
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


�������� ��	
���
��

Quantification and propagation of errors when converting vertebrate biomin-
eral oxygen isotope data to temperature for palaeoclimate reconstruction

Alexander J.E. Pryor, Rhiannon E. Stevens, Tamsin C. O’Connell, John
R. Lister

PII: S0031-0182(14)00348-4
DOI: doi: 10.1016/j.palaeo.2014.07.003
Reference: PALAEO 6934

To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology

Received date: 4 March 2014
Revised date: 3 July 2014
Accepted date: 6 July 2014

Please cite this article as: Pryor, Alexander J.E., Stevens, Rhiannon E., O’Connell,
Tamsin C., Lister, John R., Quantification and propagation of errors when con-
verting vertebrate biomineral oxygen isotope data to temperature for palaeocli-
mate reconstruction, Palaeogeography, Palaeoclimatology, Palaeoecology (2014), doi:
10.1016/j.palaeo.2014.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.palaeo.2014.07.003
http://dx.doi.org/10.1016/j.palaeo.2014.07.003


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 

Quantification and propagation of errors when converting vertebrate 

biomineral oxygen isotope data to temperature for palaeoclimate 

reconstruction 

 

Alexander J. E. Pryora*, Rhiannon E. Stevensb, Tamsin C. O’Connell a,b, John R. 

Listerc  

* Corresponding author: Alex_Pryor@cantab.net. +44 7737 114165 

RES - res57@cam.ac.uk 

TO’C - tco21@cam.ac.uk 

JRL - lister@damtp.cam.ac.uk 

 

a Department of Archaeology & Anthropology, University of Cambridge, Downing 

Street, Cambridge, CB2 3DZ, United Kingdom. 

b McDonald Institute for Archaeological Research, University of Cambridge, 

Downing Street, Cambridge, CB2 3ER, United Kingdom. 

c Institute of Theoretical Geophysics, Department of Applied Mathematics and 

Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, 

Wilberforce Road, Cambridge, CB3 0WA, United Kingdom 

 

 

Abstract 

Oxygen isotope analysis of bioapatite in vertebrate remains (bones and teeth) is 

commonly used to address questions on palaeoclimate from the Eocene to the recent 

past. Researchers currently use a range of methods to calibrate their data, enabling the 

isotopic composition of precipitation and the air temperature to be estimated. In some 
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situations the regression method used can significantly affect the resulting 

palaeoclimatic interpretations. Furthermore, to understand the uncertainties in the 

results, it is necessary to quantify the errors involved in calibration. Studies in which 

isotopic data are converted rarely address these points, and a better understanding of 

the calibration process is needed. This paper compares regression methods employed 

in recent publications to calibrate isotopic data for palaeoclimatic interpretation and 

determines that least-squares regression inverted to x = (y− b) / a is the most 

appropriate method to use for calibrating causal isotopic relationships. We also 

identify the main sources of error introduced at each conversion stage, and investigate 

ways to minimise this error. We demonstrate that larger sample sizes substantially 

reduce the uncertainties inherent within the calibration process: typical uncertainty in 

temperature inferred from a single sample is at least ±4ºC, which multiple samples 

can reduce to ±1–2ºC. Moreover, the gain even from one to four samples is greater 

than the gain from any further increases. We also show that when converting 

δ
18Oprecipitation to temperature, use of annually averaged data can give significantly less 

uncertainty in inferred temperatures than use of monthly rainfall data. Equations and 

an online spreadsheet for the quantification of errors are provided for general use, and 

could be extended to contexts beyond the specific application of this paper.  

 Palaeotemperature estimation from isotopic data can be highly informative for 

our understanding of past climates and their impact on humans and animals. However, 

for such estimates to be useful, there must be confidence in their accuracy, and this 

includes an assessment of calibration error. We give a series of recommendations for 

assessing uncertainty when making calibrations of δ
18Obioapatite–δ

18Oprecipitation–

Temperature. Use of these guidelines will provide a more solid foundation for 

palaeoclimate inferences made from vertebrate isotopic data. 
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1. Introduction 

Oxygen isotope analysis of bioapatite in vertebrate remains (bones and teeth) and 

shell carbonates in terrestrial and marine invertebrates are commonly used to address 

questions on palaeoclimate, palaeoecology and palaeotemperature from the Eocene to 

the recent past (e.g. FRICKE et al., 1995; LÉCOLLE, 1985; VAN DAM and REICHART, 

2009; ZANAZZI  et al., 2007; ZANCHETTA et al., 2005). It is sometimes possible to use 

δ
18Obioapatite values to address the questions of interest directly, without requiring the 

data to be converted/calibrated to other forms (e.g. FORBES et al., 2010; HALLIN  et al., 

2012). In many isotopic studies, however, the data are converted to quantitative 

estimates of the oxygen isotopic value of precipitation and thence to temperature 

(ARPPE and KARHU, 2010; NAVARRO et al., 2004; SKRZYPEK et al., 2011; TÜTKEN et 

al., 2007). These investigations require two data conversions that are based on well 

demonstrated correlations: 

 

Z1 A species-specific conversion, using δ
18Obioapatite to estimate the mean 

isotopic composition of ingested water (δ
18Odrinking water)( KOHN, 1996; 

LONGINELLI, 1984; LUZ et al., 1984; LUZ and KOLODNY, 1985). For the 

purposes of palaeoclimatic reconstruction δ
18Odrinking water is typically 

assumed to be equivalent to local mean δ
18Oprecipitation; 
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Z2 A regionally-specific conversion, using the estimated value of mean 

δ
18Oprecipitation to estimate mean air temperature T (ROZANSKI et al., 1992), 

which relates to the period the bioapatite was growing.  

 

These correlations exist because of physical laws that govern the movement of 

isotopes through the biological and hydrological systems, and they remain 

consistently statistically significant across geographical regions and species 

(DANSGAARD, 1964; LONGINELLI, 1984).  

Defining accurate empirical mathematical relationships between these 

variables is complicated both by the problems in obtaining reliable primary data and 

by the effect of other variables that introduce uncertainties into the relationships 

themselves (KOHN and WELKER, 2005). These uncertainties originate from many 

parameters, comprising biological (including species effects, population variability, 

variability in use of different water sources), environmental (such as latitudinal 

effects, rain variability, isotopic variation between potential water sources) and 

analytical (preparation techniques and measurement uncertainty) effects.  

Published equations between temperature and the oxygen isotopic values of 

bioapatite and precipitation (henceforth referred to as δ18Obioapatite–δ
18Oprecipitation–T) 

are developed using regression analyses to obtain lines of best fit in the 

formy(x) = ax+ b  (Table 1). These may be used to calibrate data if the correlation is 

strong enough (LUCY et al., 2008). Recent examples from the literature make clear, 

however, that different mathematical practices are currently employed for undertaking 

the regression, and we will argue that not all methods are equally appropriate.  
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The spread of the data about a line of best fit represents the combined effect of 

all the sources of uncertainty. We show that when a best-fit correlation is used to 

convert new isotopic measurements, this spread makes an important contribution to 

the resultant uncertainty, and it must be taken into account, even if the line of best fit 

appears well constrained. If all the uncertainties are acknowedged, then the 

calibrations can be a useful method for generating first-order estimates of variables of 

interest in palaeoclimatic research. We will demonstrate that the uncertainties in the 

empirically-derived isotopic relationships, and the natural variability of new samples 

about those relationships, lead unavoidably to significant uncertainty in estimates of 

δ
18Oprecipitation and temperature. Moreover, the calibrations require several steps of data 

conversion, and the uncertainties need to be combined appropriately. Whilst some 

researchers give some information about uncertainties in individual correlations 

(BERNARD et al., 2009; GRIMES et al., 2003; POLLARD et al., 2011; PRYOR et al., 2013; 

STEVENS et al., 2011; VAN DAM  and REICHART, 2009;), others do not explicitly 

quantify the statistical uncertainties inherent in their calculations (UKKONEN et al., 

2007; IACUMIN et al., 2010).  

Here, we explore the application of standard statistical analysis to the issue of 

data calibration in the context of generating estimates of past temperature across a 

wide span of geological time (ARPPE and KARHU, 2010; DELGADO HUERTAS et al., 

1995; FABRE et al., 2011; KOVÁCS et al., 2012; KRZEMIŃSKA et al., 2010; MATSON 

and FOX, 2010; SKRZYPEK et al., 2011; TÜTKEN et al., 2007; UKKONEN et al., 2007; 

VAN DAM  and REICHART, 2009). Our methods are similar to those used in POLLARD et 

al. (2011) who outline the errors associated with inferring geographical origin from 

individual human bioapatite measurements We first review some of the methods 

commonly used for regression analyses that facilitate the conversion of δ18Obioapatite–



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 

δ
18Oprecipitation–T. A regression technique is then established that is statistically valid 

and appropriate for the datasets being employed, and the reasons for choosing this 

method are explained in detail. A method for calculating the uncertainties involved in 

the data calibrations is then presented, introducing the underlying mathematical model 

and the formulae which comprise the basis of the calculation. A digital spreadsheet 

that researchers may download and use to process their own data is also presented 

(Supplementary Data). We then use our model to demonstrate some trends that arise 

from error calculations and conclude with a series of recommendations concerning the 

handling of errors when making δ
18Obioapatite–δ

18Oprecipitation–T conversions. The 

primary calibration equations discussed in this paper focus on the conversion 

relationships developed for horse (DELGADO HUERTAS et al., 1995) and elephants 

(AYLIFFE et al., 1992): although based on small datasets, both are widely applied 

(ARPPE and KARHU, 2010; BOS et al., 2001; DELGADO HUERTAS et al., 1995; FABRE et 

al., 2011; KOVÁCS et al., 2012; KRZEMIŃSKA et al., 2010; MATSON and FOX, 2010; 

SKRZYPEK et al., 2011; TÜTKEN et al., 2007; UKKONEN et al., 2007). We use them as 

an example to show that correct mathematical handling of the data facilitates a more 

rigorous data-conversion process, and gives a clearer statement of the inherent 

uncertainties in the predictions being made from the existing data. 

 

2. Data conversion on enamel carbonates 

By convention, the calibration equations of interest (e.g. for Z1) are typically 

expressed in terms of δ
18Obioapatite values measured on the phosphate moiety in the 

bioapatite structure, quoted relative to the SMOW/VSMOW isotopic standards. 

Enamel carbonates offer an alternative source for measuring δ18Obioapatite, almost 

always measured relative to the PDB/VPDB isotopic standards. Using isotopic data 
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measured on the carbonate moiety of tooth enamel therefore requires up to two 

preliminary conversions (see Table 1): firstly if the δ18Obioapatite values were measured 

relative to the PDB/VPDB isotopic standards, and/or secondly the estimation of a 

phosphate δ18O value from an enamel carbonate δ
18O measurement. While these two 

conversions (described as A1 and A2 in Table 1) each have statistical errors 

associated with defining the line of best fit through the data points (see below), their 

correlation coefficient r 2  is very close to 1, meaning the associated errors are 

minimal. Similarly, measurement errors on oxygen isotopic values are typically 

negligible compared to the calibration errors. This paper therefore focuses on the 

implications of much greater uncertainties in conversions from δ18Obioapatite to 

δ
18Oprecipitation and thence to temperature T (Z1 and Z2 in Table 1). Unless specifically 

stated, all δ18O values in this paper are given relative to SMOW/VSMOW. 

 

3. Calculating conversion relationships using least squares regression 

From the perspective of palaeoclimatic investigations, the equations used for 

conversions Z1 and Z2 are often published in a form that is in the opposite direction 

to that required when investigating palaeontological and archaeological material: i.e. 

y = ax+ b where x is the unknown variable being reconstructed from observations of 

y  (e.g. Table 1). This is because the conversion equations follow the presumed 

direction of causality, from input to output – thus, δ18Oingested water as the independent 

variable on the x-axis controls resultant δ18Obioapatite on the y-axis and, similarly, air 

temperature T controls resultant δ18Oprecipitation. Palaeoclimatologists, however, need to 

work backwards from the known output, which is found and measured, to estimate the 

input. Researchers have approached this problem in two different ways: some choose 

to find the least-squares fit y(x) = ax+ b  and then invert it to obtain x = (y− b) / a 
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(henceforth known as inverted forward regression)( ARPPE and KARHU, 2010; 

AYLIFFE et al., 1994; TÜTKEN et al., 2007; UKKONEN et al., 2007); others instead swap 

the x and y axes of the original data, transposing and re-plotting it, to find a new least-

squares fit of the form x = cy+ d  (henceforth referred to as transposed, or reversed, 

regression)(BERNARD et al., 2009; FABRE et al., 2011; KOVÁCS et al., 2012; 

SKRZYPEK et al., 2011; VAN DAM  and REICHART, 2009;). 

It is important to note that, unless the data are perfectly correlated (with r2 = 

1), the equations x = (y− b) / a and x = cy+ d  obtained in this way from the same 

dataset will differ in a predictable manner and thus generate predictably different 

values for ‘x’. Both equations pass through the mean (x, y)  of the data, but the slopes 

1/ a and c are related by 

 

   c = r 2 / a     Equation 1 

 

so that the worse the data are correlated (the further r2 is from 1), the larger the 

difference between the slope of the inverted forward and the transposed equations. 

From this relationship it follows that values of ‘x’ calculated using a transposed 

regression fit of x(y) will be consistently higher than those produced from the inverted 

forward regression fit of y(x) for the range of values below the mean (x, y) , and 

consistently lower for those above (x, y)  (e.g. Figure 1A).  

This discrepancy is a serious problem when attempting quantitative 

palaeoclimatic reconstruction from isotopic data. For example, across the range of 

δ
18Obioapatite values typically measured from palaeontological and archaeological 

samples (c.5–25‰ relative to VSMOW), differences in predicted δ
18Oingested water from 

the forward and transposed fits, y(x) and x(y), vary by several permil, owing to the 
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difference in fitted slopes for typical r2 = 0.75–0.85 (see Table 1). Similarly for 

temperature, where the values of r2 are 0.6 or smaller (Table 1) and thus the difference 

in slopes is much larger, temperatures calculated from δ18Oprecipitation using a forward 

fit y(x) will always be significantly warmer than those calculated using a transposed 

fit x(y) for values below the mean, and the converse is true when above the mean 

(Figure 1A).  

One recent example of the impact this difference in method can have on 

interpretations of isotopic data is a re-analysis of horse tooth enamel phosphate data 

from last interglacial-glacial cycle contexts at the Hallera Avenue site, Wrocław 

(Poland) (3 measurements ranging between 13.4‰ and 14.1‰; SKRZYPEK et al., 

2011, Supplementary Data). The isotopic data were interpreted as indicating 

temperatures 2–4ºC higher than previous estimates for the site based on pollen 

analyses (SKRZYPEK et al., 2011). In this analysis, the δ
18Obioapatite–δ

18Oprecipitation–T 

calibrations were made using transposed fits of a calibration derived from a dataset 

from SÁNCHEZ CHILLÓN ET AL. (1994). We recalculated these figures using 

forward and transposed fits of a more commonly-used equation for calibrating horse 

δ
18O (DELGADO HUERTAS ET AL. 1995; Table 2, Figure 2). When an inverted 

forward regression fit is used to calibrate the δ
18Obioapatite data, the resulting 

δ
18Oprecipitation estimates are 1–2‰ lower, and the estimated temperatures are 5–7ºC 

lower, than when a transposed regression is used. The point here is not to challenge 

the specific interpretations given by SKRZYPEK et al. (2011), but to provide a clear 

illustration of the significant effects that transposing the calibration equations can 

have on the resulting predicted δ
18Oprecipitation–T values. 

Some studies have attempted to avoid the problem of asymmetry between 

inverting the forward least-squares regression y(x) and the transposed regression 
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x(y) by instead calculating δ18Obioapatite–δ
18Oprecipitation–T conversion relationships 

using Reduced Major Axis (RMA) regression (VAN DAM and REICHART, 2009; 

MATSON and FOX, 2010). RMA yields an equation with a slope that can also be 

related to the correlation coefficient; the RMA slope is r / a = c / r , which is equal to 

the geometric mean of the two slopes given by forward and transposed least-squares 

regressions, and thus predicts values that fall between these solutions (Figure 1A). 

The two least-squares regressions and the RMA regression based on the same data all 

intersect at the mean (x, y) . Yet they will systematically diverge from each other, 

both as the correlation coefficient r 2becomes smaller, and with increasing distance 

from the mean. Given these facts, it is pertinent to ask whether one method is more 

appropriate than another for the interpretation of palaeoclimatic δ18Obioapatite data? 

Two main factors are relevant for discussing this question: the partitioning of error 

between x and y, and the direction of causality between the variables. 

 

3.1 Error partitioning 

In a least squares regression analysis, the effects of any (measurement) uncertainties 

in the independent controlling variable x are assumed to be negligible in comparison 

to the statistical variability in the dependent variable y for a given value of x. The 

underlying statistical model is y = αx+ β +ε , where the coefficients α and β give the 

true correlation line for the whole population from which the data sample is drawn 

(whereas a and b are estimates of α and β from the data), and where ε  is a random 

variable with a zero mean that reflects natural variability about any less-than-perfect 

correlation, perhaps due to unknown variables other than x that also affect y. The 

forward least-squares fit y(x) is calculated by minimising the sum of the squared y-

distances between each datapoint and the best fit line (Figure 1B). This assumes that 
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100% of the residual misfit is associated with the variability or uncertainty in y, 

including when the formula is used in its inverted form x = (y− b) / a. Conversely, the 

transposed fit x(y) minimizes the sum of the squared x-distances between the 

datapoint and the line, assuming that 100% of the residual misfit is associated with 

uncertainty in x (Figure 1C). 

It is obvious in practice that the datasets used to generate equations for 

palaeoclimatic reconstruction have measurement errors in both x and y, which should 

be considered additional to the errors associated with natural variability in the 

dependent variable y. For example, in conversion Z1, δ
18Odrinking water is typically 

poorly known, being estimated using δ
18Oprecipitation data from local or regional 

International Atomic Energy Agency monitoring stations that may not include (or be 

restricted to) data from the years when the analysed fauna were alive, rather than 

being estimated from water sources actually consumed by fauna (AYLIFFE et al., 1992; 

HOPPE, 2006; SÁNCHEZ CHILLÓN et al., 1994); δ18Obioapatite can generally be measured 

more precisely, yet sources of sampling variability may include such factors as the 

time period represented by the analysed sample. If the sizes of the errors were known 

– typically they are not – then a generalised least-squares method could be used to 

assign a specified proportion of the misfit to each variable, and the resultant slope 

would fall between those of the inverted forward fit and the transposed fit. RMA 

constitutes a specific example of this, making the overly simplistic assumption that 

the errors in x and y are proportional to the magnitude of the overall range in each 

variable (SMITH, 2009), which is equivalent to minimising the sum of the triangular 

areas formed between each datapoint and the line of best fit in both the x and y 

directions (Figure 1D). The best argument for this assumption is that x and y are 

treated symmetrically in the minimisation, and thus calibrations produced using RMA 
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do not depend on whether the data is transposed or not. It is not an appropriate 

assumption, however, when most of the misfit is probably due to natural variability in 

y. 

 

3.2 Direction of causality 

The symmetry of RMA analysis between x and y, and the acknowledgement of error 

in both axes, suggests that it may be appropriate in situations where the two variables 

are co-dependent on other causes, and it seems arbitrary which variable is placed on 

which axis. For example, in conversion between δ
18Ophosphate and δ18Ocarbonate (A2), the 

two variables are directly related but one is not dependent on the other; rather, they 

co-vary according to the composition of a third variable – the δ18O of body water. 

Accordingly, we suggest that RMA be considered for conversions A1 and A2 

(although both datasets show such high r2 coefficients that the difference between the 

least squares and RMA solutions would be small). 

In contrast, we argue here that RMA is not the appropriate method for 

conversions Z1 and Z2 due to the causal relationship between the two variables in 

each conversion, which are related because one is dependent on the other, i.e. there is 

a causal stimulus and resulting effect. For example, the value of y=δ18Obioapatite is a 

dependent variable, controlled by the independent variable x=δ18Odrinking water (with 

some natural variability due to other factors such as physiology and food) and no 

possibility for δ18Obioapatite to impact back directly on δ18Odrinking water. The critical point 

here is the asymmetry of the relationship being investigated. In situations where x 

“causes” y, it is statistical good practice and appropriately representative of the 

physical relationship between the variables to place the independent variable on the x-

axis and calculate a fit of y(x), thus preserving the direction of cause and effect (see 
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also POLLARD et al., 2011 and SMITH, 2009). For δ18Obioapatite–δ
18Oprecipitation–T 

conversions, the most appropriate method is thus a forward least squares analysis, 

following the direction of causality and then inverting the relationship to 

abyx /)( −= ; this is indeed consistent with the way in which the vast majority of 

conversion relationships have been published. We discourage the use of transposed 

regression and RMA for these conversions, as statistically inappropriate for the causal 

relationships used in the Z1 and Z2 calibrations, and we note again that they are 

possibly misleading since they have lower slopes, r 2 / a  and r / a  respectively, than 

the slope 1/ a of inverted forward regression (see earlier discussion of slopes). 

 

3.3 Theory of error and error estimation 

Palaeoclimatic researchers have an understandable desire to draw firm conclusions 

about past temperatures from the isotopic measurements of palaeontological and 

archaeological samples. It is important, nevertheless, to keep track of the statistical 

uncertainties that are inevitably associated with reconstructions based on least-squares 

regressions, and these are not always quoted. In this section we discuss the nature of 

the statistical uncertainties, explain how they can be calculated and conclude with two 

key equations 5 and 6 that may be used for error estimation in the conversions Z1 and 

Z2. In the next section we then illustrate the use of these equations by way of case 

studies. 

The uncertainties in conversions may be divided into two main categories: (1) 

those concerning the initial calibration by estimation of the line of best fit for the 

population from a finite dataset and (2) those concerning the natural variation of new 

samples around the line. Both are ultimately due to the fact that there is a natural 

spread of data around any correlation that cannot therefore be described as providing a 
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direct prediction of y from x. This is often due to the impact of other external factors, 

for example, the impact of humidity, evapotranspiration effects or intra-population 

variability on the δ18Obioapatite–δ
18Oprecipitation conversion (see also the discussion of 

natural variation in SMITH, 2009). As the variables δ
18Obioapatite and δ18Oprecipitation are 

not 100% dependent upon each other, deviations from a line of best fit are inevitable 

even if the measurement errors are negligible. This variation cannot be controlled or 

reduced by the investigator, but is a natural property of the system being investigated, 

and it should be estimated when using the conversion formula to calibrate isotopic 

data.  

Recall that the underlying statistical model is y = αx+ β +ε , where α and β 

give the true correlation line for the whole population, and ε is a random variable that 

represents the effects of all the unknown variables that impact on the calibration 

relationship. (The parameters α and β are unknown because we can only ever have a 

sample from the whole population.) When α and β are estimated by a least-squares fit 

( baxy += ) to a dataset containing a random sample of n values (xi, yi) from this 

population, the inherent uncertainty, if reported, is often given in the 

formy = (a±δa)x+ (b±δb). It is, however, statistically more appropriate to write 

y=ax+b ± δy, where the formula 

 

 

Equation 2 

 

gives a one-standard-deviation estimate of the uncertainty in the least-squares fit at 

position x, and 
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and 

 

Equation 3 

 

Here, δa is an estimate of the uncertainty in the slope, δb is an estimate of the 

uncertainty in the fit at x = x , and sy/x  is an estimate of the standard deviation of the 

natural variability in ε. Three critical points to note are: (i) the uncertainty in the fit is 

proportional to the natural variation sy/x about the fit; (ii) the uncertainty decreases as 

the size n of the dataset increases; (iii) the uncertainty increases with distance x− x  

from the mean of the dataset, which is a warning against extrapolation. We note also 

that regression software typically returns the value δb = δb+ δax  of the uncertainty 

in the fit at x = 0 rather than δb, and thus δb may substantially overestimate the 

uncertainties of calibrated δ
18O or temperature values if, as is usual, these are not 

centred around x = 0 (which is sometimes known as the lever effect). 

We now apply this model to assess the magnitude of the errors in categories 

(1) and (2) when evaluating data using an inverted calibration equation x = (y− b) / a. 

First, we note that the least-squares fit is itself uncertain. Following MILLER and 

MILLER (1984), we can approximate the uncertainty in the inverted correlation line by 

writing x = (y− b) / a+δx , where: 
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Equation 4 

 

(Equation 4 can be derived from Equations 2 and 3 and the relationship 

(y− y) = a(x− x) which follows from b = y− ax.) 

Second, we note that when using sample data for palaeoclimatic 

reconstruction, each of these samples is subject to the natural variability ε. Therefore 

the mean y0 of the samples is not equivalent to the population mean y at a given 

location, just as a particular mammoth tooth is unlikely to be typical of the population 

as a whole. If we have m independent samples (where m may only be 1) and the mean 

of those samples y0 then the value of x0 = (y0 − b) / a inferred from the calibration 

relationship is subject to an uncertainty (MILLER and MILLER, 1984; POLLARD et al., 

2011): 

 

Equation 5 

 

In many practical examples, the number n of datapoints used to generate the 

correlation is much greater than the number m of independent samples, and thus the 

natural variability of these samples will then dominate any uncertainty from the 

correlation.  
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Finally, there are many situations where researchers may wish to take 

estimates x0 of δ18Oprecipitation generated by conversion Z1, and use a further calibration 

T = (x− bT ) / aT  to generate an estimate of temperature from the value of x0 

(conversion Z2). The uncertainty in this temperature can be obtained using a similar 

formula to Equation 5, but this time using the uncertainty δx0 previously calculated for 

the δ18Obioapatite–δ
18Oprecipitation calibration in place of a sample variability sx/T / m . 

This gives: 

 

Equation 6 

 

where nT and xT  are values from the temperature calibration dataset. It is important to 

note that Equation 6 is used to estimate errors at the Z2 conversion stage only when 

using values of x0  inferred from conversion Z1 with uncertainty δx0 inferred from 

Equation 5. (If a Z2 conversion were applied to mT  direct observations of x0  

(δ18Oprecipitation) then an equation analagous to Equation 5 would be used instead.) 

Equations 4–6 are all simple estimates of one-standard-deviation uncertainty 

for the relevant variable. This is certainly sufficient to get a feel for the magnitude of 

the uncertainties, though rigorous hypothesis testing should be based on confidence 

intervals in a Student's t-test (POLLARD et al., 2011). For ease of use, these equations 

have been programmed into a spreadsheet that is available with this article, 

downloadable from the journal website (Supplementary Data). 
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4. Application and propagation of errors 

Having outlined the theory of error and error estimation, we now assess some of the 

implications for the way that palaeoclimatic inferences are drawn from isotopic data, 

and provide examples of the conversion δ
18Obioapatite–δ

18Oprecipitation–T using published 

data. A key point is that this is a two-stage process, and that errors produced in the 

first stage must be propagated through to the second stage. Our approach has been 

developed for a particular context, that of vertebrate isotopic data, but may be used in 

other geochemical contexts. 

 

4.1 Errors in the conversion from δ
18Obioapatite to δ18Oprecipitation (Z1) 

To illustrate the errors associated with this conversion, we have re-analysed two 

datasets from previous studies (horse and mammoth δ
18Obioapatite)(AYLIFFE et al., 1992; 

DELGADO HUERTAS et al., 1995) using Equations 4 and 5 to obtain the error estimates 

for an inverted forward regression (Figure 2). The error lines show how uncertainty in 

the lines of best fit is least around the dataset mean (x, y)  and increases with distance 

from the mean, for both the uncertainty in the fit, calculated using Equation 4 (dark 

grey region in Figure 2) and the total uncertainty δx0 incorporating the natural 

variability of the population, calculated using Equation 5 (light grey region in Figure 

2). The total error associated with converting a single δ18Obioapatite measurement (i.e. m 

= 1) to δ18Oprecipitation using x = (y− b) / a remains relatively constant for different 

values of y, since it is dominated by the estimate of the natural variability in the 

sample data (the first term in the square root of Equation 5). 

Considering Equation 5, it is clear that the errors associated with calibration 

will be smaller if a larger number of samples are averaged together, thus reducing the 

size of the term 1/m. The effects of sample size may be illustrated by calculating the 
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errors associated with converting δ
18Obioapatite values in the range 10‰–20‰ to 

estimates of δ18Oprecipitation. Comparing conversions from increasing sample sizes of 1, 

5 and 20 individuals with a mean δ
18Obioapatite value of 10‰, we see that the errors are 

reduced from 1.7‰ to 1.1‰ in mammoth and 2.8‰ to 1.6‰ in horses; larger 

reductions are seen for mean δ
18Obioapatite values of 20‰ since these are closer to the 

regression mean (Table 3). Whilst increasing sample sizes does reduce the error, a 

larger reduction is always seen between sample sizes of 1 and 5 than between 5 and 

20 (indeed, the largest drop is from m = 1 to m = 2). That the greatest reduction in 

error is seen when analysing two samples rather than just one emphasises that it is 

worth making a significant effort to get more than one sample from each layer; 

however, after a few samples, the extra effort of continuing to reduce 1/m has little 

extra impact, as the error tends towards that of the regression line. These calculations 

clearly indicate the benefit of sampling multiple individuals to obtain a better estimate 

of the population-level mean δ
18Obioapatite, which can more than halve the error 

compared to single measurements in some cases. 

The effects of sample size can be further illustrated with an example of 

recently published data. In their investigation of early-mid Pleniglacial climate in 

Poland, SKRZYPEK et al. (2011) calibrate their oxygen isotopic data from bioapatite to 

temperature using transposed fits of x(y) but do not report the associated errors. When 

their data for mammoth and horse samples are reprocessed using the methods outlined 

in this paper (using the equations of AYLIFFE et al.1992 and DELGADO HUERTAS et al. 

1995), the errors in T are calculated to be ±4.3–4.6ºC and ±8.0ºC respectively. 

Treating each sample individually, these errors are too large to offer a detailed 

interpretation of palaeoclimate. However, by using the mean of two mammoth 

samples and the two horse samples from the same layer, the errors fall to ±3.3ºC and 
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±5.9ºC respectively. If ten individuals had been sampled for each layer these errors 

could have been reduced to <2ºC. 

A previous assessment of calibration errors investigated the conversion of 

human δ18Obioapatite–δ
18Oprecipitation, and calculated errors of at least 1–3.5‰ (POLLARD 

et al., 2011). This study concluded that these errors were too large for the calculated 

δ
18Oprecipitation values to be used for pin-pointing the geographic origin of individuals 

within the UK due to the limited natural variability in UK groundwaters. This is an 

interpretive problem in which it is desired to interpret each sample individually, and 

thus averaging between individuals cannot be used to reduce the uncertainty. In 

situations where multiple individuals can be sampled, however, such as the 

investigation of palaeotemperature through faunal remains as discussed in this article, 

it is possible to reduce the uncertainty by increasing m and obtain a more accurate 

estimate of the mean value of y (i.e. of y0 in equations 4, 5 and 6). This substantially 

reduces the conversion errors overall. The sensitivity of the calibration equations to 

the number of measured samples has critical importance for determining whether the 

research questions of interest can legitimately be answered when calibrating the data, 

or whether the associated errors will be too large. Calibration may not be sufficient to 

answer the question, particularly for individual samples or smaller assemblages where 

a cohesive group of samples cannot be obtained.  

 

4.2 Propagation of errors into the conversion from δ
18Oprecipitation to temperature (Z2) 

Moving to the second stage of the conversion process, we now consider what are the 

implications of the quantified errors in the Z1 conversion when propagated through 

into the Z2 conversion of δ18Oprecipitation to temperature. Unlike for conversion Z1, 

there are no standard equations for this stage, but rather there are many equations that 
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have been used, which follow from a particular choice of dataset to construct each 

equation. Researchers typically generate a δ
18Oprecipitation–T conversion dataset relevant 

to their study by compiling the readily available data from one or a number of 

monitoring stations in the GNIP network over a global, continental, or regional 

geographic area (KOVÁCS et al., 2012; SKRZYPEK et al., 2011); other potential 

calibration equations have also been calculated (DULIŃSKI et al., 2001; GOURCY et al., 

2005; ROZANSKI et al., 1993; TÜTKEN et al., 2007; UKKONEN et al., 2007; VON 

GRAFENSTEIN et al., 1996). Each of these datasets will generate a slightly different 

estimated temperature for a given value of δ
18Oprecipitation. For example, Table 4 shows 

the temperatures and errors estimated from horse δ
18Obioapatite using five different 

datasets taken from the GNIP network for the Z2 conversion (see also Table 1). We 

illustrate the effect of varying numbers of enamel analyses (1, 5, 10, 20), but all with a 

mean δ18Obioapatite of 15‰, equating to δ18Oprecipitation of –10.7‰.  

Three significant points are highlighted. Firstly, the crucial effect of palaeo-

sample size m is again evident: the dominant influence on the errors at the Z2 

conversion stage is the number of horse samples analysed (m) and the consequent 

magnitude of the error in the Z1 conversion (δx0). The term δx
0

2
 dominates the other 

terms in the square root in Equation 6 so that, to a good approximation, 

δT0 ≈ δx0 / aT , and the statistical uncertainty in the regression line for a particular 

dataset has little effect (see Figure 3). But as we discuss below, it does not follow that 

the choice of dataset has little effect. 

Secondly, the choice of dataset and thus regression equation can make a big 

difference to the estimated magnitude of error for a given number of samples. In the 

example we show, conversions based on annual temperature/precipitation data give 

markedly smaller errors than the equations based on monthly data (compare the 
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conversions based on data from Kraków and Vienna: Table 4). This is because the 

spread of the annual and monthly data are different, influencing the slope aT of the 

δ
18Oprecipitation–T regression line: for the annually averaged data, the slope is 

approximately twice as large as that for the monthly data and, as noted above, 

δT0 ≈ δx0 / aT . The choice between monthly and annual data should, however, be 

made on grounds of biological suitability, such as the nature of the temporal 

averaging in the faunal sample, rather than simply to minimise error estimates.  

Thirdly, though the statistical uncertainty in the regression line for a given 

dataset is typically less than 0.2ºC (Table 1), the temperatures inferred from the 

different datasets vary from 5.8ºC (General Europe) to 8.7ºC (Vienna, annual). 

However, if the number of faunal samples is small then, allowing for the uncertainty 

in the Z1 conversions, the temperature ranges predicted by the various equations 

largely overlap with each other (Figure 4). Only if 10 or 20 samples are available do 

the temperature ranges inferred from annual data at different locations start to 

separate.  

The above discussion suggests that whilst the errors are mainly generated by 

the Z1 conversion (δ18Obioapatite–δ
18Oprecipitation) and depend on sample size, the way 

that these errors are mapped through to temperature ranges depends on the choice of 

regression line for the Z2 conversion (δ
18Oprecipitation–T). 

 

5. Concluding comments and recommendations 

The correlations between temperature and the oxygen isotopic values of bioapatite 

and precipitation motivate the use of calibration for generating first-order estimates of 

palaeoclimatic variables indicated by faunal isotopic compositions. Calibration also 

permits direct comparisons between measurements based on δ18Obioapatite data and 
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estimates of δ18Ogroundwater or temperature measured in other proxies such as 

palaeoaquifer waters, chironomids or pollen. Such multi-proxy comparative 

approaches represent a valuable interpretive tool in palaeoclimatic studies provided 

the limits and uncertainties of each method are acknowledged, which is not 

universally done. We offer the equations in this paper as a suitable means of 

quantifying the uncertainties associated with calibrating isotopic data. 

In summary, we advocate the use of multiple samples where possible, but that a 

balance must be struck between reduced uncertainty and feasibility, both in terms of 

number of analyses and comparative data. The use of multiple samples (m>1) for each 

investigated assemblage reduces the population-level uncertainty through the factor 

1/m in Equation 5. But after a certain point, when 1/m becomes smaller than other 

terms inside the square root of Equation 5, adding more samples will not significantly 

reduce the Z1 conversion error (δ
18Obioapatite–δ

18Oprecipitation) any further. For 

conversions of δ18Obioapatite data to temperature through both the Z1 and Z2 

conversions (δ18Obioapatite–δ
18Oprecipitation–Temperature), the use of larger numbers of 

samples results in smaller errors at both conversion stages. But the limiting factor on 

temperature estimates may often be the availability of appropriate comparative 

datasets. In such circumstances, one should be aware of the accuracy needed to make 

meaningful interpretations in a given case study. 

 

We conclude by listing three recommendations for the statistical treatment of 

errors in the conversion of bioapatite oxygen isotope data to precipitation oxygen 

isotope values and temperature: 
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1. Use appropriate regression for the datasets being employed – we recommend 

inverted forward regression for conversions Z1 and Z2, and not transposed or 

RMA regressions. 

2. To report errors in a regression line, use Equations 2 and 3 rather than the 

form y = (a±δa)x+ (b±δb), as is commonly produced by spreadsheet 

software. 

3. To report errors in data conversion, use Equations 5 and 6 which appropriately 

estimate this uncertainty. 

 

These recommendations are not a comprehensive list, but offer an important set of 

guidelines regarding the calculation of error estimates. 
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Figure 1: 1A: Plot showing GNIP data on δ
18Oprecipitation and temperature for 34 

European monitoring stations under 500m altitude with >5 years of available data 

(Supplementary Data). The calibration lines for forward least-squares (FLS), 

transposed least-squares (TLS) and RMA regressions have predictably and 

significantly different slopes. 1B-D: schematic plots showing the partitioning of error 

between the x and y axes: in forward least-squares analysis for y(x) the uncertainty is 

attributed to y (1B); in transposed least-squares analysis for x(y) the uncertainty is 

attributed to x (1C); and in reduced-major-axis analysis the uncertainty is apportioned 

symmetrically between x and y by minimising the areas of the triangles shown (1D). 

 

 

 Figure 2: The regression line for δ
18Obioapatite and δ18Oprecipitation in (A) elephants 

(AYLIFFE et al., 1992) and (B) horses (DELGADO HUERTAS et al., 1995). The black 

line shows the forward least-squares fit y(x). The dark grey region shows the 

uncertainty in the fit, calculated using Equation 4. The light grey region shows the 

total uncertainty δx0  incorporating the natural variability of the population as 

calculated using Equation 5, when calibrating a new measurement y0of δ18Obioapatite 

from a single sample (m = 1) into an estimate of δ18Oprecipitation. Note that the total 

uncertainty incorporating the natural variability of the population can be much greater 

than the uncertainty in the fit. 

 

 

Figure 3: The regression line for δ
18Oprecipitation and temperature for the monthly GNIP 

data from Vienna (downloaded from GNIP/WISER online database). 
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The black line shows the least-squares fit y(x). The dark grey region shows the 

uncertainty in the regression, calculated using Equation 4. The light grey region 

shows the total uncertainty incorporating the natural variability of the population for a 

single direct measurement. When a value x0 of δ18Oprecipitation is inferred by conversion 

Z1, the corresponding uncertainty, illustrated here by the lines x0 ± δx0, maps to 

uncertainty δT0 around T0 as shown, as given by Equation 6. Note that the uncertainty 

δx0 from the Z1 conversion is substantially greater than the uncertainty in the 

regression (width of dark grey region). 

 

 

 Figure 4: Predicted temperature (T0) and error estimates (δT0) for five different 

conversion datasets when calibrating 1, 5, 10 and 20 samples of horse tooth enamel 

with mean δ18Oenamel of 15‰, equating to δ18Oprecipitation of –10.7‰ (datasets 

downloaded from GNIP/WISER online database: see Table 3 for full details). 
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Table 1: Examples of equations that can be used for calibrating δ18Oenamel data in 

palaeoclimatic and palaeoecological investigations  

 

Table 2: Summary of equations used to calibrate δ
18Oenamel isotopic results from 

SKRZYPEK et al. 2011. 

 

Table 3: Errors δx0 associated with sample size m when converting δ18Obioapatite values 

y0 to an estimate of δ18Odrinking water using the Z1 correlations given in Table 1 and the 

error analysis in equation 5.  

 

Table 4: Summary of calibration errors δT0 when converting horse populations of 1, 5, 

10 and 20 individuals with mean δ
18Oenamel of x0=15‰ through conversion Z2 using 

five different datasets (downloaded from GNIP/WISER online database). 
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Table 1: Examples of equations that can be used for calibrating δ18Oenamel data in palaeoclimatic and palaeoecological investigations  

 

The right-hand columns give values of parameters calculated using the methodology outlined in this paper. 

Conversion Equation (as published) r2 Reference      

A1           

PDB � SMOW δ
18OVSMOW = 1.03091 δ18OPDB + 30.91 1.00 COPLEN et al. 1983      

A2      n     

Carbonate � phosphate δ18Ophosphate = 0.98 δ18Ocarbonate – 8.5 0.98 IACUMIN et al. 1996  17     

Z1 (Species specific)      n x  sy/x  δa  δb 

Mammoth δ
18Oenamel = 0.94 (±0.10) δ18Oprecipitation + 

23.3 (±0.7) 
0.85  AYLIFFE et al. 1992 17 -5.4 1.33 0.101 0.324 

Horse δ
18Oenamel = 0.71 δ18Oprecipitation + 22.6  0.77  DELGADO HUERTAS et 

al. 1995 
23 -5.8 1.71 0.084 0.357 

Z2 (Regionally specific)      n T  sx/T  δaT  δbT  

Europea δ
18Oprecipitation = 0.59Tmean – 14.24 0.54 ROZANSKI et al. 1992 47     

Europeb  δ18Oprecipitation = 0.53Tmean – 13.74 0.60 This study 34 9.9 0.92 0.076 0.16 

Kraków (annual data)
c
 δ

18Oprecipitation = 0.57Tmean – 14.50 0.36 This study 28 8.2 0.67 0.149 0.13 

Kraków (monthly data)c δ
18Oprecipitation = 0.32Tmean – 12.54 0.59 This study 334 8.2 2.10 0.015 0.11 

Vienna (annual data)d δ
18Oprecipitation = 0.65Tmean – 16.37 0.28 This study 45 10.2 0.83 0.158 0.12 

Vienna (monthly data)d δ
18Oprecipitation = 0.39Tmean – 13.70 0.60 This study 516 10.3 2.37 0.014 0.10 

a Full dataset unavailable for analysis; equation taken from Figure 4A in ROZANSKI et al. 1992. 

b General European relationship defined using 34 European monitoring stations in the Global Network of Isotopes in Precipitation 

(GNIP)/WISER online database under 500m altitude that had at least five complete years of data ( Supplementary Data). 
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c Equations defined using data downloaded from the WISER database (1975–2002). 

d Equations defined using data downloaded from the WISER database (1961–2005). 
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Table 2: Summary of equations used to calibrate δ
18Oenamel isotopic results from SKRZYPEK et al. 2011. 

 

Note the significant difference in slopes between the inverted and transposed fits: for Z1, the value of 1.40 as opposed to 1.08 or 1.29; for Z2, the 

value of 3.08 rather than 1.804. 

 

Conversion Fit Used by Equation R2 Data 
Z1 (species 
specific)           

Horse Forward fit -  δ
18Oenamel = 0.71 δ18Oprecipitation + 22.61 

0.77 DELGADO HUERTAS et al. 1995  Inverted fit This paper δ
18Oprecipitation = 1.40 δ18Oenamel – 31.72 

 Transposed fit -  δ
18Oprecipitation = 1.08 δ18Oenamel – 25.82 

  Transposed fit 
SKRZYPEK et al. 
2011 

δ
18Oprecipitation = 1.29 δ18Oenamel  – 28.7a 0.95 SÁNCHEZ CHILLÓN et al. 1994 

Z2 (regionally 
specific) 

    
      

Krakow Forward fit -  δ
18Oprecipitation = 0.32 Tmean – 12.54   

 Inverted fit This paper Tmean = 3.08 δ18Oprecipitation + 38.60 0.59 SKRZYPEK et al. 2011 

 Transposed fit SKRZYPEK et al. 2011Tmean = 1.804 (±0.16) δ18Oprecipitation + 26.020 (±1.70)b   

 

a Equation used by SKRZYPEK et al. 2011. The dataset of SÁNCHEZ CHILLÓN et al.1994 is much smaller than that of DELGADO HUERTAS et al. 1995. 

b Equation as published by SKRZYPEK et al. 2011. 
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Table 3: Errors δx0 associated with sample size m when converting δ18Obioapatite 

values y0 to an estimate of δ18Odrinking water using the Z1 correlations given in Table 1 

and the error analysis in equation 5.  

 

Grey shading indicates values extrapolated from beyond the range of the available 

data, producing larger errors. 

  
No. of 

samples Mean δ18Obioapatite values 

  (m)  yo=10‰ yo=15‰ yo=20‰ 

  
Calculated Z1 error  

δxo (‰) 
Calculated Z1 error  

δxo (‰) 
Calculated Z1 error  

δxo (‰) 
Horse  1 2.8 2.5 2.5 
 5 1.8 1.3 1.2 
 20 1.6 0.9 0.8 
Mammoth  1 1.7 1.5 1.5 
 5 1.2 0.8 0.8 
 20 1.1 0.6 0.5 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

42 

Table 4: Summary of calibration errors δT0 when converting horse populations of 1, 5, 

10 and 20 individuals with mean δ18Oenamel of x0=15‰ through conversion Z2 using 

five different datasets (downloaded from GNIP/WISER online database). 

 

 

  General Europe Kraków Kraków Vienna Vienna 

No. of enamel 
samples 

(m) 

Calculated 
Z1 error 
δxo (‰) 

nT = 34 
>5years dataa 

nT = 28 
annual datab 

nT = 334 
monthly 

datab 

nT = 45 
annual datac 

nT = 516 
monthly 

datac 

  Error generated by Z2 equation (‰) 
1 2.5 4.8 4.4 7.8 3.9 6.5 
5 1.3 2.6 2.3 4.1 2.0 3.4 
10 1.1 2.2 2.0 3.4 1.7 2.9 
20 0.9 1.8 1.7 2.8 1.4 2.3 
  Estimated Temperature (ºC) 

  5.8 6.7 5.7 8.7 7.8 
a 34 continental stations <500m, averaged over more than 5 years. 

b 1975–2002. 

c 1961–2005. 
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Paper Highlights 
 
 
 
The statistical errors in converting isotope data to palaeotemperature are 
analysed 
 
Appropriate methods, and equations with supporting spreadsheet, are presented 
 
 
Transposed regression underestimates temperature differences by at least 40% 
 
 
Increasing sample size from 1 to 5 gives big improvements, more than 5 less so 
 
 
Uncertainty from natural faunal variability dominate that from precipitation data 
 
 
 
 
 
 
 
 
 


