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Holographic Graphene in a Cavity
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The effective strength of EM interactions can be controlled by confining the fields to a cavity and
these effects might be used to push graphene into a strongly coupled regime. We study the similar
D3/probe D5 system on a compact space and discuss the gravity dual for a cavity between two
mirrors. We show that the introduction of a conformal symmetry breaking length scale introduces
a mass gap on a single D5 sheet. Bilayer configurations display exciton condensation between the
sheets. There is a first order phase transition away from the exciton condensate if a strong enough
magnetic field is applied. We finally map out the phase structure of these systems in a cavity with
the presence of mirror reflections of the probes - a mass gap may form through exciton condensation

with the mirror image.

The low energy description of graphene [I] is given by
a theory of 241d massless fermions interacting through
classically conformal 3+1d electromagnetism. Holo-
graphic descriptions of N = 4 super Yang-Mills theory
[2, B] with defect D5 probe branes [4H8] (and other re-
lated systems [9HI4]) provide a calculable system with
similar gross properties - fermions on the defect inter-
acting by higher dimension conformal gauge fields. The
holographic description is only valid in the regime where
the gauge fields are strongly coupled (formally the large
N limit of the non-abelian gauge theory). It has been
argued that the graphene system may be close to strong
coupling since the effective speed of light of the fermionic
theory is much less than the vacuum value [I5]. Even so
graphene may be in a different universality class from
the holographic systems, lying closer to perturbative ex-
pectations. One way to drive graphene’s interactions to
stronger coupling is to place the theory in a cavity, for
example placing a sheet between two mirrors. The sep-
aration of the mirrors enters the effective 2+1d electro-
magnetic coupling as g5 ~ g3/L (see also discussion of
the Purcell effect in the condensed matter literature [16])
and can be used to control the coupling strength. It
is therefore possible that graphene could be forced into
the strongly coupled regime experimentally. Holographic
models may then provide useful guidance as to the ex-
pected phenomena in real world systems (although the
holographic theories typically contain remnants of super-
partners of the fields involved so no predictions are likely
to be quantitatively correct).

Motivated by this idea, here we will study the holographic
D3/probe D5 system in a compact space and in a cav-
ity. The simplest example is to study the A/ = 4 theory
in a space with one compact dimension, introducing a
scale Az. The gravity dual is an AdS-soliton configura-
tion [I7]. We place a single D5 probe in the geometry
and show that a mass gap is generated by the probe
brane bending in the holographic description (the sys-
tem is a simple lower dimension extrapolation of the well

explored D4/D6 system [I8]). This is a clean example
of dynamical mass gap generation using AdS/CFT, sim-
ilar to the mass gap generated by an external magnetic
field [19]. Previously a mass gap has also been shown
to develop in a system of two D5 probes in AdSs repre-
senting spatially separated defects [10] 20H22] - here the
condensation occurs due to the D5 and anti-D5 branes
joining in the interior of AdS and represents “exciton”
condensation between the fermions on one defect with
those on the other. In [23] the phase transition between
that phase and the phase in a magnetic field where con-
densation occurs on each brane alone was investigated.
Here the conformal symmetry breaking of the IR length
scale is not sufficient to generate a transition but a simi-
lar transition does occur again when a magnetic field of
sufficient strength is applied in addition.

Using the N' = 4 system to model EM interactions be-
tween mirrors is harder since it is unclear whether any
true model would include such a configuration that de-
scribes both the N' = 4 vacuum and mirrors. The AdS-
soliton configuration again appears the appropriate way
to introduce the IR length scale. In [24] a proposal was
made for AdS-duals for ' = 4 SYM with boundaries.
Amongst these proposals is one for a strip of the gauge
theory between two boundaries of constant tension. The
dual geometry is the AdS-soliton but with a cut off in the
AdS space corresponding to the position of the bound-
aries (the tension of the boundary is matched to that of
the plasma within). We study probe D5 branes in this
system but fail to find a regular description of a single de-
fect since the D5 brane solutions hit the interior cut-off.
Most likely this shows that the system with a tensionful
wall at the edges of the strip is not a physical system that
could be generated in a complete theory. However, the
discussion shows that the behaviour of the gauge fields
in a cavity would likely be very similar to that on the
compact dimension. We therefore use the AdS-soliton to
describe the vacuum state of the gauge fields and place
probe D5 branes and their mirror image partners into



the space. A new phase is identified in which the probe
has a mass gap as a result of exciton condensation with
its mirror image if the sheet comes within a quarter of
the separation of the mirrors to either mirror. The com-
plicated phase diagram for bilayer configurations is also
computed in this case.

HOLOGRAPHIC N =4 SYM

We will loosely represent QED interactions by the large
N dynamics of N' = 4 super Yang Mills theory on the
surface of a stack of D3 branes. The theory in a flat 3+1d
space is described at zero temperature by AdSs x .S° [2, 3]
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where we have written the geometry to display the di-
rections the D3 lie in (z241,2). A 2+1d defect with an
N = 2 chiral multiplet on its surface can be introduced
by embedding a probe [25] D5 [4H]] on (2241, p and Q2)
with the transverse directions L and s, plus the 3 di-
rection that we call z. R is the AdS radius.
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N =4 SYM ON A COMPACT SPACE

N =4 SYM on a space that is compact in the z direction
is described by the AdS-soliton [I7]
. R o T 2 2 2
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with
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The circumference of the space can be found by looking
in the r — 2z plane near the horizon at rg - writing r =
ro + 7 and making the transformations 7 = rgo? / R? and
a = 2rgz/R? gives a canonical two plane metric. We
impose for regularity that o has range 2m. Hence we
learn the circumference of the z direction is R%m/rq.

To embed a probe-D5 brane it’s convenient to make the
change of coordinates

w= (2 (=) @)

The metric becomes
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where
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We can now split the transverse 6-plane as before
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A Single Graphene Sheet

We will introduce quenched matter via a probe D5 brane.
The matter content is a single Dirac fermion plus scalar
super partners (that will become massive in the presence
of any supersymmetry breaking) restricted to the zg_q
directions. The underlying brane configuration is as fol-
lows:

0123456789
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We expect the vacuum configuration for a single D5 probe
to be described by a profile L(p) at fixed z. The action
for the D5 is just it’s world volume

S~ =T / dS¢e?/—detG
1 3/2
2 ’

where T is the tension, ¢ the dilaton (which is constant
here as in pure AdS) and we have dropped angular factors
on the two-sphere which are a constant multiplicative
factor for all the solutions we compute. Here we have
rescaled each of L and p by a factor of ry.

9)

One can solve for the numerical embedding L(p) by
shooting from p = 0 subject to the boundary condi-
tion L'(0) = 0. The asymptotic solutions fall off as
L(p ~ o0) = m + ¢/p + ... where m is proportional to
the quark mass and ¢ to the quark condensate (strictly it
is only the quark condensate in the massless limit [9]). To
find the massless embedding one shoots to find the solu-
tion with L(co) = 0. The solution is shown in Fig 1 (the
position in the p — L plane at which the geometry closes
(i.e. w =1) is also shown so one sees that the embedding
never enters this region). Numerical computation of —S
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FIG. 1: The embedding of a single D5 brane for a massless
quark in the AdS-soliton background is shown for ro = 1.
The dual of the compact space therefore closes off on the
smaller circle shown - note the D5 brane embedding is regular
avoiding this line. We also show the solution of with
the tension chosen so that the interval between the walls has
radius R%m/ro - the D5 embedding hits this cut off on the
space.

evaluated on a solution gives the vacuum energy since
the configuration is static. This energy suffers from an
IR divergence which goes as A? for large cutoff A, as can
be seen from equation (9) since L'(p) — 0 as p — oo on
our solution. The difference in energy between any two
solutions is finite however; a simple way to regularize the
solution is to subtract fooo p2dp.

The curved solution in Fig 1 is already an interesting
result. It breaks the SO(3) symmetry of the L = 0 em-
bedding to SO(2) and the non-zero value of L(0) can be
interpreted as a dynamically generated IR quark mass.
This response is familiar from other cases in the litera-
ture describing the dynamical generation of a mass gap
[18] 19, 26]. This graphene like configuration on a com-
pact space provides an example of a completely controlled
AdS/CFT computation of a dynamically generated mass
gap (the case with magnetic field is the only other known
case for a single probe D5 brane [7], [§]).

Bilayer Configurations

Another example of a holographically computable dy-
namical mass gap is provided by a bilayer configuration of
probe D5 branes in AdS [9HI4] 23]. A joined D5/anti-D5
brane U-shaped configuration, analogous to the Wilson
loop configuration of an interacting quark and anti-quark
[27, 28], describes this “exciton” condensation between
the fermions on the two defects. The separation of the
defects provides the conformal symmetry breaking scale.
It is interesting to explore this configuration in the com-
pact space therefore.

We will allow for an embedding of the probe D5 brane

in the z direction. Allowing z to depend on p only, the
action for the case L = 0 now becomes

1\*? (p* —1)?
S~—[dp (1+—= 21+ 2 (10
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We have again scaled p by 7o and now z by a factor of
R?/rg (the circumference of the compact z-direction is
now 7 in these coordinates). In general there may be
solutions with non-zero z and L simultaneously but we
shall not consider such configurations (those configura-
tions were explored in [23] for the B-field case but shown
to only represent local maxima of the effective potential).

Since the action is independent of z, there is a constant
of motion II, given by

ZV1+1/p4(p* = 1)?
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As mentioned, these solutions represent two branes join-
ing, and extend a finite distance into the bulk of the space
at which point they turn around. There thus exists some
po at which 2z’ — oo. From equation (11) one then finds
that

P3N/ ps +4/(1+ pg) — 3

From equation (11) one also finds
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giving a first order ODE for z(p) which one can directly

integrate up numerically. One can also find the separa-

tion Az of the branes in a given solution by integrating

equation (13) over p € [po, o0]. The solutions for various

values of py are shown in Fig 2.

An interesting feature is that there are no linked con-
figurations with separation greater than m/2 (half the
circumference of the compact direction). The maximum
/2 separation is realized precisely when the linked con-
figurations falls into the scale rg. For a compact space
the dual has provided us with precisely the minimum
number of configurations to describe all possible probe
D5 separations - two D5 probes can not be separated by
more than half the circumference of the z-direction. The
solutions do not provide us with configurations that wind
further around the compact direction though.

For the purposes of computing the energies of these solu-
tions, the expression given in equation (13) can be sub-
stituted directly into the action in (10). The asymptotic
behaviour of the on-shell action can then easily be read
off, and we again subtract fooo p?dp to regularize. The



e

FIG. 2: U-shaped D5/D5 configurations in the AdS-soliton
background. The space has circumference 7 in the z-direction
- we repeat the space to show configurations wrapping both
ways around the circle. Note that configurations which reach
down to 7o = 1 describe defects separated by 7/2 in z. We
also plot the solution of with the tension chosen so that
the interval between the walls is 7 - the probe configurations
hit this boundary. If the figure is viewed as that for an in-
terval between two mirrors then configurations corresponding
to exciton condensation with the mirror partner exist if the
probe lies within 7/4 of the mirror.
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FIG. 3: The regularized energy of two Db5s in the configu-
ration of Fig [I] (which is independent of z) and that of the
U-shaped joined embedding against separation in z (which
cannot exceed 7/2). The U shaped configurations are always
preferred.

results for the two embeddings are given in Fig[3] The
linked embedding always has lower energy than the sep-
arated embeddings - exciton condensation between the
sheets is preferred over separated sheets with condensa-
tion on the single sheet at all separations on the z circle.

Applying a Magnetic Field

For the compact space, U-shaped probe configurations
were always energetically preferred over the configura-
tion in Fig [I] for bi-layers. It is known that the configu-
ration of Fig 1 though is heavily preferred when a large
background constant magnetic field is applied [7), 8, [19].
Here we mean a B-field associated with the U(1) baryon
number symmetry which has a dual description in terms
of a gauge field in the DBI action of the brane and not
a component of the N' = 4 SYM fields. The full DBI
action with that gauge field is given by

S~ —T/d6§e¢\/—det[G + 27’ F] (14)

For the 2+1-dimensional defect field theory in question,
the only possibility for introducing an external magnetic
field is via Fy, = —Fyy = B, = B. Following through
the analysis as before, one finds that the actions retain
the forms @D and but with an additional factor that
can be identified as an effective dilaton profile

(2ra’)2B?
e? — \/1 + 22+ 02 (15)

Equations and for the bilayer configurations
now become

I, = VI 1/e0(e6 — 1PV 4B/ (4 p)
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where we are writing B in units of 1/27a’. One finds
that for any value of B, the maximum possible separation
of the branes (corresponding to pp = 1) is again given
by 7/2. Of course, the equation of motion for L also
changes accordingly, and for a given value of B one again
shoots numerically to find the solution with L(oo) = 0,
corresponding to the massless embedding.

For both types of embeddings the same regularisation as
before holds, as the new factor introduces no new diver-
gences. The energies of the solutions are increased as one
increases the strength of the magnetic field, but this does
not happen at the same rate so that a phase transition
exists above a certain value of B. The phase diagram of
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FIG. 4: Phase diagram of bi-layer D5s in AdS with one com-
pact direction and an applied B field. Phase A is U-shaped
configurations. In Phase B the probes separate and take up
configurations similar to Fig

the theory is shown in Fig[]- at low B the U-shaped con-
figurations are preferred (phase A in the figure) whilst at
large B the separated brane configurations has lowest en-
ergy (phase B in the figure). The closer the probe branes
the larger the B-field needed to trigger the transition.

N=4 SYM IN A CAVITY

We would like to describe the background N'=4 SYM
fields enclosed in a cavity, for example between two mir-
rors placed Az apart. If the vacuum of the theory is
locally determined then one would expect the descrip-
tion of the vacuum state to match that of the theory on
a compact space since one can consider the space to sim-
ply repeat every Az period. The soliton geometry of
seems the good candidate. Whether this is true or not
depends on the boundary where there can potentially be
boundary terms associated with the “mirror”. For exam-
ple in [24] the authors proposed treating the surface as a
boundary of constant tension 7. The bulk plus boundary
action is then

I = 16771GN fbu1k % _Q(R - 2A)

+87réN fbound v 7h(K - T)

(19)

where K is the extrinsic curvature. The boundary con-
dition

Ko = (K —T)hae (20)

results. For the case of a strip between two such bound-
aries this gives the differential equation

oy RT
) = i7°2h(7‘) 4h(r) — R2T? @)

where the sign depends on which side of the strip the
boundary sits. The solutions of this equation represent

the radial evolution of the position where the tension of
the boundary matches the pressure of the interior gauge
fields. The solutions are U-shaped dipping down to a
distance r, in the bulk. At the mid-point 4h(r,) = R2T2.
One can then integrate from r = r, to oo and require
that Az matches that from the regularity condition of the
geometry - this fixes the tension T

We plot the solutions of in Fig |1l and Fig [2| above.
They represent a cut off on the space in this construc-
tion. We would now be interested in including probe D5
branes in the space. The Euler-Lagrange equations de-
scribing the embeddings in the new space are identical to
those in the compact space and we would hope the probes
to close off before hitting the new boundaries. In Fig
and Fig[2| we see that this is not the case. It is possible
that one needs to invoke new boundary conditions when
the probes meet the cut-off to reflect the physics of the
interaction between the fields on the probes and the bar-
rier physics. Equally likely though is that the construc-
tion does not make complete sense. One is attempting
to construct a theory with mirrors and a region of space
with the vacuum of N'=4 SYM but such a theory may
well not exist because the matter needed to construct the
mirror would need to be part of the vacuum in the strip.

It is not our intention to resolve these complex issues
here. Instead we will take the most naive prescription
of simply using the soliton geometry as our description
of the vacuum of the theory between two mirrors and
place probe branes with their mirror images in that space.
The embedding solutions are then simply those we have
already displayed for the compact space. We hope that
this will reveal the qualitative new physics correctly.

Let us first take this approach for a single probe D5 brane
between the mirrors. The immediate assumption is that
the configuration is that shown in Fig 1 - there will be
condensation of the fermions on the brane triggered by
the conformal symmetry breaking scale Az. However,
there is an additional interesting possibility which is that
there can be exciton style condensation with the mirror
images of the probe. When the probe is at the mid-point
between the mirrors it is a distance Az from it’s reflec-
tions. There are no U-shaped configurations for probes
separated by more than Az/2 so the single configura-
tion of Fig 1 is correct. If the probe though is moved
within Az/4 of the mirror then joined configurations ex-
ist with lower energy than the single configuration and
exciton condensation with the mirror image will occur.
In a sense this is a new form of mass gap formation for
this system.

For two probe branes several configurations are possi-
ble depending on the separation of the branes from each
other and from their mirror partners. Both branes can
condense with their mirrors, one can condense with the
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FIG. 5: The phase diagram of the bilayer theory in an interval
between two mirrors of separation 7. di and d2 measure the
distance from one mirror to the first and second defect respec-
tively. We have marked the lines dy,, = 7/4,37/4 because
these are the separations within which condensation with the
mirror image are possible. In phase A both D5s condense with
their mirror images. In phase B the two D5s form a U-shaped
configuration. In phase C the probe nearest the mirror dis-
plays exciton condensation with its mirror partner whilst the
other probe takes up the lone configuration of Fig

mirror and one have condensation of only its own fields,
or the two branes can display exciton condensation with
each other. One works through all possibilities and com-
putes the enrgetically preferred configuration. The phase
diagram is shown in Fig

DISCUSSION

We have studied D5 probe embeddings in an AdS-soliton
configuration. The geometry is dual to N' = 4 SYM with
one spatial direction of the 3+1d space compact. We
have also argued that it is dual to the vacuum of the the-
ory of N' = 4 SYM confined to a compact region between
two mirrors (although as we discussed this is ambiguous
and essentially assumes the mirrors do not contribute to
the form of the vacuum configuration of the A" = 4 fields
except through the introduction of a length scale). The
conformal symmetry breaking scale introduced through
the finite distance in z in both cases generates fermion
condensation and mass gap formation. For a compact
space a single defect exhibits a fermion condensate on
its surface. For a bilayer D5/D5 configuration the ener-
getically preferred condensation is exciton condensation
between the fermions on the two sheets. If one includes
mirror images of the probes in the case of the interval
then an extra phase appears in which a single fermion,
when close enough to the mirror, displays exciton conden-
sation with its mirror image. The bilayer phase structure
is then considerably complicated (we display the phase

diagram in Fig .

The hope is that graphene sheets can be engineered into
a strongly coupled phase by placing them in a cavity.
The qualitative expectations from our results are that a
mass gap will form in this regime. Further predictions
would then be that there would be a first order phase
transition to condensation with the mirror partner if the
single sheet were brought close to the mirror. For bi-layer
configurations we also showed that an applied magnetic
field can cause a first order transition from an exciton
condensation phase to a phase with separate condensa-
tion on each sheet. Potentially these sorts of features
could be looked for experimentally.
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