Long-term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands

J. E. Hunt1, P. J. Talling1, M. A. Clare1, I. Jarvis2, and R. B. Wynn1

1National Oceanography Centre, University of Southampton, Southampton, Hampshire, UK, 2School of Geography, Geology and the Environment, Centre for Earth and Environmental Science Research, Kingston University London, Kingston upon Thames, Surrey, UK

Abstract Volcaniclastic turbidites on the Madeira Abyssal Plain provide a record of large-volume volcanic island flank collapses from the Canary Islands. This long-term record spans 17 Ma, and comprises 125 volcaniclastic beds. Determining the timing, provenance and volumes of these turbidites provides key information about the occurrence of mass wasting from the Canary Islands, especially the western islands of Tenerife, La Palma and El Hierro. These turbidite records demonstrate that landslides often coincide with protracted periods of volcanic edifice growth, suggesting that loading of the volcanic edifices may be a key preconditioning factor for landslide triggers. Furthermore, the last large-volume failures from Tenerife coincide with explosive volcanism at the end of eruptive cycles. Many large-volume Canary Island landslides also occurred during periods of warmer and wetter climates associated with sea-level rise and subsequent highstand. However, these turbidites are not serially dependent and any association with climate or sea level change is not statistically significant.

1. Introduction

The often exceptionally large scale of volcanic island submarine landslides was initially revealed by seafloor mapping, including evidence from the Hawaiian [Moore et al., 1989, 1994; McMurtry et al., 2004], Canarian [Watts and Masson, 1995, 2001; Masson et al., 2002; Acosta et al., 2003], Mascarene [Oehler et al., 2004, 2008], Cape Verdean [Le Bas et al., 2007; Masson et al., 2008], Lesser Antilles [Delpy et al., 2001; Lebas et al., 2011; Watt et al., 2012] and French Polynesian archipelagos [Crouaud et al., 2001; Hildenbrand et al., 2006]. Volcanic island landslides can be far larger than any landslides on land. They can contain >200 km3 of material, which compares to ~3.0 km3 involved in the 1980 Mt St Helens landslide-eruption [Voight et al., 1981]. Volcanic island landslides can potentially generate destructive tsunamis when they enter the surrounding ocean [Kulikov et al., 1996; Tinti et al., 1999, 2000; Tappin et al., 2001; Ward and Day, 2003; Fitz et al., 2009; Giachetti et al., 2011]. Consequently, significant attention has been given to understanding volcanic island flank collapses and the hazards they may pose.

Volcanic islands commonly comprise rapidly constructed, steep flanks composed of interbedded pyroclastic deposits, lavas, and intrusive dykes [McGuire, 1996]. The presence of potentially weak strata and the injection of magmatic intrusions may be key factors affecting volcanic island flank stability [McGuire, 1996; Elsworth and Day, 1999; Hurliman et al., 1999a, 2000; Masson et al., 2006; Andrade and van Wyk de Vries, 2010]. Preconditioning factors may include: (1) high sedimentation rates; (2) water saturation due to rising sea level; (3) elevated pore-fluid pressures; (4) high rainfall; (5) hydrothermal alteration; (6) deep narrow canyons reducing lateral strength; (7) faulting; (8) dyke intrusion; (9) seismic activity; (10) volcanic spreading; and (11) residual soils [Siebert 1984; Siebert et al., 1987; McGuire et al., 1990; Elsworth and Voight, 1995, 1996, 2001; Murray and Voight, 1996; Day, 1996; McGuire, 1996; Voight and Elsworth, 1997; Hurliman et al., 1999a, 2000, 2004; Masson et al., 2006]. Recent studies have suggested a relationship between increased erosion and runoff, associated with the onset of warmer interglacial intervals, as a potentially important preconditioning factor [McGuire, 1992, 2010; Keating and McGuire, 2004; McMurtry et al., 2004; Deeming et al., 2010; Tappin, 2010; Hunt et al., 2013a]. However, there are few field data sets suitable for testing rigorously these competing models for preconditioning factors and triggers. We are yet to monitor a major collapse in action and their causes remain poorly constrained.

One approach is to date major collapse events and to compare their timing to that of potential preconditioning factors and triggers. Onshore studies of volcanic island landslides rely on dating of the
unconformities left behind by the mass movement. These dates often have significant uncertainties, since terrestrial records may include lengthy hiatuses and dating techniques may be limited. However, onshore volcanic island flank collapses have been shown to generate large submarine debris avalanches [Moore et al., 1989, 1994; Watts and Masson, 1995, 1998; Ablay and Hürlimann, 2000; Deplus et al., 2001; Masson et al., 2002, 2008; Oehler et al., 2004; Le Bas et al., 2007]. In turn, these debris avalanches may disaggregate and generate debris flows and turbidity currents that run out onto adjacent deep-water abyssal plains [Garcia and Hull, 1994; Watts and Masson, 1995; Garcia, 1996; Masson, 1996; Wynn and Masson, 2003; Hunt et al., 2011, 2013a, 2013b).

The near-continual deposition of pelagite sediments into which turbidites are interleaved provide a dateable record, whereby turbidite age is constrained by the ages of the underlying and overlying pelagites. This dateable pelagic record also has greater preservation potential since turbidity currents may be weakly or nonerosive at distances of >200 km from source [Weaver and Kuijpers, 1983; Weaver and Thomson, 1993; Weaver, 1994]. Therefore distal turbidite records allow relatively precise dating of the associated volcanic island landslides.

Here we present an analysis of an unusually long-term record of volcanic landslide-turbidites in the Madeira Abyssal Plain from ODP Sites 950, 951 and 952. These cores contain 125 volcanioclastic turbidites emplaced during an interval of 17 Ma. This large number of events enables robust statistical analysis, and helps to establish the most likely preconditioning factors of the collapses. The volcanioclastic turbidites of the Madeira Abyssal Plain have previously been inferred to have a Canary Island provenance [Pearce and Jarvis, 1992, 1995; Jarvis et al., 1998; Hunt et al., 2013a], and this study aims to further constrain their origin.

This is arguably the longest time series of major collapse events in any volcanic archipelago worldwide. Previous studies of Canary Island landslide-derived turbidites have only been able to resolve events in the last 1.5 Ma [Weaver et al., 1992; Wynn et al., 2002; Hunt et al., 2011, 2013a, 2013b). The longer time series of events can be used to better elucidate volcanic island landslide magnitude, frequency, and temporal clustering in the Canary Islands. These form crucial inputs for forward-looking geohazard assessments. Comparisons of landslide timing to climate change and volcanism provide a better understanding of preconditioning and trigger factors.

2. Aims

The aims of this article are set out as a series of questions:

1. How can distal mud-rich volcanioclastic turbidites provide information on the timing, provenance and magnitude of landslides?
2. How often does large-scale (>5 km³) flank collapse occur in the Canary Islands?
3. Do flank collapses occur randomly or are they clustered in time?
4. Is there an association between the timing of flank collapses and volcanic activity?
5. Is there an association between the timing of flank collapses and sea level change, and hence climate?

3. Geological Setting

The Canary Islands comprise seven volcanic islands spread across ~500 km on the northwest African passive margin. They have developed in response to slow-movement of Jurassic-age (156–176 Ma) oceanic crust over a mantle plume [Klitgort and Schouten, 1986; Anguita and Hernán, 1990; Hoernle and Schmincke 1993; Carracedo et al., 1998; Hoernle, 1998]. This results in a general east-to-west age progression of the islands [Carracedo, 1994, 1999; Carracedo et al., 1998]. Recent landslide activity is most evident around the western Canary Islands of Tenerife, La Palma, and El Hierro, where Late Quaternary landslide activity has formed spatially extensive submarine debris avalanche deposits [Masson et al., 2002]. However, there is also evidence of past landslide activity from the older eastern Canary Islands [Acosta et al., 2003].

The focus of this study is the volcanioclastic turbidite history recorded in ODP cores from Sites 950, 951, and 952 in the Madeira Abyssal Plain (Figure 1). The Madeira Abyssal Plain represents the most distal and deepest depocentre in the Moroccan Turbidite System is located ~500 km west of the Canary Islands (Figure 1) [Weaver and Kuijpers, 1983; Weaver et al., 1992; Wynn et al., 2000, 2002]. The Madeira Distributary Channel
System connects the Madeira Abyssal Plain to the Canary Islands and Agadir Basin [Masson, 1994; Stevenson et al., 2013].

The turbidites represent landslides from Canary Islands. Their magnitude is greater than river discharges at >1 km³, and commonly >20 km³. These turbidites are also unlikely to be pyroclastic flows that have entered the sea and become turbidity currents. The largest volumes of pyroclastic material proximally onshore are of an order less than 20 km³ on Tenerife [Edgar et al., 2007], thus the runout distance of >1000 km and volume of the turbidites in the basin being 20–380 km³ support these being landslide derived. Small-scale submarine landslides from both Madeira and the Selvagen Islands have been identified [Frenz et al., 2009; Hunt et al., 2013c], however mapping of Quaternary deposits suggest these are restricted to the local slopes of these sources and so not enter the Madeira Channels and travel to the Madeira Abyssal Plain [Stevenson et al., 2013; Hunt et al., 2013c].

4. History of Landslides Within the Canary Islands

Numerous studies have documented the volcanic and geomorphological evolution of the Canary Islands. This section aims to summarize the onshore and proximal marine records of landslides in the Canary Islands, which then will then be compared to the distal turbidite record.

4.1. Fuerteventura and Lanzarote

Stillman [1999] documented the mass-wasting phases of Fuerteventura. Numerous onshore landslides have been dated between 22 and 16.5 Ma, and could be linked to old collapses of the Central and Southern Volcanic Complexes (>17.5 Ma; Table 1) [Acosta et al., 2003]. There is little literature documenting flank collapses from Lanzarote (Table 1). Large denuded and scalloped coastlines northwest of the Famara volcanic complex and southeast of the Los Ajaches volcanic complex may indicate large-scale flank collapses. However, neither Lanzarote nor Fuerteventura has evidence of major landslide activity that postdates 15 Ma.
Table 1. Summary of Volcanic Flank Collapses From Fuerteventura, Lanzorote, Gran Canaria and La Gomera in the Canary Islands

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Age</th>
<th>Volume (km3)</th>
<th>Area (km2)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerteventura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Volcanic Complex I Collapse</td>
<td>Slide</td>
<td>~22 Mabc</td>
<td>?</td>
<td>?</td>
<td>Deduced from an unconformity between Central Volcanic Complex (CVC) lavas I and II. Fractured nature of CVC I and steeper dip infers landslide event.c</td>
</tr>
<tr>
<td></td>
<td>Collapse</td>
<td>20-16.5 Mac</td>
<td>?</td>
<td>3500d</td>
<td>Unconformity below Melindraga and Tamaite formations.c Offshore evidence of buried event.d</td>
</tr>
<tr>
<td>Southern Volcanic Complex Collapse (Southern Puerto Rosario)</td>
<td>Slide and DA</td>
<td>>17.5 Maa</td>
<td>?</td>
<td>1200d</td>
<td>Offshore evidence of buried debris avalanche cut by gullies on opposing slope of scalloped southern shoreline.d</td>
</tr>
<tr>
<td>Unknown</td>
<td>DF</td>
<td>17.6 Maa</td>
<td>?</td>
<td>?</td>
<td>Volcaniclastic debris flow v4 from DSDP Site 397.e</td>
</tr>
<tr>
<td>Unknown</td>
<td>DF</td>
<td>17.2 Maa</td>
<td>?</td>
<td>?</td>
<td>Volcaniclastic debris flow v3 from DSDP Site 397.e</td>
</tr>
<tr>
<td>Unknown</td>
<td>DF</td>
<td>16.5 Maa</td>
<td>?</td>
<td>?</td>
<td>Volcaniclastic debris flow v1 from DSDP Site 397.e</td>
</tr>
<tr>
<td>Jandia</td>
<td>DA</td>
<td>~2 Maf</td>
<td>25g</td>
<td>250g</td>
<td>Identified in sidescan sonar.g Also mapped in swath bathymetry.d</td>
</tr>
<tr>
<td>Eastern Canary Ridge</td>
<td>DF</td>
<td><100 kad</td>
<td>>20a</td>
<td>>2000g</td>
<td>Mapped using swath bathymetry, sidescan sonar and shallow 3.5kHz seismic reflections.d</td>
</tr>
<tr>
<td>Lanzarote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Buried event poorly constrainedd, possibly collapses of Los Ajaches and Famara complexes.</td>
</tr>
<tr>
<td>Gran Canaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Erosional collapse of early basaltic shield.c Scalped northwest shoreline and offshore bathymetry.d Two potential debris avalanches in apron ODP Site 953.i Also identified in seismic reflection.j</td>
</tr>
<tr>
<td>Agaete (Caldera de Tejeda)</td>
<td>Slump and DA</td>
<td>~14 Magh</td>
<td>>50a</td>
<td>200–500$^{fa, i}$</td>
<td>Forms over the area of the Las Palmas debris avalanche lobe.d However, debris avalanche on southwest flank identified as Roque Nublo event.f, l</td>
</tr>
<tr>
<td>Horgazales Basin</td>
<td>DA</td>
<td>14–15 Mad</td>
<td>>80a</td>
<td>>1000g</td>
<td>Identified in seismic reflection profiles and from ODP leg 157.i, l</td>
</tr>
<tr>
<td>Pre-Galdar</td>
<td>DA</td>
<td>12–15 Mad</td>
<td>>60a</td>
<td>>700g</td>
<td>Identified in seismic reflection profiles and ODP leg 157.i, l Series of trachyphonolite-rich debris flow units encountered in ODP hole 953, related to collapses of the Fataga volcano.i</td>
</tr>
<tr>
<td>Fataga Collapses</td>
<td>DFs</td>
<td>9–11.5 Mad</td>
<td>?</td>
<td>?</td>
<td>Older event on the northeast flank of Gran Canaria.d</td>
</tr>
<tr>
<td>Las Palmas</td>
<td>DA</td>
<td>9 Mad</td>
<td>?</td>
<td>1100d</td>
<td>Forms the area of the Las Palmas debris avalanche lobe.d</td>
</tr>
<tr>
<td>Roque Nublo</td>
<td>DA</td>
<td>3.9-3.5 Mad</td>
<td>~34a</td>
<td>150–330$^{fa, i}$</td>
<td>Forms a lobe on the northern flank of Gran Canaria.d</td>
</tr>
<tr>
<td>Galdar</td>
<td>DA</td>
<td>3.9-3.5 Mad</td>
<td>?</td>
<td>300d</td>
<td>Forms a lobe on the northern flank of Gran Canaria.d</td>
</tr>
<tr>
<td>Lu Gomera</td>
<td>DFs</td>
<td>~12 Mam</td>
<td>?</td>
<td>?</td>
<td>Four highly primitive basalt-rich debris flow deposits encountered at ODP hole 956, related to early basaltic shield development on La Gomera.m</td>
</tr>
<tr>
<td>Tazo</td>
<td>DA</td>
<td>9.4–8.6 Mae</td>
<td>?</td>
<td>?</td>
<td>Northwest-directed 150 m-thick breccia onshore.n</td>
</tr>
<tr>
<td>San Marcos</td>
<td>DA</td>
<td>9.4–8.6 Mae</td>
<td>?</td>
<td>?</td>
<td>Onshore breccias below Tazo deposit.e</td>
</tr>
<tr>
<td>I</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>80d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
<tr>
<td>II</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>80d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
<tr>
<td>III</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>340d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
<tr>
<td>IV</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>160d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
<tr>
<td>V</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>300d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
<tr>
<td>VI</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>40d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
<tr>
<td>VII</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>50d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
<tr>
<td>VIII</td>
<td>DF</td>
<td>~4.0 Mad</td>
<td>?</td>
<td>300d</td>
<td>Mapped using swath bathymetry.d</td>
</tr>
</tbody>
</table>

*DA = debris avalanche, DF = debris flow
*Ancochea et al. [1996].
*Stillman [1999].
*Acosta et al. [2003].
*Scharminck and von Rad [1979].
*Garcia and Cacho [1994].
*Kroste et al. [2001].
*Van den Bogard and Schmincke [1998].
*Scharminck and Segschneider [1998].
*Funck and Schmincke [1998].
*Scharminck et al. [1995].
*Mehl and Schmincke [1999].
*Scharminck and Sumita [1998].
*Ancochea et al. [2006].
4.2. Gran Canaria
The first major phase of erosion occurred at ~14.0 Ma with collapse and formation of the Caldera de Tejeda [van den Bogard and Schmincke, 1998], producing the Agaete debris avalanche (Table 1). ODP core from the northern and southern aprons of Gran Canaria (Sites 953–956) show a long history of small-volume (<5 km3) volcanioclastic turbidites between 4.5 and 3.5 Ma, coinciding with onshore debris avalanches [García Cacho et al., 1994; Carey et al., 1998; Goldstrand, 1998; Schmincke and Segschneider, 1998; Mehl and Schmincke, 1999; Acosta et al., 2003]. No large-volume island flank landslides have been identified after 3.5 Ma (Table 1) [Acosta et al., 2003].

4.3. La Gomera
Acosta et al. [2003] identified eight debris avalanche lobes from swath bathymetry of the submarine flanks (Table 1). Three lobes occur on the northern flank, one to the east, two on the southern flank and two to the west. Llanes et al. [2009] further interpreted a series of scalloped embayments on the northern margin and numerous flat-bottomed canyons on the southern margin as a series of headwall scarps.

4.4. Tenerife
It has been proposed that several landslides were initiated from the Teno Massif between 6.3 and 6.0 Ma, and these were responsible for both the onshore unconformities above the Masca Formation and an offshore debris avalanche (Table 2) [Walter and Schmincke 2002; Masson et al., 2002; Acosta et al., 2003; Leonardt and Soffel, 2006; Longpré et al., 2009]. The Anaga Massif collapsed at 4.7-4.1 Ma (Table 2) [Masson et al., 2002; Acosta et al., 2003; Llanes et al., 2003; Walter et al., 2005]. The Tigaiga debris avalanche is another failure from the northern flank of Tenerife (Table 2), which has been tentatively dated at >2.3 Ma [Cantagrel et al., 1999; Krastel et al., 2001; Acosta et al., 2003].

On the southern flank of Tenerife a 25 km3 failure between 2.0 and 0.7 Ma has been reported, termed the Bandas del Sur debris flow or Abona avalanche [Krastel et al., 2001; Harris et al., 2011]. The eastern flank of Tenerife is the site of the Güimar landslide, dated at 0.8-0.78 Ma (Table 2) [Ancochea et al., 1990; Cantagrel et al., 1999; Krastel et al., 2001; Masson et al., 2002]. A number of failures younger than 2.0 Ma have been reported on the northern flank of Tenerife, including the Roques de García, Orotava and Icod landslides (Table 2).

4.5. La Palma
The Cumbre Nueva structure represents a collapse dated at either 558 ka [Acosta et al., 2003] or 566-533 ka [Carracedo et al., 2001]. It overlies the Playa de la Veta deposit immediately offshore, and is highlighted by a higher backscatter sonar response compared to the older Playa de la Veta debris avalanche [Urgeles et al., 1999; Masson et al., 2002]. Masson et al. [2002] identified an additional flank collapse, which resulted in the Santa Cruz landslide from the eastern flank of La Palma. Landslide activity has also been identified on the northern flank, but this has not been dated or quantified [Acosta et al., 2003].

4.6. El Hierro
Tinor lavas are found below an angular unconformity dated at 1.04 Ma within the El Golfo embayment, and may represent an older major landslide [Carracedo et al., 1999]. The El Julán landslide occurred on the southwest flank of El Hierro between 500 and 300 ka. The Las Playas I and II debris avalanche complex was defined by Gee et al. [2001] and Masson et al. [2002] on the southeast flank, with ages of 545-176 ka for Las Playas I and 176-145 ka for Las Playas II (Table 2). The El Golfo landslide represents the youngest volcanic flank collapse in the Canary archipelago [Weaver et al., 1992; Wynn et al., 2002; Wynn and Masson, 2003; Frenz et al., 2009]. The likely date is 15 ka, which is based on a midpoint of onshore ages and from study of the associated turbidite deposit (Table 2) [Masson, 1996].

5. Previous Work on the Madeira Abyssal Plain Turbidites
The stratigraphy and provenance of Madeira Abyssal Plain turbidites in the last 780 ka is well established [Weaver et al., 1992; Wynn et al., 2002; Hunt et al., 2013a]. The turbidites of this stratigraphy have a lettered nomenclature with the youngest starting at A, and with an “M” prefix that denotes the Madeira Abyssal Plain [Wynn et al., 2002; Hunt et al., 2013a]. The “M” prefix is dropped here for convenience.
<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Age</th>
<th>Volume (km3)</th>
<th>Area (km2)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenerife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masca (Los Gigantes)</td>
<td>DA</td>
<td>5.89-6.65 Maad</td>
<td>?</td>
<td>?</td>
<td>The Masca unconformity marks the first major collapse recorded onshore in the Teno massif.a Numerous studies have attempted to date this event, with dates lying around ~6.4 Ma.ad</td>
</tr>
<tr>
<td>Carrizales</td>
<td>DA</td>
<td>5.89-6.27 Maad</td>
<td>?</td>
<td>?</td>
<td>The Carrizales marks a second major unconformity in the onshore Teno Massif.a Numerous studies have dated this, with an accepted date of ~6.1 Ma.d</td>
</tr>
<tr>
<td>Teno</td>
<td>DA</td>
<td>~6.0 Mag</td>
<td>?</td>
<td>400a</td>
<td>Offshore debris avalanche mapped using swath bathymetry and sidescan sonar.a Could represent either Masca and/or Carrizales events, or a separate event altogether.</td>
</tr>
<tr>
<td>Anaga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>4.1–4.7 Mah</td>
<td>36</td>
<td>>400g</td>
<td>Mapped using swath bathymetry and sidescan sonar.a</td>
</tr>
<tr>
<td>Tigaiga</td>
<td>Slide and DA</td>
<td>2.3-2.6 Mag</td>
<td>?</td>
<td>200e</td>
<td>Onshore deposit in addition to a buried deposit on the northern flank of Tenerife.i</td>
</tr>
<tr>
<td>Bandes del Sur</td>
<td>DA</td>
<td><2 Mak</td>
<td>25</td>
<td>500f</td>
<td>Mapped off the southern flank of Tenerife using sidescan sonar.i</td>
</tr>
<tr>
<td>Roques de García</td>
<td>DA</td>
<td>0.6-1.3 Mach</td>
<td>~500id</td>
<td>2200–4500id</td>
<td>Mapped using sidescan sonar, shallow 3.5 kHz seismic reflection, and swath bathymetry.e,v</td>
</tr>
<tr>
<td>Guimar</td>
<td>Slide and DA</td>
<td>830–850 kano</td>
<td>44–120k,o</td>
<td>1600k,g</td>
<td>Debris avalanche deposit mapped using sidescan sonar and swath bathymetry.e Onshore dating range has been limited to 150 and 170 ka.g,h However, associated turbidite has been dated at 530±25 ka.m</td>
</tr>
<tr>
<td>Orotava</td>
<td>Slide and DA</td>
<td>505–530 kano</td>
<td>500g,k</td>
<td>2100k,g</td>
<td>Mapped using swath bathymetry.a Correlated turbidite in the Madeira Abyssal Plain dated at 485±25 ka.m</td>
</tr>
<tr>
<td>Icod</td>
<td>Slide and DA/DF</td>
<td>165 kai</td>
<td>320g</td>
<td>1,700k,g</td>
<td>Debris avalanche deposits mapped using sidescan sonar and swath bathymetry. e,g Onshore dating of the event is between 150 and 170 ka.g,h Dating of the debris avalanche from the sediment drape is ~170 ka.i The turbidite in Agadir Basin has been dated at 160–165.i,t</td>
</tr>
<tr>
<td>La Palma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Puerto del Mudo</td>
<td>DA</td>
<td>>1.0 Mag</td>
<td>?</td>
<td>400e</td>
<td>Mapped in swath bathymetry.e</td>
</tr>
<tr>
<td>West Puerto del Mudo</td>
<td>DA</td>
<td>>1.0 Mag</td>
<td>?</td>
<td>>300e</td>
<td>Mapped in swath bathymetry.e</td>
</tr>
<tr>
<td>Playa de la Veta</td>
<td>DA</td>
<td>1.185 Masu</td>
<td>520–650k,lu</td>
<td>1,200–2,000k,ml</td>
<td>Mapped using sidescan sonar, shallow seismic reflection and swath bathymetry.e,v</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>DA</td>
<td>0.9-1.2 Masu</td>
<td>~520 kasu</td>
<td>1,600g</td>
<td>Mapped using swath bathymetry.a Correlated turbidite in the Madeira Abyssal Plain dated at 540±25 ka.m</td>
</tr>
<tr>
<td>Cumbre Nueva</td>
<td>DA</td>
<td><0.5 Masu</td>
<td>80–95su</td>
<td>700–780su</td>
<td>Mapped using swath bathymetry.v Correlated turbidite from Madeira Abyssal Plain dated at 1,050±25 ka.m</td>
</tr>
<tr>
<td>El Hierro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiñor</td>
<td>DA (buried)</td>
<td>0.54-1.12 Masn,f</td>
<td>?</td>
<td>?</td>
<td>Theorized collapse from an unconformity in mining galleries.a Correlated turbidite from Madeira Abyssal Plain dated at 1,050±25 ka.m</td>
</tr>
<tr>
<td>San Andrés</td>
<td>Aborted Slump</td>
<td>176–545 kag</td>
<td>?</td>
<td>?</td>
<td>Studied from onshore faults.g Could be related to early phases of failure during Las Playas I or II events, certainly the dates coincide with those for Las Playas events.g</td>
</tr>
<tr>
<td>Las Playas I</td>
<td>DA</td>
<td>176–545 kag</td>
<td>?</td>
<td>1,700k,g</td>
<td>Broader debris avalanche with smoother sediment cover, mapped with sidescan sonar.o</td>
</tr>
<tr>
<td>El Julan</td>
<td>DA</td>
<td>320–500 kaAR</td>
<td>60–130AR</td>
<td>1,600–1,800AR</td>
<td>Mapped using sidescan sonar, seismic reflection profiles and swath bathymetry, but little onshore record.e,g Correlated turbidite from Madeira Abyssal Plain dated at 540±20 ka.m</td>
</tr>
</tbody>
</table>
The record includes volcaniclastic turbidites B (15 ka) and G (190–160 ka), representing the El Golfo and Icod landslides from the Western Canary landslides respectively [Wynn et al., 2002; Wynn and Masson, 2003]. In addition, older volcaniclastic turbidites, beds N, O, and P (540–485 ka) are interpreted to represent the Cumbre Nueva, Orotava, and El Julan landslides from La Palma, Tenerife, and El Hierro respectively [Weaver et al., 1992; Hunt et al., 2013a]. Interrogation of the 1.5 Ma to recent record identified three further turbidites Z, AB, and AF dated between 1.2 and 0.8 Ma. These deposits most likely represent the Guimar, El Tíñor, and Roque de García landslides, respectively [Hunt et al., 2013a]. Furthermore, information gleaned from these eight turbidites indicates that the associated landslides were multistage [Hunt et al., 2013b].

5.1. Methodology and Data
Cores from ODP Sites 950, 951, and 952 were used in this study. The first objective was to resolve the ages of individual volcaniclastic turbidites in the 17-0 Ma sediment record, using the biostratigraphy and magnetostratigraphy of Howe and Sblendorio-Levy [1998]. Previous work has reported the frequency of volcanic island landslides as the number of events were million years. This work focuses on these individual events. Second, the geochemistry of these volcaniclastic turbidites were investigated using the results previously published by Jarvis et al. [1998], together with new unpublished trace element geochemical data. Third, the volumes of these deposits were calculated using the methodology of Weaver [2003], based on a methodology from Van Hinte [1978] with volumes from Rothwell et al. [1998]. Lastly, the landslide record derived from the Madeira Abyssal Plain ODP cores was compared to the documented onshore Canary Island landslide histories.

5.2. ODP Stratigraphy
The 17 to 0 Ma stratigraphy of the Madeira Abyssal Plain has been constructed using three sites (950, 951 and 952) from ODP Leg 157 (Figure 1). Turbidites were correlated between the three sites using their
position in the vertical sequence, colour, magnetic susceptibility, and biostratigraphy. The biostratigraphy and magnetostratigraphy of Howe and Sblendorio-Levy [1998] was used to provide dated horizons that allow pelagite ages to be extrapolated between datum levels. The turbidite chronology is calculated from its position within the dated pelagite sequence. Turbidite chronology is independently derived for each ODP site based on pelagic sedimentation rates (Figure 2 and supporting information Appendices 1 and 2). Dating of singular turbidites utilizing hemipelagite coccolithophore biostratigraphy and hemipelagite photospectral composition have yielded potential dating errors of \(\pm 10 \text{ ka} \) for those beds younger than 1.5 Ma [Hunt et al., 2013a]. Robust coccolithophore biostratigraphy extends to 7.0 Ma. Thus landslides dated from 7.0 Ma to recent may have conservative dating errors of \(\pm 10 \text{ ka} \). Dates for events older than 7.0 Ma may have greater errors due to the greater paucity of biostratigraphic datum horizons and potential for variable sedimentation rates.

5.3. ODP Turbidite Geochemistry
Bulk geochemical analyses were undertaken and presented by Jarvis et al. [1998], using 10 mL samples taken from the mudcaps of turbidites >20 cm thick at Site 950. The preparation and methodology is described in Jarvis et al. [1998]. Additional trace element data for these samples is also presented. These additional trace element data were obtained by ICP-MS analysis of lithium metaborate fusion and HF-perchloric acid digest solutions, following the methods of Totland and Jarvis [1997] and Jarvis [2003]. For comparison of mudcap compositions between turbidites, samples from a single bed are averaged.

5.4. Turbidite Volumes Based on ODP Studies
Turbidite volumes have been calculated according to the method of Weaver [2003]. Turbidite volumes are reported as the decompacted volume upon deposition, which effectively provides the volume of the sediment carried by the flow. This allows better comparisons of event magnitude between younger and older events. Here the turbidite volumes were generated based on the ratio of turbidite decompacted thickness to the decompacted thickness of the seismic unit in which it resides. This was then compared against the calculated decompacted volume of the respective seismic unit [Alibes et al., 1996, 1999]. The methodology is described in more detail in supporting information Appendices 3 and 4.

6. Results
6.1. Turbidite Characterization
It is essential to isolate the volcaniclastic turbidites from the mixed siliciclastic-volcaniclastic record. The Late Quaternary sequence of the Madeira Abyssal Plain contains turbidites of three broad types: organic-rich siliciclastic (>0.3% TOC), volcaniclastic (>0.6 Ti/Al) and calcareous (low Ti/Al and >78% CaCO₃) [De Lange et al., 1987; Pearce and Jarvis, 1992, 1995]. There are also brown beds from local seamount collapses and metre-thick pale gray “nonvolcanic” beds that most likely originated from the submarine regions around the Canary Islands [Jarvis et al., 1998; Lebreiro et al., 1998; Weaver et al., 1998]. These deposits can be characterized by the mudcap geochemistry using a series of cross plots (Figure 3) and using the ternary plots of De Lange et al. [1987] (supporting information Appendix 5).

The organic-rich green siliciclastic turbidites generally have compositions separate from the volcaniclastic turbidites, and from the white calcareous and pale gray “nonvolcanic” beds. The pale gray “nonvolcanic” beds show similarities between the volcaniclastic and calcareous turbidites but are compositionally different from each other. The gray volcanioclastic turbidites that are the focus of this study are both geochemically distinct and have greater magnetic susceptibility.

The volcaniclastic turbidites have generally <3.5 wt% MgO and <3.5 wt% K₂O carbonate-free-basis (CFB) compositions, while for higher concentrations of TiO₂ the sediments are Al-poor (i.e., exhibit high Ti/Al ratios) (Figure 3). Lastly, they are generally characterized by having >200 ppm Zr and carbonate contents of >30 wt% (Figure 3).

6.2. Volcaniclastic Turbidite Composition Through Time
The ODP turbidite record forms two parts: a pre-7.0 Ma and post-7.0 Ma component. Apart from a few thin (10–50 cm) turbidites, the post-7.0 Ma stratigraphy can be correlated between the upper 230 m of the three ODP Sites (Figures 4–7). These correlations are supported by biostratigraphy (Figure 2), lithostratigraphy
and magnetic susceptibility profiles (Figures 4–7). The correlations are characterized in a series of correlation panels depicting the Pleistocene (Figure 4), Upper Pliocene (Figure 5), Lower Pliocene (Figure 6) and uppermost Miocene (Figure 7). The turbidites in general are typically 0.5 to 11.0 m-thick, while the volcaniclastic turbidites range from 0.5 to 4.0 m in thickness.

The post-7.0 Ma volcaniclastic turbidites have decompacted volumes between 5 and 380 km³, which far exceed the thickness and decompacted volumes present in the pre-7.0 Ma history (Figure 8). There is a distinct shift in the dominant composition in the post-7.0 Ma volcaniclastic turbidites (Figure 9), which includes beds with significantly higher Ti, Zr, K, and Mg contents.

The Zr/Al-Ti/Al cross plot shows three compositional groups of increasing Zr/Al and Ti/Al (Figure 10a). There are three groups derived from K/Al-Cr/Al cross plots showing increasing K/Al with generally decreasing Cr/Al (Figure 10b), and three groups from Si/Al-Mg/Al showing increasing Si/Al with decreasing Mg/Al (Figure 10c). The pre-7.0 Ma volcaniclastic record is characterized by 0.2 to 1.0 m thick gray and dark-gray volcaniclastic turbidites, which cannot be correlated between Sites 950, 951, and 952 with any certainty. The volumes of these pre-7.0 Ma volcaniclastic turbidites are relatively small, with most being <10 km³ (Figure 8). The turbidites are also characterized by relatively low Ti, Zr, K, and Mg, with relatively higher Si and Cr contents (Figures 9 and 10). Trace element and rare-earth element (REE) trends also show distinctive compositional characters. Indeed, those turbidites with basaltic and primitive compositions have signatures generally reflecting high TiO₂-MgO+Fe₂O₃, TiO₂-Ni, La/Th-Hf, Zr/Sc and Th/Sc (supporting information Appendix 6).

6.3. Source and Timing of Volcaniclastic Turbidites

This section uses the calculated ages of the volcaniclastic turbidites coupled with information from the mudcap geochemistry to identify the potential source island of the landslide.

6.3.1. Mid-Late Miocene 7.0–6.0 Ma Record

The first metre-thick volcaniclastic turbidites occur after 7.0 Ma, with an initial sequence of beds FT to FD from 7.0 to 6.0 Ma (Figure 7). These volcaniclastic beds represent the thickest and most voluminous turbidites of this period, and bed FK is the largest volcaniclastic bed recorded in the Madeira Abyssal Plain (4 m thick and 380 km³-volume) (Figure 7).
Bed FT has moderate Zr, Ti, and Mg, high K and low Si, signifying a basic, but not depleted composition (Figure 10). Beds FS and FR have low Zr, Ti, and Si, moderate Cr and high K, indicating more basic compositions, but are relatively low in volume. Beds FP, FO, FM, FL and FD have high-to-moderate Ti, high Zr and K, and low-to-moderate Mg and Si, which signify evolved compositions similar to those of younger turbidites G, O and Z from Tenerife (Figure 10). Excluding bed FK, there is a trend from beds FT to FD toward an increasingly evolved composition. The aforementioned bed FK has a basic composition.

6.3.2. Early Pliocene 5.3–4.0 Ma Record
The thickest and largest volume turbidites in this sequence are beds EK and DK, representing 1.5–2.0 m thick and 50–60 km3 deposits (Figure 6). These beds have evolved compositions, with bed DK at 4.2 Ma having a similar composition to turbidites of Tenerife provenance (Figure 10). The other turbidites (beds EI, EH, DZ, DY, DU, DL and DF) are basic to trace-element depleted in composition, but with increased K (Figure 10).

6.3.3. Late-Early Pliocene 3.7–3.0 Ma Record
This time period commenced with a 1.75 m thick turbidite at 3.75 Ma (bed DB) (Figure 6). Turbidite DB has low Zr and Ti, but high K and Mg (Figure 10), thus having properties similar to turbidites from the pre-7.0 Ma record associated with a basic and trace element depleted origin [Jarvis et al., 1998]. However, bed DB also has an evolved REE composition, i.e., a high La/Sc ratio (supporting information Appendix 9). The following turbidites (beds CV1, CT2 and CT4) are thin-bedded and low-volume events with basic compositions. Bed CS (3.25 Ma) represents the thickest and most volumetric event in this time interval (2–4 m thick and 110 km3). This event has a basic composition of high Ti and Mg, and moderate Si, K, Cr,
and Zr, similar to those ascribed to El Hierro (Figure 10), however it has an evolved trace-element and REE composition (supporting information Appendix 9), and El Hierro was not present at this time. The last deposits of this time interval (beds CR and CM) are similar to bed DB (Figure 10), but both have primitive basaltic REE compositions (Figure 12).

6.3.4. Late Pliocene 2.6-1.8 Ma Record

This turbidite sequence includes thin-bedded turbidites (<0.5 m thick) and metre-thick voluminous turbidites (1–4 m thick), including beds BZ, BQ, BN, BF, BC, BB, AV, AU, and AT. Bed BF, dated at ~2.2 Ma, represents the thickest and largest volume deposit in this time interval, and it has a composition of high Zr, K, Mg, and Cr and low Ti (Figure 10), with a similar composition to those previously assigned to a Tenerife provenance. Beds BZ, BQ, and AT have low Zr and Ti, but moderate-to-high K and Mg. Beds BN, BC, AV, and AU have moderate (basic) Zr and Ti, and moderate-to-high K and Mg, similar to those ascribed to a La Palma or El Hierro provenance (Figure 10).

6.3.5. Pleistocene 1.5-0 Ma Record

This record has been studied previously and was briefly reinvestigated in the present study [Pearce and Jarvis, 1992, 1995; Weaver et al., 1992; Hunt et al., 2013a]. The record represents a number of turbidites of evolved and basic compositions that can be correlated to Tenerife and western Canary Island provenances. The compositions have high Zr, K, and Mg and high to moderate Ti and Si (Figure 10). These turbidites can be grouped into two compositional groups: a basic igneous group (Group 1) defined by low Zr and K_2O, and high TiO_2, MgO, and Fe_2O_3, and an evolved igneous group (Group 2) with higher Zr and K_2O, but lower TiO_2, MgO and Fe_2O_3 [De Lange et al., 1987; Pearce and Jarvis, 1992, 1995].

Group 1 includes beds B (0.015 Ma), P (0.54 Ma), and AB (1.05 Ma). Group 2 includes beds G (0.165 Ma), O (0.535 Ma), and Z (0.84 Ma) [Hunt et al., 2013a; Figure 10]. However, beds N and AF have less distinct compositions, displaying geochemical affinities for both Groups 1 and 2. Bed AF represents the oldest deposit in this period at ~1.2 Ma, and likely originated from Tenerife based on its evolved composition and an affiliation with Group 2 beds of Tenerife provenance. Bed N, at ~0.49 Ma has a composition showing disparities with both Groups 1 and 2. Trace-element and REE data display other differences between the groups, where Group 1 has higher Th/Sc, Zr/Sc and La/Sc compared to Group 2. Bed N shows an affinity for Group 2, whilst bed AF lacks REE data to interpret.

Figure 4. Correlation panel of ODP holes 950, 951, and 952 showing Pleistocene-age turbidites in the Madeira Abyssal Plain. Ages from Howe and Sblendorio-Levy [1998].
6.4. Statistical Analyses of Landslide Recurrence

The volcaniclastic turbidite record has been separated into 17 Ma to 7 Ma and 7 Ma to recent periods. Between 17 Ma and 7.0 Ma there are variable records of volcaniclastic turbidites at the three ODP Madeira Abyssal Plain sites (Figure 11). Since 7 Ma there has been an increase in the thickness of the volcaniclastic turbidites, and thus the volume of the deposits, possibly as a result of changes to the turbidite pathway, as this change is also seen in siliciclastic turbidites [Weaver et al., 1998]. These changes may represent structural changes to the continental rise that restrict sediment supply to the deeper basin. These changes in basin and pathway morphology may be related to increased rates of sea-floor spreading at 10.0 Ma [Mosar et al., 2002].

The mean recurrence of Canary Island landslides over the 17 Ma period is 0.135 Ma, and over the last 7.0 Ma the mean recurrence is 0.130 Ma. Although the recurrence remains the same across these two periods, the individual turbidite volumes increase by an order of magnitude at 7.0 Ma. This increase in volume is also seen in organic-rich siliciclastic turbidites [Lebreiro et al., 1998; Weaver et al., 1998; Weaver, 2003], and therefore probably reflects a change in turbidite pathway to the deep basin, rather than a change in the scale of failure.

6.5. Turbidite Clustering

Rescaled range analysis was used to test the degree of clustering for landslide recurrence intervals, to derive the Hurst exponent, termed K [Hurst, 1951; Chen and Hiscott, 1999]. The Hurst exponent for the complete 17 to 0 Ma record ($N=124$) is $K=0.72$. The equivalent result for the last 7 Ma record ($N=58$) is $K=0.50$. Values of K greater than 0.6 within finite data sets indicate serial dependence or clustering, while values close to 0.6 indicate no dependence, and values less than 0.6 indicate that there is a negative dependence, where an increase in the independent variable causes a decrease in the dependent variable [Wallis and Matalas, 1970; Chen and Hiscott, 1999]. Turbidites that were most likely from Tenerife provenance have a mean recurrence interval of 0.27 Ma, which is similar to the mean recurrence of Late Quaternary Tenerife-sourced landslides at 0.33 Ma [Hunt et al., 2013a]. The Hurst exponent of Tenerife-sourced turbidites is 0.79 ($N=25$).

Figure 5. Correlation plot of ODP holes 950, 951, and 952 showing Late Pliocene-age turbidites in the Madeira Abyssal Plain. Dates from Howe and Sblendorio-Levy [1998]. Turbidite legend from Figure 4.
The Hurst exponent values indicate that the 0–17 Ma record may show a degree of clustering, which is apparent in the observed difference in landslide activity before and after ~7 Ma. Over the last 7 Ma, volcanic landslides do not show serial dependence when considered together, which means that the occurrence of a landslide is not affected by the landslide before it. Analysis of the Tenerife-sourced beds alone, however, does indicate a degree of clustering, highlighted with groupings at 6.8-5.8 Ma, 4.6-4.2 Ma, 2.6-1.7 Ma and 1.2-0.17 Ma (Figure 12). However, the sample size is below that recommended for this type of analysis (N > 50) [Chen and Hiscott, 1999]. Given the less than optimal sample size, the results for Tenerife-source landslides should be treated with caution.

6.6. Sea Level and Landslide Frequency

To further explore controls on volcanic landslide timing a Generalized Linear Model [Nelder and Wedderburn, 1972] and a Proportional Hazards Model [Cox, 1972] were employed. Two scenarios were run to test for a statistically significant relationship between eustatic sea-level change, and its first derivative (i.e., rate of change), and landslide occurrence. Only the 7 to 0 Ma record was analyzed, as a high-resolution sea level curve exists only for this interval [Miller et al., 2005]. This statistical analysis provides p values, which determine whether a given null hypothesis can be rejected. Hence, if we are testing that sea level is not a significant controlling factor, then p < 0.05 allows us to reject that hypothesis (i.e., sea level may be significant). It would not, however, prove the significance of sea level outright.

It is necessary to exclude (“censor”) the time interval since the last landslide from the statistical analysis, as the time to the next event is at some undetermined point in the future. It is not necessary to censor any further data points. Hence the sample size for Tenerife-sourced landslides is N = 25 and for volcanic landslides is N = 37 for the last 7 Ma. Small sample sizes of N < 100 are not optimal for robust statistical analyses, but Peduzzi et al. [1995] demonstrated that a minimum value of only ten events per variable is required for proportional hazards models. Vittinghoff and McCulloch [2007] proposed that this value could be relaxed even further. Given that only two variables are being tested here, this indicates a minimum sample size of N = 20 may be adequate; hence the application of a Proportional Hazards Model can be justified. A mini-
mum sample size for the Generalized Linear Model has not been determined; therefore the results cannot be viewed with the same level of confidence.

Results of an exponential regression analysis comparing the timing of landslides with the explanatory variables (sea level or rate of sea level change) demonstrate no statistical significance, even at the 90% level (Table 3). A second analysis fitted a Generalized Linear Model with a Gamma curve (of which the exponential is a special case). The dispersion parameter \(\alpha \) ranges of the fitted Gamma curves are indicative of near-exponential distributions. A true exponential distribution lacks memory [Parzen, 1962], such that the probability of a new event occurring is independent of the time since the last event [Gardiner, 2004]. There is some subtle deviation from a true exponential \((\alpha \approx 1)\) in the results (Table 3; \(\alpha = 0.7-2.0\)), hence it might be argued that there is a weak, temporally related control rather than the distribution being purely random.

That the combined turbidite record for the last 7 Ma shows the best agreement with a true exponential \((\alpha \approx 1.2)\) may be attributed to multiple overprinted frequency distributions from different input sources, or simply to a process that occurs randomly in time.

The final analysis (Proportional Hazards Model of Cox [1972]) takes a different approach, and compares \(h(t)\), the hazard rate with the explanatory variables. The hazard rate is the probability that an event will occur at time \(t\) given that one occurred at time \(t=0\). An exponential distribution would indicate a constant hazard rate, whereas other processes have either decreasing or increasing hazard rates. This analysis assumes that hazard rate is proportional to an explanatory variable in order that its effect can be estimated. It is not necessary to determine the distribution form of recurrence intervals, which makes it a particularly valuable technique [Smith et al., 2003]. For this analysis, recurrence intervals were determined in two ways: time since last event (termed "post"), and time since previous event (termed "prior").

The Cox Proportional Hazards Model performs three separate statistical tests that were used to determine significance of global sea level and its first derivative. The results were not found to be significant at the
90% level (Table 3). While the sample sizes are relatively small, the fact that the statistical tests all yield similar values provides confidence in the outcome. Although the results do not show statistical significance, it is notable that the Tenerife-sourced beds show the lowest values ($p = -0.3$) in relation to sea level for the “prior” calculation; hence there may be some weak signal albeit not quantifiably significant.

It must be noted that the 7 to 0 Ma turbidite record may yield age errors as great as ±10 ka. Calculating the ages of the beds at three independent ODP Sites provides greater confidence with age determination, however these potential age errors do invoke caution with the level of interpretation placed on the statistical relationships to sea level.

7. Discussion

7.1. Relationship of Island Collapse Turbidites With Volcanism and Denudation

7.1.1. Pre-7.0 Ma Record

The ages and trace-element depleted compositions of these beds implicate sources from the Eastern Canary Islands. Prior to this point the Western Canary Islands were yet to emerge. Indeed, there is known landslide activity dated between 14.0 and 9.0 Ma from both Gran Canaria and La Gomera [Funck and Schmincke, 1998; Schmincke and Sumita, 1998]. Furthermore, on Gran Canaria rhyolitic lavas and ash fall tuffs accumulated between 14.0 and 12.5 Ma, following by basaltic lavas and extra-caldera phonolites between 12.6 and 9.7 Ma [McDougall and Schmincke, 1976].

7.1.2. Mid-Late Miocene 7.0–6.0 Ma Record

Beds FT, FS and FR have basic compositions, while beds FP, FO, FM, FL and FD have compositions that implicate the evolved provenance of Tenerife, similar to the most recent G, O and Z turbidites (representing beds Mg, Ma, and Mz of Hunt et al. [2013a, 2013b]. The dates and compositions means that beds FP, FO, FM, FL and FD could represent failures of the earliest subaerial shield phases of the Anaga and Teno massifs of Tenerife (Figure 12), while beds FT, FS and FR were derived from the older basaltic submarine flank. During this period there is little evidence of prodigious landslides on Lanzarote, Gran Canaria or La Gomera, while La Palma and El Hierro are yet to form. Indeed, other than the Masca, Carrizales and Teno landslides from Tenerife (aged 6.65 to 6.0 Ma) there are no other major landslides documented in the Canary Islands at this time [Walter and Schmincke, 2002; Acosta et al., 2003].
The voluminous early basaltic phase of shield-building on Tenerife is also the most likely source of the voluminous \(~6.2\) Ma bed FK turbidite (Figure 7). During this period there was volcanic activity on both La Gomera and early phase shield building on Tenerife [Thirlwall et al., 2000; Paris et al., 2005; Ancochea et al., 2006]. Bed FK may represent one of aforementioned Tenerife slides, and must reflect the failure of a significant proportion of the submarine flank to account for its basic composition and volume.

7.1.3. Early Pliocene 5.3–4.0 Ma Record

The largest volume turbidites (beds EK and DK) have evolved compositions, with bed DK having a similar composition to turbidites of Tenerife provenance. The \(~4.2\) Ma bed DK turbidite was emplaced at a similar time to the major collapse of the Anaga massif [Krastel et al., 2001; Acosta et al., 2003].

Other turbidites of this period (beds EI, EH, DZ, DY, DU, DL, and DF) have different basic compositions, with notably increased potassium, most likely from an older island source, such as La Gomera or Gran Canaria. Acosta et al. [2003] indicated that numerous relatively small-scale landslides occurred around La Gomera at \(~4.0\) Ma, suggesting La Gomera as the probable source for these beds. The volcanic activity on La Gomera is coincident with these smaller beds [Paris et al., 2005; Ancochea et al., 2006], while beds EK and DK coincide with earlier eruptions on Tenerife [Van den Bogaard and Schmincke, 1998; Thirlwall et al., 2000].

7.1.4. Late-Early Pliocene to Early-Late Pliocene 3.7-3.0 Ma Record

The thickest and most volumetric beds during this period are DB (3.75 Ma), CS (3.27 Ma), CR (3.24 Ma) and CM (3.17 Ma). The remaining volcaniclastic turbidites are minor thin-beded events in the Madeira Abyssal Plain sequence. Owing to the ages, and in part the compositions, of these deposits, Gran Canaria is suggested as a possible source, since there is evidence of contemporaneous landslide activity, including the Roque Nublo and Galdar landslides [Acosta et al., 2003]. Indeed, the \(>120\) km\(^2\) bed CS is linked to the Roque Nublo landslide. The Roque Nublo stratocone was built between 5.0 and 3.5 Ma, with explosive terminal phase eruptions [Anguita et al., 1991]. The later phases of this volcanic activity are synchronous with these turbidites.

7.1.5. Late Pliocene 2.8-1.8 Ma Record

This time period commenced with beds BZ, BQ and BN (Figure 5). The 2.7 to 2.5 Ma ages and compositions of beds BZ and BQ would implicate Gran Canaria or La Gomera as the source. From 2.7 to 2.5 Ma there was
Volcanic activity on Tenerife and Gran Canaria (Figure 12), with a cessation of activity on La Gomera [McDougall and Schmincke, 1976; Paris et al., 2005; Ancochea et al., 2006]. Beds AV and AU have basic compositions with moderate-to-high K and Mg, similar to those ascribed to a La Palma or El Hierro provenance, but were deposited at a time before El Hierro had emerged. However, volcanic activity commenced on La Palma toward the end of this time period [Ancochea et al., 1994], so La Palma presents a viable source for these later turbidites.

The voluminous bed BF, dated at 2.2 Ma, has an evolved composition similar to those previously ascribed to a Tenerife source, and could represent the Tigaiga landslide, which has been dated at 2.3 Ma [Cantagrel et al., 1999]. As with similar Tenerife sourced events from the 1.5 Ma to recent turbidite record, this Tigaiga landslide coincided with terminal eruptions of a volcanic cycle (mafic Lower Group, dated at 3.5-2.1 Ma by Ablay and Marti [2000]). Lastly, beds BC and BB have a similar composition to bed BF, and may represent a subsequent failure of the northern flank of Tenerife at ~1.95 Ma.

7.1.6. The 1.5 Ma to Recent Record

Beds B (~15 ka), P (0.54 Ma) and A8 (1.05 Ma) have a provenance from El Hierro, and can be assigned to the El Golfo, El Julán and El Tiñor landslides respectively [Hunt et al., 2013a]. It is proposed that bed N (0.49 Ma) originated from La Palma, and is potentially associated with the Cumbre Nueva landslide. Beds G (0.165 ka), O (0.535 ka), Z (0.84 ka) and AF (~1.2 Ma) are attributed to a Tenerife source, due to the greater evolved composition. Given the ages of these beds, they are interpreted to represent the Icod, Orotava, Guímar, and Roques de García landslides respectively [Hunt et al., 2013a].

7.2. Landslide Preconditioning Factors and Triggers

The chronology and provenance of the volcaniclastic turbidites in the Madeira Abyssal Plain, coupled with onshore dates of known Canary Island landslides, can help understand landslide preconditioning factors and triggers. However, it must be noted that the turbidites in the Madeira Abyssal Plain represent only the...
largest flank collapses in the Canary Islands (>5 km3 and commonly >100 km3), with smaller failures most likely not capable of producing such long-runout turbidity currents. Furthermore, it is assumed that all large flank collapses were disintegrative and able to produce an associated sediment gravity flow, and that the landslides neither aborted nor failed to produce a turbidity current [Day et al., 1997]. A last assumption is that the sediment gravity flows produced were routed to the Madeira Abyssal Plain, and were not restricted to local depocentres.
The turbidites from this study contain large volumes that may be excess to those reported for the associated onshore landslide scar. Accurate onshore scar volumes may be difficult to calculate due to thicknesses of infilled volcanic materials. It has been demonstrated that significant components of the submarine flank could have contributed to the landslide, and thus turbidite, volume, and therefore account for the excessive volumes [Hunt et al., 2011]. Although estimates from the Icod landslide deposit suggest that only around 10% of the turbidite volume originates from seafloor erosion by the slide or turbidity current [Hunt et al., 2011], this assumption cannot be made confidently for the other slides; thus seafloor erosion could account for the excessive turbidite volumes. Although turbidite volumes are provided in this study, there are many assumptions that affect how this volume reflects the true magnitude of the initial failure. Therefore this study focuses on the provenance, timing and recurrence of the landslides, with only qualitative reference to deriving landslide magnitude from the turbidite volume.

With these assumptions noted, a relatively complete record of Canary Island landslide activity is available for investigation. First, there is no serial dependence between the occurrences of volcanic island landslides over the last 17 Ma, and over the last 7 Ma in particular, so that events are not strongly clustered in time. However, the results of Tenerife-sourced turbidites suggest that there may be a subtle degree of temporal clustering. Large-volume landslides commonly occur during periods of volcanism on the respective islands,

Figure 12. Summary of volcanic turbidite occurrence with magnitude against records of climate [Lisieki and Raymo, 2005] and sea level [Miller et al., 2005]. Gray-dashed lines present volcanic island-sourced turbidites, while the red-dashed lines represent specifically Tenerife-sourced turbidites. The events capped with a closed black circle signify those events proposed to correlate with rising or highstands of sea level.

Table 3. Summary of Statistical Analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Explanatory Variable</th>
<th>Exponential Regression (p)</th>
<th>GLM (Dispersion Parameter, α)</th>
<th>Likelihood Test (p)</th>
<th>Wald Test (p)</th>
<th>Logrank Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–7 Ma all turbidites</td>
<td>Sea Level</td>
<td>0.40</td>
<td>1.21</td>
<td>0.700/0.503</td>
<td>0.500/0.699</td>
<td>0.500/0.699</td>
</tr>
<tr>
<td>0–7 Ma volcanic landslides</td>
<td>Sea Level</td>
<td>0.49</td>
<td>1.19</td>
<td>0.637/0.704</td>
<td>0.624/0.684</td>
<td>0.624/0.684</td>
</tr>
<tr>
<td>0–7 Ma Tenerife-sourced landslides</td>
<td>Sea Level</td>
<td>0.84</td>
<td>0.70</td>
<td>0.604/0.663</td>
<td>0.610/0.668</td>
<td>0.610/0.668</td>
</tr>
<tr>
<td></td>
<td>First Derivative of Sea Level</td>
<td>0.74</td>
<td>0.75</td>
<td>0.895/0.879</td>
<td>0.910/0.873</td>
<td>0.914/0.873</td>
</tr>
<tr>
<td>0–7 Ma Tenerife-sourced landslides</td>
<td>First Derivative of Sea Level</td>
<td>0.21</td>
<td>2.02</td>
<td>0.296/0.814</td>
<td>0.305/0.815</td>
<td>0.302/0.815</td>
</tr>
</tbody>
</table>

Neither sea level nor its first derivative are found to be a statistically significant control on landslide timing (exponential regression and Generalized Linear Model, GLM) or hazard rate (Proportional Hazards Model, PHM).
rather than periods of volcanic quiescence (Figures 11 and 12). However, volcanic sequences are often sparsely dated and often limited to the largest events, and thus there are uncertainties and a relationship between landslide occurrence and volcanism cannot be statistically evaluated. The limited evidence of this study can at least suggest that loading of the volcanic edifice and related seismicity can be inferred to be preconditioning factors for collapse of the island flanks; however, the strength of this relationship and the exact contribution cannot be resolved.

Previously, it has been inferred that warm and wet climates, associated with the transition from glacial lowstand conditions to interglacial highstand conditions, are associated with flank collapses in the Hawaiian archipelago [McMurtry et al., 2004]. Seventy percent of 7 Ma to recent volcaniclastic turbidites in the Madeira Abyssal Plain (>5 km³) occur at periods of rising sea level or relative highstands of sea level (Figures 11 and 12). However, our statistical analysis provides no support for a correlation between the collapse turbidite occurrence and sea-level change. We may consider that if an environmental control is operating, then it is either weak (and therefore not proven by the statistical analysis) or there may be a dynamic interrelationship between multiple controlling variables (e.g., sea level, climate, weathering, unroofing processes). It is worth noting that many processes, such as development of overpressure and temperature may not operate immediately in response to changes in sea level.

This trend showing a weak or nonsignificant correlation of submarine landslide occurrence with climate change is being found in an increasing number of study areas. Indeed, the 600 ka to recent record of continental slope-derived turbidites in Agadir Basin demonstrates a Poisson-like process as the trigger mechanism, demonstrating a reduced influence of climate [Hunt et al., 2013c].

8. Conclusions

ODP Cores in the Madeira Abyssal Plain contain a record of >100 volcanic island landslides over the last 17 Ma. Large-volume volcaniclastic landslides occurred mainly after 7 Ma, and are represented by metre-thick turbidites. Mudcap geochemistry and biostratigraphic dating of these turbidites has provided an important long-time record of volcanic island flank collapse in the Canary Islands, that can be tied make to proximal landslide histories. This ODP record provides one of the most extensive archives of landslide activity from a volcanic archipelago. The mean landslide recurrence interval is 0.130–0.135 Ma. Moreover, the record has allowed landslides from particular islands to be potentially identified, for example landslides from Tenerife have a mean recurrence of ~0.3 Ma.

There is a potential coincidence of turbidite occurrence with periods of protracted intrusive and extrusive volcanism on the respective island. However, the strength of this particular correlation cannot be tested. Furthermore, the exact preconditioning and/or trigger factor associated with volcanism that could instigate landsliding cannot be accurately resolved.

Statistical analysis of landslide recurrence and global eustatic sea level fails to demonstrate any statistical significance even at the 90% level of statistical significance. This study presents an excellent record of volcaniclastic landslides, with good biostratigraphic dating, and it suggests that sea level plays only a minor role in causing large-scale collapses in the Canary Islands. This is important because it is predicted that sea level may rise rapidly in the near future.

García, M. O., and D. M. (1994), Turbidites from giant Hawaiian landslides: Results from Ocean Drilling Program Site 842, Geology, 22, 159–162.

Harris, P. D., M. J. Branney, and M. Storey (2010), Large eruption-triggered ocean-island landslide at Tenerife: Onshore record and long-term effects on hazardous pyroclastic dispersal, *Geology*, 38(10), 951–954.

