
Hyper-Scaling Relations in the Conformal Window from Dynamic AdS/QCD

Nick Evans & Marc Scott1

1STAG Research Centre and Physics & Astronomy,
University of Southampton, Southampton, SO17 1BJ, UK.

evans@soton.ac.uk, ms17g08@soton.ac.uk

Dynamic AdS/QCD is a holographic model of strongly coupled gauge theories with the dynamics
included through the running anomalous dimension of the quark bilinear, γ. We apply it to describe
the physics of massive quarks in the conformal window of SU(Nc) gauge theories with Nf funda-
mental flavours, assuming the perturbative two loop running for γ. We show that to find regular,
holographic, renormalization group flows in the infra-red the decoupling of the quark flavours at
the scale of the mass is important and enact it through suitable boundary conditions when the
flavours become on shell. We can then compute the quark condensate and the mesonic spectrum
(Mρ,Mπ,Mσ) and decay constants. We compute their scaling dependence on the quark mass for a
number of examples. The model matches perturbative expectations for large quark mass and näıve
dimensional analysis (including the anomalous dimensions) for small quark mass. The model allows
study of the intermediate regime where there is an additional scale from the running of the coupling
and we present results for the deviation of scalings from assuming only the single scale of the mass.

I. INTRODUCTION

Dynamic AdS/QCD [1] is a holographic model [2] of
strongly coupled gauge theories with quark matter (other
holographic models of similar physics can be found in [3]).
Its elements are chosen to retain much of the simplicity
of the original AdS/QCD models [4] but with sufficient
input from top-down holographic models of brane probes
[5–7] to enable it to describe the dynamics of chiral con-
densation. The gauge dynamics itself is input through
an ansatz for the running of the anomalous dimension,
γ, of the quark mass or q̄q operator. The quark mass
is the only remaining free parameter as in QCD. The
model then determines the chiral condensate which pro-
vides an IR cut off in the geometry. The σ mode mass,
fσ, the ρ mass, fρ, and the π mass are then predictions.
The main power of the model is to study the dependence
of the spectrum on the ansatz for the running of γ. In
[1] the model was used to study the spectrum of walk-
ing gauge theories in the massless limit and it displayed
the expected behaviours very simply: the transition is of
holographic BKT type (showing Miransky exponential
scaling)[8], the quark condensate is enhanced relative to
fπ [9] and the σ meson mass is suppressed [10] relative
to the rest of the spectrum in the walking regime.

Here we wish to extend the model to describe the confor-
mal window [11, 12] of SU(Nc) gauge theories with Nf
fundamental flavours. For a theory with quarks in the
fundamental representation, asymptotic freedom sets in
when Nf < 11Nc/2. Immediately below that point, at
least at large Nc, the two loop beta function enforces a
perturbative infra-red (IR) fixed point [11]. The fixed
point behaviour is expected to persist into the non per-
turbative regime as Nf is further reduced. This be-
haviour is seen in the two loop perturbative computa-
tion of the running of the coupling of α and hence γ

and we will use that ansatz here to model these theo-
ries. Of course as the fixed point leaves the perturbative
regime this becomes just a sensible “parametrization” of
the non-perturbative physics.

At some critical value of the number of flavours, N c
f , the

coupling is expected to be strong enough to trigger chi-
ral symmetry breaking by the formation of a quark anti-
quark condensate (so called walking theories live just on
the symmetry breaking side of that transition). Holo-
graphic models describe the quark condensate by a scalar
in AdS whose mass is related to the mass dimension, ∆,
of the field theory operator (m2 = ∆(∆ − 4))[2]. As
∆ falls through 2 (or γ ≥ 1), a clear instability sets in
as the mass violates the Breitenlohner-Freedman (BF)
bound in AdS5[13]. Remarkably, the γ = 1 criterion pre-
cisely matches that deduced from gap equation analysis
of the same problem[14]. Using the two loop running for
γ the BF bound violation first occurs at Nf ' 4Nc.

In this paper we will mainly concentrate on the confor-
mal window at values of Nf above N c

f . As an example we

set Nc = 3 (N c
f ' 11.9) and look at a few descrete values

of Nf (12, 13 and 15) which span the conformal window
regime. These examples suffice to explore the qualitative
behaviour of observables on the running to different IR
fixed point values of γ and are easily extendable to dif-
ferent Nc. In the massless quark limit these theories flow
to a non-trivial and strongly coupled IR conformal the-
ory. The existence of such theories is of great theoretical
interest and a sizeable lattice community [15] is seeking
evidence for them in numerical simulations. On a lattice
the massless limit can only be obtained as a fine tuned
point in parameter space. Simulations are therefore per-
formed with finite mass and signals of the presence of,
and approach to, the conformal phase are sought. For
this reason a simple model such as ours, that makes pre-
dictions for this limit, should be helpful in identifying
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expected behaviours in physical, measurable quantities
as one approaches the fixed point. We will therefore con-
centrate on studying the dependence of the quark con-
densate, meson masses and decay constants on the quark
mass.

We had previously only briefly considered the massive
model. Here we show that the IR of the most näıve
model does not allow regular flows for the scalar field
describing the quark mass and condensate. The reason
for this is that the model does not encode the decoupling
of the quark flavours in the background geometry below
their mass scale. We provide a simple fix for this issue
- imposing an IR boundary condition at the scale where
the mass-shell condition is satisfied. It is then a straight-
forward matter to compute in the model. We first calcu-
late the quark condensate as a function of quark mass,
m. There is a leading divergence in the UV of the form
mΛ2

UV as one would expect on dimensional grounds. In
the IR conformal regime with non-zero γ this relation
takes the form mΛ2−2γ

UV . This matches näıve dimensional
analysis - if the mass has dimension 1 + γ and the con-
densate dimension 3− γ then we expect this dependence
on the UV scale. There is then a sub-leading term in the

condensate which grows as m3 in the UV but as m
3−γ
1+γ

in the IR fixed point regime. This is again consistent
with dimensional analysis in the IR - these are the hy-
perscalings relations found in [16]. One of the powers
of holographic descriptions is that the model reproduces
this scaling.

Changing the precise IR boundary condition leaves these
power relations invariant but changes the constant of pro-

portionality between 〈q̄q〉 and m
3−γ
1+γ . Once this constant

is chosen the model allows one to follow the renormal-
ization group flow of the mass and the condensate. Nu-
merical work lets us look at intermediate regimes where
the quark mass is of order the scale Λ1 (roughly the
scale generated by the 1-loop beta function) where the
coupling transitions from the perturbative regime to the
non-perturbative fixed point. To analyze the impact of
Λ1 we fit to a simple scaling relation of the form mb.
The exponent b can then be translated, using the hy-
perscaling relation, to a predicted value for γ which we
compare to the functional form of γ that we have input
into the model. In the running regime around Λ we find
significant deviations from the input γ showing that the
one-scale mb functional form breaks down in the running
regime. In this regime there is of course the second scale
Λ1 so this is as expected - our method allows us to quan-
tify the deviations in this regime though.

Most importantly for comparison to lattice simulations
are computations of physical observables. We compute
the meson spectrum including Mρ,Mπ and Mσ and their
decay constants and display their scalings with m and
against each other. When we compute these dimension
1 quantities we expect hyper-scaling behaviour for di-

mension one objects of the form m1/1+γ . We can again
extract γ from each variable and display variations from
the input γ function in the different regimes. The hyper-
scaling relations are matched in the deep UV and IR fixed
point regimes but there are significant deviations in the
running regime where Λ again enters the physics. These
are the main results of our analysis.

II. DYNAMIC ADS/QCD

Dynamic AdS/QCD was introduced in detail in [1]. The
model maps onto the action of a probe D7 brane in an
AdS geometry expanded to quadratic order [7]. The
anomalous dimension of the quark mass/condensate is
encoded through a mass term that depends on the radial
AdS coordinate ρ.

The five dimensional action of our effective holographic
theory is

S =

∫
d4x dρTr ρ3

[
1

ρ2 + |X|2
|DX|2

+
∆m2

ρ2
|X|2 +

1

2
F 2
V

]
, (1)

The field X describes the quark condensate degree of
freedom. Fluctuations in |X| around its vacuum config-
urations will describe the scalar meson. The π fields are
the phase of X,

X = L(ρ) e2iπaTa . (2)

FV are vector fields that will describe the vector (V )
mesons. It is possible to include additional mesonic states
through extra holographic fields that describe further
QCD operators. For example, in [1] we included the a-
mesons through an axial gauge field. The simpler model
here though contains sufficient physical observables to
display the behaviours we are interested in.

We work with the five dimensional metric

ds2 =
dρ2

(ρ2 + |X|2)
+ (ρ2 + |X|2)dx2, (3)

which will be used for contractions of the space-time in-
dices. ρ is the holographic coordinate (ρ = 0 is the IR,
ρ → ∞ the UV) and |X| = L enters into the effective
radial coordinate in the space, i.e. there is an effective
r2 = ρ2 + |X|2. This is how the quark condensate gen-
erates a soft IR wall for the linearized fluctuations that
describe the mesonic states: when L is nonzero the the-
ory will exclude the deep IR at r = 0.

The normalizations of X and FV are determined by
matching to the gauge theory in the UV. External cur-
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rents are associated with the non-normalizable modes of
the fields in AdS. In the UV we expect |X| ∼ 0 and
we can solve the equations of motion for the scalar,
L = KS(ρ)e−iq.x and vector V µ = εµKV (ρ)e−iq.xfield.
Each satisfies the same equation

∂ρ[ρ
2∂ρK]− q2

ρ
K = 0 . (4)

The UV solution is

Ki = Ni

(
1 +

q2

4ρ2
ln(q2/ρ2)

)
, (i = S, V ), (5)

where Ni are normalization constants that are not fixed
by the linearized equation of motion. Substituting these
solutions back into the action gives the scalar correla-
tor ΠSS and the vector correlator ΠV V . Performing the
usual matching to the UV gauge theory requires us to set

N2
S = N2

V =
NcNf
24π2

. (6)

The vacuum structure of the theory can be determined
by setting all fields except |X| = L to zero. We assume
that L will have no dependence on the x coordinates.
The action for L is given by

S =

∫
d4x dρ ρ3

[
(∂ρL)2 + ∆m2L

2

ρ2

]
. (7)

If ∆m2 = 0 then the scalar, L, describes a dimension
3 operator and dimension 1 source as is required for
it to represent q̄q and the quark mass m. That is, in
the UV the solution for the L equation of motion is
L = m + q̄q/ρ2. A non-zero ∆m2 allows us to intro-
duce an anomalous dimension for this operator. If the
mass squared of the scalar violates the BF bound of -4
(∆m2 = −1, γ = 1) then the scalar field L becomes un-
stable and the theory enters a chiral symmetry breaking
phase.

We will fix the form of ∆m2 using the two loop running
of the gauge coupling in QCD which is given by

µ
dα

dµ
= −b0α2 − b1α3, (8)

where

b0 =
1

6π
(11Nc − 2Nf ), (9)

and

b1 =
1

24π2

(
34N2

c − 10NcNf − 3
N2
c − 1

Nc
Nf

)
. (10)

Asymptotic freedom is present provided Nf < 11Nc/2.

There is an IR fixed point with value

α∗ = −b0/b1 , (11)

which rises to infinity at Nf ∼ 2.6Nc.

The one loop result for the anomalous dimension of the
quark mass is

γ1 =
3C2

2π
α, C2 =

(N2
c − 1)

2Nc
. (12)

So, using the fixed point value α∗, the condition γ = 1

occurs at N c
f ∼ 4Nc (precisely N c

f = Nc

(
100N2

c−66
25N2

c−15

)
).

We will identify the RG scale µ with the AdS radial pa-

rameter r =
√
ρ2 + L2 in our model. Note it is important

that L enters here. If it did not and the scalar mass was
only a function of ρ then, were the mass to violate the
BF bound at some ρ, it would leave the theory unstable
however large L grew. Including L means that the cre-
ation of a non-zero but finite L can remove the BF bound
violation leading to a stable solution.

Working perturbatively from the AdS result m2 = ∆(∆−
4) we have

∆m2 = −2γ1 = −3(N2
c − 1)

2Ncπ
α . (13)

This will then fix the r dependence of the scalar mass
through ∆m2 as a function of Nc and Nf .

It’s important to stress that using the perturbative result
outside the perturbative regime is in no sense rigorous
but simply a phenomenological parametrization of the
running as a function of µ,Nc, Nf that shows fixed point
behaviour. Similarly the relation between ∆m2 and γ1

is a guess outside of the pertabation regime. Note that
the holographic fixed point value for the anomalous di-
mension is given by solving ∆(∆ − 4) = ∆m2 and the
resultant γ will not be the same as the fixed point in γ1

away from the perturbative regime. Below we will dis-
play γ(µ) extracted from the holographic ∆ and describe
it as the “input anomalous dimension”’ - the discrepancy
from γ1 is not large even in the deep IR in the conformal
window regime of Nf .

III. SCALING BEHAVIOUR OF THE QUARK
CONDENSATE

Firstly, we will study the vacuum structure of SU(3)
gauge theory with Nf fundamental quarks in the con-
formal window range 12 ≤ Nf ≤ 15. These theories are
conformal when the quarks are massless so we will study
the theories with a quark mass which breaks conformal-
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ity. We will show that the model correctly encodes the
running dimensions of the quark mass and condensate.

The Euler-Lagrange equation for the determination of L,
in the case of a constant ∆m2, is

∂ρ[ρ
3∂ρL]− ρ∆m2L = 0 . (14)

If ∆m2 depends on L then there is an additional term
−ρL2∂L∆m2 in the above equation of motion. At the
level of the equation of motion this is an effective con-
tribution to the running of the anomalous dimension γ
that depends on the gradient of the rate of running in
the gauge theory. At one loop in the gauge theory there
is no such term and so we will neglect this term, effec-
tively imposing the RG running of ∆m2 only at the level
of the equations of motion. Since we are interested in
theories that run from a trivial UV fixed point to an IR
fixed point the dropped term would only influence the
intermediate regime and then only for the smaller values
of Nf where the running is fast. We have checked there
is no qualitative change in the theory in the conformal
window by including it.

In the IR of the conformal window α → −b0/b1, γ1 be-
comes constant and hence ∆m2 is a non-zero constant.
∆m2 must lie in the regime −1 < ∆m2 < 0 for the the-
ory to be stable and remain conformal in the IR without
the chiral condensate forming. The solutions of the RG
flow equation (14) are of the form

L =
m

ργ
+

c

ρ2−γ , γ(γ − 2) = ∆m2 (15)

To extract the chiral condensate we substitute the solu-
tion back into the action (1), integrate over ρ upto a cut
off ΛUV , and compute 1

Z
dZ
dm |m. We find

〈q̄q〉 =
(∆m2 + γ2)

(1− γ)
mΛ2−2γ + 2(∆m2 + γ(2− γ))c ln Λ

(16)
The first term is the expected UV divergence in the con-
densate in the presence of a mass - the mass and conden-
sate share the same symmetry properties and the dimen-
sion is then made up with the UV cut off scale. Since the
condensate has dimension 3 − γ and m dimension 1 + γ
the power of ΛUV is the correct one to match this di-
mensional analysis. This is already a sign that the model
correctly describes scaling dimensions. The second term
is, upto log renormalization, a constant times the pa-
rameter c - in the m = 0 limit c is therefore proportional
to the condensate. We will study c’s scaling behaviour
shortly.

To find solutions for L(ρ) and express c in terms of m one
needs to impose a regularity condition in the IR. The top-
down D3-D7 system [5] has the IR condition ∂ρL(0) = 0
as that condition. However, this issue is more subtle in
this model. The solutions in (15) clearly do not satisfy
∂ρL(0) = 0 except in the conformal m = c = 0 limit. We

believe the reason for this is that the model does not in-
clude the backreaction to the quark flavour’s mass (and
condensate). Were the mass’ backreaction to be included
it would generate a small shift in the value of the dilaton
at the scale of the mass as the flavours decouple from the
QCD running. We would expect that variation in the
geometry to accommodate a solution with ∂ρL(0) = 0.
Rather than attempt the backreaction though we shall
simply use an on-mass shell condition in the IR to termi-
nate the RG flow. We discuss this issue in detail in the
IR and UV.

A. IR Fixed Point Behaviour of c

In the IR of the conformal window −1 < ∆m2 < 0. The
embedding equation is (14) with solutions of the form in
(15). A sensible first guess for the IR boundary condition
is

L(ρ = L0) = L0, L′(ρ = L0) = 0. (17)

This IR condition is similar to that from top down models
but imposed at the RG scale where the flow becomes “on-
mass-shell”. Here we are treating L(ρ) as a constituent
quark mass at each scale ρ. We then find

m =

(
γ − 2

2γ − 2

)
L1+q

0 (18)

and

c =
γ

2γ − 2

(
2γ − 2

γ − 2

) 3−γ
1+γ

m
3−γ
1+γ (19)

This shows analytically that the model obeys the “hyper-
scaling” relation one would expect at the conformal fixed
point. The condensate has dimension 3−γ and the mass
dimension 1 + γ. Since m is the only intrinsic scale c ∼
m3−γ/1+γ is ensured.

The boundary condition L′(ρ = L0) = 0 is not cru-
cial to obtain the hyper-scaling relations since the rel-
ative dimensions of m and q̄q are fixed in the holo-
graphic model. Instead the choice of this boundary con-
dition fixes the proportionality constant between q̄q and
m3−γ/1+γ . Given that there is some freedom in this
choice of boundary condition, we will not be predicting
this value - for this reason in our numerics we will choose
a boundary condition to set the proportionality constant
to unity in all cases. That is, we will assume at the IR
boundary the solution is of the form

L =
m

ργ
+
m

3−γ
1+γ

ρ2−γ . (20)
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and hence use the boundary conditions

L(ρ)|L0 = L0,

L′(ρ)|L0
= − γm

Lγ+1
0

+ γ−2

L3−γ
0

m
3−γ
1+γ .

(21)

B. Large m limit

If we now consider asymptotically free theories that lie
at α < α∗ in the UV then the UV running of ∆m2

is controlled by the one loop perturbative running cou-
pling. Theories where the L profile lives at large values

of r =
√
L2 + ρ2 will see only this behaviour ie we can

extract the large quark mass behaviour from this limit.
The embedding equation is

∂ρ[ρ
3∂ρL]− ρκ

ln ρ/Λ1
L = 0, (22)

where Λ1 is the one loop running scale and κ is a constant
which, at the one loop level, can be shown to take the

form κ = − 3
2
N2
c−1

Ncπb0
. The solution thus has the behaviour

L =
m

(ln ρ/Λ1)k
+

c

ρ2
(ln(ρ/Λ1))k, k = −κ

2
. (23)

Applying the simple boundary conditions

L(ρ = L0) = L0, L′(ρ = L0) = 0, (24)

gives

m = − 2q̄q

kL2
0

(
ln
L0

Λ1

)2k+1

, (25)

and

c = − k

2
(

ln L0

Λ1

)4k+1
m3. (26)

This shows that c ∼ m3 in the UV upto a logarithmic
renormalization. The model is again correctly determin-
ing the scaling relations between m and q̄q though.

We assumed that L′(L0) = 0 here so that we could dis-
play the scaling behaviours analytically. In our numerical
work we will use the boundary condition in (21) which
sets q̄q = m3 in the IR for large quark masses also.

FIG. 1: Plots for the theory Nc = 3 and Nf = 12: a) Log
c against Log m b) numerical points for γ extracted from
b = 3−γ

1+γ
against Log m (the solid line is the input γ from

the two loop running c) percentage difference between the
extracted form of γ and the input form (solid line in b))

C. Numerical Solutions for the Full Running
Theory

We have seen that the model correctly describes scal-
ing dimensions in the IR and UV fixed point regimes.
The transition between these fixed points is more model
dependent but also of more interest for lattice simula-
tions where one would be interested in an estimate of
how quickly the IR scaling behaviour is likely to set in.
We can see what results this model gives by numerically
solving for c and m as a function of RG scale with the
full two loop running implemented.

We first discuss results for Nc = 3 and Nf = 12 as an
example. This model lies close to the lower edge of the
conformal window (N c

f < Nf < 11Nc/2) which does not

exhibit spontaneous chiral symmetry breaking (γ < 1).
Specifically, it displays an IR fixed point value for γ of
γ∗=0.8. We proceed by solving (14) subject to the IR
boundary condition (21). Then at each value of ρ we fit
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L,L′ and L′′ to the functional form in (15) to extract an
estimate of the mass, condensate and γ. This ansatz for
the fitting is sound in the UV and IR fixed point regimes
and will likely be good locally in slowly running regimes
but is neccessarily approximate.

Let us first evaluate the condensate at the deepest IR
point for each value of quark mass ie L0 for each flow.
We have fixed L′ at this point assuming that the solution
takes the form in (20) so in the IR and UV fixed point
regimes (ie at low and high quark mass) we expect the
numerical solution to match that form precisely. In the
intermediate regime where γ is running, the form in (20)
is only approximate. The numerical solutions for the
quark condensate parameter c against the quark mass
are displayed in Fig 1a). The plot shows clear UV and
IR scaling regimes where c ∼ mb with a transition period
between.

In Fig 1b) the value of γ extracted from b is plotted
over the input form of γ as discussed below Eq (13).
Assuming b takes the form b = 3−γ

1+γ , one should expect

to return the input value of γ, since the IR regularity

condition imposes that c = m
3−γ
1+γ and we are evaluating

c at the IR boundary. It is clear from Fig 1b) that the
extracted γ does indeed agree very well with the input
form bar marginal discrepancies in the regime of steepest
running. The extent of the deviation in this intermediate
regime can be seen more clearly in Fig 1c) as a percentage
difference from the input form. Clearly the ansatz (15)
works well at all scales. The slight deviation between the
input and output γ, which reflects the additional scale
Λ1 from the running, seems to persist for several decades
of energy on either side of the strongest running regime
in this model. Such behaviour, if true of the full theory,
would further complicate lattice studies of such theories
by requiring a very large box size to include both the UV
and IR fixed point behaviours.

It is now interesting to follow the RG flow of the quark
mass and condensate parameter c for a particular choice
of IR mass. In Fig 2a) we display this running for a quark
mass that lies in the IR conformal regime. In the deep
IR there is no significant running of the quark mass and
this in agreement with the conformal behaviour of γ in
this region. As the running scale is increased we see a
step-up in the quark mass value until it plateaus in the
UV. The RG flow of the quark condensate seen in 2b)
also follows a similar behaviour, stepping up from a fixed
point value in the IR as we increase the RG scale. The
large step in the value of these parameters is expected.
At the scale Λ1 their dimension is changing significantly
and the scale Λ1 is the only available scale with which
to adjust their dimension and it is much bigger than the
initial values of m, c - large renormalization effects are
expected. This argument is essentially the one used to
predict that walking gauge dynamics [9] will have a large
UV condensate and these plots support that logic.

FIG. 2: Plots for the running of mass and condensate at
Nc = 3, Nf = 12: a) The running of the mass shown against
RG scale for different values of L0 b) The running of the
condensate parameter c against RG scale µ at L0 = 10−20.

FIG. 3: Nc = 3: a) γ versus m from c for Nf = 13 b) γ
versus m from c for Nf = 15

The behaviour for other values of Nf in the conformal
window are very similar in spirit to the Nf = 12 case we
have looked at in detail. To summarize the other cases
we simply produce the plot of γ extracted from the fit
of the form q̄q ∼ m(3−γ)/(1+γ) against quark mass over-
laid on the input γ function from the two loop running.
We show results for the cases Nf = 13 and Nf = 15
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in Fig 3. These plots indicate that the aforementioned
discrepancy in the regime of strongest running becomes
increasingly less dominant at higher values of Nf . This
trait encapsulates the idea that as the number of flavours
increases, the fixed point value of γ drops and the rate
of running slows causing the IR fixed point behaviour to
extend further away from µ = 0.

IV. BOUND STATE MASSES

So far our analysis has consisted of checking that the
vacuum configuration of the model is consistent with
näıve scaling arguments. One of the powers of holo-
graphic models is that these relations are inbuilt. We now
turn to computing the physical parameters, the masses
of the bound states and their decay constants. These pa-
rameters are true predictions of the model now that the
dynamics has been included through the running scalar
mass and the condensate fixed by the IR boundary con-
dition.

A. Linearized Fluctuations

The scalar q̄q (σ) mesons are described by linearized
fluctuations of L about its vacuum configuration, Lv.
We look for space-time dependent excitations, ie |X| =
Lv + δ(ρ)e−iq.x, q2 = −M2

σ . The equation of motion for
δ is, linearizing (14),

∂ρ(ρ
3δ′)−∆m2ρδ − ρLvδ ∂∆m2

∂L

∣∣∣
Lv

+M2
σR

4 ρ3

(L2
v+ρ2)2 δ = 0 .

(27)

We seek solutions with, in the UV, asymptotics of δ =
ρ−2 and with ∂ρδ|L0

= 0 in the IR, giving a discrete me-
son spectrum. Note that the distinction between this IR
boundary condition and that of the normalizable mode
in (21) is negligible in the spectrum obtained (of order 1
part in 105). Recalling previous discussion of the ∂L∆m2

term, we elect to ignore it since it has negligible effects
on the spectrum.

We must normalize δ so that the kinetic term of the σ
meson is canonical i.e.∫

dρ
ρ3

(ρ2 + L2
v)

2
δ2 = 1 . (28)

The scalar meson decay constant can be found using the
solutions for the normalizable and non-normalizable wave
functions. We concentrate on the action term (after in-

FIG. 4: Nc = 3, Nf = 12: a) ρ-meson mass against quark
mass b) Extracted value γ versus m from ρ-meson mass spec-
tum. The solid line shows the holographic input of γ from the
two-loop running c) The percentage difference seen between
the input γ running and the extracted γ running

tegration by parts)

S =

∫
d4x dρ ∂ρ(−ρ3∂ρL)L . (29)

We substitute in the normalized solution δ and the exter-
nal non-normalizable scalar function KS at q2 = 0 with
normalization NS to obtain the dimension one decay con-
stant fσ as

f2
σ =

∫
dρ∂ρ(−ρ3∂ρδ)KS(q2 = 0) . (30)

The vector (ρ) meson spectrum is determined from
the normalizable solution of the equation of motion
for the spatial pieces of the vector gauge field Vµ⊥ =
εµV (ρ)e−iq.x with q2 = −M2. The appropriate equation
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FIG. 5: Nc = 3, Nf = 12:a) σ-meson mass against quark
mass b) Extracted value γ versus m from σ-meson mass spec-
tum. The solid line shows the holographic input of γ from the
two-loop running.

is

∂ρ
[
ρ3∂ρV

]
+

ρ3M2

(L2
v + ρ2)2

V = 0 . (31)

We again impose ∂ρV |L0
= 0 in the IR and require in the

UV that V ∼ c/ρ2. To fix c we normalize the wave func-
tions such that the vector meson kinetic term is canonical∫

dρ
ρ3

(ρ2 + L2
v)

2
V 2 = 1 . (32)

The vector meson decay constant is given by substituting
the solution back into the action and determining the
coupling to an external q2 = 0 vector current with wave
function KV . We have for the dimension one fV

f2
V =

∫
dρ∂ρ

[
−ρ3∂ρV

]
KV (q2 = 0) . (33)

The pion mass spectrum is identified by assuming a
space-time dependent phase πa(x) of the AdS-scalar
X describing the q̄q degree of freedom, i.e X =
L(ρ) exp(2iπa(x)T a). The equation of motion of the pion
field is then,

∂ρ
(
ρ3L2

v∂ρπ
a
)

+M2
π

ρ3L2
v

(ρ2 + L2
v)

2
πa = 0. (34)

Again, we impose at the IR boundary that ∂ρπ
a|L0 = 0.

FIG. 6: Nc = 3, Nf = 12:a) π-meson mass against quark
mass b) Extracted value γ versus m from π-meson mass spec-
tum. The solid line shows the holographic input of γ from the
two-loop running.

B. Bound States of the Nc = 3, Nf = 12 Theory

We again focus in detail on the Nc = 3, Nf = 12 theory
with γ∗ ' 0.8. Using the formalism described we com-
pute the ρ, π and σ meson masses as a function of quark
mass. Hyper-scaling arguments lead to the expectation
that in a fixed point theory the meson mass will scale
as m1/1+γ . In the UV γ = 0 whilst in the IR γ = 0.8.
In Figs 4a), 5a) and 6a), we plot the dependence on the
ρ-mass, σ-mass and the π-mass respectively, against the
quark mass m. In Figs 4b), 5b) and 6b), we plot γ ex-
tracted from the hyperscaling relation, again as a func-
tion of the quark mass, and show the comparison to the
input running of γ. As for the quark condensate we see
excellent agreement with the hyperscaling relation in the
UV and IR regimes but a discrepancy in the intermedi-
ate running region. In the central region the discrepancy
again reflects the presence of the second scale Λ1 in the
running coupling. The deviations from the näıve IR and
UV fixed point values seem to persist in the meson masses
over a slightly wider running period than in the input
γ. The percentage deviation in γ extracted from the ρ
mass and the initial two-loop γ input is shown in Fig 4c).
In the regime of strongest running, the disagreement is
found to be as much as 47%.

Another interesting plot is to remove the unphysical
quark mass and directly plot Mρ versus Mπ. Here we
expect at a fixed point that Mρ ∝ M b

π with b = 1. In
Fig 7 we plot these masses against each other and the
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FIG. 7: Nc = 3, Nf = 12: a) ρ-mass versus π-mass b) b
versus Mπ, where we’ve assumed Mρ ∝Mb

π

FIG. 8: Nc = 3, Nf = 12:a) fρ versus the quark mass b) the
extracted γ versus m

extracted value of b against Mπ. We indeed see the ex-
pected proportionality between the masses in the fixed
point regimes as well as the deviation in the running
regime between these, a telltale sign of the running scale
Λ entering the relation. Here the deviations from the
fixed point scaling is only of order 5%.

Finally, we can compute the decay constants fρ and fσ
and plot them against the quark mass, see Figs 8a) and
9a). Once again, we extract γ, assuming a power law

FIG. 9: Nc = 3, Nf = 12:a)fσ versus the quark mass b) the
extracted γ versus m

relationship fρ,σ ∝ m
1

1+γ and plot the results in Figs
8b) and 9b). They show similar behaviour to the meson
masses.

C. Nc = 3, Nf = 13, 15 Mesons

For completion we have also computed the mesonic vari-
ables at Nf = 13 and Nf = 15 in the Nc = 3 theory,
so that we can test this model across a large span of
the conformal window. We begin, as before, by com-
puting the mass spectra of the ρ- and σ-mesons as a
function of the quark mass and extract the correspond-
ing γ, which can be seen in Fig 10a) for Nf = 13 and
Fig 10b) for Nf = 15. A similar behaviour to that at
Nf = 12 is observed with the clear IR and UV scaling

regimes of Mρ ∝ m
1

1+γ∗ and Mρ ∝ m respectively. We
see the deviation from the input γ running in the cen-
tral region where the running is strongest. However, as
Nf is increased away from N c

f , the IR fixed point value,
γ∗, decreases thus reducing the rate of the running with
RG scale so the deviation in γ becomes less and less. It
is most evident for the case Nf = 15 in Fig 10b), that
not only does the discrepancy between the input γ and
the extracted γ become less pronounced with increased
Nf (at most only ∼ 4.8% difference compared to 47%
for Nf = 12), but that the conformal IR fixed point be-
haviour gets ‘pushed’ further from the scale Λ1 so that
one must overview many decades of RG scale to observe
significant running.

Next we turn again to plots of Mρ versus Mπ which re-
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FIG. 10: Nc = 3: a) γ extracted from Mρ against the quark
mass at Nf = 13, Nc = 3 b) The same for Nf = 15.

move the unphysical mass parameter m, see Figs 11a)
and 11c). In each of the cases Nf = 13 and Nf = 15,
the linear relationship Mρ ∝Mπ, expected in the IR and
UV regions, is clearly observed and only by examining
the exponent, b, of an assumed Mρ ∝M b

π relationship do
we notice the discrepancy attributed to the additional
running scale Λ1; see Figs 11b) and 11d). Once more we
observe that an increase in the number of flavours leads
to an extended IR fixed point region and a reduction in
the rate of running of the anomalous dimension with RG
scale. Fig 11d) showing b versus Mπ at Nf = 15 provides
a prime example of such an observation - the greatest dif-
ference between the extracted value of b and the linear
behaviour (b = 1) is only of the order of 0.03%.

V. SUMMARY

Dynamic AdS/QCD is a holographic model of QCD with
variable Nc and Nf which predicts the dynamics of chi-
ral symmetry breaking [1] and the meson spetrum . The
gauge dynamics is input through the running of the
anomalous dimension of the quark mass γ. Here we used
the two loop perturbative result for α to parametrize that
running. Chiral symmetry breaking occurs when the IR
fixed point value of the anolmalous dimension γ∗ grows
to one (corresponding to a critical value of the number
of flavours N c

f ' 4Nc). The chiral symmetry breaking

case of Nf < N c
f was studied in [1]. Here we have fo-

cused on the conformal window of SU(Nc) gauge theories

FIG. 11: Nc = 3: a) Mρ versus Mπ for Nf = 13 b) extracted
γ for Nf = 13 c) Mρ versus Mπ for Nf = 15 d) extracted γ
for Nf = 15

with Nf > N c
f which do not exhibit spontaneous chiral

symmetry breaking (sχSB) in the massless limit. The
massless theory is conformal so we have studied the in-
clusion of a quark mass. The model does not directly
include back-reaction on the glue dynamics due to the
presence of the quark mass so we have adopted an on
mass shell boundary condition where we shoot out from
RG scales of order the constituent quark mass. We have
shown carefully that the model correctly incorporates the
scaling dimensions of the quark mass and condensate fol-
lowing the hyper-scaling power relations expected of the
theory at the UV and IR fixed points.
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The main predictions of the model are the physical me-
son masses (of the ρ, π and σ) and their decay constants.
We have shown that the model reproduces the expected
hyperscaling relation with respect to the quark mass,

M ∼ m
1

1+γ , in the fixed point regimes. The model then
allows us to study the deviations from this näıve scal-
ing in the intermediate running regime between the fixed
points characterized by the one-loop scale Λ1. In this
regime the theory has two scales and the simple power
relations are expected to break down. We studied the
SU(3) gauge theory with Nf = 12 in detail. This theory
has γ∗ ' 0.8 and reasonably strong running - we indeed
see substantial deviations from the simple power rela-
tion in the intermediate regime. The model also allows
us to see that the regime in quark mass over which the
simple power law behaviour will be absent is many or-
ders of magntiude. The deviation from the relationship
Mρ = Mπ (expected in a one scale theory) is smaller
(of order 5% in the power). This estimates the accuracy
that would be needed in a lattice simulation on quantities
such as Mρ to be certain that the fixed point had been
achieved. For large Nf = 13, 15 the running is slower and
the change in γ from the UV to the IR smaller - the devi-
ations from the simple powerlaw scaling are then smaller
too (although spread over a larger energy regime).

We have displayed results for Nc = 3 and varying Nf
only. Whilst the true complete Nc, Nf dependence is
interesting, our model is underpinned by our ability to
know the running of γ in a particular theory. The use of
the two loop running results is a decent parametrization
but probably doesn’t capture the true dynamics. For this
reason we believe we have extracted the broad qualitative
behaviours of the model on changing γ∗ and that these
can be qualitatively brought across to other values of
Nc. A true lattice simulation would be needed to pin the
physics down more precisely. Our results show though
that the physics of these theories is spread over quite a
range of orders of magnitude if one wishes to flow from
the UV perturbative fixed point to the IR fixed point
regime. This remains a big challenge to lattice simula-
tions where the cost of large grids is great.
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