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This paper evaluates the performance of a proposed device for harvesting energy

from the vertical motion of boats and yachts under broadband and band-limited

random vibrations. The device comprises a sprung mass coupled to an electrical

generator through a ball screw. The mathematical equations describing the dynam-

ics of the system are derived. Then by utilizing the theory of random vibration, the

frequency response function of the system is obtained. This is used to derive an

expression for the mean power produced by the harvester when it is subjected to

broadband and band-limited stationary Gaussian white noise. The power expres-

sions are derived in dimensional form to provide an insightful understanding of the

effect of the physical parameters of the system on output power. An expression for

the optimum load resistance to harvest maximum power under random excitation is

also derived and validated by conducting Monte-Carlo simulation. The discussion

presented in the paper provides guidelines for designers to maximize the expected

harvested power from a system under broadband and band-limited random excita-

tions. Also, based on the method developed in this paper, the output power of a

rotational harvester subjected to the vertical excitation of a sailing boat is obtained.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892452]

I. INTRODUCTION

Harvesting energy from ambient vibrations has been the subject of significant research in

recent years, resulting in numerous publications, including a number of review articles and

books.1–5

The marine environment is known as a significant source of energy. Many vibration energy

harvesting systems introduced for this environment rely on a proof mass coupled to an electric

generator whose relative movement is, directly or indirectly, caused by the waves.6,7 However,

due to the low frequency of wave oscillations, the relative speed of the proof mass is low and,

hence, a direct drive generator can be quite large and expensive relative to the amount of power

it produces. Increasing the power density of the generator can be accomplished by exploiting a

mechanism to increase the speed to the generator.8 For example, a screw is an intermediate

high efficiency mechanism which can be utilized to convert a low frequency linear movement

to a high frequency rotational motion.9–11 However, reviewing the studies on designing a ball

screw based electromagnetic energy harvester for extracting energy in marine environment indi-

cates that they are mostly designed, characterized, and optimized by assuming that the device is

under harmonic excitation. On the other hand, in real operating conditions, the device may be

subjected to random vibrations which are distributed over a broadband of frequencies.12

The theory of random vibration applied to mechanical systems has been studied by a num-

ber of researchers.13–15 Halvorsen16 used linear random vibration theory to obtain closed-form

expression of output power for a general energy harvester model. Adhikari et al.17 used the

same approach to derive an expression for the mean normalized harvested power of a piezo-

electric based energy harvester. Renaud et al.18 derived closed-form formula describing the

power and efficiency of a piezoelectric energy harvester subjected to sinusoidal and random
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vibrations. It is shown that under random excitation, the optimum generated power is directly

proportional to the efficiency of the harvester.

Tang and Zuo19 studied the performance of single-mass and dual-mass electromagnetic energy

harvesters under random force, displacement, velocity, and acceleration. However, in their discus-

sions, no distinction is made between the internal resistance and the load resistance of a generator.

Therefore, the derived power formula is the sum of the useful electrical energy and the electrical

power loss. In other words, the paper focuses on the power flow from the mechanical environment

into the electrical domain rather than the delivery of useful power to an electrical load which is

more appropriate. In addition, none of the above mentioned research works investigates the per-

formance of an electromagnetic energy harvesting system under band-limited excitation.

This paper studies the performance of a proposed ball screw based energy harvesting de-

vice, shown in Fig. 1, subjected to broadband and band-limited white Gaussian noise. The pro-

posed harvester is designed to be used on a boat or a buoy; in this paper, the analytical solu-

tions within the theory of random vibration are extended to find the average value of the output

power and derive an expression for the optimum load resistance to harvest maximum power

under broadband white excitation. Also, the expression for output power under band-limited ex-

citation is derived and design criteria to maximize the output power of an energy harvester

under random excitation are discussed.

II. SYSTEM MODELING

Fig. 1 shows a drawing of the proposed device. It comprises a sprung mass coupled to an

electrical generator via a ball screw. In this base excited mass spring system, the relative

FIG. 1. Drawing of the energy harvesting device.
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motion of the mass is produced by the vertical oscillation of a boat or buoy. The boat’s vertical

motion causes the mass to oscillate relative to the boat which in turn drives a generator through

the ball screw coupling. In the analysis of an energy harvesting device, such as the one shown

in Fig. 1, it is common to study the non-dimensional model of the system.20 However, as the

goal of this paper is to study the optimal selection of the physical parameters of the system, the

dimensional model of the system dynamics are retained.

Fig. 2 shows a free body diagram of the proposed device, where l; m; cbg; k, and FEM are,

respectively, the lead size of the ball screw, mass, mechanical damping, overall spring stiffness,

and the reflected force due to the generator electromagnetic coupling.

Considering the relative displacement of the mass, the governing differential equation of

motion for the system shown in Fig. 2, with respect to the relative displacement of seismic

mass zðtÞ ¼ xðtÞ � yðtÞ, is

M
d2z tð Þ

dt2
þ c

dz tð Þ
dt
þ kz tð Þ ¼ �m

d2y tð Þ
dt2

; (1)

where M is the sum of the seismic mass and reflected moment of inertia of rotational compo-

nents given by

M ¼ mþ J
2p
l

� �2

; (2)

and c is the reflective damping of the system defined as

c ¼ cbg þ
K2

tr

Rt

� �
2p
l

� �2

; (3)

FIG. 2. A free body diagram of an energy harvesting system consisting of a sprung mass coupled to a generator through a

ball screw.
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where Ktr is the generator torque constant and Rt represents the sum of the coil resistance, Ri,

and the load resistance, Rl. Ignoring the coil inductance, the current flowing through the coil of

the generator is obtained from

i tð Þ ¼ Ktr t tð Þ
Rt

; (4)

where tðtÞ is the rotational speed of the ball screw coupled to the generator and is given by

t tð Þ ¼ 2p
l

d x tð Þ � y tð Þð Þ
dt

� �
: (5)

III. OUTPUT POWER OF HARVESTER UNDER BROADBAND RANDOM EXCITATION

To evaluate the performance of the energy harvesting device under random vibration, the

frequency response function of the device should be derived. In frequency domain, Eq. (1) can

be written as

ZðxÞððk �Mx2Þ þ jcxÞ ¼ mx2YðxÞ: (6)

Also, from (4) and (5) the relative displacement of seismic mass can be written as

Z xð Þ ¼ I xð Þ Rt

jx
2p
l

� �
Ktr

: (7)

Substituting (6) into (7) and rearranging it results in

Rt k �Mx2 þ jcx
� �

I xð Þ ¼ j
2p
l

� �
Ktrmx3Y xð Þ: (8)

Now, if we assume YAðxÞ ¼ �x2YðxÞ as the Fourier transform of the base acceleration

signal, the transfer function between the load current and the base acceleration signal can be

shown to be given by

HIYA
xð Þ ¼ I xð Þ

YA xð Þ ¼
�jm

2p
l

� �
Ktrx

k �Mx2 þ jcxð ÞRt
: (9)

The spectral density of the load current is obtained form

SIðxÞ ¼ jHIYA
ðxÞj2SYA

ðxÞ; (10)

where SYA
ðxÞ is the spectral density of the base acceleration signal and is assumed to be con-

stant with respect to frequency, i.e., SYA
ðxÞ ¼ S0.

A. Expected output power

The mean value of the load power is obtained from

E P tð Þ½ � ¼ E RljIj2
� �

¼ Rl

ðþ1
�1

SI xð Þdx ¼ Rl �
ðþ1
�1
jHIYA

xð Þj2SYA
xð Þdx

¼ m2RlK
2
trS0

Ri þ Rlð Þ2
2p
l

� �2

�
ðþ1
�1

x2

k �Mx2ð Þ2 þ cxð Þ2
dx: (11)
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Comparing the integral presented on the right-hand side of (11) with the general form of inte-

gral presented in the Appendix, (11) can be written as

E P tð Þ½ � ¼ m2RlK
2
trS0

Ri þ Rlð Þ2
2p
l

� �2

�
ðþ1
�1

x2

k þ c jxð Þ þM jxð Þ2
h i

k þ c �jxð Þ þM �jxð Þ2
h i dx: (12)

Now the mean output power can be calculated by utilizing the method presented in the

Appendix, which results in the following expression for the output power:

E P½ � ¼ S0m2RlK
2
tr

M Ri þ Rlð Þ2
2p
l

� �2
p
c
: (13)

By substituting (2) and (3) into (13), the mean value of output power based on the physical pa-

rameters of the energy harvester becomes

E P½ � ¼ pS0m2RlK
2
tr

cbg Rl þ Rið Þ2 þ K2
tr Rl þ Rið Þ

� 	
mþ J 2p

l

� �2
� 	 : (14)

Equation (14) indicates that the expected load power under random excitation is proportional to

the square of seismic mass and inversely proportional to the sum of the seismic mass and the

reflected moment of inertia of the system’s rotating components. This implies that to harvest

maximum power from a base excited rotational harvester under random excitation, the moment

of inertia of the system should be as small as possible. The optimum value of the load resist-

ance to maximize the output power can be obtained by solving @
@Rl

E½P� ¼ 0, which results in

Rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i þ
K2

tr

cbg
Ri

s
: (15)

The load resistance shown in (15) is different from the optimum load resistance of an uncon-

strained electromagnetic energy harvester; hence it is subjected to a single frequency excitation

obtained in Ref. 21, i.e., Rl ¼ Ri þ K2
tr=cbg. However, interestingly, the optimum load resistance

shown in (15) is the same as the optimum load resistance when designing a rotational energy

harvesting system for a single frequency of harmonically, single frequency, excited with con-

strained oscillating mass displacement.22

B. Simulation

To validate the analytical expression obtained for the optimum load resistance of the rota-

tional electromagnetic energy harvesting system, a Monte-Carlo simulation is conducted. The

Monte-Carlo simulation technique is a method that uses a random number sequence to evaluate

the characteristics of the system based on a stochastic process.23 Here, the expected output

power is obtained for different values of the load resistance for a system whose parameters are

presented in Table I.

In order to simulate the input acceleration, 2000 wide band pseudo-random signals are gen-

erated, as follows:

XN

i¼1

y
::

iði:DtÞ ¼
XN

i¼1

!i sinð-iði:DtÞ þ uiÞ; (16)

where variables -i, !i, and ui are independent and normally distributed, respectively, in [0,

-max], [0, !max], and [0, umax]. In addition, the maximum value of i is defined as N that

depends on the duration of the simulation s and the time step Dt as
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N ¼ s
Dt
: (17)

It is known that white noise has a constant spectral value over the whole frequency range.

However, in practice for simulation purposes, generating such a signal is not feasible. Here, we

assume that -max ¼ 400 p rad/s, which is much larger than the natural frequency of the simu-

lated system (xn ¼ p rad/s), and is thus a reasonable approximation. The simulation is con-

ducted for a period of 20 s, a sampling time of Dt ¼ 0:001 s, and !max ¼ 10 m s�2. The histo-

grams shown in Fig. 3 illustrates the harvested power for different values of load resistance

obtained from 2000 sets of random accelerations applied to the system for 20 s. As it is seen,

the histogram of the average amount of harvested power for the produced base acceleration

varies with the load resistance values. Statistical results of the output power obtained from

Monte-Carlo simulation are shown in Table II.

Fig. 4 compares the statistical output of the Monte-Carlo simulation due to different load

resistance values with the analytical expected power for each load resistance. As it can be seen,

maximum power is transferred to the load resistance for the case where Rl ¼ 10:2 X which is

equal to the optimum load resistance calculated from (15) for the harvester parameters pre-

sented in Table I. The Monte-Carlo simulation confirms the calculated value for the optimum

load resistance in order to harvest the maximum amount of power when the device is excited

by a broadband random acceleration.

TABLE I. Parameters of the energy harvester for Monte-Carlo test.

Parameters Value

Mass (m) 8 kg

Generator resistance (Ri) 1.01 X

Mechanical damping (cm) 5.36E-5 N s m

Spring stiffness (k) 261 N m�1

Coupling coefficient (Ktr) 7.39E-3 V s m�1

Ball screw lead (l) 0.016 m

Ball screw moment of inertia (J) 12.0E-5 kg m2

FIG. 3. Histograms of harvested power for 2000 generated random acceleration.
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IV. OUTPUT POWER OF HARVESTER UNDER BAND-LIMITED RANDOM EXCITATION

The system is subjected to a band-limited white noise if SYA
ðxÞ ¼ S0; x1 � jxj � x2. For

a band-limited excitation, the power spectral density (PSD) of the load current is

SI xð Þ ¼
m2 2p

l

� �2

K2
trx

2S0

R2
t k �Mx2ð Þ2 þ c2x2

� 	 x1 � jxj � x2

0 elsewhere

8>>>><
>>>>:

9>>>>=
>>>>;
: (18)

For this condition, the mean value of the output power is obtained from

E P tð Þ½ �x1�jxj�x2
¼
ð�x1

�x2

þ
ðx2

x1

RlSI xð Þdx ¼
ð�x1

�x2

:::

þ
ðx1

x2

m2 2p
l

� �2

K2
trx

2RlS0

k �Mx2ð Þ2 Rl þ Rið Þ2 þ c2x2 Rl þ Rið Þ2
dx: (19)

The method presented in the Appendix does not apply to the incomplete integrals shown in

(19). However, these integrals can be solved by using a partial fraction expansion method that

is presented in Ref. 24. In this method, if UðxÞ is the spectral density of the response function

of a stationary random process such that

TABLE II. Statistical results of Monte-Carlo simulation.

Load resistance RlðXÞ Expected power l ¼ E½P� (W) Standard deviation r (W)

0.5 12.67 0.86

3.0 27.60 2.96

7.0 30.63 4.53

10.2 31.03 5.28

15.0 30.22 6.04

30.0 27.50 7.13

60.0 22.38 7.32

100.0 17.78 6.66

FIG. 4. Comparison of the analytical expected power with the average harvested power in Monte-Carlo simulation for dif-

ferent loads.
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U xð Þ ¼
U0

x2
n � x2

� �2 þ 4n2x2x2
n

x1 � jxj � x2

0 elsewhere

8><
>:

9>=
>;; (20)

then the result of the second spectral moment is

m2 ¼
ðþ1
�1

x2U xð Þdx ¼ pU0

2nxn
D

x2

xn
; n

� �
� D

x1

xn
; n

� �� �
; (21)

where

D
x
xn
; n

� �
¼ 1

p
arctan

2n
x
xn

� �

1� x
xn

� �2
� n

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p � ln

1þ x
xn

� �2

þ 2
x
xn

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p

1þ x
xn

� �2

� 2
x
xn

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p : (22)

Considering xn ¼
ffiffiffiffiffiffiffiffiffi
k=M

p
, to calculate the definite integral of (19), it can be written as

E P tð Þ½ �x1�jxj�x2
¼

m2 2p
l

� �2
K2

trRlS0

M2 Rl þ Rið Þ2
�

ð�x1

�x2

þ
ðx2

x1

x2

x2
n � x2

� �2 þ 4nx2x2
n

dx

" #
; (23)

where n is the damping ratio defined as

n ¼ c

2Mxn
: (24)

Comparing (23) to (21) shows that the mean value of the output power when the harvester

is subjected to a band-limited stationary white noise is given by

E P tð Þ½ �x1�jxj�x2
¼

m2 2p
l

� �2

K2
trRlpS0

M Rl þ Rið Þ2c
� D

x2

xn
; n

� �
� D

x1

xn
; n

� �� �
: (25)

The first term in (25) is the mean value of the output power when the system is subjected to a

broadband white noise. However, the term presented in the square bracket is the correction

FIG. 5. Variation of Dðx=xn; nÞ as a function of x=xn for three different values of n.

043120-8 Hendijanizadeh, Sharkh, and Moshrefi-Torbati J. Renewable Sustainable Energy 6, 043120 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

152.78.243.129 On: Wed, 13 Aug 2014 15:28:12



factor for a band-limited vibration. In other words, for broadband white noise the term

½Dð1; nÞ � Dð0; nÞ� tends to unity. However, this term is less than unity when the system is

subjected to a band-limited vibration. Fig. 5 shows the behaviour of Dðx=xn; nÞ for different

values of n. It is seen that Dðx=xn; nÞ is a monotonically increasing function of x=xn with val-

ues between 0 and 1. This figure shows that for lightly damped systems most variations occur

near its natural frequency.

Increasing the damping ratio of the system widens its bandwidth (defined as 2xnn), and

reduces the sharpness of Dðx=xn; nÞ around its natural frequency. Fig. 6 shows the values of

the correction factor in (25), for the mean output power of the system under band-limited ran-

dom excitation. The correction value is presented for the case of n ¼ 0:50. This is the corre-

sponding damping ratio of the system presented in Table I, for its optimum load resistance of

Rl ¼ 10:2 X. This graph illustrates that when the natural frequency of the system is within the

band-limited excitation range, i.e., between x1 and x2, the correction factor is slightly less

than unity. However, when the natural frequency of system is outside the excitation band, i.e.,

when both ðx1=xn Þ and ðx2=xn Þ are either less than or greater than unity, the correction fac-

tor is very small which drastically reduces the mean value of the expected power. Therefore,

from the design point of view, an obvious conclusion is made that in order to harvest maxi-

mum output power from band-limited random excitation, the natural of the system should fall

in the band-limited sides. However, its optimum value is not the center of the band-limited

range.

FIG. 6. Correction factor for calculation of the expected output power of energy harvester under band-limited excitation

for a device with n ¼ 0:50 .

FIG. 7. Correction factor for calculation of the expected output power of energy harvester presented in Table I under band-

limited excitation (x1 ¼ 1 rad/s and x2 ¼ 10 rad/s) versus xn.
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The optimum value of xn can be obtained from numerical maximization of ½Dðx2=xn; nÞ �
Dðx1=xn; nÞ� for a given x2 and x1. Replacing n from (24) in (22) gives the correction factor

as a function of xn. Considering the physical parameters of the harvester from Table I, and

assuming a variable spring stiffness, the correction factor is a function of stiffness through xn.

Fig. 7 shows the variation of the correction factor for the case when x1 ¼ 1 rad=s and

x2 ¼ 10 rad=s. It is seen that for this system the maximum value of the correction factor is 0.79,

which is obtained when the natural frequency of the system is xn ¼ 3:2 rad=s. From (24), the

corresponding value of the optimum damping ratio for the system is n ¼ 0:49. Hence, to harvest

the maximum power under band-limited excitation conditions, the designer should ensure that

the parameters of the system match its optimally obtained natural frequency. For instance, con-

sidering the physical parameters of the above simulated system from Table I and the obtained

optimum value of xn ¼ 3:2 rad=s, the optimum spring stiffness that would maximize the power

harvested from band-limited excitation is k ¼ 271 N=môôô

V. HARVESTED POWER IN REAL ENVIRONMENT

This section is dedicated to the estimation of the output power from the recorded random

excitation applied to a boat in a real environment. A review of different studies has shown that

the vertical movement of typical sailing boats is inherently a narrow band random excitation.

This was confirmed by the authors’ own boat acceleration measurement obtained while sailing

in the English Channel, as shown in Fig. 8. The boat was a double hull catamaran, 34 feet

long, 14 feet wide with a total weight of approximately 3.5 tones. To measure the acceleration

of the vertical movement of the boat, a micro-machined silicon static accelerometer was posi-

tioned about 1 m from the bow. The power spectral density of the recorded acceleration is

FIG. 8. Typical boat bow vertical acceleration measured while sailing in the English Channel.

FIG. 9. Power spectral density of the measured acceleration.
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shown in Fig. 9 and it is seen that the vertical excitation of boat is not a White noise. The

derived expressions for the expected power in Secs. II–IV are helpful to quantify the harvested

power under broadband and band-limited white noise excitations. However, the approach

described in this paper so far, can be extended to find the mean value of the expected power

when the power spectral density of the random excitation is not necessarily constant. For this

purpose, the mathematical function corresponding to the power spectral density distribution of

the random excitation should be investigated and then the expected output power can be esti-

mated using (11). Note that, here SYA
ðxÞ is not constant and cannot be taken out of the integral

term.

Comparing the recorded random excitation shown in Fig. 9 with various distributions26

indicates that the presented spectral density is very close to a Cauchy distribution with the gen-

eral form of25,27,28

f u; a; bð Þ ¼ aSf

p a2 þ u� bð Þ2
h i ; (26)

where a is the scale parameter, Sf is the height factor, and b is the location parameter. Fig. 10

shows Cauchy distribution for different values of a, Sf , and b.

Fig. 11 shows the PSD of the recorded acceleration from the boat motion and the mathe-

matical estimation of the PSD plotted based on the Cauchy distribution when the parameters of

distribution are a ¼ 0:52, Sf ¼ 48, and b ¼ 3:2. It is seen that there is good agreement between

the spectral density of the recorded acceleration signal and the mathematical estimated distribu-

tion. Therefore, the spectral density of the recorded acceleration can be written as

FIG. 10. Cauchy distribution for different values of a, Sf , and b.

FIG. 11. Fitting the Cauchy distribution on the measured vertical excitation of the boat.
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SYA
¼ 24:96

p 0:27þ u� 3:2ð Þ2
h i : (27)

Replacing (27) in (11), the mean value of the harvested power is obtained from

E P tð Þ½ � ¼ m2RlK
2
tr

Ri þ Rlð Þ2
2p
l

� �2 ðþ1
�1

x2

k �Mx2ð Þ2 þ cxð Þ2
:

24:96

p 0:27þ x� 3:2ð Þ2
h i dx; (28)

and the expected output power can be obtained by numerical integration of (28), which can be

shown to be 20.45 W for the system with parameters shown in Table I.

VI. CONCLUSION

This paper investigates an energy harvesting device, comprising a sprung mass coupled to

an electric generator using a ball screw, when operating under random excitation. Specifically,

analytical expressions for the dimensional mean harvested power due to stationary broadband

and band-limited white noise excitations are derived. In the case of harvesting energy from a

broadband random source, it is shown that the output power is proportional to the square of the

weight of the actual mass used in the device. However, the output power is inversely propor-

tional to the moment of inertia of the system’s rotating components. Therefore, a system with

the lowest moment of inertia would be better when the harvester is subjected to a random exci-

tation. In addition, it is shown that the output power expression is independent of the spring’s

stiffness.

The optimum load resistance to harvest the maximum power from broadband white noise

acceleration is obtained and validated by conducting Monte-Carlo simulation. Furthermore, the

closed-form expression of the output power from band-limited random excitation shows that the

output power is a function of the physical parameters of the system including the spring stiff-

ness. Therefore, from the derived power expression, the optimum natural frequency of the

energy harvester that falls within the excitation band is obtained. Based on this optimum natural

frequency, the optimum spring stiffness of the energy harvester can be then obtained.

Also in this paper the profile of the spectral density of the measured acceleration signal of

a typical boat is approximated by a Cauchy distribution. The distribution parameters of the

spectral density of the acceleration signal are then estimated and subsequently used to calculate

the expected power of the proposed energy harvester under real conditions.

APPENDIX: INTEGRAL CALCULATION

Calculation of the integrals in the form of25

Hn ¼
ðx1

x2

Hn xð Þ
Wn xð ÞW�n xð Þ dx (A1)

where

HnðxÞ ¼ an�1x
2n�2 þ an�2x

2n�4 þ � � � þ a0; (A2)

and

WnðixÞ ¼ bnðixÞn þ bn�1ðixÞn�1 þ � � � þ b0 (A3)

is obtained from
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Hn ¼
p
bn

det

an�1 an�2 … a0

�bn bn�2 �bn�4 bn�6 … 0 …

0 �bn�1 bn�3 �bn�5 … 0 …

0 bn �bn�2 �bn�4 … 0 …

0 … … 0 …

0 0 … �b2 b0

2
6666664

3
7777775

det

bn�1 �bn�3 bn�5 �bn�7

�bn bn�2 �bn�4 bn�6 … 0 …

0 �bn�1 bn�3 �bn�5 … 0 …

0 bn �bn�2 bn�4 … 0 …

0 … … 0 …

0 0 … �b2 b0

2
6666664

3
7777775

: (A4)
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