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Abstract — In this paper we present a systematic exploration 

for determining the appropriate type of inertial sensor and the 

associated data processing techniques for classifying four 

fundamental movements of the upper limb. Our motivation was 

to explore classification techniques that are of low 

computational complexity enabling low power processing on 

body-worn sensor nodes for unhindered operation over a 

prolonged time. Kinematic data was collected from 18 healthy 

subjects, repeating 20 trials of each movement, using tri-axial 

accelerometers and tri-axial rate gyroscopes located near the 

wrist. Ten time-domain features extracted from data from 

individual sensor streams, their modulus and specific fused 

signals, were used to train classifiers based on three learning 

algorithms: LDA, QDA and SVM. Each classifier was evaluated 

using a leave-one-subject-out strategy. Our results show that we 

can correctly identify the four arm movements, with sensitivities 

in the range of 83-96%, using data from just a tri-axial 

gyroscope located near the wrist, and requiring only 12 features 

in combination with the lower complexity LDA learning 

algorithm. 

I. INTRODUCTION 

A Wireless Body Area Network (WBAN) integrating 
heterogeneous low-cost physiological data measurement 
sensors in a body-worn system paves a new way for remote 
healthcare monitoring [1]-[2]. One of the potential 
application areas of such a system is human activity 
recognition which has relevance in Stroke rehabilitation 
within the home environment. The primary requirement of 
such a system is to ensure its long-term operation for subject 
monitoring. It has been shown that in wearable systems, the 
data analysis primarily needs to be carried out at the sensor 
node yielding energy efficient solutions as compared to 
conventional remote monitoring approaches based on 
continuous transmission of data to a central server. In 
general, these systems are battery powered and are therefore 
resource constrained, so this efficiency can only be achieved 
by selecting low-complexity data processing algorithms, 
since the computational complexity is proportional to the 
energy consumption [3]. Thus, with respect to remote 
healthcare, a credible monitoring system should have low 
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complex data processing to extend battery life. This presents 
a challenge when detecting fine-grain activities e.g., upper 
limb movement, as opposed to detection of gross activities 
such as cycling or running since the former usually requires 
higher complexity processing [2]. 

Typically low-cost inertial sensors (accelerometers and 
gyroscopes) and magnetometers are used for activity 
recognition [2]. Radio-frequency identification (RFID) has 
been used to monitor the movement of objects with which a 
subject interacts within the home environment [4]. Vision 
based systems have also been used in activity recognition, 
but they tend to involve high complexity image processing 
algorithms, are usually restricted to indoor activities, and 
require un-hindered surveillance of the subject [5]. 

In principle there are three steps for activity recognition 
using inertial sensors: 1) data capture by appropriate sensor; 
2) segmentation of the captured data to identify the 
beginning and end of an activity and 3) recognition of the 
activity using appropriate classification techniques. Although 
the final two steps are in practise interrelated, individually 
they pose significant research challenges owing to the 
possible qualitative non-uniqueness of an activity pattern 
exhibited by an individual subject. Therefore these are 
treated as two individual research problems: event detection 
and activity recognition. We concentrate only on the second 
research problem, activity recognition, on the assumption 
that the start and stop time of the activity is known. 

In this paper we report on a systematic exploration aimed 
at accurately recognising four fundamental (fine-grain) 
movements of the upper limb that are associated with basic 
activities of daily living. We are particularly interested in 
developing a low-complexity, robust training model that 
accounts for significant inter-subject variability and we 
evaluate the model with a ‘leave-one-subject-out’ validation 
process, with the aim of determining: 1) appropriate type of 
sensor to be used and 2) associated data processing and 
classification methodology that may allow long-term 
monitoring using a body-worn system. We used data from a 
tri-axial accelerometer and a tri-axial rate gyroscope attached 
to the wrist, extracting 10 features from each individual 
sensor-axes and combinations of these signals as inputs for a 
number of different classification algorithms. Our results 
show that the tri-axial rate gyroscope can independently 
recognise all four arm movements considered here with 
sensitivities for detection in the range of 83-96% using 12 
(out of a possible 30) time domain features extracted from 
the three sensor axes (3 × 10 features) using the Linear 
Discriminant Analysis (LDA) classifier. 
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II. EXPERIMENTAL PROTOCOL  

We selected four elementary types of arm movement 
typically used during daily activities, these were: 

 Movement A – Reach and retrieve an object 
monitoring extension and flexion of the forearm. 

 Movement B – Lift cup to mouth and return to table 
focusing on rotation of the forearm about the elbow. 

 Movement C – Reach out for an object sideways by 
swinging arm 90° in horizontal plane and return. 

 Movement D – Rotate wrist with arm fully extended 
through 90° and return. 

Experiments were performed with 18 healthy subjects 
(age range 24 to 50, male and female, both left and right arm 
dominant) each subject performing 20 trials of each arm 
movement separated into four groups of five repetitions with 
each group of trials being separated by approximately three 
minutes, to avoid the effects of unconscious self-learning of 
the activities. The subjects performed the movements in a 
seated position in the laboratory, with no restrictions on 
physical factors like seating position, table arrangement and 
the time required to complete the movements, hence ensuring 
a wider range of variability in the data paving the way for a 
robust arm movement classification system. 

The commercially available Shimmer 9DoF wireless 
kinematic sensor module comprising mutually orthogonal tri-
axial accelerometers, rate gyroscopes and magnetometers, 
was used as the sensing platform [6]. For our experiments we 
exclude the magnetometer since it can be affected by the 
presence of ferromagnetic materials which are expected to be 
present in the natural environment [7]. The dorsal side of the 
forearm proximal to the wrist on the dominant arm was 
chosen as the sensing position since it was likely to produce 
significant sensor responses to the arm movements being 
investigated. The XY plane of the sensor module was in 
contact with the dorsal side of the forearm, AccX (GyroY) 
points toward the hand and AccZ (GyroZ) points away from 
the dorsal aspect. Sensor data is collected at a rate of 50 Hz, 
deemed sufficient for assessing habitual limb movement 
which is on the higher side compared to assessing holistic 
activity as in [8]-[9]. The accelerometer and gyroscope 
ranges are selected at ± 1.5g and ± 500

o
/sec respectively. 

III. DATA PROCESSING 

The key steps involved in our data processing are 
illustrated in Fig. 1 and described in the following sections. 

 

Fig. 1. Methodology used to evaluate data types and learning algorithms. 

 

Acquisition & Pre-processing – Individual sensors 
transmit kinematic data along with a time stamp to a host 
computer using the Bluetooth wireless standard and each 
activity performed by a subject is marked to record the start 
and end of the movement during the trial. The raw sensor 
data is band-pass filtered with a 3rd order Butterworth filter 
having cut-off frequencies of 12 Hz and 0.1 Hz to attenuate 
the high frequency noise components and low frequency 
artefacts introduced in the data due to physical effects such 
as drift [8]. 

Data Mining – The sensor module transmits data in real-
time from a total of 6 individual sensors (3 x accelerometers 
and 3 x gyroscopes). We also generate data signals that 
represent the modulus of the total acceleration (Ma) or total 
rate of rotation (Mg) experienced by the forearm as given by 
Eqn. (1) resulting in two new signals. 
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GyroZ+GyroY+GyroX=M

AccZ+AccY+AccX=M
 (1) 

We further create fused signals, combining data from 
specific accelerometer–gyroscope axes (see Table I), that are 
expected to be the most active based on a consideration of 
the expected trajectory of the subject’s arm in relation to the 
sensor position at the wrist and the orientation of the sensor 
axes when performing the required movements. 

Feature Extraction – Each sensor exhibits signal patterns 
that are distinctive for each of the arm movements, 
characterised by a set of features which are extracted from 
the signals [8]. We consider 10 time-domain features, chosen 
from amongst those most commonly used in human activity 
recognition: 1) standard deviation, 2) root mean square 
(rms), 3) information entropy [10], 4) jerk metric [11], 5) 
peak number, 6) maximum peak amplitude, 7) absolute 
difference - absolute difference between the maximum and 
the minimum value of a signal, 8) index of dispersion, 9) 
kurtosis, 10) skewness. Although the last two features are 
usually associated with defining the shape of a probability 
distribution, they can still be used as classifying features if 
they routinely return values that distinguish one pattern of 
data from another. All the 10 features are extracted from 
each of the six individual sensor data streams (AccX, AccY, 
AccZ, GyroX, GyroY and GyroZ) and from the two modulus 
signals (Ma and Mg), as well as from the three fused data 
signals described in Table I. 

TABLE I.  DEFINITION OF FUSED SIGNALS FOR EACH ARM MOVEMENT. 

Movement Signal combination 

A AccX × GyroY 

B and C AccY × GyroZ 

D AccZ × GyroY 

Feature Selection – We normalize the extracted features 
and then follow the Wrapper approach using the low-
complexity sequential forward selection (sfs) technique [12] 
as opposed to other multi-class feature ranking/selection 
algorithms commonly used in the field of human activity 
recognition, like the ReliefF algorithm [11] and the 
Clamping technique [9], both of which are computationally 



  

intensive by comparison. The methodology used selects 
various feature vector combinations to test for the minimal 
classification error probability, thereby selecting the best 
features for a given classification algorithm. Features are 
selected from: a) data from individual X, Y and Z axes (3×10 
features) for the accelerometer and gyroscope, b) modulus 
signals (1×10 features) from both the accelerometer and 
gyroscope, and c) fused signals (3×10 features). Hence the 
number of optimal features selected depends on the 
classification algorithm employed and the data source 
applied upon, which has been thoroughly explored here. 

Classification – In terms of activity classification, a wide 
variety of learning techniques have been used e.g. Artificial 
Neural Networks (ANN) [1], Decision Trees (DT) [1], [8], 
Support Vector Machines (SVM) [8], Multi-Layer 
Perceptron (MLP) [9] or a combination of these techniques 
[5]. From the perspective of low/moderate computational 
complexity, we restrict our study to three different classifiers 
– LDA, Quadratic Discriminant Analysis (QDA) and 
Support Vector Machine (SVM). We used the toolbox 
LIBSVM which is a library for SVM that is efficient for 
multi-class classification [13]. Overall (average) correct 
classification or accuracy might not always be applicable for 
multi-class classification because of possible dissimilar 
classification rates of different classes affecting the overall 
performance measure. Hence we measure the sensitivity S of 
a given class from the confusion matrix N following the 
scheme proposed in [14]. The number of patterns associated 
with class i is given by fi. The sensitivity (Si) of class i, 
estimates the number of patterns correctly identified to be in 
class i with respect to the total number of patterns in class i, 
where i = 1…c and c being the total number of classes. Nij 

represents the number of times that the patterns are identified 
to be in class j when they really belong to class i. The 
necessary equations are: 
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Given the significant degree of inter-person and temporal 
variability for the same movement within a population, the 
classifier needs to be robust enough to identify the same type 
of movements in the presence of large scale variability. The 
fundamental assumption is that if a pool of data 
encompassing large variability of a particular type of 
movement from a population is used to train a classifier then 
there is a significant chance that the classifier could then 
successfully identify that particular type of movement for a 
single subject, since there is a good probability that the 
characteristic movement of that subject is already embedded 
within the training dataset. 

To test this hypothesis, we perform a ‘leave-one-subject-
out’ validation methodology, where the process is repeated 
iteratively for all 18 subjects, each taking turn as the 
validation test set. Since each subject carries out one type of 
movement 20 times, for each sensor signal we have a data set 
consisting of 1440 samples (18 subjects × 20 trials × 4 
movements). We keep one subject’s data of 80 samples (1 
subject × 20 trials × 4 movements) as the testing set and the 
remaining 1360 samples as the training set in each iteration 

to evaluate each of the three generalized classifiers for each 
of the 6 individual sensor signals, 2 modulus signals and 3 
fused data signals. The three classifiers are assessed by 
comparing their largest sensitivities when successfully 
classifying all movements simultaneously, and the minimum 
number of features required to achieve these sensitivities. 

IV. RESULTS AND ANALYSIS 

The sensitivity for each arm movement recognised using 
the individual sensor data, their moduli and the fused data for 
each of the learning algorithms LDA, QDA and SVM are 
presented in Fig. 2 and summarised in Tables II, III and IV 
respectively. The sensitivity for each movement using the 
individual sensor signals for both the accelerometer and the 
gyroscope is better than that for the fused and the modulus 
signals. The difference in the recognitions rates between 
modulus and individual signals is partly due to the fact that 
bipolar information present in the raw data is retained with 
individual sensor signals, but lost with modulus signals. 
Hence, using the individual sensor signals provides the 
classifier an opportunity to select from a larger number of 
features and hence the recognition rate for the movements is 
reflected in the higher accuracies achieved. For the fused 
signals the sensitivity is generally lower when compared to 
results obtained from individual sensors, but better than that 
of the modulus signals. The sensitivity falls within 60-81% 
for the four movements for the fused signals with LDA and 
lies within 54-86% with QDA and 50-75% with SVM. 

Considering LDA with individual sensor signals, the 
gyroscope recognises the four movements with sensitivities 
in the range of 83-96% while the accelerometer also has a 
similar detection rate with sensitivities in the range of 84-
91% across all movements. However, the gyroscope uses 
only 12 features as compared to the 18 used by the individual 
sensor signals of the accelerometer out of a total of 30 (3×10 
features) and hence is the obvious choice with regard to a 
lower complexity solution. We can achieve a higher 
sensitivity (91%) for Movement B using the accelerometer 
but that involves a cost of computing 6 extra features. 

TABLE II.  SUMMARY OF SENSITIVITIES FOR EACH MOVEMENT AND 

SIGNAL SOURCE FOR LDA CLASSIFIER. 

Signal A (%) B (%) C (%) D (%) Features 

Acc_mod 58 58 51 73 9 

Acc_xyz 85 91 84 90 18 

Gyro_mod 82 78 39 80 7 

Gyro_xyz 96 83 83 88 12 

Fused 81 74 60 75 13 

TABLE III.  SUMMARY OF SENSITIVITIES FOR EACH MOVEMENT AND 

SIGNAL SOURCE FOR QDA CLASSIFIER. 

Signal A (%) B (%) C (%) D (%) Features 

Acc_mod 49 61 54 72 4 

Acc_xyz 89 92 78 91 15 

Gyro_mod 82 71 36 85 7 

Gyro_xyz 94 91 95 89 12 

Fused 86 72 54 74 11 



  

TABLE IV.  SUMMARY OF SENSITIVITIES FOR EACH MOVEMENT AND 

SIGNAL SOURCE FOR SVM CLASSIFIER. 

Signal A (%) B (%) C (%) D (%) Features 

Acc_mod 42 53 55 70 5 

Acc_xyz 89 87 82 90 8 

Gyro_mod 90 74 35 80 5 

Gyro_xyz 97 85 90 89 11 

Fused 75 71 50 69 9 

A further comparison of the gyroscope results using 
individual sensor signals with QDA and SVM illustrates that 
the results for QDA and SVM are marginally higher than 
LDA, though the number of features required to successfully 
classify all four arm movements using individual sensor 
signals is similar for all three algorithms. Hence, in view of 
the trade-off between the recognition rate and the complexity 
involved, since LDA is considered to be computationally less 
complex [15], it appears to be the best choice classifier. A 
low complexity classifier is of particular relevance if 
software is to be translated in to a hardware format (custom 
chip) to produce a more energy efficient solution. 

 
Fig. 2. Sensitivities for each arm movement using the accelerometer and 
gyroscope modulus signal (mod), individual sensor signals (xyz) and fused 
signals applied to the LDA, QDA and SVM classifiers. The number of 
features required for each signal group is shown at the top of each group. 

V. CONCLUSIONS 

In this paper we describe a systematic exploration on the 
appropriate selection of sensor type and classification 
strategy for detecting four fundamental types of human upper 
limb movement that are used in daily life activities, with 
particular attention to developing a robust training model 
accounting for significant inter-subject variability and 
evaluated with a ‘leave-one-subject-out’ validation process. 
We show that a tri-axial rate gyroscope placed on the 
forearm close to the wrist can independently classify all four 
movements with sensitivities in the range 83-96% when a 
small set of features (12) is extracted from the data from 
individual sensor axes in conjunction with LDA as the 
classification algorithm. The resulting ‘best’ activity 
classification system determined by this methodology is 
being implemented in our StrokeBack project to detect, 
classify and enumerate the various occurrences of prescribed 
exercises (i.e. arm movements) during normal daily 
activities, which over time can provide an indication of 
rehabilitation progress. 
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