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Abstract The probability of extreme storm-tide events has been extensively studied; however, the vari-
ability within the duration of such events and implications to flood risk is less well understood. This research
quantifies such variability during extreme storm-tide events (the combined elevation of the tide, surge, and
their interactions) at 44 national tide gauges around the UK. Extreme storm-tide events were sampled from
water level measurements taken every 15 min between 1993 and 2012. At each site, the variability in eleva-
tion at each time step, relative to a given event peak, was quantified. The magnitude of this time series vari-
ability was influenced both by gauge location (and hence the tidal and nontidal residual characteristics) and
the time relative to high water. The potential influence of this variability on coastal inundation was assessed
across all UK gauge sites, followed by a detailed case study of Portsmouth. A two-dimensional hydrody-
namic model of the Portsmouth region was used to demonstrate that given a current 1 in 200 year storm-
tide event, the predicted number of buildings inundated differed by more than 30% when contrasting sim-
ulations forced with the upper and lower bounds of the observed time series variability. The results indicate
that variability in the time series of the storm-tide event can have considerable influence upon overflow vol-
umes, hence with implications for coastal flood risk assessments. Therefore, further evaluating and repre-
senting this uncertainty in future flood risk assessments is vital, while the envelopes of variability defined in
this research provides a valuable tool for coastal flood modelers.

1. Introduction

Coastal areas are heavily populated regions throughout the world; more than a billion people and a signifi-
cant portion of the global gross domestic product (GDP) are found within 100 km of the coast [Small and
Nicholls, 2003]. Over recent decades, coastal populations have continued to grow much more rapidly than
global mean populations, particularly in less developed countries [Spencer and French, 1993; Hunt, 2005].
Continued urbanization and migration is expected to significantly increase the value of assets found near
coasts in the coming century [Nicholls, 1995; Turner et al., 1996; Zong and Tooley, 2003; Mokrech et al., 2012].
Given that 14 out of the world’s 17 recognized global megacities (with populations exceeding 10 million)
are located in coastal zones [Tibbetts, 2002; Sekovski et al., 2012]; accurately assessing flood risk to these
densely populated regions is of critical importance for coastal communities and to guide adaption
strategies.

Storm tides are the total still (i.e., excluding waves) water levels experienced at the coast due to the combi-
nation of three main factors: (1) mean sea level; (2) astronomical tide; and (3) storm surge [Pugh, 2004; Lewis
et al., 2011] and can result in devastating coastal floods due to the large number of people and assets in
low-lying coastal regions found throughout the world. For example, more than 440,000 people were killed
in two storm-tide events occurring in 1970 and 1991 in the Bay of Bengal alone [Flather, 1994], while Hurri-
cane Katrina [e.g., Risk Management Solutions, 2005] and Hurricane Sandy have recently caused devastation
on the U.S. coastline. More recently, Typhoon Haiyan, which hit the Philippines in November 2013, induced
a storm tide of more than 25 ft (7.6 m) which affected more than 14 million people, causing about 6200
deaths [Barmania, 2014; see also http://reliefweb.int/disaster/tc-2013-000139-phl for more information).

Efficient planning and resource allocation is essential in order to cope with current risk, and the likely
increase in risk facing many areas due to rising mean sea levels in the coming century [Houghton, 2005;
Meehl et al., 2007; Lowe et al., 2009; Haigh et al., 2011]. Furthermore, due to the temporal lead time required
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to construct mitigation strategies and flood defenses, an accurate assessment of the spatial and temporal
changes to risk (here defined as the product of the probability and consequences of flooding) is vital and
imminently required. An important component of this process is accurate risk-based assessments to inform
policy decisions. Typically this is achieved using a numerical modeling approach in which storm-tide condi-
tions of interest, commonly based on a probability of exceedence or ‘‘return period’’ [e.g., Tawn, 1992; Haigh
et al., 2010], are imposed upon an inundation model domain boundary [e.g., Bates et al., 2005, 2010], which
may incorporate defense responses and be used to assess economic damage [e.g., Dawson et al., 2009].
Resulting flood conditions may be used to infer likely inundation extents and potential losses for specific
flood events [e.g., Stansby et al., 2012; Smith et al., 2012; Wadey et al., 2012). These assessments provide a
vital tool for informing policy decisions (e.g., cost-benefit of flood defenses; shoreline planning) and
scenario-based assessment of coastal change [Dawson et al., 2003]. However, errors are inevitably intro-
duced into model predictions through a variety of sources including inaccurate estimates of initial condi-
tions, inaccurate boundary forcing, and lack of complete knowledge of the system leading to an inability of
numerical models to fully represent many physical processes [Maybeck, 1979; Madsen and Canizares, 1999;
Kantha and Clayson, 2000; Brown et al., 2007; Neal, 2007]. Such uncertainties will impact both deterministic
and probabilistic predictions of inundation extent and depth. The ultimate result is divergence from reality
in the model predictions. Understanding this uncertainty is essential as unrealistic expectations of accuracy
can result in the misinterpretations of flood risk, with profound implications [Brown and Damery, 2002; Hall
and Solomatine, 2008]. For this reason, many operational forecasting systems and risk assessments provide
probabilistic predictions in an attempt to explicitly account for known uncertainties in the modeling
approach used [e.g., Purvis et al., 2008; Bocquet et al., 2009; Pappenberger and Beven, 2006; Davis et al., 2010;
Kim et al., 2010].

A fundamental source of uncertainty in various coastal-based numerical models and empirical approaches
used to predict coastal events and change (e.g., flooding, sediment transport, and erosion) is the specifica-
tion of the tide and surge boundary conditions. Model sensitivity due to this input is high, due to its funda-
mental influence upon the volume and rate at which water enters the model domain (and can then be
distributed). It has been established that astronomical tidal elevations are often not predicted well by physi-
cally based numerical models (particularly in complex nearshore regions); hence, harmonic tide predictions
(based on measured data) are substituted in the place of outputs from such models in many operational
systems due to their greater accuracy [Bocquet et al., 2009; Flowerdew et al., 2009]. Furthermore, meteorically
induced storm surges, tide-surge interaction effects causing phase variation, and local conditions (e.g.,
bathymetry) complicate combined tide and surge predictions (which we call storm tide). Recently, progress
has been made in forecasting extreme storm tides around complex coastlines allowing for more accurate
estimates between gauged locations [Horsburgh et al., 2008; Lewis et al., 2011, 2013] and in the prediction
of the heights and probabilities of extreme sea levels [McMillan et al., 2011; Batstone et al., 2013; Haigh et al.,
2014a, 2014b).

Typically an idealized storm-tide time series (often derived from a previously observed event) is applied to
these return level estimates to force an inundation model at a given location [e.g., Dawson et al., 2005; Pur-
vis et al., 2008; McMillan et al., 2011; Batstone et al., 2013; Gallien et al., 2011; Quinn et al., 2013]. However,
the true storm-tide time series is likely to vary spatially (along a section of coastline) and temporally
(between subsequent events), even for a given event magnitude, due to variability in tide and surge charac-
teristics, and the complexity of their interactions [Horsburgh and Wilson, 2007; Wolf, 2009; Brown et al., 2011;
Lewis et al., 2013]. No two storm-tide events are the same, because different combinations of tide and surge
(superimposed on different mean sea levels) combine to give the total water levels observed during events.
For example, Figure 1 shows time series of total water level at Liverpool for eight events, and the corre-
sponding time series of tide and nontidal residual that combine to give the total water levels for those eight
events. The nontidal residual is the difference in elevations relative to those generated by the tide alone
and primarily contains the surge and tide-surge interaction effects [Pugh, 1987; Horsburgh and Wilson,
2007]. For each of the eight events, the maximum water level is 10.37 m Chart Datum (which corresponds
to a 1 in 2 year return period). But what is clear from Figure 1 is that the temporal variability in the hours
leading up to and then proceeding the peak water level of each of these eight events is different, because
of differences in the tidal and nontidal residual time series. This uncertainty in the storm-tide time series is
not commonly quantified in coastal flood risk assessments, and hence is the focus of our study.
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Uncertainty in the true time series of a storm-tide event, particularly close to the time of high water (when
defense exceedance is most likely) may lead to uncertainty in the duration (and therefore volume) of water
affecting a region of interest; a factor currently not considered systematically in many flood risk assess-
ments. This will have important implications on the simulated inundation extent and depth, and thus the
predicted risk. Further, the probability of defense failure is likely to increase the longer a peak water level
persists, while other processes of relevance to flood risk such as wave-overtopping and erosion of beaches
and soft defenses would also be expected to respond to changes in the storm-tide time series [e.g., Pullen
et al., 2007; Roelvink et al., 2009].

Therefore, the first objective of this paper is to define the uncertainty within such an assumption by quanti-
fying the natural observed variability in extreme storm-tide time series around the UK; a region that has a
long history of coastal flooding, particularly from surges occurring in the North Sea [e.g., G€onnert et al.,
2001; McRobie et al., 2005; Baxter, 2005; Gerritsen, 2005]. Most recently, throughout December 2013 to Feb-
ruary 2014, many areas of the UK experienced a sequence of severe storm events, leading to thousands of
homes being flooded and many more evacuated [Slingo et al., 2014]. This information will be useful to bet-
ter inform future flood risk assessments. The magnitude of the variability in storm-tide time series is
assessed around the UK in order to ascertain site characteristics that are prone to induce a high level of
uncertainty in an extreme storm-tide time series; information that will be of value to policy makers and
modelers interested in coastal flood risk. The second objective of the paper is to examine the implications
of the variability observed in the storm-tide time series at different sites. We do this by undertaking a theo-
retical assessment of overflow volumes (where still water levels exceed defense elevations) at each gauge
site, and also carry out a case study sensitivity analysis of flood inundation at Portsmouth, one of the most
flood prone cities in the UK.

The paper is formatted as follows: section 2 introduces the study sites and data sets; section 3 describes the
methods used to define the variability in storm-tide time series and examine its significance to flood risk;
the results and discussion are presented in section 4; while the conclusions are given in section 5.

Figure 1. Time series of total water level, tidal, and nontidal residual at Liverpool for eight storm-tide events whose maximum water level
is comparable.
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2. Sea Level Data Sets

This research focused on water level time series measured across the comprehensive UK national A-Class
tide gauge database (Figure 2 and Table 1). Water level measurements at 15 min temporal resolution were
obtained for 44 sites around the UK from the British Oceanographic Data Centre (BODC, www.bodc.ac.uk),
who archive and quality control the data on behalf of the National Tidal and Sea Level Facility (www.ntslf.
org). To ensure results were comparable between sites, the focus was only on the 20 year period from 1993
to 2012. All sites contained at least 15 years of data for this period with the exception of Harwick, Lerwick,
and Moray Firth, which included 8, 14, and 10 years, respectively. All data archived by the BODC has under-
gone quality control and corresponding quality markers are recorded, which were used to remove any
potentially erroneous data prior to analysis.

As the focus is on comparing extreme storm tides, we removed the mean sea level component from the
measured water level data sets and then separated the time series into an astronomical tidal component
and a nontidal residual. To isolate the contribution of sea level changes caused by individual storm events
(rather than longer term seasonal or interannual changes in meteorology), the MSL component (indicative
of seasonal, interannual, and longer term change) was derived using a 30 day running mean of the
observed sea level time series at each site, and this was subsequently removed from the record for that site.
Harmonic analysis was performed with T-Tide [Pawlowicz et al., 2002] for each calendar year with the stand-
ard set of 67 tidal constituents, to predict the tidal component. The nontidal residual was determined by
subtracting the calculated tidal component from the measured time series.

Figure 2. Tide gauge sites used in the analysis.

Journal of Geophysical Research: Oceans 10.1002/2014JC010197

QUINN ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4986

http://www.bodc.ac.uk
http://www.ntslf.org
http://www.ntslf.org


3. Methods

3.1. Variability in the Storm-Tide Event Time Series
The first study objective is to quantify the variability during extreme storm-tide event time series, particu-
larly in the hours leading up to and then proceeding the peak water level of events. To do this a representa-
tive set of extreme storm-tide event time series was selected from the available data at each site. Using this
selected ensemble of events, the spread (variability) in the water level elevations, every 15 min, over a 12 h
event time window, centered on time of maximum water level, was examined and used to define a repre-
sentative mean, upper and lower storm-tide time series, which captures the envelope of variability at each
site.

Preliminary analysis indicated that the data selection criterion was influential upon the resulting ensemble,
and therefore, the estimate of time series variability. Relaxing the high water constraint (thereby including a
greater number of events) at a site was found to result in a larger spread in the ensemble at any given time
step. As this research was primarily interested in quantifying the variability in extreme storm-tide time series

Table 1. Tide Gauge Information

Station Name Site ID

Location (Decimal Degrees)

Data Length (Years)Latitude Longitude

Aberdeen ABE 57.14 22.08 19
Avonmouth AVO 51.52 22.72 19
Bangor BAN 54.67 25.67 18
Barmouth BAR 52.72 24.05 19
Bournemouth BOU 50.72 21.88 16
Cromer CRO 52.94 1.3 19
Devonport DEV 50.37 24.2 19
Dover DOV 51.12 1.32 19
Felixstowe FEL 51.96 1.35 18
Fishguard FIS 52.02 24.98 19
Harwich HAR 51.96 1.35 8
Heysham HEY 54.04 22.93 19
Hinkley Point HIN 51.22 23.13 19
Holyhead HOL 53.32 24.63 17
Ilfracombe ILF 51.22 24.11 19
Immingham IMM 53.63 20.18 19
Jersey JER 49.19 22.12 19
Kinlochbervie KIN 58.46 25.05 19
Leith LEI 55.99 23.18 19
Lerwick LER 60.15 21.12 14
Liverpool LIV 53.45 23.02 19
Llandudno LLA 53.33 23.83 18
Lowestoft LOW 52.48 1.77 19
Milford Haven MHA 51.71 25.05 19
Millport MIL 55.76 24.91 19
Moray Firth MOR 57.6 24 10
Mumbles MUM 51.57 23.98 19
Newhaven NHA 50.78 0.05 19
Newlyn NEW 50.11 25.55 19
Newport NPO 51.55 22.99 19
North Shields NSH 55.01 21.44 19
Port Ellen ISL 55.64 26.2 18
Port Erin IOM 54.09 24.77 19
Portpatrick POR 54.85 25.12 19
Portrush PRU 55.21 26.67 17
Portsmouth PTM 50.81 21.11 17
St. Mary’s STM 49.93 26.32 18
Sheerness SHE 51.45 0.74 19
Stornoway STO 58.2 26.39 19
Tobermory TOB 56.63 26.07 15
Ullapool ULL 57.89 25.16 15
Weymouth WEY 50.61 22.45 19
Whitby WHI 54.51 20.62 19
Wick WIC 58.45 23.08 15
Workington WOR 54.66 23.57 16
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and its potential impacts on flood risk, only the largest 1% of events was used at each site. This enabled the
research to focus on defining the time series variability in the largest events, which will be of most interest
to flood risk managers, while allowing for adequately large ensembles (between 100 and 150 events) to still
be considered at each site.

The following steps were used at each site shown in Figure 2:

1. Every high water was identified from the available data, and all but the largest 1% were discarded.

2. The remaining high water points were used as index points to extract the total water level, tide, and non-
tidal residual elevations 6 h either side of the peak, at 15 min resolution.

3. Considering the ensemble of time series; the standard deviation, mean, 95th and 5th percentile statistics
at each time step were then calculated.

4. For each event, the water level at each time step was calculated as a proportion of the event peak to
allow comparison of the time series shape between events more easily. The same statistics calculated in
step (c) were then extracted from the new normalized ensemble of time series.

The standard deviation in the tide, nontidal residuals, and total water level ensembles at each time step
was used as a primary indicator of variability of the storm-tide time series; representing the spread in eleva-
tions at a time step, given as a proportion of the event peak magnitude. The ensemble mean, 95th and 5th
percentile time series provided the upper and lower bounds on the likely shape of an extreme storm-tide
time series at a given site (Figure 3).

3.2. Influence of Time Series Uncertainty on Coastal Inundation
The second objective of the paper is to examine some of the implications of the variability in the storm-tide
time series defined in objective 1. To do this, two sets of analysis were made: a theoretical assessment of
overflow volumes at each site and a detailed local analysis of the impact on flooding inundation extent at
Portsmouth.

To examine the potential implications upon defense overflow volumes at the gauge sites, the peak storm-
tide heights with a 1 in 300, 500, and 1000 year probability of exceedance were selected [estimated by
McMillan et al., 2011 for the UK Environment Agency], and the uncertainty associated with the water level
time series of these events investigated. The upper and lower bounds of the variability envelopes defined

Figure 3. Ensemble statistics used to quantify event time series uncertainty.
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in section 3.1 (Figure 3) were used to define two event time series for each of the selected event magni-
tudes, at each site.

At each site, a hypothetical sea defense built to a 1 in 200 year level standard was defined [the standard for
approximately 400,000 homes in the UK coastal zone; Committee on Climate Change, 2013] and the con-
structed storm-tide time series were used to estimate overflow volumes during the event. The flow of water
over the defense was represented by broad crested weir equations [Ackers et al., 1978; Quinn et al., 2013].
Given these conditions, the volume of discharge (per unit length of defense) was calculated every 15 min,
and the total event discharge was given as the sum of all time steps. In this example, the water level in a
given bin was assumed to be static for the 15 min duration of the bin. The total event discharge can be rep-
resented by

QT 5
Xn

i51

Qi

where QT is the total event discharge, and the discharge in bin i, Qi, is given by

Qi5CLH
3
2
i

where C is a weir coefficient (given as 1.5), L is the length (1 m), and H is the water head (m).

Four sites away from Mainland UK (Bangor, Harwich, Saint Helier, and Portrush) were not included in this
portion of the analysis because return period statistics were not available for them [McMillan et al., 2011;
Batstone et al., 2013].

To provide a more detailed example of the potential impacts of time series variability upon extreme events,
a two-dimensional (2-D) inundation case study was also undertaken for the low-lying and densely popu-
lated UK city of Portsmouth which is ranked only behind London and Hull for the amount of property at risk
of coastal flooding [RIBA and ICE, 2009]. The city is surrounded by hard defense structures, most of which
are expected to provide approximately a 1 in 200 year standard of protection. The flood simulation method
comprised point vectors placed onto the edge of a digital elevation model (DEM), with each point associ-
ated with a storm-tide water level time series. The DEM was assembled from LiDAR data collected between
2007 and 2008 by the Environment Agency (EA) at 1–2 m resolution. This was spatially averaged to 50 m
cells. For the case study of Portsmouth, this resulted in 150 columns and 168 rows of cells, in the form of a
regular grid. The vertical root-mean-square-error of the LiDAR collected by the EA was within 60.10 m of
the available ground-based check points. Flood water was propagated inland using the 2-D raster based
inundation model LISFLOOD-FP [refer to Bates et al., 2010 for technical details of this model]. The coarse
scale is acknowledged in this example for urban flood modeling: finer resolution grids can generate more
accurate representations of flow diverting around buildings, while less interpolation of the original topo-
graphic survey data can allow a more realistic approximation of floodplain water depths [Fewtrell et al.,
2008]. However, the modeling method has been validated against real floods in nearby areas [Wadey et al.,
2012, 2013] and is hence considered to be sufficient to demonstrate the effects of different storm tides on
basic coastal flood predictions. Two defense conditions scenarios were simulated:

1. No breach—Defense crest heights collected by ground-based surveys with 60.03 m accuracy were
appended to the DEM. The storm-tide water level time series was routed over these defenses which were
assumed to hold.

2. Breach—Defense structures were removed from the DEM and water was able to flow into the domain if
the land height behind the defense was lower than the inflow boundary water level. Although breaching is
unlikely to occur in such a drastic manner, agencies such as the EA often define flood maps under such con-
ditions (e.g., http://apps.environment-agency.gov.uk/wiyby/37837.aspx).

Wave-overtopping was excluded due to the high uncertainties described in previous studies, especially
when linked to inundation simulations [e.g., Pullen et al., 2007, 2009; Smith et al., 2012] although more
recent research has reported prediction accuracies of approximately 20% when compared to field data
[McCabe et al., 2013]. Furthermore, Portsmouth has not experienced a major coastal flood in recent years,
and it was not possible to calibrate the wave-overtopping predictions. Surface friction, parameterized within
the LISFLOOD-FP kinematic wave equation as the Manning’s n roughness coefficient [see Bates et al., 2010],
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was set at a spatially homogenous value of 0.035, while the time step was set within the model to optimize
stability and computational efficiency.

Water level peaks representing 1 in 1, 10, 50, 200, 300, 500, and 1000 year events were calculated for the
Portsmouth tide gauge. For each event peak, two time series were created using the upper and lower
storm-tide time series bounds for the Portsmouth site, defined in the analysis outlined in section 3.1. Each
event time series was used as a water level boundary condition to force the inundation model for both the
breach and no breach scenarios. The resulting inundation and property damages were then contrasted.

Figure 4. Tide, residual, and water levels associated with the top 1% of storm-tide events at Felixstowe. (a) Absolute tide, (c) residual, and (e) water level elevations. (b) Tidal elevation rel-
ative to high tide, while (d) residual elevations and (f) water level elevations relative to peak water.
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4. Results and Discussion

4.1. Variability in the Storm-Tide Event Time Series
Using the methods described in section 3.1, the variability in the measured storm-tide time series, tide, and
nontidal components, was examined at each study site. Given the ensemble of events examined and the
statistics extracted (section 3.1), variability was found in the tide and nontidal residual time series ensem-
bles, and therefore, the resulting storm-tide time series, at each time step.

Using Felixstowe as an illustration, Figures 4a and 4b show the tidal time series ensembles, and the tidal
time series ensembles where elevation is normalized relative to the high-tide magnitudes, respectively. Fig-
ures 4c and 4d show the nontidal residual time series ensembles, and the residual time series ensembles
where elevation is normalized relative to the high water magnitudes, respectively. The variability in the
time series of these signals, when comparing the ensembles of events, led to significant variability in the
ensemble of the storm-tide time series at the tide gauges considered in this research (Figures 4e and 4f).
Previous research [e.g., McMillan et al., 2011; Batstone et al., 2013] has also demonstrated that the magni-
tude of nontidal residuals at a given time relative to high water can differ considerably between events,
with important implications upon the resulting storm-tide time series.

The time series variability at each site (defined by the standard deviation in the storm-tide elevation ensem-
ble, every hour relative to the high water) is shown in Figure 5, while the event-mean (mean of all time
steps) is plotted in Figure 6 for each site. The magnitude of the variability in the storm-tide time series
ensemble at a given site varied with the time relative to high water, with an r2 correlation of 0.98 when plot-
ting the mean variability at each time step across all sites against the time from high water. This finding
indicates that close to high water, variability in the time series between events is relatively low (e.g., com-
monly less than 1.5% and less than 3.6% within 1 h at all sites). Examination of the tidal time series

Figure 5. Standard deviation in water levels (% of high water) every hour relative to time of high water. Sites are ordered from (top) STM moving clockwise around the UK ending at
DEV.
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ensembles at each site indicated that time series variability in tidal elevations, relative to the high water,
increased away from high water (Figures 4a and 4b). This demonstrates that although the tide can be con-
sidered as relatively predictable, the time series of tidal cycles within the ensemble of events considered in
this research will vary depending on the magnitude of the high tide. Furthermore, interactions between
tides and surges have been shown to alter the wave phase speeds of both signals, often resulting in the
clustering of nontidal residual peaks away from high water [Horsburgh and Wilson, 2007; Howard et al.,
2010]. This will be of particular importance to those interested in flood risk due to wave-overtopping and
overflow of defenses, both of which are most likely to occur near to high water, and therefore, this portion
of the storm-tide time series (and its uncertainty) will be of greatest importance to predictions of inundation
depth and extent.

Comparison of the results at all UK gauges revealed that the magnitude of the variability in the storm-tide
time series ensemble also differed significantly between sites. Given the event-mean variability in the water
levels (the mean of all time steps) at each site (Figure 6), the results indicate that the magnitude of the vari-
ability in storm-tide time series across the UK ranged from 1.9% at Newport to 11.3% at Port Ellen, with a
UK mean of 4.6%. Using Figure 6, regional characterizations can be made. For instance, the greatest mean
variability in water level time series, when considered as a proportion of high water, was found in the north-
west at sites such as Port Ellen and Portrush, and in the southeast at Harwich and Felixstowe. Alternatively,
the southwest was shown to contain the least variability, the reasons for which are discussed below.

For context, given a 1 in 300 year event peak magnitude, the event-mean difference between the upper
(95th) and lower (5th) bounds of the time series variability across all sites, in meters, was 0.95 m, with the
largest and smallest differences occurring at Felixstowe (1.56 m) and Lerwick (0.59 m), respectively (Figure
7). Where only the high water (63 h) of the time series was considered, all sites lay within 2 standard devia-
tions of the UK mean, given as 0.17 m and 0.65 m, respectively, with the exception of Felixstowe, which had
a larger mean difference between the two time series bounds than expected (1.1 m). All sites assessed

Figure 6. Event-mean standard deviation (variability) in water level time series.
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showed a difference of at least 0.4 m between the upper and lower time series bounds within 3 h of high
water.

The considerable differences in time series variability between the gauge sites are due to the differing tide
and nontidal residual characteristics found around the UK [see Pugh, 1987]. For instance, plotting the event-
mean time series variability against the ensemble mean tidal range at each site provided an r2 correlation
of 0.78 (Figure 8). This relationship was not unexpected given that in this research variability was normal-
ized by the corresponding high water magnitude.

The magnitudes of the nontidal residuals at a site were also influential to the time series variability when
considered in addition to the tidal range. The magnitude of the 99th percentile nontidal residual was found
for each site and normalized by the corresponding ensemble mean tidal range. Plotting this new variable
against the event-mean variability in the storm-tide ensembles at each site provided an r2 correlation of
0.86 (Figure 8). This plot indicates that sites with relatively low tidal ranges and large nontidal residual mag-
nitudes are likely to contain the greatest variability in the storm-tide time series when given as a proportion
of the storm-tide peak elevation. Although small errors in the calculated nontidal residual may be present
[see Horsburgh and Wilson, 2007], it is expected the 99th percentile magnitude used here is a suitable indi-
cator of the difference in the nontidal component of the water levels between sites.

This correlation helps to explain why within the Severn Estuary the ensemble with the least variability in the
ensemble of event time series was found. At Avonmouth, for example, although the 99th percentile nonti-
dal residual magnitude was the largest of all the sites, the extremely large tidal range (exceeding 13 m)
resulted in one of the smallest nontidal residual: tidal range ratios, and subsequently, one of the lowest
scores for storm-tide time series variability. The opposite was found at sites such as Lowestoft and Port
Ellen, where some of the smallest tidal ranges (due to their proximity to amphidromic points) coincided
with relatively large 99th percentile nontidal residual magnitudes.

Figure 7. Event-mean difference in water levels at each site when contrasting the upper (95th) and lower (5th) time series bounds
assigned to current 1 in 300 year storm tides.
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These findings demonstrate that when considering the largest 1% of events, there is variability in the time
series of extreme storm tides recorded at all Class A tide gauges around the UK. The results presented also
provide a valuable insight into how the magnitude of this variability changes spatially between tide gauge
sites and temporally during an event. The envelopes of variability calculated at each site could be used in
future probabilistic flood risk assessments to more accurately quantify the uncertainty in the model outputs
due to assumptions commonly made about the time series of the storm-tide boundary conditions; currently
not considered in most coastal flood risk studies. For instance, given a 1 in 300 year event peak magnitude
at a given site, the upper and lower event time series bounds defined in this research could be used as
boundary conditions to an inundation model. By simulating the model with both sets of boundary

Figure 9. The difference in estimated overflow volumes per unit area of defense when contrasting the upper (95th) and lower (5th) time
series bounds assigned to a 1 in 300 year storm tide at each site.

Figure 8. Correlation between event-mean time series variability at each site with (left) tidal range and (right) the nontidal residual magnitude normalized relative to the tidal range.
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conditions, the uncertainty in the prediction of coastal inundation due to uncertainty in an extreme event
time series could be properly quantified. By describing these idealized time series as a proportion of the
high water, the envelopes of variability defined may be applied to any given return period event of interest.

4.2. The Potential Impact Upon Coastal Inundation
The potential impacts of the variability discussed in section 4.1 upon coastal inundation predictions were
examined using the methods and variability envelopes described in section 3.2. Given the differences in the
storm-tide time series upper and lower bounds for the events described in section 3.2, the idealized
defense overflow analysis (shown in Figure 9) indicated that there was considerable uncertainty in the pre-
dicted overflow volumes during an extreme event. Given a 1 in 300 year storm-tide event, the difference
between overflow volumes estimated using the upper and lower bound time series ranged from 63% (Port
Ellen) to 88% (Lowestoft), with a UK mean of 73%. The same analysis, considering 1 in 500 and 1 in 1000
year events indicated that the greatest uncertainty is likely to be during less severe events, for instance,
where overflow of defenses occurs for a relatively short duration, due to the proportional assessment used.
However, even during very extreme events the difference in predicted overflow volumes remained high.
For instance, the mean difference in overflow volumes (given all sites) was 69% and 47% for the 1 in 500
and 1 in 1000 year events, respectively.

The case study assessment at Portsmouth provided a detailed insight into the consequences time series
variability during storm-tide events might have upon flood risk predictions. Figure 10 demonstrates the dif-
ference in the predicted inundation depth and extent when using the defined upper and lower time series
bounds, given a worst case (full breach) scenario during a 1 in 1000 year event. Table 2 provides the

Figure 10. Flood simulation output for Portsmouth with a 1 in 1000 sea level and full breach scenario, and the difference in flood depths between the lower (5th) and upper (95th) per-
centile time series simulations.
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results from each simulation. As
expected, the variability in the time
series of a given event had a clear
effect upon the expected inundation
of the region due to the duration
and magnitude by which defenses
were exceeded. For example, where
defenses were held, the implementa-
tion of the upper (95th percentile)
time series to the 1 in 1000 year
event water level resulted in a 8%
increase in the expected number of
properties inundated and a 53%
increase in those experiencing
depths greater than 1 m relative to
prediction made using the lower
(5th percentile) time series.

These findings indicate that storm-tide time series temporal variability is likely to be a significant source of
uncertainty to flood risk assessments, particularly within quantification of consequences for extreme sea
level and defense exceeding events; due to both the size of the uncertainty in the volume of water entering
the domain and the sensitivity of commonly used inundation models to this input. Therefore, this should
be accounted for in such scenarios using the methods described in this research.

5. Conclusions

This research has demonstrated that there is considerable variability in the hours leading up to and pro-
ceeding the maximum water levels experienced during extreme storm-tide events, which can influence
flood risk assessment. This variability has been quantified relative to a given storm-tide peak, for each
gauge, based upon the analysis of extreme (>1%) water levels since 1993. The findings demonstrated that
the magnitude of the event-mean time series variability across the gauges assessed ranged from 1.9% to
11.3%, with a UK average of 4.6%. Given a 1 in 300 year event, the comparison between the upper and
lower bounds of storm-tide variability at each site resulted in an event-mean difference of 0.95 m when
considering all UK gauges. Although the magnitude of the variability was usually greatest during the low
water; all sites contained a difference of at least 0.4 m when considering the time series variability within 3
h of high water. The greatest variability was found to occur at sites experiencing relatively low tidal ranges
and large nontidal residuals, such as Felixstowe and Harwich in the southern North Sea.

Assuming coastal defenses built to a 1 in 200 year capacity, the difference in overflow volume during a 1 in
200, 500 and 1000 year event, due to the time series variability at each site, was examined. The results
revealed that this variability resulted in a UK average difference of 73%, 69%, and 47% in the event-mean
estimated overflow volumes for the 1 in 200, 500, and 1000 year events, respectively. A detailed case study
at Portsmouth further demonstrated the importance of quantifying the variability in storm-tide time series
for flood risk assessments, considering a range of storm-tide magnitudes. Given a current 1 in 200 year
event, the difference between the upper and lower bounds of the storm-tide variability resulted in an
increase of more than 30% in the number of buildings expected to be inundated in the region. It is there-
fore relevant that other case studies should be explored, while it is also recommended that future inunda-
tion modeling (whether deterministic or probabilistic) adequately represents this source of uncertainty
when defining inundation exposure and consequences.

Future research could extend the analysis to consider other coastal processes of relevance to flood risk that
might be impacted by time series variability, such as wave-overtopping, sediment transportation, or
defense failure. For instance, it would be expected that the duration of high water would influence the vol-
ume of wave-overtopping a section of defense might experience, while also impacting the likelihood of
defense failure due to changes in the wave loading. Similarly the time series uncertainty may have signifi-
cant impacts upon the predicted erosion of soft coastal defenses or offshore sand banks due to the

Table 2. Simulated Inundation Characteristics for the Portsmouth Case Study

Return Period

Overflow Breach of All Defenses

Total >1 m Depth Total >1 m Depth

Upper bound time series
1 in 1 1 0 0 2786 97
1 in 10 10 0 0 5385 364
1 in 50 50 58 0 7264 1088
1 in 200 200 4409 184 9776 2301
1 in 300 300 4901 260 10,907 2649
1 in 500 500 5620 580 12,128 3220
1 in 1000 1000 6750 1520 13,156 3955
Lower bound time series
1 in 1 1 0 0 2358 96
1 in 10 10 0 0 4644 232
1 in 50 50 57 0 6836 685
1 in 200 200 2974 86 8686 1522
1 in 300 300 3651 119 9188 1846
1 in 500 500 4376 125 10,229 2417
1 in 1000 1000 6201 721 11,762 3135
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influence of water depth and wave forcing on the geomorphology of such features. For these reasons,
investigation of the effects to coastal flood risk estimates due to uncertainty with a storm-tide time series
when applied to a multimodel system [such as the defense overtopping-defense breaching model of Wood
and Bateman, 2005] would be particularly valuable to coastal managers.
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