, in addition to developing
differently with increasing the peak reflectivity, contribute in different ways to the FBG
overall reflectivity and dispersion.

800 0
= full IS design 1 5
= 600 1 =
4= 3 -
£ a00 :) Z 15
g S
S @ 20
O 200 £
5 Al LA g s
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Fig. 3. Dispersionless IS FBG design (a) full coupling constant distribution (regions | + Il +
I11), (b) truncated profiles Il + Il and (c) central lobe II. (d)-(f) show the corresponding
transmissivities, reflectivities and group delays.
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Figure 3(a) shows the full distribution (regions I + 11 + I11) of the coupling constant for a
dispersionless FBG, with Rq = 0.99, Ay = 0.5nm and m = 22. Figure 3(b) and 3(c) show the
truncated profiles (sections Il + I11) and the central lobe (section 1), respectively. Figure 3(d)-
3(f) show the corresponding transmissivities, reflectivities and group delays, respectively.
Compared to the full profile [Fig. 3(a) and blue lines], it is observed that truncating the front
section | [Fig. 3(b) and green lines] results in minimum changes in the “squareness” of the
transmissivity and reflectivity (the reflectivity is affected mostly below the —25dB level). In
contrast, the effect on the group delay is much more pronounced. These results show that the
front section | controls the group delay flatness. In other words, section | acts primarily as the
“dispersion compensator” of the full IS FBG design. Finally, truncating section Ill and
retaining lobe Il only [Fig. 3(c) and red lines] results in a “non-square” transmission
spectrum. In addition, typical side-lobes appear in the reflectivity spectrum, while there is no
additional penalty in the group delay spectrum. It is then deduced that section Ill controls
primarily the transmissivity “squareness” by reducing the transmission around the spectrum
center and increasing it at the spectrum edges. Section III works primarily as “spectrum
modifier” and does not affect the overall dispersion. The functionality of the different FBG
parts has not been discussed before.
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Fig. 4. Inverse scattering dispersionless FBGs; Reflectivity and Group Delay spectra for
(@)&(b) main reflector (sections Il + Ill), (c)&(d) dispersion compensator (section 1) and
(e)&(f) entire grating (I + 11 + I11), (blue lines: theory, red lines: experiment).

To explore further the identified IS FBG design features, three different gratings,
consisting of front part (section 1), back part (11 + I11) and whole dispersionless FBG (I + 11 +
IIT), were written using a modified “moving fiber-scanning beam” technique [35,36] and
measured separately. Figure 4(a) and 4(b) show the reflectivity and reflection group delay,
respectively, of the back part (11 + I1I) alone. In agreement with previous observations, this
part provides strong reflection and it is highly dispersive. Figure 4(c) and 4(d) show the
reflectivity and group delay, respectively, of the front part (section I) alone. The front part
provides negligible reflection and it is again highly dispersive with dispersion, however, of
opposite sign to the front part. Figure 4(e) and 4(f) finally show the reflectivity and group
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delay, respectively, of the whole FBG. Its reflectivity is shown to be largely the same with the
one of the front part while its group delay is substantially flattened. The residual ripple is of
small enough magnitude and period to cause any substantial penalty to high bit-rate data [37].
Figure 4(a)-4(d) include both the theoretical (blue lines) and experimental (red lines) results,
showing very good agreement. The small discrepancy is due to slight inaccuracies in the
amount of m-phase shifts required for the dispersionless IS designs.

2.2 Pure 2nd-Order Dispersion Compensators (D, # 0, D; = 0)

Layer-peeling IS algorithms are again the preferred design approach for fabrication of high
performance FBG-based pure 2nd-order dispersion compensators. The reflection coefficient
of a linear dispersion compensator defined by setting D, = 0 and D; = 0 in Eq. (8).

As in the case of dispersionless FBGs, 1S-based designs for 2nd-order dispersion
compensators are complex with non-intuitive features. Figure 5(a) shows schematically the
design reflectivity and time-delay spectrum of a 2nd-order dispersion compensating FBG.
The parameters used were Ry = 0.99, Ay = 0.6nm, m = 120 and D, = 1500ps/nm. Figure 5(b)
shows the apodization profile (coupling constant distribution) and chirp (local detuning) of
the layer-peeling IS design. It is evident that both the apodization and local detuning
variations are complex and departing considerably from standard and intuitive profiles used
extensively in the past in order to minimize in-band group delay ripples [22]. Figure 5(c), on
the other hand, shows the apodization profile (coupling constant) and local period detuning
(chirp) distributions of a conventional, linearly-chirped FBG. The FBG total length is 18cm
and the applied local period detuning is 0.2nm. The apodization profile is a super-gaussian
function with exponent m = 120, Lo = 18cm and maximum coupling constant of 172m™.
Figure 5(d) shows the resulting reflectivity and group-delay spectra of such grating. Despite
the slight apodization, the reflectivity spectrum is undulating. In addition, the group delay
shows strong ripples over the reflection bandwidth.
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Fig. 5. Reflectivity and group-delay spectrum of a 2nd-order dispersion compensating FBG (R,
=0.99, Ado =0.6nm, m = 120 and D, = 1500ps/nm), (b apodization profile (coupling constant)
and chirp (local detuning) of the layer-peeling IS design, (c) apodization profile (coupling
constant) and local period detuning (chirp) distributions of a conventional, linearly-chirped
FBG. The FBG total length is 18cm and the applied local period detuning is 0.2nm. The
apodization profile is a super-gaussian function with exponent m = 120, L, = 18cm and
maximum coupling constant of 172m™, (d) reflectivity and group-delay spectra of the grating.
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The physical significance of the features of the 1S-based design can now be appreciated by
comparing the coupling constants/local period variations and the reflectivities/group delay
spectra, of a conventional linearly-chirped FBG [Fig. 5(c)&5(d)] and the IS-based pure 2nd-
order dispersion compensator [Fig. 5(a)&5(b)). It is realized that as compared to conventional
linearly-chirped FBGs, by appropriately introducing the ripples in the FBG apodization and
local period variation, the IS design takes the ripples out and linearizes the group delay
response. It has been understood that the group delay and the associated reflectivity ripples in
conventional linearly-chirped gratings are due to residual internal “cavities” formed by
spectrally partially overlapping adjacent grating sections [38]. By introducing additional local
detuning and changing the local grating coupling strength appropriately - in a
mathematically rigorous way - the 1S-based designs detune and reduce the spectral partial
overlap of adjacent grating sections and linearize the group delay response.

To demonstrate the aforementioned features, we have designed pure 2nd-order FBG
dispersion compensators using layer-peeling IS approach and have fabricated them using the
previously mentioned technique [39].
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Fig. 6. (a) Coupling constant (left) and local period detuning (right) obtained with the layer-
peeling IS technique, for Ro= 0.9, Alo = 0.4nm, m = 22 and D, = —1100ps/nm. Theoretical and
experimental (b) reflectivity spectra, (c) group delay and (d) group delay ripple (superimposed
is also the reflectivity of a conventional tahn-apodized, linearly-chirped FBG with comparable
reflectivity and dispersion).

The design parameters were Ry = 0.9, Aly = 0.4nm, m = 22 and D, = —1100ps/nm. Figure
6(a) shows the coupling constant envelope (left) and local period detuning (right) obtained
with the layer-peeling IS technique. Figure 6(b) superimposes the theoretical and
experimental reflectivity spectrum, showing excellent agreement. Superimposed is also the
reflectivity of a conventional tanh-apodized, linearly-chirped FBG with comparable
reflectivity and dispersion [22]. It is shown that the IS design results in a much squarer
reflectivity spectrum. Figure 6(c) and (d) compare the corresponding experimental and
theoretical group delay and group delay deviation (ripple), respectively. It is shown that
experimental data based on IS design are again in excellent agreement with theory. The low
level of noise on the experimental group delay ( £ 10 ps peak to peak) has a very short
spectral period (~10 pm) and is not expected to have a significant effect on the transmission
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of high speed optical signals [37] [40]. The conventionally apodized, linearly-chirped FBGs,
on the other hand, show substantial group delay ripples, as a result of residual internal
reflections.

2.3 Pure Third-Order Dispersion Compensators (D, =0, D3 # Q)

The reflection coefficient of a pure 3rd-order dispersion compensator is defined by setting D,
=0and D; = 0in Eq. (8). Figure 7(a) shows the target reflectivity (left) and the corresponding
group delay (right), for Ry = 0.9, Ay = 5nm, m = 20 and D; = —20ps/nm?. Figure 7(b) shows
the coupling constant distribution along the fiber length obtained by applying layer-peeling IS
approach. The coupling constant is real, which implies that the pure 3rd-order DC is
unchirped. In addition, the apodization profile is super-structured with a large number of
lobes with decreasing amplitude and length the further away from the main lobe. The fact that
a dispersion compensating design appears to be un-chirped is a surprising and non-intuitive
result.
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Fig. 7. (a) Reflectivity (left) and the corresponding group delay (right), for Ry = 0.9, A =
5nm, m = 20 and D; = —20ps/nm?, (b) coupling constant distribution along the fiber length
obtained by the layer-peeling IS approach.
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Fig. 8. Position (group delay) and local period (wavelength) interrelation schematics for (a)
even-order and (b) 3rd-order DC designs.

To shed light into this apparent paradox, we first consider linearly-chirped gratings, where
it is well established that the group-delay dispersion emanates from the fact that different
wavelengths are reflected from different physical positions along the grating length. This is
shown schematically in Fig. 8(a), where the local period (chirp) or equivalent reflected
wavelength is plotted against grating position or equivalent group delay. In a monotonically
varying group delay (2nd- or 4th-order dispersion) the effective reflection points are to large
extent spatially separated. As can be seen in Fig. 7(a), however, in pure 3rd-order DC
wavelengths placed symmetrically around the reflection bandwidth center experience the
same group delay. From a physical perspective this means that they are reflected from the
same position along the grating. From Fig. 8(b) it is evident that since wavelengths Ay + AMZ)
reflect from the same position z, the corresponding partial gratings with local periods Ag
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AA(Z) are superimposed. This superposition results in a Moir¢ grating with short period Ag
and a modulation with much longer period A,,(z) = AZ/AA(z). This eventually results in a

complex grating with constant period A, throughout and a superstructure period £ changing
along the FBG grating. These observations provide the physical explanation of the features of
the IS designs for pure 3rd-order DCs. Pure 3rd-order dispersion compensating gratings have
been demonstrated experimentally [11,12].

3. Bidirectional Dispersionless FBG Designs

To overcome the uni-directionality limitations of IS dispersionless FBG designs, discussed
above, modifications to the design process have been proposed. They involve fitting the target
dispersion profile, utilizing a distortion functional for the group delay minimization, and
using symmetry relations and IS to design symmetric FBGs [41,42]. Here we propose a
simpler approach based on existing uni-directional designs and the physical insight gained
from the analysis in Section 2.1. Using this insight has enabled the design and fabrication of
high reflectivity (>30dB) bidirectional, dispersionless FBGs, for the first time.
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Fig. 9. (a) Unidirectional asymmetric design obtained by application of layer-peeling IS
algorithm, (b) bidirectional symmetric design obtained by replacing section Il1 by section 1. (c)
reflectivity and transmissivity of the symmetric (solid lines) and original asymmetric (dashed
lines) designs. (d) group delays in reflection (both sides) and transmission for the symmetric
design.

The starting point is the standard, unidirectional design obtained by application of layer-
peeling 1S algorithm, shown in Fig. 9(a). As explained in Section 2.1, section Il is the main
dispersive reflector while section 111 contributes as a small perturbation only to the reflectivity
spectrum squareness, leaving the dispersion largely unaffected. On the other hand, section |
provides primarily the required dispersion compensation and leaves the reflectivity spectrum
almost unchanged. These observations allow us to propose the truncation of section 111 and its
replacement with the dispersion-compensating section I. In addition, in order to make the
design totally symmetric, we symmetrize the main lobe I around its center. This is a small
perturbation, which does not affect the final result significantly. The resulting symmetric
design is shown in Fig. 9(b). Our profile shows strong similarity with the designs obtained
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with the much more involved design procedures discussed in the literature [41,42]. Figure
9(c) shows the obtained reflectivity and transmissivity of the symmetric (solid lines) and
original asymmetric (dashed lines) designs. Compared to the asymmetric design, the
symmetric design shows slightly stronger and more rounded transmission spectrum. This is a
result of the truncation of part 11, as discussed before in Section 2.1. Figure 9(d) shows the
group delays in reflection (both sides) and transmission for the symmetric design, showing
flat group delays from both sides. The group delays of the asymmetric design are similar to
the ones shown in Fig. 2(c) and are not included here.

To demonstrate the bidirectional dispersionless response, we have fabricated the new
symmetric designs using the modified “moving fiber-scanning beam” technique [35,36]. The
symmetric profile is shown in Fig. 10(a) (red line). It should be stressed that these 1S-based
symmetric profiles are considerably different to sinc profile, which are known to provide
bidirectional dispersionless response only at low reflectivities (<~10%). In Fig. 10(a) we have
also included the sinc profile (blue line) with the same main lobe, for comparison. Figure
10(b) and 10(c) show the corresponding design and experimentally obtained reflectivities and
the group delays from both sides. It is shown that our symmetric design gives almost identical
dispersionless response from both sides, in excellent agreement with theory.
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Fig. 10. Dispersionless bidirectional FBG (a) normalized coupling constant profile (red line)
and sinc profile (blue line) ((b) reflectivity (design — green & experiment - red) and (c) time
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4. Summary - Conclusions

We have revisited some of the most successful IS FBG designs and, for the first time, we
have shed physical insight into their coupling constant profile, as well as, their reflectivity
characteristics. We first demonstrated numerically and experimentally that dispersionless,
square FBG filters are actually dispersion compensated devices and we physically identified
the spatially separated main (dispersive) reflector and dispersion compensator sections. We
also looked into the features of pure 2nd-order dispersion and 3rd-order dispersion
compensator designs and discussed their physical importance. We showed that their non-
intuitive apodization profile features can be explained using fundamental physical arguments.
Finally, we have used this knowledge to design and fabricate for the first time strong (>30dB)
bidirectional gratings with dispersionless response from both sides, suitable for simultaneous
add AND drop functions out of the same device.
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