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The physical mechanisms responsible for the electrical orientation and electrical rotation of metal nanowires
suspended in an electrolyte as a function of frequency of the applied ac electric field are examined theoretically
and experimentally. The alignment of a nanowire in an ac field with a fixed direction is called electro-orientation.
The induced constant rotation of a nanowire in a rotating electric field is called electrorotation. In both situations,
the applied electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte
interface, causing rotation due to the torque on the induced dipole, and also from induced-charge electro-osmotic
flow around the particle. First, we describe the dipole theory that describes electro-orientation and electrorotation
of perfectly polarizable metal rods. Second, based on a slender approximation, an analytical theory that describes
induced-charge electro-orientation and electrorotation of metal nanowires is provided. Finally, experimental
measurements of the electro-orientation and electrorotation of metal nanowires are presented and compared
with theory, providing a comprehensive study of the relative importance between induced-dipole rotation and
induced-charge electro-osmotic rotation.
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I. INTRODUCTION

Nanowires and nanotubes are extensively used in many
areas of research and have attracted considerable attention
for their potential used as sensors, building blocks in novel
nanocircuits, or for the absorption of light in solar cells by
means of a dense array of nanowires [1–3].

Electric fields are an appealing way of manipulating
nanowires in solution because they are easily integrated into
microdevices. However, despite the growing interest in the
use of metal nanowires in nanotechnology the fundamental
electrokinetic properties of metallic particles are poorly
understood. The ac electrokinetic behavior of metal particles in
electrolytes is commonly mistakenly modeled by considering
the metal particle to be an isotropic lossy dielectric charac-
terized by a finite conductivity and permittivity suspended
in an electrolyte [4–7]. When a metal particle suspended in
an electrolyte is subjected to an electric field, an electrical
double layer is induced around the particle and this dominates
both the dielectric properties and the electrokinetic behavior
of the particle at low frequencies. Generally in the literature,
the double-layer polarization of the metal-electrolyte interface
is ignored, which leads to erroneous predictions of particle
behavior. Ignoring the double layer predicts positive polariz-
abilities for all frequencies in the quasielectrostatic regime.
This implies that there should not be any dipole relaxation for
a metal particle and therefore fails to predict electrorotation
of metallic particles as observed experimentally [8–11] or the
frequency dependence of electro-orientation of metal rods as
shown in this paper.

Here ac electrokinetics refers to the interaction of an
ac electric field with a polarizable particle. Electrorotation
(ROT) refers to the asynchronous rotation induced on a
particle by a rotating electric field, while electro-orientation
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(EOr1) refers to the alignment of a nonspherical particle
in an ac field with a fixed direction [12,13]. This paper
describes experimental data and a full theoretical analysis of
the electro-orientation and electrorotation of metal nanowires
suspended in an electrolyte.

The metal nanowires in our experiments have typical
lengths of several microns and diameters of hundreds of
nanometers. These nanowires are particularly interesting for
several reasons. First, the particle dimensions are larger that
the thickness of the electrical double layer (DL) induced at
the metal-electrolyte interface. For the electrolytes used in this
work the DL thickness is in the range of 10 to 30 nm. This
condition allows us to use the thin double layer approximation.
Second, the nanowires show noticeable Brownian motion.
Although they are much denser than water and quickly
sediment, the nanowires do not rest on the bottom of the device,
but exhibit two-dimensional Brownian motion near the bottom
and orientate freely when subjected to an electrical field. This
occurs in low-conductivity electrolytes as used in this work
where double-layer repulsion prevents adhesion to the bottom
wall.

ROT experiments of these nanowires [11] show that their
behavior can be understood using dipole theory with the
assumption that the particles are perfectly polarizable (i.e.,
there are no Faradaic currents at the electrolyte/particle
interface). The applied electric field produces an induced
dipole on the particle. If the field is uniform, as in EOr
and ROT, an electrical torque acts on this induced dipole.
If the field is nonuniform, as in dielectrophoresis (DEP),
then the induced dipole experiences a force which moves the
particle up or down field gradients. For perfectly polarizable
particles there is a characteristic frequency ωRC which is
the reciprocal of the resistor-capacitor (RC) characteristic
time for charging the capacitance of the particle/electrolyte

1We use the abbreviation EOr to make a distinction with EO for
electro-osmosis
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FIG. 1. (Color online) Illustration of the electric field lines for low and high frequencies of the applied ac electric field around a metal rod
suspended in an electrolyte. The electric field is applied in the axial direction.

double layer through the resistance of the bulk electrolyte. For
instance, the characteristic frequency for a sphere of radius
a is ωRC = σ/(CDLa) [9], where σ is the conductivity of
the electrolyte and CDL is the double-layer capacitance per
unit area. For rods this characteristic frequency depends on
the aspect ratio. For angular frequencies ω of the applied
electric field much smaller than ωRC, ions driven by the electric
field accumulate at the interface inducing a double layer. The
electric field lines surround the particle as shown in Fig. 1.
From the perspective of an observer the particle behaves as an
insulator at these frequencies. For frequencies much greater
than ωRC, there is insufficient time to charge the double-layer
capacitance, there is negligible induced charge in the Debye
layer, and the particle behaves as a perfect conductor. In this
case the electric field lines intersect perpendicularly to the
surface of the particle as shown in the figure.

It is also known that at low frequencies the interaction
of the applied electric field with the induced charges in
the double layer can give rise to electro-osmotic fluid flow
around the particle, so-called induced-charge electro-osmosis
(ICEO), and this flow can lead to rotational motion of the
particle [14–16]. In the ROT experiments presented in our
previous paper [11], the amplitude of this effect on the behavior
of the particles could not be quantified. However, it was
observed that the effect of this ICEO flow was much smaller
than the rotation due to the torque on the dipole (see also
below). Importantly, the EOr experiments provide a means of
separating the two mechanisms: at low frequencies ICEO flow
around the nanowire will orientate it with the electric field,
while at high frequencies the nanowire orientation is caused
by the electrical torque on the induced dipole. This is because
at high frequencies (ω � ωRC) there is negligible charge in
the double layer and therefore negligible ICEO flow. The
particle behaves as a conductor and the dipole is maximum,
so the particle is oriented only by the electrical torque. At low
frequencies the particle behaves as an insulator. The induced
dipole of a slender insulating rod is negligible compared to
that of a conducting rod. At low frequencies the electric field
lines deviate very little as shown in Fig. 1, which means that

the induced dipole is very small. Since the double layer is fully
charged, ICEO flow dominates [15,17].

This article is organized as follows. We begin by describing
dipole theory that underpins EOr and ROT of perfectly polar-
izable metal rods. Section II B provides an analytical theory
to describe induced-charge EOr and ROT as a function of
frequency for slender cylindrical particles. This theory builds
on the existing theory for low-frequency limits [14,15,18].
Experimental observations and measurements of the EOr and
ROT of silver nanowires are described in Sec. III and the data
compared with theory in Sec. IV, followed by conclusions.

II. THEORETICAL ANALYSIS

A. Dipole theory

Consider a perfectly polarizable metal cylinder suspended
in an electrolyte and subjected to an ac electric field of angular
frequency ω as shown in Fig. 2. The radius of the cylinder is b

and its length is 2a. The cylinder is polarized by the action of
the applied electric field. Using phasors, the induced electrical
dipole on the cylinder can be written as

p = αzEz + αxEx, (1)

where Ez and Ex are the electric field components parallel
and perpendicular to the cylinder axis, and αz, αx are the
corresponding complex polarizabilities. The time-averaged
electrical torque on the induced dipole is

τ e = 1
2 Re[p × E∗] = uy

1
2 Re[αzEzE

∗
x − αxExE

∗
z ], (2)

where * means complex conjugate. In EOr, the applied electric
field is of the form

E(t) = E0Re[(cos θuz + sin θux)eiωt ], (3)

which leads to a torque on the particle given by

τe = E2
0

2
Re[αz − αx] cos θ sin θ. (4)
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FIG. 2. Cylinder in an electric field.

In ROT, the applied electric field is of the form

E(t) = E0Re[(uz − iux)eiωt ], (5)

which leads to a torque on the particle

τe = −E2
0

2
Im[αz + αx]. (6)

These equations show that the EOr and ROT torques are pro-
portional to the real and imaginary parts of the polarizabilities,
respectively. For slender particles the absolute polarizability
along the long axis is much greater than along the short axis
(|αz| � |αx |) and, therefore, the EOr and ROT torques are
approximately proportional to Re[αz] and Im[αz], respectively
[11].

To obtain the polarizabilty αz we need to solve the potential
of a perfectly polarizable cylinder suspended in an electrolyte
subjected to an applied electric field. The thin double layer
approximation allows us to describe the bulk electrolyte as
an ohmic liquid where the charge conservation equation can
be written as ∇ · j = ∇ · [(σ + iωε)E] = 0, where σ and ε

are, respectively, the electrical conductivity and dielectric
permittivity of the electrolyte. For a homogeneous liquid the
potential phasor satisfies Laplace’s equation ∇2� = 0. For a
perfectly polarizable particle, i.e., there is no charge transfer
across the interface, the electrical current from the bulk charges
the electrical double layer. The latter is modeled as a capacitor
with specific capacitance CDL. This results in the following
boundary condition for � on the particle surface S [19–21]:

σ (n · ∇�)|S = iωCDL(� − V )|S = iωCDL�|S, (7)

where σ is the liquid conductivity, n is a vector normal
to the particle surface, � is the potential just outside the
double layer, and V is the potential in the metal rod, which
is taken as zero without loss of generality. The electric

FIG. 3. Real and imaginary nondimensional polarizability A as
a function of nondimensional frequency 	 for particle aspect ratio
β = 0.04 and β = 0.01.

potential was numerically calculated using the commercial
finite element solver COMSOL. The polarizability as a function
of applied signal frequency is obtained from the second term
of the multipolar expansion of the electric potential [22].
Reference [11] provides a detailed description of how the
polarizability for a cylinder with given aspect ratio β is
calculated.

The previous boundary condition allows us to define a
characteristic frequency. Taking the rod semilength a as
a characteristic length scale, dimensional analysis leads to
ω0 = σ/(aCDL). The typical frequency ωRC, which is the
reciprocal of the RC time for charging the double layer,
should be ωRC = ω0g(β), where g(β) is a nondimensional
function of the aspect ratio β = b/a. As stated previously, for
frequencies ω � ωRC, the double layer is fully charged and the
particle behaves as an insulator. For frequencies ω � ωRC the
particle behaves as a conductor because there is negligible
charge in the double layer. This implies that the real part
of both polarizabilities αz and αx increases from negative to
positive values as the frequency increases. In this situation,
theory predicts that the imaginary part is zero at high and low
frequencies with a positive single maximum at ωRC. Given that
the imaginary part is positive, Eq. (6) predicts that the particle
rotates counterfield in a rotating field; i.e., particle rotation is
in the opposite direction to the electric field. Since nanorods
are slender, |αz| � |αx |, we focus on computing only αz.

Figure 3 shows the real and imaginary parts of nondi-
mensional polarizability A = αz/(4πa3ε) as a function of
nondimensional frequency 	 = ω/ω0 for particles with aspect
ratio β = b/a = 0.04 (nanowires used in this work) and
β = 0.01. It can be seen that the nondimensional polarizability
is a function of this aspect ratio β. We can also see that the real
part of the polarizability at low frequencies is much smaller
than the real part of the polarizability at high frequencies,
meaning that when the particle behaves as an insulator (low
ω) the magnitude of the induced dipole is much smaller than
when the particle behaves as a conductor (high ω).

From the time-average electrical torque, the rotation speed
θ̇ of the nanowires can be determined, provided the rotational
viscous friction coefficient γ∞ is known. Broersma [23,24]
provides the following expression for the viscous coefficient
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of a cylinder suspended in a liquid of viscosity η:

γ∞ = 8πa3η

3f (λ)
, (8)

where λ = ln(2a/b) and

f (λ) = λ − (1.14 + 0.2/λ + 16/λ2 − 63/λ3 + 62/λ4). (9)

This equation holds for a cylinder that rotates around the axis
passing through its center and perpendicular to the cylindrical
axis. Balancing the electrical and viscous torques τe = γ∞θ̇ ,
the steady state rotation speed in ROT is

θ̇ = 3f (λ)E2
0εIm[A(ω)]

4η
(10)

and in EOr

θ̇ = 3f (λ)E2
0εRe[A(ω)] sin θ cos θ

4η
. (11)

The main predictions of dipole theory in terms of EOr and
ROT of metal nanowires are (a) counterfield rotation with a
single ROT peak, (b) strong orientation of the nanowires at high
frequency and weak orientation at low frequency for EOr, and
(c) both ROT and EOr show the same characteristic frequency
ωRC = σ/aCDLg(β). This frequency is of the order of the
reciprocal RC time for charging the double-layer capacitance
of the particle/electrolyte surface through an electrolyte.

B. Slender metal rods subjected to ac electric fields

The main objective of this section is to analyze the rotational
motion of micro- or nanowires due to induced-charge electro-
osmotic (ICEO) flow around the particle [14–16]. The analysis
is based on the assumption of a slender body and thin double
layer approximation. The analysis also provides the rotational
motion due to the torque on the induced dipole. The complete
rotation of the particle can be written as the rotation due to
the ICEO flow around the particle plus the rotation due to the
external torque (see, for instance, Ref. [15]).

Consider the same geometry as shown previously (Fig. 2).
Using superposition, the total electrical potential outside the
cylinder can be written as the sum of the potentials �a and
�b corresponding, respectively, to the potentials generated by
Ea = E0auz and Eb = E0bux .

1. Electric field along axial direction

Using phasors, the applied electric field is Ea = E0ae
iωtuz.

This electric field induces a distribution of charges on the
cylinder. The electric potential outside the cylinder can be
written in cylindrical coordinates (ρ,z) as if it were created by
an effective linear charge density λ(z) along the z axis [25–27]:

�a = −E0az + 1

4πε

∫ a

−a

λ(z′)√
(z − z′)2 + ρ2

dz′. (12)

In order to apply this slender-body approximation, we imagine
that the rods (nanowires) are cylinders with rounded ends. In
our case the linear charge density λ(z) is complex, creating
in-phase and out-of-phase perturbed potentials. The boundary
condition at the surface of the cylinder accounts for the
conservation of charge: the bulk current arriving at the cylinder

surface charges the double-layer capacitance. Outside the
region near the ends z = ±a, we have at ρ = b

iωCDL�a|ρ=b = σ
∂�a

∂ρ

∣∣∣∣
ρ=b

. (13)

For a slender cylinder where λ(z) varies over a length a much
larger than the radius b, the potential at the surface is [27]

�a(z,b) ∼ −E0az + λ(z)

2πε
ln(a/b). (14)

Here the integral has been evaluated asymptotically for b �
a, which produces a logarithmically large contribution. The
latter is recognized as the potential close to a line charge � ∼
−(λ/2πε) ln ρ. We apply again the slender approximation to
the radial derivative of potential at ρ = b

∂�a

∂ρ

∣∣∣∣
b

= − 1

4πε

∫ a

−a

λ(z′)b
((z − z′)2 + b2)3/2

dz′ ∼ − λ(z)

2πεb
.

(15)

This equation is essentially the application of Gauss’s law,
where the radial component of the electric field is related to
the linear charge density. Substituting (14) and (15) into the
boundary condition (13) gives the linear charge density

λ(z) = 2πεE0az
i	b

1 + i	b ln(1/β)
, (16)

where β−1 = a/b and 	b = CDLωb/σ is a nondimensional
frequency related to the previous nondimensional frequency
by 	b = 	β. The problem for λ(z) near the ends z = ±a

remains. A small correction is expected at the ends of order
b/a, but this is negligible compared to 1/ ln(1/β) [27].

The induced dipole is

pz =
∫ a

−a

zλ(z)dz = 4πεa3E0a

3

i	b

1 + i	b ln(1/β)
. (17)

The real and imaginary parts of nondimensional polarizability
A = αz/(4πa3ε) are

Re[A] = 	2
b ln(1/β)

3
[
1 + 	2

b ln2(1/β)
] ,

(18)

Im[A] = 	b

3
[
1 + 	2

b ln2(1/β)
] .

From this, the characteristic frequency (maximum of imag-
inary part) is 	b = 1/ ln(1/β). For 	b → ∞, the cylinder
behaves as a perfect conductor and the polarizability is in
accordance to the known result for a slender conducting
spheroid α = 4πεa3/[3 ln(1/β)] + O(1/ ln2(1/β)) [12]. For
	b → 0, the cylinder behaves as a perfect insulator and the
polarizability goes to 0 in this approximation. In relation to
this, the polarizability of a slender perfect insulating spheroid
is of the order of β2 ln(1/β) smaller than that of a conduct-
ing spheroid [12]. The Appendix compares these functions
obtained using the slender-body approximation with polariz-
abilities computed numerically. Although the convergence is
slow [it should go as 1/ ln(1/β)], the slender approximation
is providing the correct trends and proper order of magnitude
for the polarizability. Therefore, the slender-approximation
estimate for the characteristic frequency, 	b = 1/ ln(1/β), is
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in dimensional form ωRC = σ/bCDL ln(a/b), while the order
of magnitude for the polarizability is |αz| ∼ 4πεa3/3 ln(a/b).

2. Electric field perpendicular to the axis

Assume that the applied electric field is Eb = E0bux .
Neglecting edge effects, the electric potential near the slender
cylinder can be written in polar coordinates (ρ,φ) as

�b = −E0bρ cos φ +
(

i	b − 1

i	b + 1

)
E0bb

2 cos φ

ρ
, (19)

where iωCDL�b = σ (∂�b/∂ρ) at ρ = b has been taken into
account. The term proportional to 1/ρ is the potential due to
the 2D dipole

p� = 2πεE0bb
2 i	b − 1

i	b + 1
, (20)

which multiplied by the cylinder length 2a gives the induced
3D dipole, neglecting edge effects,

px = 4πεE0bab2 i	b − 1

i	b + 1
. (21)

This dipole px is of the order of β2 ln(1/β) smaller than pz.

3. Rotation due to electrical torque

The time-averaged torque on the induced dipole is [see
Eq. (2)]

τ e = 1

2
Re[(pz + px) × (E0a + E0b)∗]

≈ 2πεa3

3
Re

[
i	b

1 + i	b ln(1/β)
E0aE

∗
0b

]
uy, (22)

where we have neglected a contribution of the order of (b/a)2.
The EOr torque is [see Eq. (4)]

τ e = 2πεa3

3

	2
b ln(1/β)

1 + 	2
b ln2(1/β)

E2
0 cos θ sin θ uy. (23)

This torque tends to align the cylindrical particle with the ap-
plied field. The angular velocity, taking the viscous coefficient
for slender body equal to 8πηa3/3 ln(1/β), becomes

θ̇ = εE2
0

4η

	2
b ln2(1/β)

1 + 	2
b ln2(1/β)

cos θ sin θ. (24)

For 	b → 0 the angular velocity is zero in this approximation
[the actual value is of order (b/a)2 from a contribution of the
dipole along x]. For 	b → ∞, the angular velocity is θ̇ =
(ε/4η)E2

0 cos θ sin θ , in accordance with the known solution
for a slender conducting spheroid θ̇ = (ε/4η)E2

0 cos θ sin θ +
O(1/ ln(1/β)) [12] [notice that there is a 1/2 factor due to the
time average of cos2(ωt)].

The ROT torque is [see Eq. (6)]

τ e = −2πεa3

3

	b

1 + 	2
b ln2(1/β)

E2
0 uy (25)

and the angular velocity is

θ̇ = −εE2
0

4η

	b ln(1/β)

1 + 	2
b ln2(1/β)

. (26)

The minus sign indicates that the particle rotates in the opposite
direction to the rotating applied field (counterfield rotation),
with a maximum rotation speed equal to |θ̇ |max = εE2

0/8η at
	b = 1/ ln(1/β).

4. Rotation due to induced-charge electro-osmotic flow

Having determined the electrical potential, the time-
averaged slip velocity on the surface of the particle can be
calculated, which is [28]

vs = −(ε/2η)Re[�s∇s�
∗], (27)

where �s is the potential on the surface of the particle and ∇s

stands for surface gradient. Taking into account that the total
potential is � = �a + �b:

�sa = −E0az

1 + i	b ln(1/β)
, (28)

∇s�a = −E0a

1 + i	b ln(1/β)
uz, (29)

�sb = −2E0bb cos φ

1 + i	b

, (30)

∇s�b = 2E0b sin φ

1 + i	b

uφ. (31)

Because of symmetry, the terms �sa∇s�
∗
a and �sb∇s�

∗
b

do not generate rotation and therefore we only consider the
crossed terms �sa∇s�

∗
b and �sb∇s�

∗
a . Following references

[15,29] the contribution to the angular velocity of a slender
particle due to slip velocity on the surface is

θ̇ = − 3

2a3

∫ a

−a

zuz × ṽsdz, (32)

where

ṽs = 1

2π

∫ 2π

0
vs(z,φ)dφ. (33)

In our case the term �sb∇s�
∗
a is parallel to uz and does

not produce rotation. The term of the slip velocity that does
produce rotation is

vrot
s = − ε

2η
Re

[ −E0az

1 + i	b ln(1/β)

2E∗
0b sin φ

1 − i	b

]
uφ

≈ ε

2η
Re

[
2zE0aE

∗
0b sin φ

1 + i	b ln(1/β)

]
uφ, (34)

where the last approximation comes from the fact that the
characteristic frequency is 	b ∼ 1/ ln(1/β) � 1. Substituting
into the expression (32) we arrive at

θ̇ = ε

2η
Re

[
E0aE

∗
0b

1 + i	b ln(1/β)

]
uy. (35)

For electro-orientation we have

θ̇ = ε

2η

E2
0 cos θ sin θ

1 + 	2
b ln2(1/β)

(36)
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FIG. 4. Scheme of charges induced in double layer by axial
electric field Ez and electrokinetic flow generated due to the action
of electric field perpendicular component Ex on these charges.

and the particle tends to align with the field. For electrorotation
we have

θ̇ = εE2
0

2η

	b ln(1/β)

1 + 	2
b ln2(1/β)

(37)

and the particle rotates in the same direction of rotation as
the electric field (co-field rotation). For both EOr and ROT,
the maximum value of θ̇ generated by ICEO is twice the
maximum value obtained from the torque on the induced
dipole [expressions (24) and (26)]. In the limit 	b → 0
Eq. (36) is identical to that given in Refs. [15,18] θ̇ =
εE2

0 cos θ sin θ/2η, taking into account the time average of
cos2(ωt) = 1/2.

Figure 4 provides a qualitative explanation in terms of
induced charges of the induced rotation. The arrangement of
charges and flows is only for the term that produces rotation
�sa∇s�

∗
b. Because of symmetry, the terms �sa∇s�

∗
a and

�sb∇s�
∗
b generate flow around the particle but not rotation.

Figure 4 shows the induced charge in the diffuse layer due to
the axial component of the electric field and the electrokinetic
flow generated by the action of the electric field perpendicular
component on this charge. We can imagine that the upper part
of the rod is like a particle in electrophoretic motion to the
right while the rod lower part is like a particle undergoing
electrophoretic motion to the left. In EOr the two field
components are in phase and the motion aligns the particle
with the field. In ROT the field components are out of phase.
The charges induced by the axial electric field take some
time to develop (of the order of the RC time for charging
the DL capacitance through the bulk resistor) and then the
out-of-phase perpendicular field acts on these charges. The
resulting particle rotation is co-field. The term �sa∇s�

∗
a is

responsible for the quadrupolar flow pattern shown in Fig. 5;
see Ref. [17]. This figure shows the case when the field is
parallel with the major axis of the rod. The figure shows a

FIG. 5. (Color online) Scheme of charges induced in the diffuse
layer by the axial electric field Ez and the electrokinetic flow
generated due to the action of this field on this induced charge.

scheme of the induced charge in the diffuse layer due to the
axial electric field and the electrokinetic flow generated by the
action of this field on this charge. This flow pattern extends at
distances of the order of the length of the rod. The flow pattern
generated by �sb∇s�

∗
b extends to much smaller dimensions,

of the order of the rod diameter. By symmetry, the flow pattern
shown in Fig. 5 does not generate any particle rotation. If
the field is not parallel to the rod axis, the flow pattern is a
combination of those shown in Figs. 4 and 5.

The slip velocity predicted by the standard model is higher
than that measured experimentally, sometimes by an order of
magnitude [30]. Several reasons for this have been proposed
including dielectric coating [31–33], counter-ion crowding
[34], ion adsorption [32,35], and/or surface roughness [36].
The induced voltage drop across the double layer for our
nanorods is of the order of 50 mV, so that ion crowding can
be disregarded. However, the other effects could play a role.
To account for these effects, a phenomenological expression
for the angular velocity induced on the particles can be written
as θ̇ = θ̇dipole + �θ̇ICEO, where � is a factor (smaller than 1)
which takes into account the fact that, experimentally, the slip
velocity is smaller than that predicted by the standard model.

III. EXPERIMENTS

A. Experimental details

The silver nanowires (Nanostructured & Amorphous Ma-
terials, Inc.) were supplied as a paste consisting of 70%
wt. silver and 30% wt. ethanol. During the synthesis of
the silver nanowires, PVP (polyvinylpyrrolidone) is added
and although the particles are washed several times, small
amounts might remain on the silver surface. Figure 6 shows
an SEM image of the nanowires, together with a scheme
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FIG. 6. (a) SEM image of silver nanowires. (b) Scheme of
experimental setup. (c) Configuration for electrorotation experiments;
V0 is the applied voltage. (d) Configuration for electro-orientation
experiments.

of the experimental setup and electrode. Note the different
connections and applied signals for EOr and ROT experiments.
Analysis of the dimensions of the silver nanowires shows that
they have a range of lengths and widths. Experimental data is
collected from nanowires with lengths 2a ranging between 6
and 7 μm. The diameter 2b of the wires varies between 160 nm
and 320 nm. A statistical study of the aspect ratio (β = b/a)
using 21 SEM images gives the aspect ratio β = 0.04 ± 0.01,
where the uncertainty is given by the standard deviation in the
distribution.

The nanowires were washed several times in an aqueous
solution of KCl with a specific concentration and then
suspended in KCl electrolyte with the same concentration.
Experiments were performed using three different values of
electrolyte conductivity: 1.5, 5, and 15 mS/m. A sample
of the nanowires was placed in the center of an electrode
array made from four circularly shaped planar microelectrodes
[see Figs. 6(c) and 6(d)] and the appropriate ac signal for
EOr or ROT applied. The microelectrodes were made using
photolithography and consisted of a 300 nm thick gold layer
on a glass substrate. The diagonal gap between opposite
electrodes was 0.5 mm. The motion of the nanowires was
observed using an inverted microscope. For ROT experiments
the four electrodes were energized with a four-phase ac signal.
See Fig. 6(c) for the configuration that generates a rotating
field. During the application of the rotating field, the nanowires
rotated counterfield; their motion was recorded with video. In
EOr experiments, an ac electric field along a fixed axis was
applied and the nanowires were observed to orientate along
this direction. When steady state was reached, the direction
of the applied field was changed by 90◦ instantaneously. The
transient orientation of the nanowires was video recorded and
the procedure of changing the electric field by 90◦ was repeated

several times. The configuration for EOr is shown in Fig. 6(d).
See Supplemental Material for videos of ROT and EOr [37].

The nanowire angle was determined as a function of
time using a custom-made program in MATLAB. In ROT
experiments, particles rotate at constant angular speed θ ∝ t .
In EOr experiments, and according to theory [Eqs. (11) and
(36)], the angular velocity is given by θ̇ = � sin(2θ ), with θ

the angle between the particle axis and the applied electric
field and � is a constant. The integration of this equation gives

tan θ = tan θ0e
−2�t . (38)

The experimental value of � is obtained by fitting tan θ (t) to
an exponential decay.

B. Experimental results

In ROT experiments, and for any given voltage and
frequency, the particles rotate counterfield at constant angular
speed. In our previous publication [11], the angular speed
of the wires was measured for different particle lengths and
electrolyte conductivity, as a function of the applied voltage,
up to 10 Vpp. Within this voltage range, the rotational velocity
varied with the square of the voltage, as predicted by the linear
model of the interaction of an electric field with the charge
induced by the electric field.

Figure 7 shows ROT and EOr spectra for silver nanowires
with length in the range 6 to 7 μm, and for three electrolyte
conductivities. This size range was chosen so that several
nanowires could be measured at the same time in the field of

FIG. 7. (Color online) θ̇ (top) and � (bottom) as functions of
applied signal frequency for silver nanowires of length in the range 6
to 7 μm and for three different electrolyte conductivities. Voltage
amplitude is 10 Vpp. For clarity, error bars are only shown for
electrolyte conductivity of 1.5 mS/m.
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FIG. 8. Consecutive series of images showing the observed
particle-particle interaction. (a) At low frequency (3.2 kHz) the
particles attract each other end to end, go side by side, and then
are pushed apart from their centers. This is in accordance with the
ICEO flow depicted in Fig. 5. (b) At high frequency (1.6 MHz)
the particles are attracted end to end and form “pearl chains.” The
electrolyte conductivity was 1.5 mS/m and the applied voltage 8 Vpp.

view (300 × 225 μm). Each data point represents the average
of at least five different nanowires and the error bars indicate
the range the dispersion in these measurements. These data
are collected with a constant voltage amplitude 10 Vpp. The
angular velocity θ̇ as a function of signal frequency f forms
a bell shape with a single peak and the peak frequency of
nanowire rotation increases with electrolyte conductivity.

In EOr experiments, the particle long axis aligns with
the direction of the electric field. The typical time to reach
alignment is given by the reciprocal of �; see Eq. (38). �

changes with the applied signal frequency f and shows two
plateaus (within experimental error), one at low frequencies
and another at high frequencies. The plateau at low frequencies
corresponds to ICEO induced orientation while the one at high
frequencies corresponds to orientation of the particle from the
induced-dipole torque. Experimentally, it was observed that
the value of � at high frequencies is independent of electrolyte
conductivity (within experimental error). However, the value
of � at low frequencies varies with electrolyte conductivity. For
example the value at the the highest conductivity is consistently
smaller than for the other two electrolyte conductivities,
indicating less orientation at this conductivity over this lower
frequency range.

EOr experiments showed interesting particle-particle inter-
actions whenever two nanowires were close. Figure 8(a) shows
two nanowires interacting at low frequencies. The nanowires
first attract each other end to end, but then move along side
by side and are finally repelled from each other. Figure 8(b)
shows several nanowires at high frequencies. The wires attract
each other end to end and form “pearl chains.” This behavior of
metal particles at low frequencies was first observed by Rose
et al. [17] as ICEO flow causing particle-particle interaction.
It is driven by the ICEO quadrupolar flow pattern shown
in Fig. 5, where liquid is driven into the two ends of the
particle and pushed away from the center. The observation
of pearl-chaining behavior at high frequencies is typical of
dipole-dipole interactions [12,13].

IV. DISCUSSION

In a previous work we compared our ROT measurements
of perfectly polarizable metal cylinders with dipole theory
[11] and good agreement between theory and experiment was
found. Therefore, we start by comparing our ROT and EOr

FIG. 9. (Color online) ROT (top) and EOr (bottom) spectra as
function of nondimensional frequency.

measurements with dipole theory as summarized in Fig. 9.
Figure 9 (top) shows experimental and theoretical ROT speed
as a function of nondimensional frequency 	 = ωaCDL/σ

(i.e., ROT spectra). The theoretical curve is obtained for rods
with lengths 2a = 6.5 μm and aspect ratio β = 0.04. Also for
the theoretical curve, E2 was computed for the experimental
electrode array using COMSOL from the average of the torque
within the field of view giving E2 = 112 × 106 V2/m2. In
order to nondimensionalize the experimental frequency, the
ROT data were fitted to a Lorentzian to obtain the best fit
values for the frequency of the maximum ωRC, and from here
the specific capacitance CDL for each electrolyte conductivity
was derived.

Table I shows these capacitance values. Also shown are the
theoretical values for the diffuse layer capacitance calculated
from the Debye-Hückel theory, determined from CDH = ε/λD

where λD is the Debye length of the electrolyte. Experimental
capacitance values are quite close to the theoretical Debye-
Hückel values, supporting our hypothesis that the particle

TABLE I. Values for the electrical double layer capacitance
obtained from experiments (CDL), Debye-Hückel theoretical values
for the Debye layer (CDH), and best-fit values for Debye and compact
layers in series (CS+DH).

Conductivity
(mS/m) CDL (F m−2) CDH (F m−2) CS+DH (F m−2)

1.5 1.9 × 10−2 2.3 × 10−2 1.9 × 10−2

5 3.5 × 10−2 4.2 × 10−2 3.0 × 10−2

15 4.3 × 10−2 7.3 × 10−2 4.4 × 10−2
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polarization is due to charging of the electrical double layer.
Adding a Stern or compact layer in series with the Debye-
Hückel capacitances reduces the error further giving an overall
difference of less than 15%, with CS = 0.11 F m−2. This
calculation indicates that the PVP layer which may exist on
the particle surface is probably insignificant in terms of its
contribution to the surface impedance.

Figure 9 (bottom) shows experimental and theoretical EOr
exponential parameter � as a function of nondimensional
frequency 	 = ωaCDL/σ (i.e., EOr spectra). The specific
capacitances obtained from the ROT experiments were used to
nondimensionalize the frequency. To calculate the theoretical
curve for EOr, the electric field was determined from the
average value of the torque on particles within the field of view
equal to E2 = 121 × 106 V2/m2. Inspection of the data shows
that dipole theory can qualitatively explain the frequency
dependence of the EOr. However, it is apparent that dipole
theory cannot explain the nonzero value of the orientation
at low frequencies because dipole theory predicts that the
orientation should be negligible for slender cylinders. This
apparent difference can be ascribed to orientation due to ICEO
flow around the particle as shown schematically in Fig. 4.
In support of this hypothesis, Rose et al. [17] showed that
particle-particle interaction followed the behavior expected
from the electrokinetic flow pattern shown in Fig. 5 and
from the experimental images in Fig. 8(a). In addition, as the
electrolyte ionic strength increases the ICEO flow will reduce,
as seen in the data, and as reported for other experimental
systems [30,38,39]. At high frequencies the ICEO flow is
negligible and particle orientation is solely due to the dipole
torque.

As shown in Fig. 9 the experimental values of � at high
frequencies are lower than predicted (the mean experimental
value at high frequencies is 0.78 times the theoretical value).
The discrepancy can be explained as an enhancement of the
viscous friction near a wall. In ROT, the experimental values
of the angular rotation speed are also lower than the theoretical
values (mean experimental peak is 0.70 times the theoretical).
These two factors (0.78 and 0.70) are very similar reinforcing
the hypothesis that the ROT values are mainly due to the dipole
torque as outlined previously [11]. Note that EOr values are
only due to dipole torque at high frequencies. In addition, the
difference in the two values (0.78 in EOr to 0.70 in ROT) is
consistent with the existence of a small amount of co-field
rotation in ROT experiments due to ICEO, which would lead
to a small decrease in the total angular rotation.

To estimate the viscous friction near a wall we use the
expression for the viscous friction per unit length of an infinite
cylinder moving parallel to a wall [40],

F = − 4πη

cosh−1(h/b)
U, (39)

where F is the force per unit length, U is the velocity of the
cylinder, and h is the distance from the cylinder axis to the
wall. For a slender finite cylinder and neglecting end effects,
the approximate expression of the rotational friction coefficient
is obtained from U = θ̇ z, where z is the coordinate along the
cylinder axis measured from its center. The rotational viscous

coefficient is then [41]

γ = 1

θ̇

∫ a

−a

z(−F ) dz = 8πηa3

3 cosh−1(h/b)
= γ∞

f (λ)

cosh−1(h/b)
,

(40)

where γ∞ is the coefficient in the bulk and f (λ) is the
Broersma function defined previously [Eq. (9)]. The typical
height h of the nanorods above the electrode surface can be
determined by considering that they are Brownian particles.
The typical fluctuation of gravitational energy �ρτg�h is
equal to the thermal energy kBT at room temperature, so
that �h = (kBT )/(�ρτg�h), where �ρ is the difference
in densities between silver and water, τ is the volume of a
nanorod, and �h is the increment of h. This gives an estimate
of �h = 0.12 μm for the nanorods. Inserting this value into
the expression gives γ ∼ 1.9γ∞. According to this estimate
angular speed values near the wall would be around 0.5 times
smaller than the values in the bulk. The observed reduction in
the EOr of 0.78 would be obtained if �h ≈ 0.3 μm, which is
consistent with the above calculations (on the same order as
the estimate of �h = 0.12 μm).

A further correction comes from the change in the electrical
torque near a wall. For a sphere rotating in contact with an
insulating wall we have previously calculated a reduction of
the electrical torque of around 6.5% [9,10].

The slender theory for EOr and ROT outlined in this
paper shows that the expected particle rotation due to ICEO
flow and particle rotation due to induced-dipole torque (IDT)
have the same characteristic frequency. While ICEO driven
rotation decreases with frequency, IDT rotation increases, so
that the two spectra follow opposite trends. Taking the limiting
experimental values for low and high frequencies, it is possible
to construct a phenomenological curve for EOr as a function
of frequency from

� = �0
	2

m

	2
m + 	2

+ �∞
	2

	2
m + 	2

, (41)

where �0 and �∞ are the � values for zero and infinite
frequency, respectively. Figure 10 shows and example of
this phenomenological curve for one electrolyte (conductivity

FIG. 10. ICEO and dipole contributions to the observed � as a
function of frequency in EOr experiments. The curve is for electrolyte
with conductivity 5 mS/m.
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σ = 5 mS/m) together with the corresponding experimental
values. The figure shows that the experimental values can
be fitted to a curve given by Eq. (41) with a characteristic
frequency obtained from the ROT experiments.

Electro-orientation of metal nanowires shows some similar-
ities with the motion of polarizable metal particles in diverging
ac fields. In general, the real part of the induced dipole governs
the frequency dependence of the dielectrophoretic (DEP) force
on a particle. In addition, particle motion can be driven
by electro-osmotic flow around the particle. Induced-charge
electrophoresis (ICEP) refers to the particle motion driven by
ICEO flow around the particle [21]. A theory describing the
frequency-dependent motion of a polarizable metal sphere in
a diverging ac field as a combination of ICEP and DEP was
presented by Miloh [42]. The ICEP is frequency dependent
with approximately the same relaxation frequency as the real
part of the dipole, disappearing at frequencies much higher
than the relaxation of the induced dipole [42]. ICEP for a metal
sphere has the same qualitative dependence on frequency as the
ICEO EOr for metal rods as shown schematically in Fig. 10.
For spheres with thin double layers and at low frequencies
the prediction [42] is that the ICEP and DEP are of similar
magnitude but in opposite directions. Theory shows that DEP
is negative at low frequencies and positive at high frequencies,
while ICEP is maximum at zero frequency and decreases
with frequency. The characteristic frequency is of the order
of the reciprocal of the RC time for charging the double-layer
capacitance of the sphere. For zero frequency, ICEP and DEP
cancel and there is no particle movement, as discussed also in
Refs. [14,43]. However, experimentally this behavior has not
been observed. In a previous publication, we observed negative
DEP at low frequencies for metal spheres with rough surfaces
[9]. These results imply that ICEP is lower than predicted by
the model that assumes an ideal double layer. As demonstrated
in this paper similar behavior is seen for orientation of rods,
where the ICEO-EOr is small but not zero so that orientation
is observed at low frequencies. Figures 9 and 10 show the
existence of ICEO flow (for metal rods) but this flow is also
lower than predicted by the standard model. The predicted
theoretical ratio between ICEO and IDT angular velocities
can be obtained from Eqs. (24) and (36), and is a factor of 2.
Therefore, from the measured values of � at low frequencies
as seen in Figs. 9 and 10, the ICEO flow is at least a factor of
10 smaller than predicted. On the other hand, the magnitude
and frequency of the electrical torque on the induced dipole is
close to that predicted by dipole theory presented in this paper.

V. CONCLUSIONS

A comprehensive theoretical and experimental study of
the ac electrokinetic properties of metallic rods in the thin
double layer approximation have been presented. The angular
rotation of nanorods induced by ac electric fields is gov-
erned by both induced-dipole torque (IDT) on the particle
and induced-charge electro-osmotic (ICEO) flow around the
particle.

In ROT experiments, both mechanisms occur in the same
range of frequencies, of the order of the characteristic fre-
quency ωRC for charging the DL capacitor through a resistive
medium, the electrolyte. The IDT generates a counterfield

rotation while the ICEO flow generates a co-field rotation. Both
mechanisms result from the interaction of the out-of-phase
induced charge with the applied electric field, which means
that they both mirror the imaginary part of the particle
polarizability. Experiments show counterfield rotation close
to the dipole theory prediction indicating that the ICEO flow
is much smaller than expected from standard ICEO theory.
This is common in ICEO experiments and several effects have
been proposed that tend to diminish the ICEO flow, such as
dielectric coating, surface roughness, ion adsorption, and/or
ion crowding.

In EOr experiments, the two mechanisms occur in different
ranges of frequencies with an overlap region around ωRC. Both
mechanisms tend to align the rod with the direction of the
applied electric field. ICEO EOr is dominant for frequencies
ω � ωRC, while IDT EOr is dominant for ω � ωRC. Both
mechanisms result from the interaction of the in-phase induced
charge with the applied electric field, which means that
they both mirror the real part of the particle polarizability.
The characteristic angular speed � is much greater for IDT
EOr than for ICEO EOr indicating again that ICEO flow is
much smaller than expected from standard theory. From the
measured value of � at low frequencies, the ICEO flow is
at least a factor of 10 smaller than predicted. On the other
hand, the magnitude and frequency of the electrical torque on
the induced dipole is close to that predicted by dipole theory
presented in this paper.

EOr of metal rods presents some similarities with DEP of
metal particles. Both phenomena result from the interaction
of the in-phase induced charge with the applied electric
field. This interaction results in two distinct mechanisms
for generating particle motion: induced-dipole interaction
with field (maximum at high frequency) and induced-charge
electro-osmotic flow around the particle (maximum at low
frequency).

The present work provides a zero-order framework to pre-
dict the behavior of metallic particles suspended in electrolytes
in ac fields. Given the increasing level of interest in the use
of ac electrokinetic techniques to manipulate and assemble

FIG. 11. Nondimensional polarizability A′ = 3A ln(1/β) as a
function of nondimensional frequency 	′ = 	β ln(1/β) from the
numerical solutions and from the analytical slender-body approxi-
mation. The numerical solutions approach the analytical solution as
β → 0.
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nanoparticles and nanowires a full theoretical understanding
will enable further development of this technology for sen-
sors and nanoelectronics. There are many publications that
explore the ac electrokinetics of metal nanoparticles where the
behavior of the particles is modeled using Maxwell-Wagner
polarization, ignoring the double layer. This leads to erroneous
predictions and, in particular, cannot explain the experimental
results presented here and in our previous publications.
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APPENDIX

Figure 11 shows a comparison of the results of the complex
polarizability αz of cylinders obtained using numerical com-

putations and the slender-body analytical solution. The figure
shows the real and imaginary parts of a nondimensional polar-
izability A′ = 3αz ln(1/β)/4πεa3 = 3A ln(1/β) as a function
of a nondimensional frequency 	′ = ωCDLb ln(1/β)/σ =
	β ln(1/β). With these definitions, the slender-body analytical
solution for A′ as a function of 	′ is universal (it does
not depend on aspect ratio β). The figure shows that the
numerical solutions approach the analytical solution as β goes
to zero, although slowly as corresponds to a small parameter
that decreases as 1/ ln(1/β). The analytical results provide
the following scaling for the polarizability and frequency,
respectively:

αz = 4πa3ε

3 ln(a/b)
A′, ω = σ

CDLb ln(a/b)
	′, (A1)

where A′ and 	′ are of order unity as β = b/a changes.
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[28] A. González, A. Ramos, N. G. Green, A. Castellanos, and

H. Morgan, Phys. Rev. E 61, 4019 (2000).
[29] Y. Solomentsev and J. L. Anderson, J. Fluid Mech. 279, 197

(1994).
[30] M. Z. Bazant and T. M. Squires, Curr. Opin. Colloid Interface

Sci. 15, 203 (2010).
[31] N. G. Green, A. Ramos, A. González, H. Morgan, and
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