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The type of railpad model adopted in modelling the dynamic behaviour of a railway track
influences the accuracy of prediction of the vibration of the track, as well as the forces trans-
mitted to the ground. The linear Kelvin-Voigt model is most widely used amongst authors.
This model consists of a parallel arrangement of spring and viscous dashpot, representing the
linear stiffness and damping properties of the railpad respectively. However, railpads have
been found to exhibit strong nonlinearity with preload and frequency dependent properties.

In this paper, preliminary results of the work undertaken as part of the MOTIV (Modelling Of
Train Induced Vibration) project on nonlinearity of tracks are presented. This work focuses on
the effect of nonlinearity of railpads. A model of a rail that is discretely supported on railpads
is formulated in the time domain. The railpads are modelled as a nonlinear Kelvin-Voigt
material with preload dependent stiffness and damping properties. The model is subjected to a
moving load with combined static and dynamic parts, and is solved independently to calculate
the forces transmitted through the railpads. These are then used as inputs to a separate floating
slab/ground system, which is formulated in the wavenumber-frequency domain, to study the
effect of nonlinearity on ground vibration. This method is termed weak coupling, since the
effect of the interaction between the rail-railpads and the slab-ground system is neglected.
Results are presented as frequency spectra for the ground displacements under and at a dis-
tance from the track. A comparative study of the results for both linear and nonlinear cases
is conducted for three preload levels on the track. The inclusion of railpad nonlinearity into
the modelling results in up to 6 dB differences in peak displacement over a frequency range of
0-200 Hz compared to a linear model, for the parameters used.

1. Introduction

The effects of railpad nonlinearity on railway track dynamics have been studied by Wu and
Thompson [[1]] and more recently by Koroma et al. [2, 3] for stationary harmonic loads. Moving
load cases are also considered in Koroma [4]. However, these models only focused on effects of
preload/ nonlinearity on track dynamics and forces transmitted through the railpads, without further
investigating the subsequent effects on ground-borne vibration.

This paper considers the coupling of the nonlinear discretely supported rail model from [2]]
to a slab-ground system in order to investigate the effect of railpad nonlinearity on ground-borne
vibration. The coupling is done using a weak formulation, in which the rail-railpad system is solved
independently of the presence of the slab-ground system, to calculate the forces transmitted through
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the railpads. These are then transformed to the wavenumber domain and used as input to the slab-
ground model. The method of coupling of the slab and the ground follows a similar approach to that
presented in [5].

The model is presented in Section For linear cases, the modelling is carried out in the
wavenumber-frequency domain as described in Section [2.1 using strong and weak coupling ap-
proaches. For the nonlinear case, however, the analysis is carried out in the space-time domain as
described in Section[2.2] Some example results are presented in Section [3]and the conclusions given
in Section 4]

2. Model formulation

This section describes the formulation of a slab-track-ground model. Two approaches, strong
and weak coupling, are followed in coupling the rail-railpad system to the slab-ground system. In
strong coupling, the differential equations of motion are formulated with full interaction existing be-
tween all components of the slab-track-ground system. The weak coupling approach, on the other
hand, assumes that the forces transmitted to the slab are mainly controlled by the rail-railpad sys-
tem, since the stiffness of the slab-ground system is much greater than that of the rail-railpad system.
Hence, the rail-railpad system can be uncoupled from the slab-ground system and solved indepen-
dently for the purpose of calculating the forces transmitted through the railpads. These forces are
then applied as input to the slab-ground model. This assumption is more reliable when the stiffness
of the slab-ground system is much greater than that of the railpads. It also allows for the inclusion
of railpad nonlinearity into the formulation without the complication of modelling the ground in the
time domain.

The analysis is carried out entirely in the wavenumber-frequncy domain for the strong coupling
and linear weak coupling cases. However, time domain analysis is used when nonlinear railpads are
included in the rail-railpad system, in order to calculate the forces transmitted through the railpads.
These are then transformed to the wavenumber-frequency domain and used as input to slab-ground
model. The wavenumber-frequency domain model is discussed in Section [2.1.1] and the time domain
one in Section 2.2

2.1 2.5D models in the wavenumber-frequency domain

Fig. |1| shows the coupling of a rail to a slab-ground model using strong and weak coupling
approaches. The forces and displacements are in the wavenumber domain, signified by (7), such that
for a function g(x)

o) = 5 [ @)z and g€ = [ glr)e ds. n

Equation (1) is the Fourier transform pair relating the space, x, and the wavenumber, £, domains;
where £ = 27/, with A the wavelength of each harmonic component of g.

In both the weak and strong coupling cases, the rail and slab are modelled as Euler-Bernoulli
beams of mass, M, and M, per unit length and bending stiffness, £/, and E'I, respectively. The rail
is connected to the slab through railpads with dynamic stiffness, K, per unit length, whereas the slab
and ground are connected through slab bearings with dynamic stiffness, K ,,, per unit length. The rail
is subjected to a force P in the wavenumber domain.

For the purpose of coupling the slab to the ground, it is assumed that the slab is rigid in the
y—direction and the ground displacement is constant across its width. Hence the ground displacement
at the centre of the track, U, (¢, y = 0), will be used for coupling the slab to the ground.

The strong coupling case is presented in Section [2.1.1| and the weak coupling case in Section
2.1.2]
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Figure 1: Coupling of the slab track-ground system in the wavenumber- domain using (a) strong coupling and
(b) weak coupling and (c) sub-model for calculating F3; cross section along the y — z plane of the 3D model

2.1.1 Strong coupling between the rail-railpad and slab-ground models

In the strong coupling case in Fig. [I[(a), the slab interacts with the rail through the interaction
force in the railpads, £}, and with the ground through the force, Fy,. Expressions for these forces are
given by

Fr(€) = Ko (02(6) = Us(9)) (22)
Foy(€y = 0) = Koy (04(6) = U,y = 0)) (2b)
where K,, = K, + iwC, for a Kelvin-Voigt mo@el of stiffness, K, and damping C, for wy =
27 fo, fo being the excitation frequency. Similarly, K, = K, + iwyCy, for the slab bearings.
The equilibrium conditions can be written for the rail, taking into account the expressions in
Eq. (2), as o o o
(1 + KTSHT‘>U’!’ - KTSH’I’US = H’r‘Pu (3)

and similarly for the slab as
(14 (Koo o+ Kop) 1) Uy = Ky oHLU, = Ko 1,0, (€,0) = 0, @)

where H, and H, are the transfer functions of the rail and slab respectively and are given by

. 1 : !
Hr(g) = E[r54 _ MT(WO . 51})27 Hs(g) = E]’S€4 — MS(WO - 5’0)2-

&)

The displacement of a point on the ground, Ug(f ,y) at a distance y from the centre due to a uniform
strip load of width 2B and magnitude 1/2B distributed symmetrically about y = 0, can be calculated,
using the Green’s function for a homogeneous halfspace [6], as the product of the transfer function
of the ground, H,(¢), and the force, Fi,(¢,y = 0). Now H,(£) = H[](f, y = 0)sin(yB)/~vB, where

H ;(f ,y = 0) is the corresponding transfer function due to a unit point load at the origin.

The transfer functions of the ground in the wavenumber domain, H (&,7), are calculated for a unit
load acting downwards at y = 0, where v is the wavenumber in the y—direction. To calculate
H ;(f ,Y), therefore, the inverse Fourier transformation from the v domain to the y domain should
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be calculated as in Eq. (). However, due to symmetry of H o(&,7) in the v domain, this computation

can be done using only positive wavenumbers. Therefore, H 4(&,y) for the strip load can be obtained

as
00

3 in(~B
| Hé(&'y)sm% ) cos(ry)an. (©6)

™
0

ﬁg(é y)

For the coupling at the slab-ground interface, the ground displacement at the origin, Ug(§ ,0)
can be obtained, using expression for Fy,(¢,y = 0) in Eq. (2), from

(1 Koo 1,69 Uy, = 0) = Koy iy (6,9)0s, 1yl < B, )

By substituting for Ug(f ,y = 0) from Eq. (7) and into Eq. (), and arranging the resulting equation
and Eq. (3) into a matrix form, we get

— A~

1 + Krsf{r _KrsHT

. o K2H, \ - G\ _ [HP (8)
—K,sHy, 14| K+ Kyy+—2—— | Hy| U, 0 J’
14+ Ky H

sg--9

Equation can be solved for the unknown displacements, (A]T and US, from which the ground dis-

placement Uy(&,y = 0), and the reaction forces F,, and Fsg(f ,y = 0) can be obtained. Furthermore,

E s9(§,y = 0) can then be used as input to the ground to calculate its response at any distance y away
from the centreline of the track.

2.1.2 Weak coupling between the rail-railpad and slab-ground models

In this section, the case of weak coupling depicted in Fig. [I[b) is considered. The same slab-
ground system is subjected to an external force, F}, which can take any arbitrary form. For this
application, however, F} is the transformed transmitted force from a rail-railpad model which is solved
independently.

Now the displacement of the slab is given by

U, = 1, (B~ Pyl y = 0)). )
whereas that of a point on the ground at the origin by
Uy(€.y = 0) = Hy(&,y) Fiyy (€5 = 0). (10)

By substituting for U, and U, (¢, y = 0) from Eqs. (@) and (T0) and into Eq. ), the interaction force
at the slab-ground interface can be calculated as
ngf{sﬁ;f
1 + ng (I—A]s + ]f[g<€7 y))
Consider the case of a rail continuously supported on a layer of railpad with linear stiffness and
damping properties, and subjected to a harmonic load moving with speed, v. The reaction force in the

railpad, which is in turn transmitted to the slab-ground system, can be calculated by solving the track
model independently as

Fy(&,y=0) = (11)

- Krs
Ft (g) = 4 2 [ ‘
EIT& - MT(WO - 5’0) + Krs
By substituting Eq. into Eq. (TI)), F.,(¢,y = 0) can be obtained. The calculation for ground
vibration follows the same approach as for the strong coupling case.

For a nonlinear railpad layer, on the other hand, the analysis of the track vibration needs to be
carried out in the time domain. This is described in Section

(12)
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2.2 FE model in the space-time domain

This section deals with the formulation of a discretely supported rail model in the time domain.
The rail is discretised into N finite elements of length, L, each modelled as an Euler-Bernoulli beam,
and is supported on equally spaced railpads (at regular interval of 0.6 m). The railpads are in turn
resting on a rigid foundation. For the current study, 360 elements of length 0.3 m are used in the
computation. The railpads are modelled as nonlinear with preload dependent behaviour [2]]. The
model is subjected to a load with combined static and dynamic parts, P, (z,t) = Py+ P;e“°!, moving
on the rail at a constant speed, v; where Fy and P are the static preload and dynamic force amplitude
respectively, and x = vt corresponds to the position of the load at any instant, ¢. The model is used
to calculate the space-time domain reaction force matrix of the railpads. This is then transformed to
the wavenumber-frequency domain, and used as input to the slab-ground model described in Section
for the purpose of calculating ground vibration.

The space-discretised ordinary differential equation that governs the dynamic behaviour of the
rail-railpad system can be written as

MU, + CU, + KU, =P, (13)

where M, C and K are the global mass, damping and stiffness matrices of the track respectively;
K = K, + K,, where K, is the contribution from the rail bending stiffness and K, contains the
nonlinear railpad stiffnesses. The external load is contained in the vector P. Note that Hermitian
interpolation functions are used to convert the input force onto equivalent nodal forces. The solution
of Eq. is obtained by numerical integration [/]. Once the displacement, velocity and acceleration
vectors have been computed, the reaction forces in the railpads can be computed, in the space-time
domain, as a sum of the stiffness and damping forces as follows

F,(z,t) = CU, + K,U,, (14)

where U, and Up are respectively the displacement and velocity vectors of the rail at the fastener
positions. Hence, F; has size (2N, + 1) x N;, where N, is the number of railpads on either side of
x = 0 and N, is the number of time steps.

The spatial Fourier transform of F, to the wavenumber domain can be obtained from

Ny oo
F, (& t) = Z f F,, (t)0(z — x4 + vt)e " dz, (15)
q=—Np—©

where z, — vt corresponds to the positions of the railpads in the moving frame of reference. Therefore
NP

Fy(&1) =) Fy (t)e ), (16)
q=1

Similarly, the temporal Fourier transformation of Ft(ﬁ ,t) to the frequency domain, at the excitation
frequency, can be calculated as

Np oo
B¢ w) =Y [ By (e @ omehar forw = w, (17)

q=1 -

Equation (17) gives the reaction force in the wavenumber domain corresponding to the excitation
frequency, i.e. Fi(&,wy) = Fi(€)|w=w,- This can then be substituted in Eq. (1) to calculate the
interaction force at the slab-ground interface and subsequently ground vibration.
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3. Results and discussion

Table|l|contains the track and soil parameters used in this study. The slab pad is made very stiff
with Ky, = 3.5 x 10° MN/m? and Cy, = 7.28 MNs/m?. Additionally, the empirical relationships
and parameter values for the preload dependent railpad properties can be found in [2]. All the results
presented in this work account for two rails acting on the slab.

Table 1: Track and soil parameters used in the numerical examples

Track parameters Soil parameters
Mass of rail, M, 60.21 kg/m | Density, p 1800 kg/m?
Mass of slab, M, 3500 kg/m | Pressure wave speed, c¢; 400 m/s
Bending stiffness of rail, F1, 6.4 MN m? | Shear wave speed, ¢, 200 m/s
Bending stiffness of rail, EI, | 1430 MN m? | Rayleigh wave speed 183 m/s
Linear railpad stiffness, K,, | 33.33 MN/m? | Poisson’s ratio 0.33
Railpad damping factor, C,, | 24.43 kNs/m? | Damping ratio 0.05

Results are first presented to check the validity of the weak coupling assumption against the
strong coupling case for linear parameters. In the FE model, a linear case is achieved by setting the

preload to zero.
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Figure 2: Displacement of a point on the ground due to a load moving at 120 km/h and oscillating at (a-b) 0
Hz and (c-d) 50 Hz. Comparison of the three cases for linear parameters
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Fig. 2| shows the displacement spectra for two points on the ground at y = 0 and 10 m, due to
a load moving on the track at 120 km/h and oscillating at 0 Hz for (a-b) and 50 Hz for (c-d). In all
cases, the results from the FE model agree well with those from the weakly and strongly coupled 2.5D
models. For the non-oscillating load case in (a-b), the response is symmetrical about O Hz since there
is no Doppler effect, since the load speed is much lower than the lowest wave speed of the ground.
For the oscillating load case in (c-d), on the other hand, this effect is apparent. The peaks in the
displacement correspond to the Doppler shifted excitation frequency, f = (¢/(¢ & v)) fo, as the load
approaches and leaves the observation point; where ¢ is the speed of the propagating waves. When the
Rayleigh wave speed on the ground is used, this results in frequencies of 42 Hz and 61 Hz. However,
the bending stiffness of the slab contributes to the overall stiffness of the slab-ground system and the
peaks appear at 46 Hz and 54 Hz, corresponding to an equivalent ground with wave speed of about
435 m/s.

Results will now be presented for the nonlinear model for three preload levels; 0, 75 and 125
kN, individually applied on each rail. The results given here are the dynamic parts, with the static
preload used for the calculation of the loaded stiffness and damping properties as outlined in [2]].

Fig. [3(a) shows the time history of the transmitted force in the railpad at the centre of the
track due to a harmonic load with f, = 50 Hz and v = 120 km/h. The corresponding force in
the wavenumber domain for all railpads is shown in (b). The maximum loaded stiffnesses of the
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Figure 3: (a) Reaction force time histories for the middle railpad (b) reaction force for all railpads in the
wavenumber domain, due to a unit load with fo = 50 Hz and v = 120 km/h

railpad are 54 and 164 MN/m for the 75 and 125 kN preloads respectively, compared with 20 MN/m
for the linear case. The increased stiffness of the railpads induced by the preload results in larger
amplitudes of the transmitted force with an accompanying increase in the decay rates, as shown in
(a). The wavenumber domain plot in (b), however, shows slightly lower amplitudes around the zero
wavenumber for increasing preload levels. This means that the total force transmitted to the ground
from all railpads, is greater for the softer railpads, since the forces spread over a much wider region.
The opposite effect is observed away from the zero wavenumber.

Fig. [ shows the maximum space-time domain displacements of the ground at (a) y = 0 m and
(b) y = 10 m, plotted as a function of excitation frequency for a load moving at 120 km/h. For each
excitation frequency, the displacement of the ground in the space domain is calculated by taking the
inverse Fourier transform of Ug(f ,y) from the £ to the x domain and the maximum absolute value
recorded. The observation in Fig. [3(b) is evident here, as the linear case shows higher amplitudes of
ground vibration for most of the frequency range. At higher frequencies, however, the nonlinear cases
exhibit larger peak displacements. The maximum differences in the amplitudes is limited to 6 dB for
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Figure 4: Maximum space-time domain displacements of a point on the ground, plotted against excitation
frequency for a unit oscillating load moving at 120 km/h. Comparison for three preload levels

the range of frequency shown.

4. Conclusions

This paper investigates the effect of nonlinearity of railpads on ground borne vibration. The
railway track is formulated in the time domain for the calculation of the forces transmitted through the
railpads. These are then transformed to the wavenumber domain and applied to a separate linear slab-
ground model using a weak coupling approach. This approach is validated against a strong coupling
formulation for linear parameters. It can be summarised that the inclusion of railpad nonlinearity into
the modelling results in differences in peak displacement amplitudes of up to 6 dB over a frequency
range of 0-200 Hz, compared with the corresponding linear case, for the parameters used in this work.
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