
ABSTRACT: Ground-borne vibration from railways is generated at the wheel-rail interface due to the passage of individual 

wheels along tracks and due to irregularities of wheels and tracks. In this paper, two approaches are used to calculate the 

vibration Power Spectral Density (PSD) in the free field from a train moving on a surface railway track at a constant velocity. 

They both use the PSD of the track unevenness along with Transfer Functions (TFs) of the track and its supporting ground that 

are calculated using a well-developed 2.5D semi-analytical model which accounts for a ballasted track on the surface of a 

homogeneous layered half-space. The first approach is based on modelling a train at fixed position on the track which is excited 

by ‘moving roughness’; the roughness is pulled through between the wheels and track with the velocity of train, assuming that 

each wheel is excited by the same roughness apart from a time lag. In the second approach the motion of the train is included 

which means that the response at a given frequency is a combination of responses induced by different excitation frequencies 

due to the Doppler effect in the ground. For both approaches mathematical expressions are used to predict the average dynamic 

response directly. The paper compares the dynamic response calculated by each approach for a range of train/ground parameters 

and highlights the computational effort needed by each approach. It also shows the effect of approximations adopted in the first 

approach on the accuracy of predictions. The predictions calculated by the two approaches are verified using a coupled 2.5D 

finite element/boundary element model.  
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1 INTRODUCTION 

Ground-borne vibration from railways is a problem that 

affects residents and sensitive equipment in buildings near 

railway lines. Ground-borne vibration from railways is 

generated at the wheel-rail interface due to the passage of 

individual wheels along tracks (quasi-static loading) and due 

to irregularities of wheels and tracks (dynamic loading). 

Vibration propagates to nearby buildings where it causes 

annoyance to people and malfunctioning of sensitive 

equipment. Inhabitants of buildings perceive vibration either 

directly, due to motion of floors and walls, or indirectly as re-

radiated noise. 

Modelling ground-borne vibration from railways is essential 

for understanding the physics of its generation and 

propagation. A good understanding of the problem is key to 

identifying ways to tackle unacceptable levels of vibration 

from existing as well as future railway lines. A large number 

of numerical models for predicting vibration from surface and 

underground railways have been presented in the literature. 

By coupling sub-models for the train, the track and the soil, 

the resulting prediction models range from simple multi-

degree-of-freedom models to two-dimensional and more 

comprehensive three-dimensional models. The latter have 

received more attention due to their closer representation of 

the real problem and therefore their better potential accuracy 

compared with other models. In these models, the geometry of 

the track and the soil is often assumed to be invariant in the 

longitudinal direction of the track. This allows the use of 

efficient “two-and-a-half dimensional” (2.5D) solution 

procedures, based on a Fourier transform with respect to the 

coordinate along the track. Alternative methods based on the 

finite element method require appropriate procedures to 

account for the unbounded domain and to avoid spurious 

reflections at boundaries. A comprehensive overview of the 

state of the art on railway induced ground vibration models 

can be found in  [1]. 

A distinction is generally made between the quasi-static and 

dynamic excitation. The quasi-static excitation is related to the 

static (invariant with time) component of the moving axle 

loads whereas the dynamic excitation is determined by 

dynamic train-track interaction due to several excitation 

mechanisms, such as the wheel and track unevenness and the 

spatial variation of the support stiffness. The quasi-static 

contribution to the response generally remains important, 

however, only in the immediate vicinity of the track. It has 

been shown (e.g.  [2]  [3]) that the relative importance of quasi-

static and dynamic excitation depends on the train speed, the 

ratio of the static and dynamic axle loads, and the dynamic 

characteristics of the track and the soil. 

The dynamic wheel-rail forces are generated from the 

irregular vertical profiles of the wheel and rail running 

surfaces. The rail irregularities might include dipped joints 

and corrugations as well as general undulation in the ‘track 

top’. The wheel irregularities can be wheel flats, surface 

irregularities and wheel eccentricity. The variations in the 

vertical profiles of either surface (wheel and rail) introduce a 

relative displacement input to the system. The process is 

assumed to be linear, so that for a given wavelength   a 

displacement input is generated at the passing frequency 

/vf   where v  denotes the train speed. In the present 
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work, the wheels of the trains are assumed to be perfectly 

smooth, so that all irregularities are contained in the rail 

surface. This assumption ignores the effect of wheel 

irregularities that are bound to exist on real trains and that is 

likely to weaken the degree of coherence between axle inputs, 

especially at shorter wavelengths. Nonetheless, the smooth-

wheel assumption is a useful starting point for a more realistic 

input excitation in comparing the effectiveness of various 

ground-borne vibration prediction models. 

Vibration from railways can be treated as a random process. 

When the vibration is calculated at a point that is moving with 

the speed of the train (moving frame) the vibration can be 

considered as stationary process. One of the common outputs 

normally considered from the models is the PSD of vibration 

at measurement points. The PSD helps in identifying the main 

frequency components contributing to the total vibration. It 

also helps in relating those frequencies to the excitation 

mechanisms and the dynamics of the track and transmitting 

ground. 

There are two common approaches reported in the literature 

for calculating the PSD from a train moving at a constant 

velocity. They both use the PSD of the track unevenness along 

with Transfer Functions (TFs) of the track and the supporting 

ground. The first approach is based on modelling a train at 

fixed positions on the track which are excited by a “moving 

roughness”; the roughness is pulled through between the 

wheels and track with the velocity of train, assuming that each 

wheel is excited by the same roughness apart from a time lag. 

In the second approach, vibration is calculated at a fixed point 

for the moving train which means that the response at a given 

frequency is a combination of responses induced by different 

excitation frequencies due to the Doppler effect in the ground. 

Mathematical expressions are used to give directly the 

average response during the pass-by.  

In this paper, these two approaches have been used to 

calculate the vibration PSD in the free field from a train 

moving on a surface railway track. The TFs of the track and 

its supporting ground are calculated using a 2.5D semi-

analytical model developed by Sheng et al. in  [4]. The model 

accounts for a ballasted track on the surface of a 

homogeneous layered half-space. The paper compares results 

calculated by each approach for a range of practical train 

parameters and velocities and highlights the computational 

effort needed by each approach. This is used to show the 

effect of approximations made on the accuracy of  the two 

approaches. The predictions calculated by the two approaches 

are verified using a coupled 2.5D finite element/boundary 

element model developed in  [6]. 

2 THE NUMERICAL PREDICTION MODEL 

In this section, the receptances of a vehicle and a track-ground 

system are presented. For ground-borne vibrations where the 

frequency range of interest is usually between 0 and 100 Hz, 

the vehicle is modelled as a multiple-body system and a 

Hertzian contact spring is introduced between each wheelset 

and the rail. The car body of the vehicle has six degrees of 

freedom (DOFs), accounting for three displacements of the 

mass centre and three rotations around three orthogonal axes. 

As only the vertical dynamics of the vehicle are considered 

(i.e. in the zx   plane where z  is vertically downwards and 

x  is along the rail; Figure 1), then each body has only two 

degrees of freedom, i.e., the vertical displacement of its mass 

centre and its pitch motion (see Figure 2a). In practice, the 

suspensions in the vehicle may have non-linear behaviour. 

However, to enable analysis in the frequency domain, here, 

each non-linear suspension is linearized. As a result, the 

differential equation of motion for the vehicle is linear with 

constant coefficients and is specified by a mass matrix 
V

M  

and a stiffness matrix 
V

K . Damping is introduced and 

included in the stiffness matrix, thus the elements of the 

stiffness matrix are complex and  frequency dependent. The 

mass and stiffness matrices of several typical vehicles are 

presented in  [2]. 

The vertical forces between the wheelsets and the rails are 

denoted, from the first wheelset of the first vehicle to the last 

wheelset of the last vehicle, by  T

1
)()()( tPtPt

M
P , where 

M  is the number of the forces. As only vertical dynamics are 

included, the forces are not separated into their components 

on the two rails. The longitudinal co-ordinates of these forces 

are denoted by 
M

 ,,,
11
 . For each wheel–rail force, 

there are two components: one is a moving ‘quasi-static’ load, 

i.e., the moving axle load, and the other is a moving dynamic 

load. The responses to the axle loads are independent of 

vehicle dynamics. Therefore only the dynamic wheel-rail 

forces are considered here; in the following, P  refers to these 

dynamic forces. The vertical displacement of the rail is 

denoted by ),( txwR . For positions on the ground surface, the 

vertical (z-direction) displacement is denoted by ),,( tyxwG . 

2.1 The train-track interaction problem 

The differential equation of motion of a single vehicle is given 

by 

 )()()( ttt VVVVV Pww BKM   (1) 

where )(t
V

w  denote the displacement vector, B  is a matrix 

of unit and zero elements  [2] and )(t
V

P is the wheel-rail force 

vector for this vehicle, being a subvector of )(tP . The minus 

sign before )(t
V

P  indicates that the positive wheel-rail forces 

correspond to compression of the contact spring. 

By setting ti

VV et )(
~

)( PP   and ti

VV et )(~)( ww   where 

  denotes the angular frequency Eq. (1) yields 
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where   BMK
12 

 VVV -Σ  is an MM matrix of 

receptances (displacements due to a unit force) of the vehicle 

DOFs at the wheelsets. 

The displacement vector of the wheelsets produced by the 

wheel-rail forces in a single vehicle is given by 

 )(
~

)(~  VWW
Pw Σ  (3) 

where WΣ  is the receptance matrix at the wheelsets for a 

single vehicle given by 
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The receptance between the j th and the k th wheelsets 

within a vehicle is denoted in Eq. (4) by W

jk
  with 

Nkj ,,2,1,  ; N  being the number of wheelsets of the 

vehicle. These receptances denote the displacement amplitude 

of the j th wheelset due to a unit vertical harmonic load of 

frequency   exerted at the k th wheelset.  

Supposing that the whole train consists of 1N  identical 

vehicles the total number of the wheel-rail forces is 

NNM
1

 . Assuming that the vehicles are coupled only by 

the rails, then the receptance matrix at the wheelsets for the 

train, denoted by 
T
Σ , is given by 
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By considering an infinite rail, the receptance R

jk  at the 

j th wheel-rail contact point due to a unit load at the k th 

wheel-rail contact point is determined by 

 )( jkR

R

jk lw  (6) 

where 
kjjk

l    is the longitudinal distance between the 

two contact points, and when the j th contact point is ahead 

of the k th contact point 0
jk

l . The displacement of the rail 

)(xwR  in (6) is given in the next Section by coupling the track 

to the ground model. 

By denoting the receptance matrix of the track–ground 

system at the wheel–rail contact points as 
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The displacement vector at the wheel-rail contact points on 

the rails at frequency   is given by 

 )(
~

)(~  Pw RR Σ . (8) 

The coupling of a wheelset with the rails is illustrated in 

Figure 1, where 
ti

Wl ew )(~ denotes the displacement of the 

l th wheelset and 
ti

l ew )(~  denotes the complex amplitude 

of the vertical profile of the rail (rail irregularity) at the 

contact point. The vertical profile of the rail may be 

decomposed into a spectrum of discrete harmonic 

components. A single harmonic component is denoted by 
 xiAexw 2)(   where   denotes the wavelength and A  

the amplitude which may be complex. The relation between 

the angular frequency of the dynamic loading and the 

wavelength of the rail irregularity is  v2 . 

 

Figure 1. Coupling of the l th wheelset with the track (rail, 

pad, sleeper, ballast) and the ground. 

A Hertzian contact spring is inserted between the wheelset 

and the rails. The stiffness of the Hertzian contact spring is 

denoted by Hlk . It is assumed that the wheelset is always in 

contact with the rails, thus 

 HlllRlWl kPwww )(
~

)(~)(~)(~   . (9) 

From Eq. (3) and Eq. (8) 
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by denoting T

lk  the elements of matrix 
T
Σ in (5) for 

Mlk ,,2,1,  . Inserting these two equations into Eq. (9) 

yields 
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with ),,2,1( Ml  . 

Eq. (12) is a set of linear algebraic equations with 

unknowns the dynamic wheel-rail forces )(
~
P . The solution 

of Eq. (12) will be used as an input for the coupled track-soil 

model to give the response of the rail and in the free field. 

2.2 The track-soil interaction problem 

The railway track is aligned in the x  direction and has an 

invariant contact width b2  with the ground (see Figure 2b). 

Different railway structures may be represented by different 

models having the same form. In this work, a track structure 

comprising rail, rail pad, sleeper and ballast is presented (see 

Figure 1). The two rails are represented as a single Euler-

Bernoulli beam and the rail pads are modelled as a distributed 

vertical stiffness. The sleepers are modelled as a continuous 

mass per unit length of the track and the ballast is modelled as 

continuous distributed vertical spring stiffness with consistent 

mass. An embankment, if present, can be modeled in the same 

way as the ballast.  



The track is assumed to be located at the surface of a 

horizontally layered half-space, with a geometry that is 

invariant in the longitudinal direction x . For the aims of this 

paper an efficient 2.5D semi-analytical model developed by 

Sheng et al. in  [4] will be used for the prediction of the ground 

response excited by harmonic loads acting directly on the 

ground, or, as shown in Figure 2b, for loads acting via a 

coupled track structure. The model which is based on the 

flexibility matrix approach uses the Fourier transform in the 

wavenumber domain  , with respect to the coordinates yx,  

along and normal to the track. The coupling of the ground 

with the railway track is carried out by taking into account the 

continuity of the displacements and the equilibrium of the 

stresses in the plane of contact between them, rendering it 

possible to calculate the Fourier transformed response of the 

ground surface and the track elements.  

 

     
      (a)      (b) 

Figure 2. (a) 10 DOF multi-body model of vehicle and (b) the 

geometry of the coupled track-soil system and 

2.2.1 The response due to stationary harmonic loads 

Following the analysis in  [4] for a coupled track-ground 

system and introducing the TF ),,(0  yxH lG   for the 

response at a point yx,  at the ground surface due to 

stationary unit harmonic load of angular frequency   acting 

at lx  , the displacements of the ground surface (in the 

vertical direction) due to a series of M  harmonic loads of 

amplitude lP  ),,2,1( Ml   positioned at 
M

 ,,,
11
  is 

denoted as 

 



M

l

ti

llGG ePyxHtyxw
1

0 )(),,(),,(   (13) 

and the displacements of the rail as 

 
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M

l
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1

0 )(),(),(  . (14) 

These TFs as functions of Cartesian co-ordinates are derived 

through a two (one for the rail) dimensional inverse FFT, or a 

Fourier transform implemented through a standard quadrature 

respectively, i.e. 

 
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~

4

1
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2

0 yxi
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The semi-analytical expressions for the TFs i.e. ),,(
~ 0 GH  

in the wavenumber domain  ,  can be found in  [4]. 

2.2.2 The response due to moving loads 

In  [5] this model has been extended to encompass the effect of 

loads moving on the track. The model deals with both moving 

loads that are constant and also those that have a non-zero 

frequency. Assuming that all loads move with the same speed 

the solution in this case is achieved in a frame of reference 

moving with each load. 

The semi-analytical expressions for the TFs in the 

wavenumber domain  ,  available in  [5] which are derived 

for a moving frame of reference can give the TFs in the spatial 

domain by inverse Fourier Transform:  
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for the ground surface and 
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for the rail. These TFs are calculated for receiving frequencies 

v ˆ and denote the displacement for a fixed point yx,  

at the ground surface due to a unit moving load of angular 

frequency   acting at lx  , where the coupling between 

the position vtx l   of the  k th axle and the load gives 

rise to Doppler effect. 

The displacement of the ground due to a sequence of M  

loads of amplitude lP  ),,2,1( Ml   is given by 

 



M

l

ti

llGG ePyvtxHtyxw
1
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Similarly the displacement of the rail is 

 
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M

l
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It should be emphasized, that although the load is applied 

with a single non-zero frequency or at zero frequency, the 

ground vibration is a transient with a broad frequency content.  

In order to calculate the spectrum of the response of the 

ground or the rail to the moving load of single angular 

frequency , Eqs. (18) and (19) are Fourier transformed with 

respect to time t . It should be noted that the amplitude of 

resulted response spectrum are independent of the value of x . 

This reflects the fact that the spectrum represents the 

movement through the observation point of the steady state 

wave field associated with the load moving along the x -axis 

from x  to x . 

Note that for the case of constant moving loads the relations 

in (18) and (19) can give the quasi-static response due to the 

moving axle loads of a train by setting the excitation 

frequency 0 . 

3 RESPONSE PSD IN THE FREE FIELD 

Since vibration from railways when calculated at a point that 

is moving with the speed of the train can be treated as a 

stationary random process, one of the outputs normally 



considered from the models is the PSD of vibration at 

measurement (observation) points. In this Section two 

approaches are presented for calculating the PSD in the free 

field from a train moving at a constant velocity. They both use 

the PSD of the track unevenness along with TFs of the track 

and the supporting ground introduced in Section  2. 

3.1 The moving-roughness approach 

This approach calculates the PSD of the response at a fixed 

(measuring) point on the ground surface by modelling a set of 

wheels at fixed positions on the track. For this case the 

roughness is assumed to be pulled through between the wheels 

and track with the velocity of train, assuming that each wheel 

is excited by the same roughness apart from a time lag. Since 

the loads in this approach are assumed as stationary and 

harmonic, the relations introduced in Section  2.2.1 will be 

used. 

The vertical profile of the rail may be decomposed into a 

spectrum of discrete harmonic components. By assuming that 

the rail irregularity is moving with a speed v , at time t  a unit 

amplitude irregularity of wavelength  , denoted as  
 xiexw 2)(  , arrives at the l th wheelset at lx  . Thus 

the displacement input at the l th wheel-rail contact point is  
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where 

 
  li

l ew
 2

)(~   (21) 

with  v2 . 

Thus, the dynamic vector of wheel-rail forces )(
~
P  in (12) 

due to the unit amplitude rail irregularity )(~ lw  at all contact 

points  can be calculated. The receptances R

jk  are given by 

Eq. (6) by considering a single unit amplitude load 1)( lP  

in Eq. (14). 

A complete vertical rail profile made of a large number of 

discrete wavenumber components k  is described by the 

Fourier series 
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where   kk  and   denotes the spacing of the discrete 

wavenumbers. 

In this framework, the double-sided PSD of the 

displacement at a fixed observation point in the free field can 

be calculated by  

 )(),,(2),,(
2

0

kinkGkG SyxHyxS   . (23) 

where ),,(0

kG yxH   is the TF, which gives the displacement 

at the observation point due to a unit harmonic roughness of 

wavelength kk v  2  pulled through between all the 

wheelsets and the rail and )( kinS   is the PSD of the vertical 

profile of the rail calculated at an angular frequency 

kk v  . The TF ),,( kG yxH   is given by 
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for the values of dynamic forces )(lP  calculated in (12). The 

factor of 2 in Eq. (27) arises from the fact that power spectrum 

of the rail profile is a single-sided function. More specifically 

the spectra discussed above are even (symmetric) functions of 

angular frequency, defined for frequencies from   to  . 

However, in practice the power spectra are usually single-

sided functions defined for positive frequencies only. If such 

single-sided spectra are used, they must still give the averaged 

value when integrated over all frequencies for which they are 

defined. 

The velocity power spectrum, ),,( kG
yxS  , is given by 

 ),,(),,(
2

kGkkG
yxSyxS    (25) 

In order to simulate the response at a point on the ground 

due to passing train, the averaged response for a line of points 

on the ground that has the same length with the train needs to 

be calculated. The average response is then given by  

 
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where L  is the length of the train. 

When divided by the time taken for the whole train to pass a 

fixed point, Eq. (24) gives an estimate of the PSD of vibration 

at point yx,  on the ground surface. 

It should be noted that the formulation for the PSD in Eq. 

(23) already takes into account the correlation between the 

axles by introducing a time delay for the irregularity in (20). 

An alternative method for calculating the PSD has been 

introduced by Forrest and Hunt in  [7] and implemented in the 

prediction model for an underground infinite railway. In this 

approach the power spectrum of the displacement at a fixed 

observation point in the free field can be calculated by 
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where  *H  denotes the conjugate of H . For this approach, 

each TF ),,( k

j

G yxH   in (27) is being calculated by Eq. (24) 

where the dynamic forces )(lP  are given in (12) by setting 

1)(~ lw  when jl   and 0)(~ lw  otherwise. This way 

the correlation between the axles is added at the right hand 

side of Eq. (27) by multiplying with the term 
  vi pqke

 
. 

Although this formulation will produce exactly the same PSD 

of response as Eq. (23), it allows the importance of axle 

correlation to be investigated if it is written as 
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where by excluding the time delay for the irregularity the 

correlation between the axles is eliminated. 

3.2 The full model for predicting the pass-by response  

This section presents the formulation for the PSD of the 

ground surface response at a point that is stationary as the 

train moves past it. In this approach the motion of the train is 

included which means that the response at a given frequency 

is a combination of responses induced by different excitation 

frequencies due to the Doppler effect in the ground. 

Following the analysis in  [2] the vertical displacement 

spectrum of a point yx,  on the ground surface due to a unit 

amplitude rail irregularity of wavelength  ,  
  xixi eexw   2)( , is denoted by );,,(0 fyxS ; where 

f is the frequency at which the spectrum is evaluated and   

is the excitation angular frequency determined by  v2 .  

At the time t , the l th wheelset arrives vtx l  , thus the 

displacement input at the l th wheel-rail contact point is given 

by the same expression as  in Eqs. (20) and (21). Thus, the 

dynamic wheel-rail vector of forces )(
~
P  in (12) due to the 

unit amplitude rail irregularity at all contact points )(~ lw  can 

be calculated. The receptances R

jk  in Eq. (6) are derived by 

considering a single unit amplitude load 1)( lP  in Eq. (18). 

);,,(0 fyxS  may be obtained by Fourier transforming Eq. 

(18) with respect to time t . 

Considering the rail profile of Eq. (22) ignoring the quasi-

static effect, the power spectra of the ground surface response 

is given in  [2] as 
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The velocity power spectrum, ),,( fyxS
G

, is given by 

   ),,(2),,(
2

fyxSffyxS GG
  (30) 

When divided by the time taken for the whole train to pass a 

fixed point, equations (29) and (30) give an estimate of the 

PSD of vibration displacement and velocity respectively at 

point yx,  on the ground surface. 

4 NUMERICAL EXAMPLE 

This section compares results calculated by each approach for 

a range of practical train parameters and velocities and 

highlights the computational effort needed by each approach. 

For this, two different types of soil are considered. The first 

soil has properties similar to a measurement site based on 

Horstwalde in Germany, which is a sandy soil that can be 

represented as a homogeneous half-space of moderately soft 

soil. The second is a layered half-space with a soft ground 

corresponding to a measurement site at Greby in Sweden  [8]. 

The material properties chosen for the reference soil types are 

listed in Table 1. 

For both soil cases the same track was used. More 

specifically, the track has bending stiffness per rail 

2mMN 4.6 EI , mass per unit length per rail 

kg/m 60Rm , damping loss factor of the rail 01.0R , 

railpad vertical stiffness per unit length 2MN/m 1000pk , 

railpad damping loss factor 1.0R , sleeper mass per unit 

length kg/m 542Sm , ballast mass per unit length 

kg/m 1740Bm , ballast stiffness per unit length 

2MN/m 4640Sk , ballast damping loss factor 04.0R  and 

the width b2 of the contact interface between the track and the 

ground is m 2.3 . The rail unevenness profile for all 

simulations was chosen according to FRA class 3  [9]. This is 

plotted in Figure 3 in one-third octave bands (1/3 OB). It 

should be noted for a speed of 150 km/h and frequencies 1  to 

Hz 100  the corresponding wavelengths are m 42  to m 42.0 . 

Table 1. Soil properties for Horstwalde and Greby soils. 

Site Layer 

Shear 

wave 

velocity 

[m/s] 

Dilatation 

wave 

velocity 

[m/s] 

Damping 

loss 

factor 

Density 
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3
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Half 

space 
250 1470 0.05 1945 - 
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 1 103.36 193.37 0.2 1800 2 

2 122.30 228.80 0.2 1800 2 

Half 

space 
310.09 580.12 0.2 2000 - 
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Figure 3. Assumed unevenness spectrum in 1/3 OB. 

The train parameters used for both simulations are chosen to 

correspond to those used in  [8]. These are based on a modified 

Bombardier Regina EMU (‘Gröna Tåget’). Unlike  [8] a four-

car train is used with a total length of 106.4 m. Each vehicle 

(see Figure 2a) has car body mass kg 40000cm , car body 

pitching moment of inertia 26 mkg 102 cJ , bogie mass 

kg 5000bm , bogie pitching moment of inertia 

2mkg 6000 bJ , unsprung wheel set mass kg 1800wm , 

total axle load kN 1.140P , distance between the axles 

m 7.2wl , distance between the centre of bogies m 19bl , 

overall vehicle length m 6.26l , primary suspension 

stiffness MN/m 4.21 k , primary suspension viscous 

damping s/mkN 301 c , secondary suspension stiffness 

MN/m 6.02 k , secondary suspension viscous damping 

s/mkN 202 c   and the contact stiffness per wheel is 

MN/m 5.1462Hk . 



4.1 Rail receptances 

The rail receptance has been calculated using the two 

prediction models introduced in Section  2.2. For the soil of 

the Horstwalde the rail receptance was calculated for a 

stationary load, a moving load at speed 150v km/h (41.66 

m/s) and a moving load at speed 300v km/h. For the 

stationary load the rail receptance is calculated using Eq. (14) 

for a single unit load )1)(( lP  at lx  . The receptances 

for moving load cases are calculated in the same way but 

using Eq. (19). The amplitude and phase of rail receptances 

are shown in Figure 4. As the ground at Horstwalde is 

homogeneous, the rail receptance has an almost constant 

magnitude with frequency, decreasing slightly above 50 Hz. 

Figure 5 gives the amplitude and phase of rail receptances 

for the Greby site where it is calculated for a stationary load 

and a moving load at 150 km/h. For the stationary load there 

is peak at about 11 Hz caused by the ground layering. This 

peak is appearing at a lower frequency about 9 Hz for the case 

of the moving load. 
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Figure 4. Magnitude (a) and phase (b) of rail receptance for 

Horstwalde site. 
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Figure 5. Magnitude (a) and phase (b) of rail receptance for 

Greby site. 

4.2 Dynamic rail and ground vibration 

The one third octave band spectra of the dynamic loads are 

shown in Figure 6 for the case of Horstwalde site. Comparing 

the spectra of the loads between the moving roughness model 

(MR) and the full model show excellent agreement. The MR 

model that has not included the axle correlation (see Eq. (28)) 

shows differences, as shown in Figure 6. For validation 

reasons results from a moving roughness coupled 2.5D finite 

element/boundary element model developed in  [6] are 

presented. The motion of the train is included only in the full 

model but this difference does not appear significant. The 

results in Figure 6a correspond to the leading wheelset of a 

bogie. Results for the trailing wheelset are shown in Figure 6b 

and can be seen to be higher over the frequency range 1.6-6.3 

Hz. 

Figure 7 gives the one third octave band spectra of the 

dynamic loads for the case of the Greby site, where the MR 

model is compared with the uncorrelated MR model and the 

full model. The agreement is very similar with that in Figure 

6. Additionally there should be noted that comparing the 

spectra simulated for the Horstwalde site in Figure 6 with the 

spectra of Greby site in Figure 7 there are no significant 

differences meaning that the properties of the soil are not very 

important when calculating the forces on the rails, at least for 

the specific range of frequencies 0 to 100 Hz. 

10
0

10
1

10
2

10
2

10
3

10
4

10
5

Frequency (Hz)

R
M

S
 l
o

a
d
 (

N
)

 

 

 
10

0
10

1
10

2
10

2

10
3

10
4

10
5

Frequency (Hz)

R
M

S
 l
o

a
d
 (

N
)

 

 

MR

MR uncorrelated

Full model

FE model

 
  (a)              (b) 

Figure 6. 1/OB load spectrum for Horstwalde for moving 

roughness approach (MR), uncorrelated axles case, full model 

and FE model; (a) leading wheelset, (b) second wheelset. 
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Figure 7. 1/3 OB load spectrum for Greby for moving 

roughness approach (MR), uncorrelated axles case and full 

model; (a) leading wheelset, (b) second wheelset. 

For the dynamic response of the rail one third octave band 

results are shown in Figure 8 for both soil types. For the 

Horstwalde site in Figure 8a, the vibration level is predicted 

by four different models, the MR model, the uncorrelated MR 

model, the full model that works in the moving frame and the 

available FE/BE model. In each case the results are the 

average vibration during the passage of the train, including the 

full pass-by but normalised to the pass-by duration 

corresponding to the train length. The motion of the train is 

included only in the full model. The three MR models show 

the same trends with the full model, although lacking some of 

the spectral detail. Analogous results are shown in Figure 8b 

for the rail vibration level predicted by the model simulating 

the Greby site and presented for the MR model, the MR 

uncorrelated model and the full model. Comparing the two 

different soil models it can be seen that the vibration level is 

higher at the Greby site about 5 to 16 dB for low frequencies 

up to 40 Hz. At frequencies higher than 40 Hz the response 

calculated for Horstwalde site is about 4-7 dB higher. 

In terms of computational effort, it seems that the MR 

approach is less demanding in computational effort. This 

advantage arises from fact that the full model takes into 

account the coupling between the moving load and the 

receiving point in the free field or at the rail. Thus, a dense 



sequence of receiving frequencies has to be calculated in order 

to fully describe the narrow band of receiving frequencies for 

each excitation frequency. MR approach instead calculates 

one receiving frequency for each excitation frequency of the 

irregularity. Figure 9 shows the narrow band velocity 

spectrum at the rail for the Horstwalde site where the 

complexity of the full model response is compared with the 

response predicted by the MR approach. Moreover, for the 

MR approach the response in the wavenumber domain is 

symmetric in x and y direction with respect to the load. 
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  (a)            (b) 

Figure 8. 1/3 OB dynamic velocity response level; (a) 

Horstwalde, (b) Greby. 
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Figure 9. Narrow band dynamic velocity response at the rail 

for Horstwalde site. 

 
Figure 10. 1/3 OB dynamic velocity response level in the 

Horstwalde free field; (a) 0 m, (b) 8 m, (c) 32 m and (d) 100 

m from the track. 

Figure 10 shows the dynamic response in the free field for 

the Horstwalde site at distances of 0 m (under the track), 8 m, 

32 m and 100 m from the track.  The response normalized by 

the pass-by time  velocity is predicted by four different 

models, the MR model, the uncorrelated MR model, the full 

model and the FE/BE model (where the prediction is available 

only for the distances of 8 m and 32 m from the track). The 

results are displayed in one third octave bands. Similarly with 

the rail vibration the three MR models show the same trends 

with the full model, but they lack some of the spectral detail.  

CONCLUSIONS 

Two different approaches were used to calculate the vibration 

PSD of the rail and in the free field from a train moving on a 

surface railway track at a constant velocity. For both 

methodologies it is assumed that each wheel is excited by the 

same roughness apart from a time lag. The two approaches 

use the PSD of the track unevenness along with TFs of the 

track and its supporting ground that are calculated using a 

well-developed 2.5D semi-analytical model which accounts 

for a ballasted track on the surface of a homogeneous layered 

half-space. The first approach is based on modelling the train 

at fixed position on the track and is excited by moving the 

roughness between the wheels and track with the velocity of 

train. In the second approach, the full model that includes the 

motion of the train is considered. For this model the response 

at a given frequency is a combination of responses induced by 

different excitation frequencies due to the Doppler effect in 

the ground. The two methods give the same predictions for the 

dynamic loads at the wheel-rail contact points with the 

moving roughness approach to be less demanding in 

computational effort. Comparing the vibration level predicted 

at the rail and in the free field, the full model approach, 

although more demanding in computational effort, show 

better spectral detail.  
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