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We study the D3/probe D5 system with two domain wall hypermultiplets. The conformal symmetry
can be broken by a magnetic field, B (or running coupling), which promotes condensation of the
fermions on each individual domain wall. Separation of the domain walls promotes condensation of
the fermions between one wall and the other. We study the competition between these two effects
showing a first order phase transition when the separation is ~ 0.5611/4B~1/2, We identify extremal

brane configurations which exhibit both condensations simultaneously but they are not the preferred

ground state.
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1. Introduction

Holographic [1,2] brane systems, such as the D3/probe D5
system [3-5] we will study, resemble physical systems such as
graphene. Fermionic matter degrees of freedom are isolated on
2 + 1d surfaces (domain walls) whilst they interact by gauge de-
grees of freedom that propagate in a 3 4+ 1d bulk. Conformal sym-
metry can be imposed on the brane system by choice of a suffi-
cient amount of supersymmetry, although at the expense of extra
scalar and fermion degrees of freedom. Holographic methods ap-
ply when the background N = 4 gauge theory is strongly coupled.
Graphene is a conformal system of a massless fermion and elec-
tromagnetic interactions but whether it is a strongly interacting
system remains contentious - the effective electromagnetic con-
stant is larger in the graphene system due to the reduced speed of
light in the effective relativistic theory of the fermions on its sur-
face (see for example [6] for a recent discussion of these issues). It
may be possible in the future to increase the interaction strength
in real materials. The holographic system achieves strong coupling
through a choice of large N in a non-abelian gauge theory rather
than through a choice of large coupling but the resulting dynamics
is most likely comparable.

The D3/probe D5 system has been studied in detail [7,8] for
the case of a single domain wall using the probe approximation
[9,10], which we will also employ here (a recent related model can
be found in [11]). The introduction of either temperature or den-
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sity triggers a first order phase transition to a deconfined fermion
plasma phase the moment the conformal symmetry is broken.
A more interesting phase diagram results if a magnetic field is ap-
plied. The magnetic field induces condensation of a fermion-anti-
fermion bilinear ({f f)) generating a mass gap in the system [12].
Temperature, T, and chemical potential, i, oppose this condensa-
tion leading to a critical line in the temperature-density plane -
the transition is first order with temperature alone, second order
in a range of u at finite T, and of Berezinskii-Kosterlitz-Thouless
(BKT) type at zero temperature with changing w. The phase dia-
gram can be found in [8].

A different sort of condensation occurs in models with two
probe branes separated in the 3 4+ 1d space in which the glue
lives [13-17]. Such a configuration is analogous to placing two
graphene sheets, each with a massless fermion on its surface, par-
allel but separated by a short distance (note this is not equiva-
lent to building graphite where the graphene layers are offset and
a mass is induced for the surface fermions). Here, in the brane
system, at zero T and u, the separation is the conformal symme-
try breaking parameter which triggers condensation. In this case
though the condensation is between the fermions on one brane, f,
with those on the other, g through the operator (fg). The branes
display this symmetry breaking by joining together in the spirit of
the Sakai-Sugimoto model [18]. First experiments of this sort with
graphene have been reported in [19] and indeed show strong in-
teractions between the layers.

Here we will be interested in the brane bi-layer configura-
tion with a magnetic field (at zero T and w). The separation
and the B field both break the conformal symmetry. They each
favour fermion condensation but in different channels. This system
is therefore an example of a strongly coupled system with a vac-
uum alignment problem - which of the two fermion condensates
(ff) and (fg) will form for different choices of parameters? We
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explore this system and show that as the separation of the branes
grows at fixed B the system undergoes a first order phase tran-
sition between vacua characterized by these two condensates. It
would have been interesting if a vacuum in which both conden-
sates existed were to form and we do find such brane systems
that are extrema of the effective potential (i.e. regular brane con-
figurations) but they correspond to a maximum of the effective
potential.

2. The holographic dual theory

We will loosely represent QED interactions by the large N dy-
namics of A" = 4 super Yang-Mills theory on the surface of a stack
of D3 branes. It is described at zero temperature by AdSs x S [1,2]

_(pr+ 1Y)
- RZ
R2

+ -
(0?2 +12)

where we have written the geometry to display the directions the
D3 lie in (x341, z). We will embed the D5 on (x41, p and £2;) and
the transverse directions are L and 2, plus the 3 direction that
we call z. R is the AdS radius.

We will introduce quenched matter via a probe D5 brane. The
matter content is a single Dirac fermion plus scalar super partners
(that will become massive in the presence of any supersymmetry
breaking). The underlying brane configuration is as follows:

ds? (dx3, +dz?)

(dp? + p? d$23 +dL? + L2 d22), (1)

0 1 2 3 4 5 6 7 8 9
D3 - - - - . . . . . .
D5 - - - . - - - . . .

The action for the D5, at zero T and p, is just it’s world volume
S~ T/deé e?\/—detG

Nfdpe¢p2\/1+L/2+(,02+L2)2212, (2)

where T is the tension, ¢ the dilaton (which is constant in pure
AdS) and we have dropped angular factors on the two-sphere. Here
we have rescaled each of L, p and z by a factor of R.

Numerical computation of —S evaluated on a solution gives the
vacuum energy. This energy diverges like A3 for large cut-off A.
The difference in energy between any two solutions is finite.

2.1. Conformal mono-layers

The embedding that minimizes the action in the case of a sin-
gle D5 brane in AdS has both z and L constant. z determines the
position of the domain wall in the 3 + 1d bulk. L determines the
mass of the quark (m=L/2wa’).

2.2. Bi-layer condensation

We now consider a D5 and a D5 defect lying parallel but sep-
arated by Az in the z direction (a similar configuration to that
in [15,16]). These represent our two domain walls. The separation
introduces a conformal symmetry breaking parameter and poten-
tially allows the strong interactions to generate a fermion conden-
sate between the two branes (we referred to this above as the (fg)
condensate). We seek solutions with L(p) =0 and a non-trivial z
profile in p. The z embedding equation gives
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Fig. 1. D5 embeddings (z vs p) with B =e? =0 showing (fg) condensation. Note
the larger the UV separation of the D5s the deeper the embedding penetrates into
AdS as for Wilson loops.
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One can solve this numerically by picking some pp and setting
Z'(po) = oo - see Fig. 1 for the solutions. The D5 and D5 choose to
join at the scale po. Their joining represents the formation of the
(fg) condensate which breaks the flavour symmetries of the two
branes to the diagonal sub-group. The system experiences a mass
gap on the scale pg.

The analysis and solutions in this case are very similar to the
standard computation of Wilson loops in AdS [20,21]. As there, we
can use the z independence of the solution to identify a conserved
quantity I7, so that

6./

m=—rz (4)

B /1 +p4z/2.
Evaluation at pg (where z/ — o0), gives [T, = pa‘. The separation of
the D5 and D5 is given by

2 / dy 2/ I'[5/8] 0.675
AZZ — = ~
Po 1 y2/y8 —1 pol’[1/8] Po

(5)

The energy density per unit two volume of the configuration is
then given by substituting z’ from (4) into the action, giving

x 6
y
E=2p3/<8——y2>dy
1 yi-l

_ 52 2JmIN15/8]tan[m/8]\ 3
_,00(3 TT11/8] ) 0.4423. (6)

Here we have regulated the UV by subtracting the y2 term in the
integral as the counter term. The energy density scales as 1/(Az)3
as expected on dimensional grounds.

2.3. Mono-layer with a B field

The DBI action in its full form also contains a gauge field

S~ T/d6§ e¢\/— det[G + 2o/ F]. (7)

The gauge field A* in F is dual to operators of the form fy“f and
their source, a 2 + 1d U(1)p baryon number gauge field. We can
therefore use F to introduce a fixed background magnetic field, B
[7,8,12]. The resulting action takes the form (2) if one identifies
an effective background dilaton



660 N. Evans, K.-Y. Kim / Physics Letters B 728 (2014) 658-661

Fig. 2. Example D5/D5 embeddings (with B = 1). The coordinates shown are defined
in (1). (For interpretation of the references to colour in this figure, the reader is
referred to the web version of this article.)

/ 2ra’)?2B?
€¢ =1+ m (8)

Note that the B field is not part of the N' =4 gauge dynamics
that is loosely being used to represent the QED interactions of
graphene. This is, though, a clean method to introduce conformal
symmetry breaking on the defect theory. It is interesting that the
inclusion of B can be written as an effective non-backreacted dila-
ton profile (i.e. an effective running coupling) and one could imag-
ine exploring the dependence of the theory on different choices of
that effective dilaton. This approach was explored for 3 + 1d gauge
theories with flavour in [22]. Here we will explore the B field case
for the defects.

In the far UV (large p) the embedding Lagrangian is simply £ =
p%L'? with solutions to the Euler-Lagrange equation of the form

L=m+ S 4o, 9)
0

Here m is a mass term for the fermions and c¢ the expectation
value for (f f) - note m has dimension one and ¢ dimension two
adding to three as required for a Lagrangian term in 2 + 1d. Note
that when m = ¢ = 0 the theory is conformal. Including a non-
zero m or ¢ breaks the SO(3) symmetry of £2,. Were ¢ to be
non-zero when m = 0 it would be an order parameter for the
spontaneous breaking of the symmetry.

The solution of the full Euler-Lagrange equation governing the
embedding from (2) with (8) can be found numerically by shooting
out from p = 0 with boundary condition L’(0) = 0. This picks out
the unique asymptotic value of ¢ that gives a regular embedding
in the IR. The solution with ¢ =0 is regular in pure AdSs. However
in the presence of B there is another solution that is energetically
preferred with non-zero c. The red curves in Fig. 2 show this solu-
tion which lives at fixed z. The global symmetry is broken and the
fermions have a mass gap of the order of L(0).

2.4. Bi-layer with a B field

We can now turn to the novel, more complex problem of a D5
and a D5 separated in z, with a surface magnetic field. Here we
expect there to be a vacuum alignment issue between formation
of the condensates (f f) and (fg). It is convenient to introduce
scaled coordinates (o, L) - Rv/2mwa’B(p, L) and z— Rz/~/2ma’B.
The full action is then

1 2
S~ [dpp? |14+ ——==/1+12 241272, (10
/,0,0 / +(p2+L2)2\/ + 124 (p2+1%)z (10)

Naively this gives a system of coupled equations for L(p), z(p0) but
we use the z independence of the action to find the conserved
quantity

1 2 LZ 2.,/
I, =p> 1+ (o7 #1772 . (11)
(02 + L2)2 \/1+L’2+(,02+L2)22’2

Note that I7, is again related to properties of the embedding at the
turning point where z' — oo but there is no simple interpretation
here. We have

2 _ ma+L?
pH(p? + L2 (1 = 117 + (p* + 1)?)
We can now use the Legendre transformed action to find L(p)
given I1,. The Legendre transformed action is

(12)

(p*+ 1% — 1T

p(1+
SLTZ/d,O\/l-i—L/Z\/
p2+L2

There are solutions with z constant which are just two copies
of the mono-layer with B field solution at separated z - these
are shown in red in Fig. 2. They represent condensation of the
fermions on each brane individually ({(ff) and (gg)). There are
also solutions with L(p) = 0 which can be found numerically
from (12) - each choice of IT, gives a solution with a different
separation Az. These are similar to the bi-layer condensation dis-
cussed above with the D5 and D5 joining in the interior of the AdS
space. An example is shown in blue in Fig. 2. The presence of the B
field tends to push the junction point to higher p. They represent
(fg) condensation in the field theory.

Finally we can seek solutions with non-trivial L(p) and z(p).
Here, for fixed IT,, we find solutions of the equations resulting
from (13) for L(p) subject to the boundary L'(pg) = 0. We then
solve (12) for the z embedding in each case. For generic choices
of po the solution for z(p) does not satisfy z'(pg) — oo and the
solution is not regular. One must therefore scan in pg for the reg-
ular embeddings. We show an example of such a regular solution
in green in Fig. 2. Whilst numerically intensive this procedure is
straightforward. After collecting such solutions for all choices of IT,
one can then compare solutions of all three types (red, green and
blue in Fig. 2) with the same value of Az. To compute their vac-
uum energy we substitute the functions L(p), z(p) into (10). Since
the energy has a UV divergence we subtract the energy of the
disconnected red solution (which is independent of Az) to regu-
larize.

The results of our analysis are summarized by the plots in
Fig. 3 which are all for the zero mass case (m =0 in (9)). The
top plot shows the free energy density (relative to the uncon-
nected red embeddings in Fig. 2) against the separation of the
domain walls Az. At small separation the linked D5/D5 configura-
tions are energetically favourable and the condensate (fg) forms.
At wider separation the disconnected configurations are preferred
and the condensation is in the channel (f f). The transition oc-
curs at Az ~ 1.4 - undoing our coordinate rescaling this gives
Az~ 1.4R/+2ma’B ~ 0.56A1/4B~1/2, In the middle plot we show
the (f f) condensate (c in (9)). Clearly at the transition there is
a discrete jump and thus the transition is of first order. In the bot-
tom figure we also show the value of the conserved quantity /7,
across the transition.

The green lines show the values of the free energy, con-
densate and I7, for the linked solutions with non-zero z(p)

(13)
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Fig. 3. Analysis of the solutions of the form shown in Fig. 2 against separation Az.
Top: the free energy density. Middle: the (f f) condensate. Bottom: the conserved
quantity I7,.

and L(p). These configurations have both (ff) and (fg) conden-
sation present. As can be seen from the top graph they are never
energetically favoured though. Given we have found all the regular
solutions of the system we know the number of turning points of
the effective potential and their energetic ordering. So we can de-
duce the qualitative form of the effective potential for the conden-
sate ¢ for example. We sketch it in Fig. 4. Everything is consistent
with the first order phase transition we have identified.

3. Summary

We have identified a new first order phase transition in holo-
graphic bi-layer systems. The conformal symmetry of the D3/bi-
probe D5 system can be broken by separating the layers or by the
presence of a magnetic field. The separation favours condensation
of the fermions across the layers. The magnetic field favours con-
densation of the fermions on each individual layer. We have shown
that in the presence of both there is a transition from the former
to the latter when the separation grows to ~ 0.56A1/4B~1/2, we

increasing
Az

Fig. 4. Sketch of the effective potential for the condensate ¢ ({f f)). The coloured
points are the extrema corresponding to the regular D5 embedding of the different
forms in Fig. 2. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

also identified regular brane configurations that have both conden-
sates present but they are never the vacuum, instead representing
maxima in the effective potential as sketched in Fig. 4. Whether
this physics can be identified in bi-layer graphene systems or other
condensed matter systems in the future remains an interesting and
open question.
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