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A B S T R A C T

Humanity faces a major global challenge in achieving wellbeing for all, while simultaneously ensuring

that the biophysical processes and ecosystem services that underpin wellbeing are exploited within

scientifically informed boundaries of sustainability. We propose a framework for defining the safe and

just operating space for humanity that integrates social wellbeing into the original planetary boundaries

concept (Rockström et al., 2009a,b) for application at regional scales. We argue that such a framework

can: (1) increase the policy impact of the boundaries concept as most governance takes place at the

regional rather than planetary scale; (2) contribute to the understanding and dissemination of

complexity thinking throughout governance and policy-making; (3) act as a powerful metaphor and

communication tool for regional equity and sustainability. We demonstrate the approach in two rural

Chinese localities where we define the safe and just operating space that lies between an environmental

ceiling and a social foundation from analysis of time series drawn from monitored and palaeoecological

data, and from social survey statistics respectively. Agricultural intensification has led to poverty

reduction, though not eradicated it, but at the expense of environmental degradation. Currently, the

environmental ceiling is exceeded for degraded water quality at both localities even though the least

well-met social standards are for available piped water and sanitation. The conjunction of these social

needs and environmental constraints around the issue of water access and quality illustrates the broader

value of the safe and just operating space approach for sustainable development.
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(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

1.1. Rationale and motivation

The planetary boundaries framework (Rockström et al., 2009a,b)
has significantly influenced the international discourse on global
sustainability. In short, it proposes nine interlinked biophysical
(hereafter referred to as ecological) boundaries at the planetary scale
(Fig. 1a) that global society should remain within, if it is to avoid
‘‘disastrous consequences for humanity’’. The proposition of
planetary boundaries has provoked discussion in the science and
policy communities. Recently published commentaries include
refinement of the boundaries for phosphorus (Carpenter and
Bennett, 2011), nitrogen (de Vries et al., 2013) and freshwater use
(Rockström and Karlberg, 2010); the proposal of a potential state
shift in the global biosphere (Barnosky et al., 2012); a new approach
to defining land-related boundaries using net primary plant
production (Erb et al., 2012; Running, 2012); analyses of the
governance implications (Biermann, 2012; Galaz, 2012; Nordhaus
et al., 2012); and critical assessment of the nature of the proposed
planetary boundaries (Brook et al., 2013). Raworth’s (2012)
extension of the planetary boundary concept to include social
objectives in the context of sustainability policy and practice has
produced a framework that has become known as the ‘Oxfam
doughnut’, with an explicit focus on the social justice requirements
underpinning sustainability (Fig. 1b). This allows multi-metric
‘compasses’ to be elaborated for directing decision-making. In this
paper, we develop the ‘doughnut’ idea at the regional scale in terms
of the levels of societal wellbeing and conditions of ecological
processes that co-exist within regional social-ecological systems,
using the terms ‘social foundation’ and ‘environmental ceiling’ to
represent the social and ecological boundaries. In doing so, we define
the regional safe and just operating space (RSJOS).

Our main motivation is to show how the concept of ecologically
safe and socially just planetary boundaries can be adapted and
applied at regional levels, for example: watersheds, national parks,
sub-national administrative divisions, and nation states. Because
critical transitions can occur at any scale (Scheffer et al., 2001;
Folke et al., 2004; Lenton, 2013), the original planetary boundaries
framework recognized that the effects of crossing multiple
thresholds at regional scales can aggregate to become a global
concern (Rockström et al., 2009a,b). But the cascading effects of
environmental degradation (Peters et al., 2011) can have critical
consequences for the sustainability of regional systems them-
selves, well before the effects are obvious at the global scale. This
means that global sustainability requires both regional and
planetary dimensions to be addressed. Hence our view is that
Fig. 1. Merging (a) the planetary boundary framework (Rockström et al., 2009a,b) and (b)

defining safe and just operating spaces for sustainable development at regional scales.
concepts sharpened by consideration of regional scales can feed
back iteratively to help refine or redefine planetary boundaries.

The argument for considering regional-scale boundaries is
reinforced by an equally strong equity and governance rationale. In
the planetary boundaries framework, protecting  human wellbeing is
the rationale for the scientific assessment of how to limit the use and
degradation of natural resources in order to avoid critical transitions
in Earth system processes. At the same time, human wellbeing
depends fundamentally upon each person having claim to the natural
resources required to meet their physiological needs such as food,
water, shelter and sanitation (Folke et al., 2011). It follows from these
fundamental equity considerations that social foundations (sensu
Raworth, 2012) should be considered alongside planetary and
regional boundaries. Traversing the scales to regional boundaries
requires explicit attention to both the human drivers of change and
social distributional issues, bringing new transdisciplinary, concep-
tual and ethical challenges to the planetary boundaries concept.

Many nations and regions face significant and urgent challenges
in ensuring that available resources are used to meet the needs of
all, emphasizing the sustainable use of regional resources for
human wellbeing. In particular, while agricultural intensification
in developing countries is widely seen as promoting rapid
economic growth and poverty alleviation, evidence exists to show
that the associated degradation of ecosystem processes may be
unsustainable (e.g. Tilman et al., 2002; Dearing et al., 2012a).
Natural resource management takes place predominantly at
regional scales as part of national and regional development
planning. Therefore, analytical tools that map the condition of
ecological processes at these scales are more likely to have
relevance and traction for policy design and resource governance.

Above all, there is a need to counter the limitations of current
political-strategic timeframes that are too often aligned with short
term ‘discounting’ perspectives that place emphasis on near future
decisions. An ability to identify and stay within ecological
boundaries over longer timescales would help to ensure inter-
generational sustainable resource use. A longer timeframe is also in
tune with ‘‘perfect storm’’ projections for converging trends by mid-
century (Godfray et al., 2010; Dearing et al., 2012b). For communi-
ties in regions that already occupy dangerous operating spaces, a
new framework that captures multiple timescales could provide a
scientifically informed prioritization of restorative action.

1.2. A regional framework

A regional boundaries framework can be designed in alternative
ways, depending on its motivation. One approach would be to
calculate the regional share of global resource use (e.g. water) and
 the social ‘doughnut’ framework (Raworth, 2012) into a new framework and tool for
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impacts on planetary boundaries (e.g. CO2 emissions) in the light of
social conditions (e.g. in a less developed country). Another
approach could focus on the links between social wellbeing (e.g.
food security) and the sustainable management of resources (e.g.
sustainable fish farming) within a particular region. Both demand
the integration of social and ecological data with equity issues
placed centrally. In this paper we focus on the latter approach:
developing a RSJOS conceptual framework that allows, as a first step,
setting and assessing performance against boundaries on both
environmental and social fronts in two rural case studies from China.
This approach is complementary to, and equally important as,
evaluating the impact of human actions at the global scale because
staying within regional boundaries is a prerequisite for reducing the
aggregated effects on six of the proposed planetary boundaries.
Ongoing work is exploring alternative frameworks for national
levels (Nykvist et al., 2013) where the focus is on burden sharing,
fairness and national responsibility for planetary boundaries.

2. Theory and methods

2.1. Environmental ceilings

The scientific logic of defining environmental limits and
boundaries for regional social-ecological systems draws on relevant
theoretical insights from other systems approaches (Dearing et al.,
2012a, 2010) and links to current policy discourses (Cornell, 2012).
In particular, it is generally agreed that critical transitions and early
warning signals of impending thresholds need to be better defined
(Lenton, 2011; Dakos et al., 2012; Scheffer et al., 2012) in order to
allow a more robust assessment of environmental risk. Similarly,
ecosystem services have become central to the discourse in current
environmental assessment and policy (Millennium Ecosystem
Assessment, 2005, The Economics of Ecosystems and Biodiversity,
2010 and United Kingdom National Ecosystem Assessment, 2011)
but, with the exception of global services such as climate regulation,
are more appropriate for regional scales where natural resources and
processes are managed, such as within land (or water) use planning
sectors (Cowling et al., 2008; Reyers et al., 2009). Balmford et al.
(2011) argue that the human benefits from ecosystems can usefully
be broken down into three groupings: (1) core ecosystem processes;
(2) beneficial ecosystem processes; and (3) ecosystem benefits.
Ecosystem benefits have a direct impact on human welfare, and they
arise from beneficial ecosystem processes (i.e. water provisioning)
that in turn are part of core ecosystem processes (i.e. nutrient or
water cycling); analogous to regulating and supporting services in
the Millennium Ecosystem Assessment (2005). In our framework,
we focus on environmental ceilings for core and beneficial
ecosystem processes and conditions because they: (1) represent
the ultimate constraints or boundaries on social activities within the
region; and (2) link directly to the biogeochemical cycles that
underpin global boundaries.

Rockström et al. (2009b) argued that boundaries should be
defined through an understanding of nonlinear systemic change and
focused particularly on ecological thresholds and dangerous
aggregate effects. We agree on the priority to have criteria that
recognize dynamic change and seek to widen the two categories
used for defining boundaries at the planetary scale by drawing upon
theory for early warning signals. We also include information on
environmental regulatory limits that are widely used in regional
management. Taking a wider range of metrics obviates the need to
make sharp distinctions between ‘environmental limits’ and
‘environmental thresholds’ (Haines-Young et al., 2006) because,
in practice, these represent two end members of the scheme.

Our aim is to develop a pragmatic guide for identifying regional
boundaries from observations of system dynamical behaviour in real

world time series drawn from monitoring, survey, remote sensing
and sediment analysis covering the multi-decadal timescales that
capture most social-ecological system behaviour, while bearing in
mind the narrow lens of system behaviour afforded by human
timescales (Dearing et al., 2010). A practical classification of
ecological boundaries with reference to environmental limits and
the dynamical properties of ecological variables is shown in Fig. 2
and Table 1. The different types of boundary (Fig. 2) are not
necessarily mutually exclusive in theoretical terms but rather are
set according to the analysis of the actual observed system
behaviour. Each type of boundary may demand a particular
resolution of time series, involving specific statistical analyses. The
regional boundary may be relevant to a whole system (e.g. extent
of forest ecosystem), a system condition (e.g. water quality) or a
process (e.g. soil erosion). Setting boundaries according to the
observed record of system behaviour provides new evidence, based

on current complex system theory, for accepting a business-as-usual
policy, applying constraints on the continuation of the system or
taking remedial action.

Type I boundaries refer to linear trending data, where a regional
regulatory limit on a particular ecosystem process is set by
scientific, expert or public opinion, through negotiation and trade-
offs between the benefits and damages arising from particular
activities. This type of boundary is commonly used for manage-
ment of degraded landscapes and ecosystems (e.g. quality targets,
critical loads), but it is only weakly linked to system dynamical
properties and generally assumes stationarity in the trend. Type II
boundaries can be placed on nonlinear trends, but unlike Type I
boundaries, they need to be set in ways that recognize the
dynamics of the system described by trend and variability. Type III
boundaries describe threshold-dependent transitions in a system
or condition towards new states that are considered abrupt within

human timescales (decades and shorter). The causes of transitions
may be the gradual erosion, or more stochastic forcing, of system
resilience. But beyond a point, changes in the internal system
structure and the transition to positive feedback loops produce
relatively rapid changes until the system settles into a new
attractor. Such transitions are observed in mathematical models
for many ecological systems (Scheffer, 2009), but in real systems
can only be observed after they are crossed (Groffman et al., 2006).
A key distinction between two types of threshold change is the
existence of different degrees of reversibility or hysteresis. Type IV
boundaries refer to the rapidly developing area in dynamical
theory of early warning signals where the sensitivity of a system to
impacts grows disproportionally as a system loses resilience prior
to a threshold. A number of new analytical techniques defined by
changes in magnitude-frequency, variability, skewness or auto-
correlation metrics (Lenton, 2013; Dakos et al., 2012; Carstensen
and Weydmann, 2012) offer the promise of providing Type IV early
warning signals. Types I–IV represent guides to defining bound-
aries and are not necessarily mutually exclusive (see also Table 1).

The challenges of communicating complexity concepts in real
world situations are significant. In this initial attempt, we use a
colour-coded scheme to identify ‘safe’, ‘cautious’ and ‘dangerous’
categories of operating space (Fig. 2) with the environmental
ceiling set between the safe/cautious and dangerous categories.
This simple imagery condenses powerful complexity concepts and
time-series analyses into an easily understood qualitative basis of
assessment. At this stage, it is important to set down a generic and
dynamical basis for the definition of boundaries. It is easier to
define ecological boundaries retrospectively when they have
already been crossed. Where they have not been crossed, the
process of setting boundaries needs to utilize all possible ways of
defining systemic change: observation of Type IV early warning
signals, model simulations, and expert judgement (Balmford et al.,
2011; Moss and Schneider, 2000), which together represent an
important research priority.



Fig. 2. A classification of possible system behaviour as an ecological boundary is reached showing Types I, II, III and IV, with colour coded categories (green, yellow and red) for

attributed ‘safe’, ‘cautious’ and ‘dangerous’ status of key ecological services/processes and respectively (see also text and Table 1 for detailed explanation).
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2.2. Social foundations

In direct contrast to environmental ceilings, social foundations
are not defined by social dynamics but by nationally or internation-
ally agreed minimum standards for human outcomes (Raworth,
2012). While some social standards have been established at the
global scale, such as through the Universal Declaration of Human
Rights and subsequent human rights law, their governance is
enforced at the regional/national level with supranational gover-
nance continuing to be the exception for the foreseeable future.
Therefore to have most policy impact, our framework must be
applicable to regional governance systems, their practicalities and
motivations. For example, the management of water resource
catchments to provide adequate water and sanitation for all is
typically a regional issue. Political and administrative boundaries
shape where governance happens and consequently will determine
how the framework can be made operational, how flows of materials
in and out of the social-ecological system may be delineated, and
how trade-offs can be agreed.

Data are available for many social indicators. In this initial
demonstration, we follow Raworth (2012) and use national
governments’ stated social priorities, as set out in their national
and regional submissions to the Rio + 20 Earth Summit. Analysis of
those submissions (Raworth, 2012) reveals strong global consen-
sus on eleven social priorities, including: food security, income,
water and sanitation, health care, education, energy, gender
equality, social equality, voice, employment and resilience (Table
A.1). These priorities are used as the basis for selecting indicators
within regions to define a social foundation. In practice, data are
often available through the Millennium Development Goals (a
suite of global human development targets set by the United
Nations) that are adjusted to provide national and sub-national
level data for poverty and health (United Nations, 2012a).
Illustrative indicators include the percentage figures for: popula-
tion undernourished; population living below $1.25 (PPP) per day;
population without access to an improved drinking water source;
and population without access to improved sanitation.

2.3. Case-study methods

Ecological time series were drawn from a combination of
monitored instrument records and lake sediment proxy records.
Sediment cores were sampled from the deepest zones of lakes with
intact modern sediment-water interfaces and analyzed at 0.5 cm
intervals to obtain proxy records of water quality, soil stability, air
quality, sediment quality, and sediment regulation. Sediment
dating was based on 210Pb and 137Cs analyses that provide
timescales covering roughly the last century. The analytical
techniques used are published in detail elsewhere (Dearing
et al., 2012a; Wang et al., 2012). Each time series was examined
for trends, nonlinear system behaviour and proximity to environ-
mental limits (Fig. 2 and Table 1). Social data, other environmental
data and relevant environmental regulatory limits were collected
from official Chinese statistical yearbooks and government reports.
The main interactions between the different ecosystem service/
process records and the human welfare categories recorded at each



Table 1
Types of ecological boundaries based on environmental limits and dynamical properties of time series.

Type I Linear trends

(Ia) Environmental limits. These are quantitative measures of the state of beneficial ecosystem processes that, once exceeded, significantly constrain conventional

resource use (Haines-Young et al., 2006). For example, exceeding a given level of dissolved sodium in soil water means that the beneficial ecosystem process of

water purification is lost, leading to losses of an ecosystem benefit (e.g. healthy grain production). Such values are often empirically determined from local

experiments and can often be applied throughout a region.

(Ib) Distance from a baseline or background/low impact state. Setting these boundaries involves defining relative measures linked to beneficial ecosystem processes.

For example, the European Union Water Framework Directive (http://ec.europa.eu/environment/water/water-framework/) requires member countries to restore or

manage water quality to a ‘good ecological status’, defined as a slight deviation from a reference condition with no, or only very minor, anthropogenic disturbance.

Type II Nonlinear trends

(IIa) Rate of change. A boundary can be set where there is an unacceptable acceleration in a harmful effect or a decline in a beneficial ecosystem process. The change

in rate may be caused by the cumulative effect of smaller scale changes on a process or condition, corresponding directly to the ‘dangerous aggregated effect’

category used by Rockström et al. (2009). For example, soil erosion may continue for centuries without major impact on crop yields. Yet a maximum soil erosion rate

may be determined from observations and modelling that acknowledges unsustainable losses of soil over soil formation, and off-site effects like increased sediment

delivery to rivers.

(IIb) Envelope of variability. A regional boundary can be defined by the point at which the system moves outside of the long-term normal envelope of variability, or is

statistically different from the long-term quasi-stationary mean. By this definition, extreme events like ‘1 in 100 years floods’ are deemed part of normal variability.

This idea is the basis of arguments for the existence of contemporary anthropogenic global warming (Mann et al., 1998). A regional scale example is an analysis of

river discharge data that show recent divergence from stationary time-series (Milly et al., 2008). Such changes may imply that system boundary conditions may be

changing and equilibrium-models for medium-term forecasting are probably invalid.

Type III Thresholds

(IIIa) Abrupt non-hysteretic changes. Some systems oscillate easily between different states (e.g., predator/prey populations, El Niño/La Niña cycles). These relatively

fast and reversible (from historical evidence) transitions can be disruptive to both ecosystems and society but are non-catastrophic (Scheffer, 2009).

(IIIb) Abrupt hysteretic change. Some systems exhibit catastrophic shifts that are hard to reverse because they involve the forced loss of stability of one system state

and abrupt switch to an alternative state. The metaphor employed to visualize these systems is of neighbouring valleys with a hill in-between them. The bottom of

the valleys are attractors. Driving a ball from the bottom of one valley, over the hill and then releasing it would roll the ball down to the bottom of a different

attractor. The transition from one attractor to another may only require a very small input if the ball is near the top of the hill. However reversing a transition could

require significant input into the system. Although such fold bifurcations with hysteresis are widely discussed in the literature the evidence in real systems is quite

limited (Bascompte et al., 2005; Wang et al., 2012; Lenton, 2013).

Type IV Early warning signals

(IVa) Shifts in magnitude and frequency. The time-series of many human-affected biophysical phenomena show pronounced changes that can be viewed as a shift in

the ‘risk spectrum’ (Dearing et al., 2010). Bivariate frequency-magnitude log-log plots may show evidence for power law behaviour that defines naturally evolved

system properties, giving a possible baseline for judging the impacts of human activities (Dearing and Zolitschka, 1999). Examples include the increasing

frequency of extreme weather events at regional scales associated with anthropogenic climate change (e.g., Webster et al., 2005), and altered fire regimes in

southwestern USA to larger, less frequent fires as a result of fire suppression measures (Swetnam et al., 1999).

(IVb) Variability metrics. Changes in statistical properties of mathematical model output and empirical data offer possible early warning signals of regime shifts

in systems (Scheffer et al., 2012). This has been shown for changes in time-series of lake ecosystems (Wang et al., 2012) and also in spatial patterns of vegetation

cover (e.g., Hirota et al., 2011). Analysis of mathematical systems suggests that these early warning signals are not specific to either catastrophic or non-catastrophic

transitions (Kéfi et al., 2012). We interpret such statistical signals as signs of decreasing system stability, loss of resilience, and the start of a path towards a relatively

rapid (though not always catastrophic) transition, especially where independent metrics mutually corroborate (Dakos et al., 2012; Lindegren, 2012).

From a human time perspective, a Type I linear trend in the short term may prove to be part of the forward limb of a Type IIIb fold bifurcation in the long term.

A change in the rate of a system variable (Type II) over several years may be part of increasing system variability (that could be detected through Types IVa and IVb)

or the beginning of a regime shift (Type III) when viewed over a multi-decadal timescale. Transitions are often referred to as abrupt, but many transitions unfold

slowly after transgressing a threshold (Fischer-Kowalski and Haberl, 2007; Hughes et al., 2012). Thus, both Type IIa and IIb changes could represent a relatively slow

transition towards a new state (Type III). The different boundaries could also be ranked according to their severity, with well-understood Type Ia boundary setting

more stringent limits than Type III.
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site are (at least) qualitatively known (Fig. A.1). For example, at
Erhai (Fig. A.1a) the first order effects of upland soil instability are
on water quality, sediment regulation and food security (crops and
fisheries) through flooding, the natural fertilization of paddy fields
and lake water quality. Higher order effects create more complex
webs of interactions with potential feedback loops. However, our
focus at this initial stage is simply to derive the current status of the
individual social and ecological conditions. Further work will
combine the information on status with known interactions to
create dynamic modelling tools for management.

3. Results

Our case studies are represented by two similarly sized low-
income rural communities in China, each covering an area of
�2000 km2 with �1 M population. In each case we define the
ecological boundaries, social standards, environmental ceiling and
social foundation from available time series, historical records and
survey data. The two areas differ in terms of regional governance,
physical landscape and proximity to large economic centres, yet
provide similar challenges for sustainable development based
largely on agricultural intensification.
3.1. Erhai lake-catchment, Yunnan Province, China

The mountainous Erhai lake-catchment, Yunnan, China
(25048I02.38II N 100011I33.86II E), including the ancient city of
Dali, has a long history of unsustainable pressures on ecosystems
(Dearing et al., 2008). Today, the rural community is involved in
wet and dry cropping, dairy farming, fishing, aquaculture, and
forestry. The southern part of the lake catchment is the focus for
targeted industrial development. Documented environmental
impacts include deforestation, soil erosion and eutrophication of
the lake and inflowing rivers (Wang et al., 2012). The ecological
time series (Fig. 3 and Table A.2) show recent changes in dynamical
behaviour for water quality, air quality and water regulation. Two
measures of water quality describe a hysteretic threshold change
around 2001 that have taken the lake into the dangerous category
represented by a highly eutrophic state (Wang et al., 2012). Water
regulation over the past four decades has shifted the lake water
level beyond the long-term envelope of variability but has recently
changed from the dangerous to the cautious status. Three
measures of air quality show mixed trends but the change in rate
for Pb deposition in the sediments indicates a cautious status for
emitted heavy metals in the current environment. Much longer

http://ec.europa.eu/environment/water/water-framework/


Fig. 3. Erhai lake-catchment, Yunnan Province: ecological boundaries (top to

bottom panels) for sediment regulation, two measures of water quality, three

measures of air quality and water regulation based on time series extending back

from 2006 over one to eleven decades. The time series are illustrated with red

dashed lines, where appropriate, to show the basis for defining the different types of

dynamical behaviour and boundary (Fig. 2) described in each panel (italicized).

Colour coded segments show historical changes in the safe (green), cautious

(yellow) and dangerous (red) status of each ecological process (Fig. 2). The status

shown for 2006 is used in the social and environmental integrated plot (Fig. 5a).

Details of data and the categorization of boundaries are given in Table A.2. (For

interpretation of the references to color in this text, the reader is referred to the web

version of the article.)
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sediment records (Dearing, 2008) show that the upland land use-soil
system currently sits in the dangerous category, having settled into
an alternate degraded steady state about 850 years ago. The social
foundation (Table A.3) is virtually met in terms of health care but
provision of food, water and sanitation falls short by substantial
margins. Mapping the ecological boundaries with respect to the
regional environmental ceiling and social foundation (Fig. 5a)
highlights the importance of water quality management. Taking
these preliminary findings together suggests that the process of
economic development, particularly through agricultural intensifi-
cation largely based on increasing fertilizer applications, has
reduced but not eradicated poverty. There is a clear trade-off
in terms of deterioration of key ecological processes and condi-
tions that have led to dangerous threshold changes in lake water
quality.

3.2. Shucheng County, Anhui Province, China

Shucheng County (31027I43.29II N 116056I55.20II E) is situated
in eastern China in the lower Yangtze basin about 200 km W of
Nanjing City. It is a ‘poverty-stricken county’ as defined by the
central government, and previous research has shown that the
region has undergone serious environmental degradation due to
intensive agricultural activities during the last 60 years (Dearing
et al., 2012a). The ecological records from Shucheng (Fig. 4, and
Table A.4) show that water quality, sediment quality and air
quality have moved into the dangerous status, with soil stability
given cautious status in response to the increasing volatility in the
recent records. Given the findings from Erhai about alternate soil
stability states, it is feasible that the farmed Shucheng soils have
also passed into an alternate degraded state, meaning that the
designated cautious status based on recent observations should
be regarded as a minimum status. Like Erhai, the lake water
quality transition is probably hysteretic (Wang et al., 2012)
implying a high degree of irreversibility. Levels of sediment-
associated P from intensive farming and deposited Pb from local
fossil fuel powered industries are not only very high by
international standards but also 80–100% higher than pre-
1960s levels. Mapping these boundaries with respect to the
regional environmental ceiling (Fig. 5b) highlights the importance
of soil, water and air management. The social foundation is
virtually met in terms of food security, health care and minimum
income (Fig. 5b and Table A.5) implying that the government
strategy of providing extra resources to ‘poverty-stricken’
counties is relatively successful. But like Erhai, access to piped
water and sanitation still lags behind other poverty alleviation
measures.

There are huge challenges in these Chinese regions for the local
governments to harness the momentum of economic growth to
reduce poverty while reconciling growth with the need to restore
badly damaged ecosystems and ecological processes, and to avoid
further irreversible and costly environment damage. Managing
the two regions as social-ecological systems that remain within a
RSJOS now needs, particularly, to prioritize the challenge of
reducing nutrient loadings to the rivers and lakes whilst improving
the rural access to water and sanitation. Air quality and water
regulation are also in need of continuous environmental monitor-
ing and evidence-based management if they are to stay within
the regional environmental ceilings. Soils in both regions need
targeted conservation measures.

4. Discussion

These case studies demonstrate proof-of-concept and validity
of a new conceptual framework that may help raise the
standards of social conditions while reducing the likelihood of
moving into dangerous operating spaces with respect to
ecological boundaries. Our framework offers a clear visual
image for making comparisons between different regions and,
potentially, provides a basis for assessing a region’s impact on
planetary boundaries. The outputs could usefully inform the
Post-2015 UN Development Agenda and new Sustainable
Development Goals (United Nations, 2012b). Although these
are good reasons to advocate its use, particularly in rural regions
within developing nations, there are a number of caveats and
remaining challenges.



Fig. 4. Shucheng County, Anhui Province: ecological boundaries (top to bottom

panels) for sediment regulation, soil stability, water quality, sediment quality and

air quality based on time series extending back from 2006 over one to eleven

decades. The time series are illustrated with red dashed lines, where appropriate, to

show the basis for defining the different types of dynamical behaviour and

boundary (Fig. 2) described in each panel (italicized). Colour coded segments show

historical changes in the safe (green), cautious (yellow) and dangerous (red) status

of each ecological process (Fig. 2). The status shown for 2006 is used in the social

and environmental integrated plot (Fig. 5a). Details of data and categorization of

boundaries are given in Table A.4. (For interpretation of the references to color in

this text, the reader is referred to the web version of the article.) Fig. 5. Safe and just operating spaces mapped for two Chinese regions in 2006. (a)

Erhai lake-catchment system, Yunnan Province; (b) Shucheng County, Anhui

Province. The figures show the extent to which each region currently meets

expected social standards (blue sectors) for an acceptable social foundation (green

circle), and the current status of key ecological services/processes (from Figs. 3 and

4): safe (green sectors), cautious (yellow sectors) and dangerous (red sectors). The

environmental ceiling (red circle) defines the approximate boundary between

sustainable and unsustainable use of ecological processes. The RSJOS exists as a

‘doughnut’ between the environmental ceiling and social foundation. Data for

sediment quality (a) and water regulation (b) unavailable. Note that the relative

sizes of green, yellow and red sectors are illustrative: they are not plotted to any

scale and are not plotted from the centre of the circles (see text for further

explanation). Blank sectors indicate unavailability of data. Ecological data are

shown in Figs. 3 and 4, and Tables A.2 and A.4; social data in Tables A.3 and A.5. An

additional sector for upland soil stability at Erhai (a) is based on assessment of

centennial records (see text and Dearing, 2008). (For interpretation of the

references to color in this text, the reader is referred to the web version of the

article.)
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4.1. Complex interactions

While systems dynamic theory is used to help define ecological
boundaries, as with the original planetary boundaries framework
(Rockström et al., 2009a,b), the framework does not provide a
systems dynamic analysis of the relationships between any of the
social and environmental conditions. Rather, it provides a basis for
judging the relative state of current environmental viability and
societal wellbeing within a region. Clearly, caution must be
exercised in considering causative links between the different
variables because interactions within and between a social
foundation and environment ceiling are likely to be complex,
nonlinear and difficult to confirm. The analyses of biophysical
time-series alone underline the need to consider the full range of
timescales (annual-centennial) embedded within the social-
ecological dynamics when assessing the environmental outcomes
from a specific social policy or land management decision. There
are likely to be important lags in the feedback effects of excessive
resource use and resource stress (such as from climate change,
eutrophication, biodiversity loss, and so on) on human health,
income, food and water availability and resilience. These lagged
environmental feedbacks may be related to hysteretic processes
with potentially irreversible effects meaning that early warnings of
direct stress on those ecological systems, as provided by the RSJOS
methodology, is essential.

Thus the framework is best used to formulate hypotheses about
links and interactions for further testing and investigation. For
example, a new family of integrative social-ecological models (e.g.
ARIES http://www.ariesonline.org) might help to identify critical
points in the flows of ecosystem processes/services that could be
used in highlighting vulnerable areas at risk from development.
The framework provides a strong basis for designing systems
dynamics models that capture feedback mechanisms (e.g. using

http://www.ariesonline.org/


Fig. A.1. Known interactions between ecosystem service/processes (shaded boxes)

and social indicators (dotted boxes) for (a) the Erhai lake-catchment system and (b)

Shucheng County.
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multi-agent modelling tools, such as STELLA, Matlab-Simulink) in
order to explore the ecological impacts of alternative social futures.
Multivariate analyses within pressure-state-response frameworks
(OECD, 1993) may be able to estimate future probabilities of extreme
events as a result of co-occurring drivers (Denny et al., 2009;
Rounsevell et al., 2010). Drawing on econometric methods, it may
also be possible to aggregate individual time-series signals to give a
region-wide assessment of growing connectivity (Wang et al., 2011)
and causality (Sugihara et al., 2012) between variables, and the
associated risk of systemic failure (Billio et al., 2012). The growing
numbers of long term social-ecological reconstructions (Singh et al.,
2013) will provide new material for extending the RSJOS framework
to embrace the interactions between social foundations and
environmental ceilings. But until these opportunities are realized,
the RSJOS images presented are essentially informative, teleological
devices providing a regional barometer of sustainable development
for policy traction and strategic scientific studies.

4.2. Inter-regional fluxes

To a lesser or greater extent, all regions are connected to all other
regions. The use of natural resources and ecosystem services within
a region is frequently driven by larger scale motivations, resulting in
flows of energy, people, money, and goods between regions. This
means that the social and ecological variables within many regions
are not necessarily strongly linked to local resource availability.
Proximity to dangerous ecological boundaries may drive imports
(Seto et al., 2012) but conversely regional environmental degrada-
tion may be driven by production for export (Muradian and
Martinez-Alier, 2001). Thus the welfare data produced in the social
foundation are focused on deprivations to be avoided, and do not
indicate the extent to which other parts of a society may be engaged
in excessive consumption patterns that directly affect the ecological
conditions of a region. The rise in the global urban population, in
particular, is tied to the sustainability of human and natural
resources in both proximal and distant regions (Seitzinger et al.,
2012). Whiteman et al. (2012) argue that corporate sustainability
should include the impact of companies on the planetary boundaries
but, as they also state, there is a need to include collective targets at
local/regional scales to avoid problem-shifting among actors and
geographic regions. In representing the fundamental limits to
impacts on regional ecosystems, from whatever combination of
drivers, the RSJOS framework outlined here is a first, and necessary,
bottom-up step in improving our understanding of multi-scale
interconnections (cf. Nilsson and Persson, 2012) in setting local or
regional boundaries.

4.3. Tradeoffs

The impacts of regional resource scarcities (e.g. limits to food
production) or overexploitation of regional resources (e.g. overuse of
forests) may be overcome by switching to alternative resources,
often resulting in new sustainability challenges. For example, Erb
et al. (2008) describe a typical pattern in their analysis of historic
tradeoffs in land use in Austria. Fossil fuel based yield increases in
agriculture and the substitution of fossil fuels for biomass as the
main energy source resulted in the recovery of previously degraded
forests. From 1830 to 2000, local food supply multiplied and forests
increased substantially in both area and stocking density. These
regional gains were accomplished without substantially raising the
net import of food and other land-based resources, but at the
expense of increased greenhouse gas emissions (Folke et al., 2007)
and, most likely, unsustainable soil use (Winiwarter and Gerzabeck,
2012). While the latter would be detected within the proposed RSJOS
framework, the former would require a global framework with
complementary indicators capable of showing unsustainably high
levels of regional contributions to global problems. Methods to
construct such nested indicators are available for problems such as
fossil fuel related emissions ‘embodied’ in traded products (Peters
et al., 2012) and in regards to biodiversity pressures (Haberl et al.,
2012) and land-use impacts (Lenzen et al., 2012) related to trade.
These underline the need and challenge to extend the RSJOS
framework presented to include regional contributions to the
pressures on planetary boundaries.
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Table A.1
Eleven indicators of a social foundation based on national governments’ social priorities for Rio+20 (Raworth, 2012).

Social foundation Indicators

Food security Population undernourished 13% 2006–2008

Income Population living below $1.25 (PPP) per day 21% 2005

Water and sanitation Population without access to an improved drinking water source

Population without access to improved sanitation

Health care Population estimated to be without regular access to essential medicines

Education Children not enrolled in primary school

Illiteracy among 15–24-year-olds

Energy Population lacking access to electricity

Population lacking access to clean cooking facilities

Gender equality Employment gap between women and men in waged work (excluding agriculture)

Representation gap between women and men in national parliaments

Social equity Population living on less than the median income in countries with a Gini coefficient

exceeding 0.35

Voice E.g. Population living in countries perceived (in surveys) not to permit political

participation or freedom of expression

Jobs E.g. Labour force not employed in decent work

Resilience E.g. Population facing multiple dimensions of poverty

Table A.2
Erhai lake-catchment: ecological boundaries.

Ecological process

or condition

IIndicator (measurable

variable)

IEcological

boundary (type)

IEcological boundary

(definition)

Current

status

Boundary

value

Current

state

IKnown drivers

Air quality 1 Acidity of precipitation

(monitored pH)

Type Ia Linear

Environmental

limit

Limit pH = 5.6

according to national

regulatory standards

Safe pH 5.6 pH 7.5 Fossil fuel power

generation/industrial

emissions

Air quality 2 Industrial soot/

particulate emission

(monitored >0.1 mm

particle emissions)

Type Ib Linear

trends

Distance from a

(high)

background state

Emission regulatory

standards for Dali

prefecture (<2 t/yr)

Safe 2 t/yr 1 t/yr Fossil fuel power

generation

Air quality 3 Heavy metals (lake

sediment deposited

sediment Pb)

Type Ib Linear

trends

Distance from

baseline

Baseline Pb

concentration before

1980s

Cautious 3% 5% Industrial emissions

Water regulation Lake water volume

(monitored lake level)

Type IIb

Nonlinear

Envelope of

variability

Earlier low lake levels

<1972 m triggered

lake eutrophication

Cautious 1973 1972 Dam construction/

hydroelectric power

station demands/

climate change

Sediment

regulation

Sediment delivery

from catchment (lake

sediment mass

accumulation rate)

No detectable

change

Long-term trend and

variability indicate no

major changes in

driver-responses

Safe Land use change/dam

constructions

Water quality 1 Water transparency

(monitored secchi

depth)

Type IVb

Thresholds

Abrupt hysteretic

change

Relative steady state

values before 2000.

Critical transition

�2001 with evidence

for fold bifurcation.

(Wang et al., 2012)

Dangerous 3 m 2 m Nutrients enrichment

from fertilizers and

untreated sewage/fish

farming

Water quality 2 Algal growth (lake

sediment diatom

community expressed

through detrended

correspondence

analysis (DCA axis 1)

Type IVb

Thresholds

Abrupt hysteretic

change

Relative steady state

values before 2000.

Critical transition

�2001 with evidence

for fold bifurcation

(Wang et al., 2012)

Dangerous 1.0 0.2 Nutrients enrichment

from fertilizers and

untreated sewage/fish

farming

Upland soil

stability

Eroded soil and

substrate indicative of

gullying on steep

slopes (lake sediment

record of topsoil and

subsoil fingerprints

frequency dependent

magnetic

susceptibility and low

field susceptibility)

Type IVb

Thresholds

Abrupt hysteretic

change

Steady non-degraded

state before �AD 520.

Critical transition to

modern degraded state

lasted �600 years until

�AD 1150. Evidence

for fold bifurcation

with strong hysteresis

and irreversibility

(Dearing et al., 2008)

Dangerous n/a n/a Upslope movement of

farming and

ineffective terracing

Sources: Anhui Province Statistical Yearbooks (1989–2011), Dearing et al. (2008), Dearing et al. (2012a,b), Li (2008), Wang et al. (2012), Yan et al. (2005), Yunnan Digital

Village (2013).
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Table A.3
Erhai lake-catchment: social foundation.

Social foundation Indicator Current deficit from 100% (year)

Food security Children undernourished (0–5 years old) >5% (2012)

Income Population living below $1.25(PPP)/day 2% (2010)

Water and sanitation Households with piped water (Cibihu) 9% (not known)

Health care Children (0–5 years old) mortality rate >1% (2012)

Education Illiteracy rate (Eryuan) 2% (2010)

Energy Households with clean energy 17% (not known)

Gender equality To be determined

Social equity To be determined

Voice To be determined

Jobs Urban unemployment 2% (2005)

Resilience To be determined

Sources: Bai (2003), ), Eryuan County Bureau of Statistics (2011), Dali Environmental Protection Bureau (1999–2010) and Dali Bai Autonomous

Perfecture (2012).

Table A.4
Shucheng County: ecological boundaries.

Ecological process

or condition

Indicator (measurable

variable)

Ecological boundary

(type)

Ecological boundary

(definition)

Current

status

Boundary

value

Current

state

Known drivers

Air quality Heavy metals (lake

sediment deposited

sediment Pb)

Type Ib Linear trends

Distance from baseline

Baseline Pb

concentration before

1960s. Modern values

now �2 baseline

Dangerous �30 mg/g �60 mg/g Industrial emissions

Sediment

regulation

Sediment delivery

from catchment (lake

sediment mass

accumulation rate)

Type IIb Nonlinear No

detectable change

Low absolute values,

stationary data and

reducing variability

indicate increasing

stability or no major

changes in driver-

responses.

Safe Land use change/dam

constructions

Water quality Algal growth (lake

sediment diatom

inferred transfer

function)

Type IIIb Thresholds

Abrupt hysteretic

change

Critical transition

�1980 with assumed

fold bifurcation as

shown in similar

contexts (Wang et al.,

2012).

Dangerous 100 mg/l 160 mg/l Nutrient enrichment

from fertilizers/

untreated sewage/lake

reclamation

Soil stability Topsoil erosion (lake

sediment record of

topsoil fingerprint

frequency dependent

magnetic

susceptibility)

Type IVa Early warning

signal Magnitude-

frequency

Relative steady state

before 1985.

Increasing magnitude

and frequency since

the 1960s and

especially after 1985

suggests growing

topsoil instability

Cautious 2–6 � 10�6 m3/kg 2–8 � 10�6 m3/kg Land use change/

deforestation/

cultivated slopes

Sediment

quality

Sediment-associated

nutrients and

contaminants (lake

sediment records of

bound total P)

Type Ib Linear Distance

from baseline

P concentration

increase after 1960s to

a high level. Mean

value in 1960s taken as

a baseline condition.

Dangerous �500 mg/g �900 mg/g Excess fertilizer/soil

erosion

Source: Dearing et al. (2012a,b).

Table A.5
Shucheng County: social foundations.

Social foundation Indicator Current deficit from 100% (year)

Food security Children undernourished (0–5 years old) 1% (2009)

Income Population living below $1.25(PPP)/day 6% (2010)

Water and sanitation Households with piped water 55% (2011)

Households with lavatories (Anhui) 42% (2010)

Health care Children (0–5 years old) mortality (Anhui) 2% (2010)

Education Illiteracy rate 8% (2010)

Energy To be determined

Gender equality To be determined

Social equality To be determined

Voice To be determined

Jobs Urban unemployment rate (Anhui) 4% (2010)

Resilience To be determined

Source: Anhui Province Statistical Yearbooks (1989–2011).
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