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Abstract

Oxygen isotope analysis of bioapatite in vertebrateains (bones and teeth) is
commonly used to address questions on palaeoclimatethe Eocene to the recent
past. Researchers currently use a range of methaddibrate their data, enabling the

isotopic composition of precipitation and the amperature to be estimated. In some



situations the regression method used can signtficaffect the resulting
palaeoclimatic interpretations. Furthermore, toarsthnd the uncertainties in the
results, it is necessary to quantify the error®ived in calibration. Studies in which
isotopic data are converted rarely address theis¢spand a better understanding of
the calibration process is needed. This paper ceespagression methods employed
in recent publications to calibrate isotopic datagdalaeoclimatic interpretation and
determines that least-squares regression invest&e{y—Db)/a is the most
appropriate method to use for calibrating causdbjsic relationships. We also
identify the main sources of error introduced atheeonversion stage, and investigate
ways to minimise this error. We demonstrate thatdasample sizes substantially
reduce the uncertainties inherent within the catibn process: typical uncertainty in
temperature inferred from a single sample is at|€4°C, which multiple samples
can reduce to £1-2°C. Moreover, the gain even foamto four samples is greater
than the gain from any further increases. We diswshat when converting
Blsoprecipitaﬁonto temperature, use of annually averaged dataigarsignificantly less
uncertainty in inferred temperatures than use diithig rainfall data. Equations and
an online spreadsheet for the quantification afrsrare provided for general use, and
could be extended to contexts beyond the spe@ptiGation of this paper.
Palaeotemperature estimation from isotopic datebeahighly informative for
our understanding of past climates and their impadtumans and animals. However,
for such estimates to be useful, there must beidemdée in their accuracy, and this
includes an assessment of calibration error. We giseries of recommendations for
assessing uncertainty when making calibratiorss yioapatited " Oprecipitation
Temperature. Use of these guidelines will provideae solid foundation for

palaeoclimate inferences made from vertebrate psotiata.
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1. Introduction

Oxygen isotope analysis of bioapatite in vertebrateains (bones and teeth) and
shell carbonates in terrestrial and marine inveatiels are commonly used to address
guestions on palaeoclimate, palaeoecology and @alaperature from the Eocene to
the recent past (e.grEKE et al., 1995; EcoLLE, 1985;vAN DAM and REICHART,

2009; ANAzzI et al., 2007; ENCHETTA et al., 2005). It is sometimes possible to use
Slgobioapamevalues to address the questions of interest thiregithout requiring the
data to be converted/calibrated to other forms (egBeset al., 2010; HLLIN et al.,
2012). In many isotopic studies, however, the dag¢aconverted to quantitative
estimates of the oxygen isotopic value of precijgitaand thence to temperature
(ArRPPEand KarRHU, 2010; MVARRO et al., 2004; 8rRzYPEK et al., 2011; TTKEN et

al., 2007). These investigations require two dataversions that are based on well

demonstrated correlations:

Z1 A species-specific conversion, usﬁ?ﬁobioapameto estimate the mean
isotopic composition of ingested waté?godrinking wate) ( KOHN, 1996;
LONGINELLI, 1984; luz et al., 1984; Lz and KOLODNY, 1985). For the
purposes of palaeoclimatic reconstructﬁé?odrmkmg waterlS typically

assumed to be equivalent to local mé%{‘ﬁ)precipitaﬂor;



Z2 A regionally-specific conversion, using the estted value of mean
Slsoprecipitaﬁonto estimate mean air temperature DZRNSKI et al., 1992),

which relates to the period the bioapatite was gigw

These correlations exist because of physical laasgovern the movement of
isotopes through the biological and hydrologicalteys, and they remain
consistently statistically significant across geqirical regions and species
(DANSGAARD, 1964; LONGINELLI, 1984).

Defining accurate empirical mathematical relatiopsibetween these
variables is complicated both by the problems itaisling reliable primary data and
by the effect of other variables that introduceertainties into the relationships
themselves (KHN and WELKER, 2005). These uncertainties originate from many
parameters, comprising biological (including spe@&#ects, population variability,
variability in use of different water sources), Bammental (such as latitudinal
effects, rain variability, isotopic variation betarepotential water sources) and
analytical (preparation techniques and measurenradrtainty) effects.

Published equations between temperature and thgeeaxgotopic values of
bioapatite and precipitation (henceforth refer@dsd'®Opiapatite-d ™ OprecipitatiorT)
are developed using regression analyses to olimeis of best fit in the
formy(x) =ax+b (Table 1). These may be used to calibrate dakeitorrelation is
strong enough (LUCY et al., 2008). Recent examiptas the literature make clear,
however, that different mathematical practicescareently employed for undertaking

the regression, and we will argue that not all méshare equally appropriate.



The spread of the data about a line of best fitasgnts the combined effect of
all the sources of uncertainty. We show that wheesi-fit correlation is used to
convert new isotopic measurements, this spread srek@mportant contribution to
the resultant uncertainty, and it must be takem agicount, even if the line of best fit
appears well constrained. If all the uncertaintiesacknowedged, then the
calibrations can be a useful method for generdirsggorder estimates of variables of
interest in palaeoclimatic research. We will dentiais that the uncertainties in the
empirically-derived isotopic relationships, and ttatural variability of new samples
about those relationships, lead unavoidably toifstgmt uncertainty in estimates of
8180precipitaﬁonand temperature. Moreover, the calibrations regséveral steps of data
conversion, and the uncertainties need to be cadappropriately. Whilst some
researchers give some information about unceréarmi individual correlations
(BERNARD et al., 2009; @IMES et al., 2003; BLLARD et al., 2011; Rvyoret al., 2013;
STEVENS et al., 2011yaN DAM and REICHART, 2009;), others do not explicitly
quantify the statistical uncertainties inherenthiair calculations (WKONEN et al.,
2007; hCcuMIN et al., 2010).

Here, we explore the application of standard gtesisanalysis to the issue of
data calibration in the context of generating eates of past temperature across a
wide span of geological time @PeEand KaARHU, 2010; DELGADO HUERTAS et al.,
1995; RBRE et al., 2011; KVAcs et al., 2012; IRZEMINSKA et al., 2010; MTSON
and Fox, 2010; &RzYPEK et al., 2011; TTKEN et al., 2007; WKONEN et al., 2007;
VAN DAM and REICHART, 2009). Our methods are similar to those useminARD et
al. (2011) who outline the errors associated witerring geographical origin from
individual human bioapatite measurements We fagiew some of the methods

commonly used for regression analyses that faiglitae conversion cﬂlgobioapamg



5"®0precipitation-T- A regression technique is then establishedishatatistically valid

and appropriate for the datasets being employeatiirenreasons for choosing this
method are explained in detail. A method for calting the uncertainties involved in
the data calibrations is then presented, introduthe underlying mathematical model
and the formulae which comprise the basis of theutation. A digital spreadsheet
that researchers may download and use to proceis®tiin data is also presented
(Supplementary Data). We then use our model to detrate some trends that arise
from error calculations and conclude with a sedleecommendations concerning the
handling of errors when makid®Opioapatited" Oprecipitatior-T conversions. The
primary calibration equations discussed in thisgpdpcus on the conversion
relationships developed for horses{l@Abo HUERTAS et al., 1995) and elephants
(AYLIFFE et al., 1992): although based on small dataseth,dre widely applied
(ArPPEand KarHu, 2010; B>s et al., 2001; BLGADO HUERTAS et al., 1995; EBRE et
al., 2011; KovAcs et al., 2012; IRZEMINSKA et al., 2010; MTsoN and ox, 2010;
SKRzYPEK et al., 2011; TTKEN et al., 2007; UKONEN et al., 2007). We use them as
an example to show that correct mathematical hagdif the data facilitates a more
rigorous data-conversion process, and gives aarlstatement of the inherent

uncertainties in the predictions being made froendkisting data.

2. Data conversion on enamel carbonates

By convention, the calibration equations of intefesg. for Z1) are typically
expressed in terms 61‘80bioapatitevalues measured on the phosphate moiety in the
bioapatite structure, quoted relative to the SMOBNMOW isotopic standards.
Enamel carbonates offer an alternative source 'émsmrin®180bioapame almost

always measured relative to the PDB/VPDB isotopandards. Using isotopic data



measured on the carbonate moiety of tooth enaraetfibre requires up to two
preliminary conversions (see Table 1): firstlyhéﬁlgobioapatitevalues were measured
relative to the PDB/VPDB isotopic standards, andéwondly the estimation of a
phosphatélgo value from an enamel carbonatéd measurement. While these two
conversions (described as Al and A2 in Table 1 éawve statistical errors

associated with defining the line of best fit thybuhe data points (see below), their

correlation coefficient? is very close to 1, meaning the associated earars
minimal. Similarly, measurement errors on oxygeadpic values are typically
negligible compared to the calibration errors. Tgaper therefore focuses on the
implications of much greater uncertainties in cosi@ns frorrﬁlsobioapatiteto
Slgoprecipitaﬁonand thence to temperature T (Z1 and Z2 in Tabl&dless specifically

stated, alB*®0 values in this paper are given relative to SMOBMOW.

3. Calculating conversion relationships using |lsastares regression

From the perspective of palaeoclimatic investigatjdhe equations used for
conversions Z1 and Z2 are often published in a fitva is in the opposite direction

to that required when investigating palaeontoldgecal archaeological material: i.e.
y=ax+b wherex is the unknown variable being reconstructed frdrseovations of

y (e.g. Table 1). This is because the conversioatemns follow the presumed
direction of causality, from input to output — thﬂjssoingested wateAS the independent
variable on the-axis controls resultalﬁtlsobioapatiteon they-axis and, similarly, air
temperaturd controls resultarﬁlsoprecipitaﬁon Palaeoclimatologists, however, need to
work backwards from the known output, which is fdand measured, to estimate the
input. Researchers have approached this probléwoimifferent ways: some choose

to find the least-squares fif(x) = ax+b and then invert it to obtair=(y-b)/a



(henceforth known as inverted forward regressidmi¢Peand KarHU, 2010;
AYLIFFE et al., 1994; TTKEN et al., 2007; WKONEN et al., 2007); others instead swap
thex andy axes of the original data, transposing and retiptpit, to find a new least-
squares fit of the fornx =cy+d (henceforth referred to as transposed, or reversed
regression)(BRNARD et al., 2009; EBRE et al., 2011; IKVAcs et al., 2012,
SKRzYPEK et al., 2011yAN DAM and ReICHART, 2009;).

It is important to note that, unless the data @réeptly correlated (with® =
1), the equationx = (y—-b)/a and x=cy+d obtained in this wafrom the same
datasetwill differ in a predictable manner and thus gexttempredictably different
values for X'. Both equations pass through the mé#ry) of the data, but the slopes

1/a andc are related by

c=r’/a Equation 1

so that the worse the data are correlated (theent is from 1), the larger the
difference between the slope of the inverted fodnaard the transposed equations.
From this relationship it follows that values &f ¢alculated using a transposed
regression fit ok(y) will be consistently higher than those produaedf the inverted
forward regression fit of(x) for the range of values below the meg&ny), and
consistently lower for those aboyg,y) (e.g. Figure 1A).

This discrepancy is a serious problem when attergmjuantitative
palaeoclimatic reconstruction from isotopic datar. &xample, across the range of
Blsobioapatitevalues typically measured from palaeontological archaeological
samples (c.5-25%elative to VSMOW), differences in predictéjd‘omgested wateffom

the forward and transposed fiygx) andx(y), vary by several permil, owing to the



difference in fitted slopes for typicel= 0.75-0.85 (see Table 1). Similarly for
temperature, where the valuesoéire 0.6 or smaller (Table 1) and thus the diffeeen
in slopes is much larger, temperatures calculatad 6180precipitaﬁonusing a forward

fit y(x) will always be significantly warmer than thosdccdated using a transposed
fit x(y) for values below the mean, and the converseieswien above the mean
(Figure 1A).

One recent example of the impact this differencea@thod can have on
interpretations of isotopic data is a re-analy$isarse tooth enamel phosphate data
from last interglacial-glacial cycle contexts at tHallera Avenue site, Wroctaw
(Poland) (3 measurements ranging between 13aA%.14.1%, SKRZYPEK et al.,
2011, Supplementary Data). The isotopic data weszpreted as indicating
temperatures 2—4°C higher than previous estimatabé site based on pollen
analyses (&zYPEK et al., 2011). In this analysis, th€Opiapaiited OprecipitatiorT
calibrations were made using transposed fits @lidmation derived from a dataset
from SANCHEZ CHILLON ET AL. (1994). We recalculatéitese figures using
forward and transposed fits of a more commonly-wesgdhtion for calibrating horse
580 (DELGADO HUERTAS ET AL. 1995; Table 2, Figure yhen an inverted
forward regression fit is used to calibrate $I’19é)bioapatitedata, the resulting
5"®0precipitation€Stimates are 1-2%o lower, and the estimated teatyres are 5-7°C
lower, than when a transposed regression is usedp®int here is not to challenge
the specific interpretations given byr&YPEK et al. (2011), but to provide a clear
illustration of the significant effects that traspng the calibration equations can
have on the resulting predictéifoprecipitaﬁon—T values.

Some studies have attempted to avoid the problessysimetry between

inverting the forward least-squares regressi(x) and the transposed regression



x(y) by instead calculating®Opioapatied " Oprecipitatior-T CONversion relationships

using Reduced Major Axis (RMA) regressiom DAM and ReEICHART, 2009;

MATSON and Fox, 2010). RMA yields an equation with a slope ttaat also be

related to the correlation coefficient; the RMAmadsr /a=c/r, which is equal to
the geometric mean of the two slopes given by fodveand transposed least-squares
regressions, and thus predicts values that falldxn these solutions (Figure 1A).
The two least-squares regressions and the RMAgsigre based on the same data all

intersect at the mea(X,y). Yet they will systematically diverge from eacthe,

both as the correlation coefficientbecomes smaller, and with increasing distance
from the mean. Given these facts, it is pertinersisk whether one method is more
appropriate than another for the interpretatiopadaeoclimaticﬁlsobioapatitedata?

Two main factors are relevant for discussing thissgion: the partitioning of error

betweerx andy, and the direction of causality between the véemb

3.1 Error partitioning

In a least squares regression analysis, the efdéetsy (measurement) uncertainties
in the independent controlling variabdare assumed to be negligible in comparison
to the statistical variability in the dependenti@bley for a given value ok. The
underlying statistical model ig=ax+ [+¢&, where the coefficients andg give the
true correlation line for the whole population frevhich the data sample is drawn
(whereasa andb are estimates ef andg from the data), and whete is a random
variable with a zero mean that reflects naturailamlity about any less-than-perfect
correlation, perhaps due to unknown variables dtieamx that also affecy. The
forward least-squares #f{x) is calculated by minimising the sum of the sqdare

distances between each datapoint and the beisifi(Figure 1B). This assumes that

10



100% of the residual misfit is associated withhaability or uncertainty iy,
including when the formula is used in its inverfedm x=(y-b)/a. Conversely, the
transposed fik(y) minimizes the sum of the squaredistances between the
datapoint and the line, assuming that 100% ofekelual misfit is associated with
uncertainty irx (Figure 1C).

It is obvious in practice that the datasets usegktterate equations for
palaeoclimatic reconstruction have measurementsimdothx andy, which should
be considered additional to the errors associatddnatural variability in the
dependent variable For example, in conversion Z&l,godrinking waterlS typically
poorly known, being estimated usiﬁﬁoprecipitaﬁondata from local or regional
International Atomic Energy Agency monitoring steis that may not include (or be
restricted to) data from the years when the andlfesena were alive, rather than
being estimated from water sources actually consglumgeauna (ALIFFE et al., 1992;
HoppPE 2006; SNCHEZ CHILLON et al., 1994)6180bi0apatitecan generally be measured
more precisely, yet sources of sampling variabitigy include such factors as the
time period represented by the analysed sampliee I§izes of the errors were known
— typically they are not — then a generalised legsires method could be used to
assign a specified proportion of the misfit to eaahable, and the resultant slope
would fall between those of the inverted forwatdafid the transposed fit. RMA
constitutes a specific example of this, makingdherly simplistic assumption that
the errors inx andy are proportional to the magnitude of the ovemaiige in each
variable (31TH, 2009), which is equivalent to minimising the safithe triangular
areas formed between each datapoint and the lihestffit in both thet andy
directions (Figure 1D). The best argument for #ssumption is thatandy are

treated symmetrically in the minimisation, and thasbrations produced using RMA

11



do not depend on whether the data is transposedtolt is not an appropriate

assumption, however, when most of the misfit iopldy due to natural variability in

y.

3.2 Direction of causality

The symmetry of RMA analysis betwerrandy, and the acknowledgement of error
in both axes, suggests that it may be appropmaséuations where the two variables
are co-dependent on other causes, and it seertiaprbvhich variable is placed on
which axis. For example, in conversion betw8E0onosphate@Ndd *Ocarbonate(A2), the
two variables are directly related but one is reggghdent on the other; rather, they
co-vary according to the composition of a thirdiaile — the3'?0 of body water.
Accordingly, we suggest that RMA be consideredcfamversions Al and A2
(although both datasets show such higboefficients that the difference between the
least squares and RMA solutions would be small).

In contrast, we argue here that RMA is not the appate method for
conversions Z1 and Z2 due to the causal relatipniséiween the two variables in
each conversion, which are related because orependlent on the other, i.e. there is
a causal stimulus and resulting effect. For exanthkevalue o;/=8180bioapatiteis a
dependent variable, controlled by the independariallex=5"®Oginking water (With
some natural variability due to other factors sastphysiology and food) and no
possibility fors"®Opicapatiteto impact back directly o8- °Ogrinking water The critical point
here is the asymmetry of the relationship beingstigated. In situations whexe
“causes'y, it is statistical good practice and appropriatelgresentative of the
physical relationship between the variables togkhe independent variable on the

axis and calculate a fit g{x), thus preserving the direction of cause and eff®e

12



also PLLARD et al., 2011 andBTH, 2009). FoB ®Opioapaiited OprecipitationT
conversions, the most appropriate method is tifossard least squares analysis,
following the direction of causality and then intreg the relationship to

x=(y —b)/a; this is indeed consistent with the way in whibb vast majority of
conversion relationships have been published. Meodrage the use of transposed
regression and RMA for these conversions, as statily inappropriate for the causal
relationships used in the Z1 and Z2 calibrations|, &@e note again that they are
possibly misleading since they have lower slopé$a andr /a respectively, than

the slopel/ a of inverted forward regression (see earlier disimrsof slopes).

3.3 Theory of error and error estimation

Palaeoclimatic researchers have an understandesite do draw firm conclusions
about past temperatures from the isotopic measunsnoé palaeontological and
archaeological samples. It is important, nevertgle keep track of the statistical
uncertainties that are inevitably associated wattonstructions based on least-squares
regressions, and these are not always quotedisisdhtion we discuss the nature of
the statistical uncertainties, explain how they barcalculated and conclude with two
key equations 5 and 6 that may be used for ertomason in the conversions Z1 and
Z2. In the next section we then illustrate the afsthese equations by way of case
studies.

The uncertainties in conversions may be divided into main categories: (1)
those concerning the initial calibration by estimaif the line of best fit for the
population from a finite dataset and (2) those eominig the natural variation of new
samples around the line. Both are ultimately duthédfact that there is a natural

spread of data around any correlation that carmesefore be described as providing a

13



direct prediction of/ from x. This is often due to the impact of other extefaators,
for example, the impact of humidity, evapotrandpraeffects or intra-population
variability on thes*®Oioapaiited OprecipitationCONVErsion (see also the discussion of
natural variation in 8ITH, 2009). As the variable® *Opioapatite@ndd *Oprecipitationare

not 100% dependent upon each other, deviations &dine of best fit are inevitable
even if the measurement errors are negligible. Vaigtion cannot be controlled or
reduced by the investigator, but is a natural pitypef the system being investigated,
and it should be estimated when using the convefsionula to calibrate isotopic
data.

Recall that the underlying statistical modelis ax+ S+ ¢, wherea andp
give the true correlation line for the whole popigla, ande is a random variable that
represents the effects of all the unknown variatilasimpact on the calibration
relationship. (The parametersandf are unknown because we can only ever have a
sample from the whole population.) Wheandg are estimated by a least-squares fit
(y=ax+b) to a dataset containing a random sample\aflues i, y;) from this
population, the inherent uncertainty, if reportisthften given in the
formy=(atda)x+(b+db). It is, however, statistically more appropriatemate

y=ax+b * 0y, where the formula

Sy = \/552 + §at(x — %)

Equation 2

gives a one-standard-deviation estimate of therntaiogy in the least-squares fit at

positionx, and

14



da = v/ , &b = Syix
VI — ) Vi
and
|2y —ax; —b)?
Syix = n—2
Equation 3

Here,sa is an estimate of the uncertainty in the slofie,is an estimate of the

uncertainty in the fit ak =X, ands,, is an estimate of the standard deviation of the

natural variability ire. Three critical points to note are: (i) the unagnty in the fit is

proportional to the natural variaticg), about the fit; (i) the uncertainty decreases as

the sizen of the dataset increases; (iii) the uncertaintyaases with distance— X

from the mean of the dataset, which is a warnirajresg extrapolation. We note also

that regression software typically returns the gadh = 5k_)+|5a¥| of the uncertainty

in the fit atx = O rather thardb, and thusib may substantially overestimate the
uncertainties of calibrateit®0 or temperature values if, as is usual, theseatre
centred around = 0 (which is sometimes known as the lever effect).

We now apply this model to assess the magnitudiesoérrors in categories
(1) and (2) when evaluating data using an invectgitbration equatiorx =(y—b)/a.
First, we note that the least-squares fit is itaalfertain. Following MLER and
MILLER (1984), we can approximate the uncertainty ininfkrerted correlation line by

writing X =(y—b)/a+ox, where:

15



v |1 — V)2
P72 L Sl O
a n a?¥(x; —x)?

Equation 4

(Equation 4 can be derived from Equations 2 anddthe relationship
(y-y) = a(x—x) which follows fromb=y-ax.)

Second, we note that when using sample data faepalimatic
reconstruction, each of these samples is subjebetaatural variability. Therefore
the meary, of the samples is not equivalent to the populat@any at a given
location, just as a particular mammoth tooth iskaty to be typical of the population
as a whole. If we have independent samples (whenemay only be 1) and the mean

of those sampleg then the value ok, =(y, —b)/a inferred from the calibration

relationship is subject to an uncertaintyi(MtR and MLLER, 1984; BLLARD et al.,

2011):
Sype |11 o —y)*
5.15[, = —+ —+ — —
a Jm n  afy(x, —x)°
Equation 5

In many practical examples, the numbeaf datapoints used to generate the
correlation is much greater than the numief independent samples, and thus the
natural variability of these samples will then doate any uncertainty from the

correlation.

16



Finally, there are many situations where reseaschmay wish to take
estimatesq of 8180precipitaﬁongenerated by conversion Z1, and use a furtheoredilon
T =(x—Db;)/a; to generate an estimate of temperature from theeatx,
(conversion Z2). The uncertainty in this tempemittan be obtained using a similar

formula to Equation 5, but this time using the utaiaty 56X, previously calculated for

the 5% 0pioapatite-d *Oprecipiatoncalibration in place of a sample variabilisy, //m.

This gives:
i 2 — = 2
o 1 52 +sxﬂ,+3xﬂ.{xu Xy)
L Xy 2 T. — T2
) ny  apX(Ti—T)

Equation 6

wherenr and xr are values from the temperature calibration datéss important to
note that Equation 6 is used to estimate errotiseaZ2 conversion stage only when

using values ofx, inferred from conversion Z1 with uncertaindy, inferred from
Equation 5. (If a Z2 conversion were appliedp direct observations o,

(6180precipitaﬂo,) then an equation analagous to Equation 5 wouldsked instead.)
Equations 4—6 are all simple estimates of one-stahdeviation uncertainty

for the relevant variable. This is certainly suiat to get a feel for the magnitude of

the uncertainties, though rigorous hypothesisriggghould be based on confidence

intervals in a Studenttstest (®LLARD et al., 2011). For ease of use, these equations

have been programmed into a spreadsheet thatilal@eawith this article,

downloadable from the journal website (Supplemegniata).
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4. Application and propagation of errors

Having outlined the theory of error and error estilon, we now assess some of the
implications for the way that palaeoclimatic infieces are drawn from isotopic data,
and provide examples of the conversﬁé?obioapamﬁlgop,ecipitaﬁon—T using published
data. A key point is that this is a two-stage psscand that errors produced in the
first stage must be propagated through to the sks@mge. Our approach has been
developed for a particular context, that of veraégdiisotopic data, but may be used in

other geochemical contexts.

4.1 Errors in the conversion frodt®Opioaparitet0 8" *Oprecipitation(Z1)

To illustrate the errors associated with this cosies, we have re-analysed two
datasets from previous studies (horse and mam&’lﬁﬂaioapaﬁte)(AYLlFFE et al., 1992;
DELGADO HUERTAS et al., 1995) using Equations 4 and 5 to obtagretinor estimates
for an inverted forward regression (Figure 2). €n®r lines show how uncertainty in

the lines of best fit is least around the datasm(X, y¥) and increases with distance
from the mean, for both the uncertainty in thedilculated using Equation 4 (dark
grey region in Figure 2) and the total uncertaidity incorporating the natural
variability of the population, calculated using B&tjan 5 (light grey region in Figure
2). The total error associated with convertingmglsiSlsobioapamemeasurement (i.en
= 1) t08™OprecipitaionUSiNg X = (y—b) / a remains relatively constant for different
values ofy, since it is dominated by the estimate of the r@étariability in the
sample data (the first term in the square rootqpfefion 5).

Considering Equation 5, it is clear that the eramsociated with calibration
will be smaller if a larger number of samples areraged together, thus reducing the

size of the term 1. The effects of sample size may be illustratedddgulating the

18



errors associated with convertidOpioapaitevalues in the range 10%30%oto
estimates 08" ®Oprecipitation COMparing conversions from increasing samplessifel,

5 and 20 individuals with a me@Opioapaitevalue of 10%0, we see that the errors are
reduced from 1.7%0 1.1%0in mammoth and 2.8%6 1.6%.in horses; larger
reductions are seen for me&fﬁobioapatitevalues of 20%since these are closer to the
regression mean (Table 3). Whilst increasing samsigks does reduce the error, a
larger reduction is always seen between sample sizé and 5 than between 5 and
20 (indeed, the largest drop is fram= 1 tom = 2). That the greatest reduction in
error is seen when analysing two samples ratherjtist one emphasises that it is
worth making a significant effort to get more th@are sample from each layer;
however, after a few samples, the extra effortositinuing to reduce fid has little

extra impact, as the error tends towards thatefelgression line. These calculations
clearly indicate the benefit of sampling multipfelividuals to obtain a better estimate
of the population-level meaﬁjrgobioapame which can more than halve the error
compared to single measurements in some cases.

The effects of sample size can be further illustfatith an example of
recently published data. In their investigatioreafly-mid Pleniglacial climate in
Poland, 8rRzYPEK et al. (2011) calibrate their oxygen isotopic datan bioapatite to
temperature using transposed fitx@f) but do not report the associated errors. When
their data for mammoth and horse samples are regsed using the methods outlined
in this paper (using the equations ofUfcFE et al.1992 and BLGADO HUERTAS et al.
1995), the errors ifi are calculated to be +4.3—4.6°C and +8.0°C resdet
Treating each sample individually, these errors@odarge to offer a detailed
interpretation of palaeoclimate. However, by ugimg mean of two mammoth

samples and the two horse samples from the sareg thg errors fall to +£3.3°C and
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1+5.9°C respectively. If ten individuals had beemgked for each layer these errors
could have been reduced to <2°C.

A previous assessment of calibration errors ingagtid the conversion of
humans™®Opioapatited *Oprecipitation @nd calculated errors of at least 1-3.G%LLARD
et al., 2011). This study concluded that theserem@re too large for the calculated
6180precipitaﬁonvalues to be used for pin-pointing the geographigin of individuals
within the UK due to the limited natural variabjlin UK groundwaters. This is an
interpretive problem in which it is desired to ineet each sample individually, and
thus averaging between individuals cannot be useeduce the uncertainty. In
situations where multiple individuals can be sampl®wever, such as the
investigation of palaeotemperature through faueadains as discussed in this article,
it is possible to reduce the uncertainty by incregas1 and obtain a more accurate

estimate of the mean valueyofi.e. of y, in equations 4, 5 and 6). This substantially

reduces the conversion errors overall. The seitgitif the calibration equations to

the number of measured samples has critical impoetéor determining whether the
research questions of interest can legitimatelgrimvered when calibrating the data,
or whether the associated errors will be too la@g@ibration may not be sufficient to
answer the question, particularly for individuaingdes or smaller assemblages where

a cohesive group of samples cannot be obtained.

4.2 Propagation of errors into the conversion 0y ecipitaionto temperature (Z2)

Moving to the second stage of the conversion psyaee now consider what are the
implications of the quantified errors in the Z1 gersion when propagated through
into the Z2 conversion @& Opecipitationto temperature. Unlike for conversion Z1,

there are no standard equations for this stageather there are many equations that

20



have been used, which follow from a particular chaf dataset to construct each
equation. Researchers typically generaﬁé‘g@precipmon—T conversion dataset relevant
to their study by compiling the readily availabkta from one or a number of
monitoring stations in the GNIP network over a glblzontinental, or regional
geographic area @VAcs et al., 2012; &rzyPEK et al., 2011); other potential
calibration equations have also been calculatedifZki et al., 2001; GURcCY et al.,
2005; PozaNskI et al., 1993; TTKEN et al., 2007; WKONEN et al., 2007yON
GRAFENSTEIN€t al., 1996). Each of these datasets will geaexatightly different
estimated temperature for a given valuélﬁ@precipitaﬁon For example, Table 4 shows
the temperatures and errors estimated from iﬁ}?%ioapameusing five different
datasets taken from the GNIP network for the ZZ/eosion (see also Table 1). We
illustrate the effect of varying numbers of enamahlyses (1, 5, 10, 20), but all with a
meand ®OpioapaiteOf 15%o, €quating t6'*OprecipitationOf —10.7%o.

Three significant points are highlighted. Firstlye crucial effect of palaeo-
sample sizenis again evident: the dominant influence on thiererat the Z2

conversion stage is the number of horse sampldgsaabafm) and the consequent
magnitude of the error in the Z1 conversior,). The term5X§ dominates the other

terms in the square root in Equation 6 so thad, good approximation,

JT, = Ox, / a,, and the statistical uncertainty in the regres$imnfor a particular

dataset has little effect (see Figure 3). But asliseuss below, it does not follow that
the choice of dataset has little effect.

Secondly, the choice of dataset and thus regressjoation can make a big
difference to the estimated magnitude of erroafgiven number of samples. In the
example we show, conversions based on annual tatopetprecipitation data give

markedly smaller errors than the equations basedanthly data (compare the
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conversions based on data from Krakow and Vienahler4). This is because the
spread of the annual and monthly data are differefiiencing the sloper of the
8"®0precipitation-T regression line: for the annually averaged dagaslope is
approximately twice as large as that for the mgndlsita and, as noted above,

oI, = 0%,/ a; . The choice between monthly and annual data shboldever, be

made on grounds of biological suitability, suctttesnature of the temporal
averaging in the faunal sample, rather than sirtgolyinimise error estimates.

Thirdly, though the statistical uncertainty in tiegression line for a given
dataset is typically less than 0.2°C (Table 1) téneperatures inferred from the
different datasets vary from 5.8°C (General Eurap&).7°C (Vienna, annual).
However, if the number of faunal samples is sniedht allowing for the uncertainty
in the Z1 conversions, the temperature ranges geetiby the various equations
largely overlap with each other (Figure 4). Onl{t@f or 20 samples are available do
the temperature ranges inferred from annual dad#fatent locations start to
separate.

The above discussion suggests that whilst thesam@ mainly generated by
the Z1 conversion{®Opisapatited Oprecipitaion) and depend on sample size, the way
that these errors are mapped through to tempenatnges depends on the choice of

regression line for the Z2 conversi@®OprecipitationT).

5. Concluding comments and recommendations

The correlations between temperature and the oxiggéopic values of bioapatite
and precipitation motivate the use of calibrationdenerating first-order estimates of
palaeoclimatic variables indicated by faunal isat@mmpositions. Calibration also

permits direct comparisons between measuremengsl lmﬁlgobioapatitedata and
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estimates 08"*OgroundwaterOr temperature measured in other proxies such as
palaeoaquifer waters, chironomids or pollen. Sualtiproxy comparative
approaches represent a valuable interpretive mophlaeoclimatic studies provided
the limits and uncertainties of each method ar@ewskedged, which is not
universally done. We offer the equations in thipgreas a suitable means of
guantifying the uncertainties associated with catibg isotopic data.

In summary, we advocate the use of multiple samplesre possible, but that a
balance must be struck between reduced uncert@ntyeasibility, both in terms of
number of analyses and comparative data. The usriitiple samplesni>1) for each
investigated assemblage reduces the populatiohdeeertainty through the factor
1/min Equation 5. But after a certain point, whem becomes smaller than other
terms inside the square root of Equation 5, addinge samples will not significantly
reduce the Z1 conversion errétOpioapaited" Oprecipitation any further. For
conversions oﬁlsobioapatitedata to temperature through both the Z1 and Z2
conversionsé{lgobioapatitgélsoprecipitaﬂon—Temperature), the use of larger numbers of
samples results in smaller errors at both conversiages. But the limiting factor on
temperature estimates may often be the availalofigppropriate comparative
datasets. In such circumstances, one should beeaif/éine accuracy needed to make

meaningful interpretations in a given case study.
We conclude by listing three recommendations ferdtatistical treatment of

errors in the conversion of bioapatite oxygen ipetdata to precipitation oxygen

isotope values and temperature:
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1. Use appropriate regression for the datasets bemgoyed — we recommend
inverted forward regression for conversions Z1 Z@dand not transposed or
RMA regressions.

2. To report errors in a regression line, use Equatidrand 3 rather than the
form y=(axda)x+(bxtdb), as is commonly produced by spreadsheet
software.

3. To report errors in data conversion, use Equattoasd 6 which appropriately

estimate this uncertainty.

These recommendations are not a comprehensiveblistpffer an important set of

guidelines regarding the calculation of error eates.
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Figure 1:1A: Plot showing GNIP data cﬁ"}soprecipitaﬁonand temperature for 34
European monitoring stations under 500m altituddé wb years of available data
(Supplementary Data). The calibration lines foard least-squares (FLS),
transposed least-squares (TLS) and RMA regressiaves predictably and
significantly different slopedB-D: schematic plots showing the partitioning of error
between thex andy axes: in forward least-squares analysis/{gy the uncertainty is
attributed toy (1B); in transposed least-squares analysixf@rthe uncertainty is
attributed tax (1C); and in reduced-major-axis analysis the uncestasapportioned

symmetrically betweer andy by minimising the areas of the triangles show)(

Figure 2: The regression line fﬁﬁgobioapatite and Slgoprecipitaﬁon in (A) elephants

(AYLIFFE et al., 1992) and (B) horses EsADO HUERTAS et al., 1995). The black
line shows the forward least-squares ¥i{k). The dark grey region shows the
uncertainty in the fit, calculated using EquatianTée light grey region shows the

total uncertainty dx, incorporating the natural variability of the poptibn as
calculated using Equation 5, when calibrating a me@asurement,of 6180bioapatite

from a single samplen{= 1) into an estimate cﬁlsoprecipitaﬁon Note that the total
uncertainty incorporating the natural variabiliiytbe population can be much greater

than the uncertainty in the fit.

Figure 3: The regression line f&]rBOprecipitaﬁonand temperature for the monthly GNIP

data from Vienna (downloaded from GNIP/WISER onlitz¢abase).
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The black line shows the least-squaresy{k). The dark grey region shows the
uncertainty in the regression, calculated usingdafqun 4. The light grey region
shows the total uncertainty incorporating the reltuariability of the population for a

single direct measurement. When a vakjef Slsoprecipitaﬁonis inferred by conversion

Z1, the corresponding uncertainty, illustrated hbyethe linesxy + dxo, maps to
uncertaintyoTo aroundTp as shown, as given by Equation 6. Note that thedainty
oxo from the Z1 conversion is substantially greaterntithe uncertainty in the

regression (width of dark grey region).

Figure 4: Predicted temperatur@)( and error estimateTy) for five different
conversion datasets when calibrating 1, 5, 10 d@hda2nples of horse tooth enamel
with mean 8"®Ocnamel Of 15%0, equating t08"®Oprecipitation Of —10.7%o (datasets

downloaded from GNIP/WISER online database: sedeTalor full details).
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Table 1: Examples of equations that can be useclatlld:rratingélgoename|data in

palaeoclimatic and palaeoecological investigations

Table 2: Summary of equations used to calib&ég@enameﬂsotopic results from

SKRZYPEK et al. 2011.

Table 3: Errorsdx, associated with sample sigewhen convertin@lgobioapatitevalues
Y, to an estimate (ﬁigodrinking waterusing the Z1 correlations given in Table 1 and the

error analysis in equation 5.
Table 4: Summary of calibration erra@i® when converting horse populations of 1, 5,

10 and 20 individuals with meait®Ognamel0f X=15%0 through conversion Z2 using

five different datasets (downloaded from GNIP/WIS&ftine database).
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Table 1: Examples of equations that can be usecbildjratingélgoename|data in palaeoclimatic and palaeoecological ingasbns

The right-hand columns give values of parameteutzied using the methodology outlined in thisgrap

Conversion Equation (as published) r? |Reference

Al

PDB-> SMOW 8*Ovsmow = 1.030915™°0ppg + 30.9. [1.0(COPLEN et al. 19¢

A2 n

Carbonate> phosphat 3" Ophosphate= 0-985  Ocaronate- 8.5 [0.9IACUMIN et al. 1996 17

Z1 (Species specific) n ; S\/lx Ja 55

Mammott 8" *Ognamer= 0.94 (+0.10B"“Oprecipitation+|0.85 AYLIFFE et al. 199: 17]-5.4]1.350.101/0.32¢
23.3 (x0.7)

Horse 8" Ocnamei= 0.718" Oprecipitation+ 22.6 | 0.77DELGADO HUERTAS eff 23 (-5.8(1.71/0.084/0.357)

al. 1995

72 (Regionally specific n -—I- St 5aT 5ET

Europé 8" Oprecipitation= 0-59Tnean— 14.24 0.5/ROZANSKI et al. 1992 47

Europé 3" Oprecipitation= 0-53Tmean— 13.74 0.6(|This stud 34]9.¢(0.92/0.07¢| 0.1¢€

Krakéw (annual datf)  [3*“Oprecipiation™= 0.57 Tnean— 14.50 0.3F his study 24 8.2|0.67/0.149 0.13

Krakéw (monthly datd) |5 “Oprecipitation= 0-32Tnean— 12.54 0.5 his study 33#18.2 (2.100.015 0.11

Vienna (annual dat)  [3**Oprecipitaion™ 0.65Tmean— 16.37 0.2€[This stud' 45110.2/0.82|0.15¢| 0.12

Vienna (monthly datd) 3" Oprecipitation= 0-39Tnean— 13.70 0.6{This study 51610.3(2.37/0.014 0.10

@ Full dataset unavailable for analysis; equatidenafrom Figure 4A in ROZANSKI et al. 1992.
P General European relationship defined using 34an monitoring stations in the Global Networksoftopes in Precipitation

(GNIP)/WISER online database under 500m altitude tlad at least five complete years of data ( Supehtary Data).
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“Equations defined using data downloaded from th8 &R database (1975-2002).

4 Equations defined using data downloaded from th8BR database (1961-2005).
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Table 2: Summary of equations used to calibﬁé%enameﬂsotopic results from SKRZYPEK et al. 2011.

Note the significant difference in slopes betwdenitiverted and transposed fits: for Z1, the valiue.40 as opposed to 1.08 or 1.29; for Z2, the

value of 3.08 rather than 1.804.

Conversion Fit Used by Equation R? | Data
Z1 (specie
specific)
Horse Forward fit - 8" Ocnamer= 0.718" Oprecipitation* 22.61
Inverted fit This paper 3"*Oprecipitation= 1.408"*Ognamer— 31.72 0.77 | DELGADO HUERTAS et al. 1994
Transposed fit - 8" Oprecipitation= 1.085"*Ocnamei— 25.82
Transposed fit ggﬁZYPEK etal | 5190, oomaion= 1.295%00amel — 28.7 0.95 | SANCHEZ CHILLON et al. 1994
Z2 (regionally
specific)
Krakow Forward fit - 3" Oprecipitation= 0.32 Tnean— 12.54
Inverted fit This paper rean= 3.088180precipnanon+ 38.60 0.59| SKRZYPEK etal. 2011

Transposed fit | SKRZYPEK et al. 20| Trean= 1.804 (+0.16}"*Oprecipitation+ 26.020 (21.70)

2 Equation used by SKRZYPEK et al. 2011. The dataSSANCHEZ CHILLON et al.1994 is much smaller thitat of DELGADO HUERTAS et al. 1995.

® Equation as published by SKRZYPEK et al. 2011.
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Table 3: Errorsdx, associated with sample sigewhen convertin@lsobioapatite

valuesy, to an estimate cﬁlsodrinking waterusing the Z1 correlations given in Table 1

and the error analysis in equation 5.

Grey shading indicates values extrapolated fronobéyhe range of the available

data, producing larger errors.

No. of 18
samples Meand™ OpipapaiteValUes
(m) Yo=10%0 Yo=15%o Yo=20%o
Calculated Z1 error| Calculated Z1 error | Calculated Z1 error
%o (%0) %o (%0) %o (%0)
Horse 1 2.8 25 2.5
5 1.8 1.3 1.2
20 1.6 0.9 0.8
Mammoth 1 1.7 15 1.5
5 1.2 0.8 0.8
20 1.1 0.6 0.5
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Table 4: Summary of calibration erra@i$, when converting horse populations of 1, 5,
10 and 20 individuals with meait®Oenamel0f Xo=15%o through conversion Z2 using

five different datasets (downloaded from GNIP/WIS&ftine database).

General Eurog Krakow Krakow Vienne Vienne
No. of enamel Calculate nr =34 nr =28 nr=334 =45 =516
samples Z1 error| >S5years dafa annual dath monthly annual data monthly
(m) 5% (%o) dat& datd
Error generated by Z2 equation (%o)

1 25 4.8 4.4 7.8 3.9 6.5

5 1.3 2.6 2.3 41 2.0 3.4
10 11 2.2 2.0 34 1.7 2.9
20 0.9 1.8 1.7 2.8 14 2.3

Estimated Temperature (°C)
5.8 6.7 5.7 8.7 7.8

&34 continental stations <500m, averaged over ri@e 5 years.
®1975-2002.

€1961-2005.
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Paper Highlights

The statistical errors in converting isotope datpdlaeotemperature are
analysed

Appropriate methods, and equations with suppostprgadsheet, are presented
Transposed regression underestimates temperaftgeedces by at least 40%

Increasing sample size from 1 to 5 gives big imprognts, more than 5 less so

Uncertainty from natural faunal variability domieahat from precipitation data
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