HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Querying the Web of Data
with Low Latency:

High Performance Distributed
SPARQL Processing and Benchmarking

by
Xin Wang

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Web and Internet Science Group
Electronics and Computer Science

Faculty of Physical and Applied Sciences

April 2014

http://www.soton.ac.uk
mailto:xinxinbird@gmail.com
http://www.wais.ecs.soton.ac.uk/
http://www.ecs.soton.ac.uk
http://www.engineering.soton.ac.uk

“You will never be happy if you continue to search for what happiness consists of. You

will never live if you are looking for the meaning of life.”

Albert Camus

UNIVERSITY OF SOUTHAMPTON

Abstract

Web and Internet Science Group
Electronics and Computer Science

Faculty of Physical and Applied Sciences

Doctor of Philosophy

by Xin Wang

The Web of Data extends the World Wide Web (WWW) in a way that applications
can understand information and cooperate with humans on complex tasks. The basis of
performing complex tasks is low latency queries over the Web of Data. The large scale
and distributed nature of the Web of Data have negative impacts on several critical
factors for efficient query processing, including fast data transmission between datasets,
predictable data distribution and statistics that summarise and describe certain pat-
terns in the data. Moreover, it is common on the Web of Data that the same resource
is identified by multiple URIs. This phenomenon, named co-reference, potentially in-
creases the complexity of query processing, and makes it even harder to obtain accurate
statistics. With the aforementioned challenges, it is not clear whether it is possible to

achieve efficient queries on the Web of Data on a large scale.

In this thesis, we explore techniques to improve the efficiency of querying the Web of
Data on a large scale. More specifically, we investigate two typical scenarios on the
Web of Data, which are: 1) the scenario in which all datasets provide detailed statistics
that are possibly available on a large scale, and 2) the scenario in which co-reference
is taken into account, and datasets’ statistics are not reliable. For each scenario we
explore existing and novel optimisation techniques that are tailored for querying the

Web of Data, as well as well developed techniques with careful adjustments.

For the scenario with detailed statistics we provide a scheme that implements a statis-
tics query optimisation approach that requires detailed statistics, and intensively exploits

parallelism. We propose an efficient algorithm called Parallel Sub-query Identification

http://www.soton.ac.uk
http://www.wais.ecs.soton.ac.uk/
http://www.ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
mailto:xinxinbird@gmail.com

(U) to increase the degree of parallelism. ¥ breaks a SPARQL query into sub-queries
that can be processed in parallel while not increasing network traffic. We combine W
with dynamic programming to produce query plans with both minimum costs and a fair
degree of parallelism. Furthermore, we develop a mechanism that maximally exploits
bandwidth and computing power of datasets. For the scenario having co-reference and
without reliable statistics we provide a scheme that implements a dynamic query opti-
misation approach that takes co-reference into account, and utilises runtime statistics
to elevate query efficiency even further. We propose a model called Virtual Graph to
transform a query and all its co-referent siblings into a single query with pre-defined
bindings. Virtual Graph reduces the large number of outgoing and incoming requests
that is required to process co-referent queries individually. Moreover, Virtual Graph
enables query optimisers to find the optimal plan with respect to all co-referent queries
as a whole. W is used in this scheme as well but provides a higher degree of paral-
lelism with the help of runtime statistics. A Minimum-Spanning-Tree-based algorithm
is used in this scheme as a result of using runtime statistics. The same parallel execution

mechanism used in the previous scenario is adopted here as well.

In order to examine the effectiveness of our schemes in practice, we deploy the above
approaches in two distributed SPARQL engines, LHD-s and LHD-d respectively. Both
engines are implemented using a popular Java-based platform for building Semantic
Web applications. They can be used as either standalone applications or integrated into

existing systems that require quick response of Linked Data queries.

We also propose a scalable and flexible benchmark, called Distributed SPARQL Evalu-
ation Framework (DSEF), for evaluating optimisation approaches in the Web of Data.
DSEF adopts a expandable virtual-machine-based structure and provides a set of effi-
cient tools to help easily set up RDF networks of arbitrary sizes. We further investigate
the proportion and distribution of co-reference in the real world, based on which DESF
is able to simulate co-reference for given RDF datasets. DSEF bases its soundness in

the usage of widely accepted assessment data and queries.

By comparing both LHD-s and LHD-d with existing approaches using DSEF, we pro-
vide evidence that neither existing statistics provided by datasets nor cost estimation
methods, are sufficiently accurate. On the other hand, dynamic optimisation using run-

time statistics together with carefully tuned parallelism are promising for significantly

reducing the latency of large scale queries on the Web of Data. We also demonstrate
that ¥ and Virtual Graph algorithms significantly increase query efficiency for queries

with or without co-reference.

In summary, the contributions of this these include: 1) proposing two schemes for im-
proving query efficiency in two typical scenarios in the Web of Data; 2) providing imple-
mentations, named LHD-s and LHD-d, for the two schemes respectively; 3) proposing a
scalable and flexible evaluation framework for distributed SPARQL engines called DSEF;
and 4) showing evidence that runtime-statistics-based dynamic optimisation with par-

allelism are promising to reduce latency of Linked Data queries on a large scale.

Contents

Abstract

List of Figures
List of Tables
List of Algorithms

Declaration of Authorship
Acknowledgements

Abbreviations

1 Introduction

1.1 The Semantic Web, Linked Data and the Web of Data
1.2 Issues of Querying Linked Data
1.3 Hypothesis and Contributions
1.4 Thesis Overview vt

2 Preliminaries

2.1 Basis of RDF and SPARQL Query Language
2.2 Basis of Distributed SPARQL Processing
2.3 Stages of Distributed SPARQL Query Processing

3 Related Work

3.1 Distributed Query Processing Techniques
3.2 Distributed SPARQL Query Engines
3.3 RDF Store Benchmarking

4 DSEF: A Distributed SPARQL Evaluation Framework

4.1 Overview of the Evaluation Framework
4.2 Assessment Data and Co-Reference Generation
4.3 Assessment Query Set
4.4 Assessment Metrics Lo

vii

iv

xi

xiii

XV

xvi

xvii

xviii

Contents viii

4.5 The Framework Tool Seto . 39
Querying LD with Detailed VoID Statistics 43
5.1 Overview of LHD-s 44
5.2 VoID Service Descriptions 0o 45
5.3 Data Source Selection L 46
5.4 Cost Estimation 47
5.4.1 Cardinality of a Single Triple Pattern 48
5.4.2 Cardinality of Joined Triple Patterns 49
5.4.3 A Response Time Cost Model 50
5.5 Identifying Independent Sub-Queries 51
5.6 Optimising Queries for Parallel Execution 53
5.6.1 Generating Serial Query Plans 54
5.6.2 Transforming Serial Query Plans into Parallel Plans 55
5.7 Parallel Query Execution System 56
5.7.1 Query Plan Executor L. 57
5.7.2 Communication Manager 58
5.8 Summary of LHD-s 59
5.9 Implementation of LHD-s 59
Evaluating LHD-s 63
6.1 Evaluating Cost Models 64
6.1.1 Evaluation Method 64
6.1.2 Results and Analysis oL 66
6.2 Evaluating the Optimisation Algorithm and the Execution System 68
6.2.1 Experiment Settings 68
6.2.2 Results and Analysiso 70
6.3 Evaluation Summary oL 75
Optimising Queries with the Presence of Co-reference 77
7.1 Challenges of Optimising Queries having Co-reference 78
7.2 Overview of Optimisation Techniques in Environments with Co-reference 80
7.3 Addressing Co-reference using Virtual Graph 80
7.4 Interleaved Query Optimisation and Execution 83
7.5 Summary of LHD-d 85
7.6 Implementation 86
Evaluating LHD-d 87
8.1 Evaluating the Dynamic Optimisation Approach 87
8.1.1 Resultsand Analysis 88
8.2 Evaluating LHD-d including Co-Reference 90
8.2.1 Experiment Settings 91
8.2.2 Results and Analysis 92
8.3 Evaluation Summary 96
Conclusions and Future Work 99
9.1 Summary of DSEF 100

9.2 Summary of LHD-s 101

Contents ix
9.3 Summary of LHD-d 103
9.4 Conclusions e e e 104
9.5 Future Work 105

9.5.1 Short-term Plans on Improving the Proposed Methods 105
9.5.2 Long-term Plans on Open Issues of Distributed SPARQL 106
A Experiment Queries 107
Bibliography 147

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Booking a doctor using Semantic Web technologies 2
Graph pattern matching oo 12
Matching triple patterns against two datasets 16
An overview of distributed SPARQL query processing 17
Generating the optimal QEP using a MST algorithm 28
Overview of the BSBM data model 32
Architecture of DSEF 35
Distribution of co-reference L. 36
Architecture of LHD-s 45
Statisticsina VoID file o 46
Independent components of a grapho oo 52
An example query and its execution plan 56
Execution of a QEP L oo 61
Cardinality of SSjoins 66
Cardinality of OS joins L 68
Cardinality of none-zero OS joins 69
QPS of LHD-s e 70
Incoming trafficof LHD-s 71
Outgoing traffic of LHD-s 72
Average transmission rate of LHD-s 73
CPUwusage of LHD-s 74
Memory usage of LHD-s oo 75
Architecture of LHD-d 81
Virtual Graph 82
QPSof LHD-d 88
Incoming traffic of LHD-d 89
Outgoing traffic of LHD-d 90
Average transmission rate of LHD-d 91
QPS of LHD-d having co-reference (LHD-d*) 94
Incoming traffic of LHD-d having co-reference (LHD-d*) 95
Outgoing traffic of LHD-d having co-reference (LHD-d*) 96
Average transmission rate of LHD-d having co-reference (LHD-d*) 97

X1

List of Tables

2.1 Examples of SPARQL syntax and algebra
3.1 Optimisation techniques of popular query engines

6.1 Possible SS & OS joins of Query 1. There are four triple patterns in Query
1. The upper right part of the table contains all SS joins of arbitrary two
different triple patterns. The lower left part contains all OS joins of
arbitrary two different triple patterns.

6.2 Comparison of ranking accuracy on SSjoins

8.1 Comparison of result sizes with or without co-reference. The first columns
represent result sizes with the presence of co-reference returned by LHD-
d* and the naive approach while the last column represents result sizes
without the presence of co-reference returned by LHD-d. It is clear that
co-reference significantly increase result sizes.

A.1 Assessment queries of the evaluation framework
A.2 SSjoins of distinct predicates L.

xiii

List of Algorithms

Parallel sub-query Identification 53
QEP generation of LHD-so oo 54
Parallel QEP transformation 55
QEP generation of LHD-d 85
Query execution of LHD-d 85

XV

Declaration of Authorship

I, Xin Wang, declare that this thesis titled, ‘Querying the Web of Data: Distributed

SPARQL Optimisation Techniques and Evaluation’ and the work presented in it are my

OoOw1l.

I confirm that:

This work was done wholly or mainly while in candidature for a research degree

at this University.

Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly

stated.

Where I have consulted the published work of others, this is always clearly at-
tributed.

Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.
I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

xvi

Acknowledgements

First of all, I would like to thank my supervisor Dr. Thanassis Tiropanis for his in-
valuable guidance, support and encouragement. I am very grateful for his consistent
encouragement, as well as patience, which kept me in hope. His vigour to research and
positive attitudes towards life and work will continue to stimulate me to make progress
in my future career. Meanwhile, I also would like to thank another supervisor Prof.
Hugh C. Davis for his great suggestions. All in all, this thesis would never have gone
this far without them. Moreover, I want to thank my colleges in the Web and Internet
Science Group of University of Southampton, both past and present, for their generous
help through my Ph.D. study. T am indebted to Areeb Alowisheq, Dr. Tope Omitola
and Dr. Tan Millard. I have enjoyed all the discussions with them, both academic and
non-academic. My personal thanks are due to many friends in Southampton, Jiadi Yao,
Mr. Anthony Robson, Mrs. Ela Robson and etc. They have easy and enrich my life in
the last four years. Finally, I would like to thank my parents and grandparents for their

unconditional love and support.

xvii

Abbreviations

BGP
BSBM
DBMS
DSEF
HJ

IDP

LD

LAN
MSJ
NLJ

v

QEP
QPS
RDF
SPARQL
VG

VM
VoID

Basic Graph Pattern

Berlin SPARQL Benchmark

Database Management System

Distributed SPARQL Evaluation Framework
Hash Join

Iterative Dynamic Prpgramming

Linked Data

Local Area Network

Merge Sort Join

Nested Loop Join

Parallel Subgraph Identification

Query Execution Plan

Query Per Second

Resource Description Framework

SPARQL Protocol and RDF Query Language
Virtual Graph

Virtual Machine

Vocabulary of Interlinked Datasets

Xix

Chapter 1

Introduction

HE World Wide Web (or simply the Web) plays an important role in pro-
viding information. It contains a huge amount of interlinked documents’
the number of which is still increasing. With the help of various tools
such as search engines (e.g. Google), people can easily access a significant

amount of the information on the Web. However, the potential of the Web is far from
being fully exploited since most of information on the Web is stored as documents, which
are readable by humans but not understandable by machines?. A Web with machine-
readable information (i.e. data) will enable collaboration between machines and humans,
as well as sophisticated programmatic processing. A demonstrating example was given
by Berners-Lee et al. [2001], describing a scenario in which a family carries out daily
tasks with the assistance of software agents based on the information on the Web. As
shown in Figure 1.1, Lucy’s mother needed to see doctors. Looking for an appropriate
doctor requires identifying candidates according to mother’s prescription, and checking
the doctors’ availability. Instead of doing these by herself, Lucy instructed her appli-
cation to perform the task. The application firstly queried mom’s prescription that is
available as machine-understandable data, then queried for appropriate doctors in the
same manner. In the above example, the basis of the automation is that the machine

can “understand” the information of Lucy’s mother and the doctors.

'Here a “document” refers to a set of texts that are readable by humans, such as an article, or a
web page. Later in the text we use “data” to refer to structured information that can be processed by
machines.

2There are applications that are design to understand specific types of documents on the Web.
However, generally speaking there is no application can understand an arbitrary document on the Web,
since the Web is not initially designed for machine processing.

Chapter 1. Introduction 2

Query for m
— Doctors
&=|[g=
Mom’s

85 prescribed
treatment

F1GURE 1.1: Booking a doctor using Semantic Web technologies

1.1 The Semantic Web, Linked Data and the Web of Data

To achieve machine readability, rather than solely relying on improving machines’ natu-
ral language processing ability, researchers proposed the idea of associating web content
with explicit semantics. This idea, called the Semantic Web, provides a collection of stan-
dard Semantic Web technologies that gradually transform the current web of documents
into a collection of data. Data in the Semantic Web are represented using a common
format called the Resource Description Framework (RDF) [Hayes and McBride, 2004]
which is a graph-based data model. RDF is designed to be able to make assertions
about both on-line documents and entities in the real world, which extends the express-
ibility of the Semantic Web. In addition, RDF data can be accessed and processed by
any application that complies with standard Semantic Web technologies. Representing
information using RDF makes the first step to transform the Web into a data space and

thus enables automation on more complex tasks based on knowledge on the Web.

Machine-readable data is not the whole story. The Semantic Web is decentralised in na-
ture (since it extends the WWW) and data on it can be isolated. This isolation reduces
the interoperability of data and limits the usability of the whole Semantic Web. Con-
sequently, when publishing RDF data, providing references or links to relevant datasets
becomes equally significant. Guidelines have been introduced by Tim Berners-Lee for

creating interlinked RDF data, referred to as Linked Data (LD) [Berners-Lee, 2006].

Chapter 1. Introduction 3

Repeatedly publishing LD will finally diminish data islands and lead to a global, inter-
connected data space, or the Web of Data.

1.2 Issues of Querying Linked Data

With the emergence of the Web of Data, both the quality and amount of LD are in-
creasing. Small pieces of LD can be embedded in documents. In the meantime, it
is also important to store relatively large LD in standalone repositories for convenient
access and complex processing. These LD repositories can be accessed, or queried, us-
ing the SPARQL Protocol and RDF Query Language (SPARQL) [Prud’Hommeaux and
Seaborne, 2008], which enables consumers of the Web of Data to send queries and receive

results over HT'TP connections.

In the Web of Data, it is very likely that applications access data (using SPARQL)
from different repositories rather than a single source. Furthermore SPARQL queries
tend to be much more structured and complex than the keyword-matching approach
adopted by most of the contemporary searching engines. In the simple “finding doctor”
example both the mother’s prescriptions and the doctors’ information can be stored at
many different sites (Figure 1.1). To find an appropriate doctor the application has
to issue multiple queries to those datasets, and these queries are related in a way that
together they produce the desired answer. Extra care should be taken to dispatch these
queries to datasets that probably can give part of the answer. Considering the large scale
and distributed nature of LD, the ability of efficiently processing distributed SPARQL
queries (in terms of time, network traffic etc.) can be a significant requirement of those
applications. In the mean time, it is not clear whether such efficiency is achievable
using standard Semantic Web technologies. For example, distributed queries is not
explicitly supported in the first version of SPARQL specification, SPARQL 1.0. In
the latest SPARQL 1.1 [Prud’hommeaux and Buil-Aranda, 2013], a SERVICE keyword
is provided to evaluate certain triple patterns against explicitly provided data sources.
The SERVICE keyword enables straightforward data federation when users know exactly
which SPARQL endpoints can potentially answer a portion of a query. However, when a
fair amount of data sources are involved, this method can be cumbersome and inefficient.

In addition, SPARQL does not specify the infrastructure of distributed query execution,

Chapter 1. Introduction 4

where sophisticated techniques can take place and improve query performance as well

as scalability.

From a broader view, distributed SPARQL queries share many characteristics with
queries of distributed database management systems (DBMS). In a distributed DBMS,
performance and scalability of query processing are closely related to network overhead
and latency introduced in data transfer [Ozsu and Valduriez, 1999], and the same rela-
tionship is also applicable in distributed SPARQL queries. As a result, many techniques
that are developed to improve the performance of queries of distributed DBMS become
relevant in the context of processing distributed SPARQL queries. For example, dy-
namic programming, which is widely used in distributed DBMS query optimisation, is
also adopted in SPARQL query engines such as DARQ [Quilitz, 2008] and SPLENDID
[Gorlitz and Staab, 2011]. On the other hand, however, there are also differences be-
tween distributed SPARQL queries and distributed DBMS queries. For example, in most
distributed DBMS data can be shipped among datasets. In addition, statistics of data,
including frequency and distribution of certain patterns in the data, can be prepared
according to the demand of query optimisation. However, the above advantages are not
available in the LD cloud on a large scale. Furthermore, accurate and rich statistics,
which are critical to query optimisation, are difficult to obtain on a large scale. There
is a trend for datasets to adopt the Vocabulary of Interlinked Datasets (VoID) [Alexan-
der et al., 2009] which provides an interoperative way to publish general information as
well as statistics of the datasets. However, statistics provided by VolD are coarse and
not flexible to meet different optimisation demands. Concerns of distributed DBMS,
such as network traffic and query processing time, can be even more important in the
LD context. When querying LD, all data are transferred through the Internet which
is, generally speaking, slower and less stable than in distributed DBMS which tends to
use local area network (LAN). The large scale of the LD cloud, and limitations such
as network bandwidth and computing power of datasets bring more challenges into the

research of distributed SPARQL query optimisation.

Moreover, in the LD cloud it is common to have multiple URIs referring to the same
entity, which is known as co-reference. Co-reference exists in several fields such as
linguistics and knowledge management, due to “inherently distributed and disparate
nature of the information” [Glaser et al., 2007]. It is unlikely that a single URI can

be accepted in all specific datasets in the LD cloud. In LD co-reference relationships

Chapter 1. Introduction 5

between URIs are represented using the owl:sameAs property [Carroll et al., 2012].
When querying the Web of Data, taking owl:sameAs statements into account increase
the possibility of having additional results. Meanwhile, many unique challenges arise and

extra care is required for processing distributed SPARQL queries having co-reference.

Similarities between distributed SPARQL and distributed DBMS make a strong case to
exploit well-developed distributed DBMS techniques in the context of SPARQL. On the
other hand unique challenges of distributed SPARQL processing demand specifically
tailored approaches. Additionally, we hypothesise that efficiency in query processing
cannot be achieved by an individual technique. Rather, it is the combination of tech-
niques that leads to better performance. Due to the complexity of the Web of Data, it
is unlikely to have one set of techniques that can provide desirable performance under
all circumstances. To this end, schemes of techniques have to be tailored with respect

to (w.r.t) certain environments.

1.3 Hypothesis and Contributions

In this thesis we explore a variety of techniques for improving the efficiency of distributed
SPARQL query processing on large scale. It is posited in this thesis that, obtaining
statistics from VolD files provided by RDF datasets, is the preferred or even only choice,
for distributed SPARQL query processing in large-scale RDF networks. It follows that
only limited statistics are available for query processing, and the presence of co-reference

further decreases the accuracy of VolD statistics.

Based on the above assumptions we hypothesise that:

e VoID files or existing selectivity-based cost estimation methods are not sufficiently

accurate for approximating QEPs that lead to minimum response time.

e [t is possible to significantly reduce response time of LD queries on a large scale,

by using both runtime statistics and parallelism.

e It is possible to address co-reference in LD queries within acceptable time, by

considering co-referent URIs as a variable with multiple values.

Chapter 1. Introduction 6

The investigation of the aforementioned hypotheses would require: 1) typical scenarios,
which could reflect the influence of statistics and co-reference on query efficiency, and in
the mean time reasonably simulate the actual Web of Data; 2) an evaluation framework,
which is capable of providing quantify and fair comparison among different approaches
of LD queries in a wide range of scenarios on the Web of Data; 3) novel approaches
designed to exploit statistics as well as co-reference in typical scenarios; 4) implements
of the proposed approaches, which are compared with the state-of-the-art solutions over
a large RDF network so as to obtain convincing evidence. Following this methodology,

the contribution of this thesis could be summarise as follow.

We propose a benchmark called Distributed SPARQL Evaluation Framework (DSEF),
that evaluates optimisation approaches in environments reflecting the actual Web of
Data. By utilising artificial data and a virtual-machine-based infrastructure, DSEF
is able to simulate RDF networks of arbitrary sizes. DSEF extends the data of the
widely accepted Berlin SPARQL Benchmark (BSBM) [Bizer and Schultz, 2009] with co-
reference, based on the distribution of co-reference in the real world. We also carefully
modify the queries of BSBM in a way that emphases query efficiency in distributed
settings while not loosing the original semantics of the queries. DSEF offers a set of
scalable tools with which users can 1) generate an arbitrary number of triples following
the BSBM data model; 2) generate co-reference for a dataset following the distribution
of co-reference in the real world; 3) split and dispatch a dataset to remote endpoints
following a given distribution; 4) generate detailed VoID statistics and 5) automatically

evaluate distributed SPARQL engines and generate assessment reports.

We examine two typical scenarios on the Web of Data. In one scenario VoID files con-
taining detailed statistics is provided by all datasets. We consider such statistics as the
up bound of statistics that can be available on a large scale in the LD cloud. In the
other scenario, co-reference is taken into account in query processing. As stated before,
statistics of co-reference are unlikely to be included in VolID, and therefore more ran-
domness will be introduced into query optimisation decisions. This scenario also covers a
more general case that no reliable VoID statistics are available, which we consider as the
lower bound of available statistics in the LD cloud. With respect to the characteristic
of each scenario we investigate and propose different techniques. For the scenario with
detailed VolD statistics, we propose an algorithm called ¥ to increase the degree of par-

allelism of query execution and thus better exploit available bandwidth and computing

Chapter 1. Introduction 7

resources. While parallelism can increase the efficiency of query execution, it tend to
increase intermediate result size and thus increase network traffic, which is considered
undesirable. W identifies for a given query the components that can be processed in
parallel without increasing network traffic. Since detailed statistics are available in this
scenario, we adopt a static optimisation approach? that exhaustively searches for the
optimal query execution plan. The static optimisation happens after ¥ breaks a query
into smaller components which altogether are less complex to optimise than the original
query. Furthermore, we develop a mechanism that maximally exploits bandwidth and

computing power of datasets to further increase query efficiency.

For the scenario having co-reference, we propose a model called Virtual Graph (VG) that
regards co-referent URIs as a variable with pre-defined bindings. Instead of issuing a
separate query for each co-referent query of the original one, VG combines all co-referent
queries into one query to save query requests and enable optimisation with respect to
all co-referent queries. Due to the presence of co-reference, VolD statistics are no more
reliable. As a result, we exploit runtime statistics in this scenario, and combine ¥ with
a dynamic optimisation approach. A query is firstly processed by ¥ and each sub-query
is optimised by the dynamic optimisation using runtime statistics. The break-then-
optimise process repeats each time new statistics become available during execution.

The parallel execution mechanism used in the previous scenario is applied here as well.

We implement both optimisation schemes as two distributed SPARQL engines, LHD-
s (“s” for “static optimisation”) and LHD-d (“d” for “dynamic optimisation”). Both
engines are built using Jena?, which is a well established Java-based platform for building
Semantic Web applications. LHD-s and LHD-d can be used as standalone query engines
or integrated into systems that require efficient LD queries. Using DESF we evaluate
LHD-s, LHD-d and existing distributed SPARQL engines, and provide evidence that

supports our hypotheses.

This thesis also contains contributions that are derived from the creation of LHD engines
and DSEF, and are potentially beneficial for other researchers in the same area. A

complete list of our contributions is detailed below.

3 Static optimisation optimises queries before execution, as opposed to dynamic optimisation, which
optimises queries during execution.
“http://jena.apache.org/

http://jena.apache.org/

Chapter 1. Introduction 3

e We provide a comprehensive and in depth review of relevant distributed DBMS

techniques and the-state-of-the-art approaches of distributed SPARQL processing.

e We propose and develop DSEF, a flexible and scalable benchmark for evaluating
distributed SPARQL engines in environments reflecting the actual Web of Data.
In addition we investigate the distribution of co-reference in the real world, based

on which DSEF is able to simulate co-reference for arbitrary datasets.

e We propose an algorithm called ¥ that increases the degree of parallelism in query
processing without increasing network traffic. We combine ¥ with a VoID-based
static optimisation approach for the scenario in which detailed VolD statistics
are available. Furthermore we propose a parallel query execution mechanism that
exploits bandwidth of remote endpoints. Based on the above techniques we develop

a distributed SPARQL engine called LHD-s.

e We propose a model called Virtual Graph that transfers a query and its co-reference
into a single query with pre-defined bindings. We combine Virtual Graph, ¥
and a runtime-based dynamic optimisation approach for the scenario in which
co-reference is taken into account. Based on the above techniques as well as the
parallel execution mechanism we develop a distributed SPARQL engine called

LHD-d.

e We design and perform experiments that examine LHD and existing engines in
detail. The experiments confirm that our optimisation schemes substantially im-
prove query efficiency. Furthermore, the experiments provide evidence that VolD
files or existing cost estimation methods are not sufficiently accurate, and runtime-

statistics-based query optimisation is promising.

1.4 Thesis Overview

The remaining part of this thesis is organised as follows:

Beginning with chapter 2 we explain terminologies used in this thesis and formally de-

scribe the basis of distributed SPARQL. Also in this chapter we describe the architecture

Chapter 1. Introduction 9

of distributed SPARQL processing. Following the preliminaries, query processing tech-
niques that are well developed in distributed DBMS, as well as existing approaches of

querying the Web of Data, are reviewed in chapter 3.

The core of this document includes the two LHD schemes and their evaluations. We
firstly describe DSEF in chapter 4, to provide necessary details of later evaluations. In
the following four chapters we provide details of the two LHD schemes and their eval-
uations. LHD-s is described in chapter 5, including: 1) the scenario that the scheme
targets and corresponding challenges; 2) details of adopted techniques and implementa-
tion of the scheme. The evaluation of LHD-s is given in the following chapter (chapter
6), in which the scheme is thoroughly analysed. Following the same structure, LHD-d

is described in chapter 7 and evaluated in chapter 8.

Finally, conclusions regarding techniques of the two schemes, open issues of querying

the Web of Data, and our future plans are provided in chapter 9.

Chapter 2

Preliminaries

N thesis we base our discussion upon two concepts: RDF and SPARQL. On the
Semantic Web information is represented using RDF, which is a World Wide

Web Consortium (W3C) standard data model [Hayes and McBride, 2004]. RDF

makes statements about web resources and real-world entities in the form of

triples each of which consists of a subject, a predicate and an object. The subject refers
to the resource described in the statement and the predicate expresses the relation
between the subject and the object. RDF is very flexible to model various information

on the Semantic Web.

SPARQL is the query language for RDF which is also a W3C standard. A SPARQL
query contains triple patterns which are triples having variable subjects, predicates or
objects. Fach triple pattern matches one or more triples. Complex queries can be
constructed by combining many triple patterns together. Since both RDF and SPARQL

are W3C standards, they provide excellent interoperability across the Semantic Web.

In order to provide a clear context for discussions in this thesis, we introduce in this
chapter basic terminologies and concepts that are necessary for the remaining part of
this thesis. In the following we give formal definitions of RDF and SPARQL. Based on
those definitions we describe the behaviours of distributed SPARQL query evaluation.
In addition we describe four stages of distributed SPARQL processing that exist in many
distributed SPARQL engines.

11

Chapter 2. Preliminaries 12

2.1 Basis of RDF and SPARQL Query Language

SPARQL is based on matching graph patterns against RDF datasets, each of which
contains one or more RDF graphs. Intuitively, a graph pattern can be regarded as
an RDF graph having variables. A successful matching between a graph pattern and an
RDF graph represents the procedure that by replacing variables in the graph pattern with
concrete values, the graph pattern becomes a sub-graph of the RDF graph. An example
is given by figure 2.1. In this section we describe the aforementioned concepts using
formal definitions, following RDF and SPARQL specifications (namely RDF Concepts
and Abstract Syntax [Klyne et al., 2004], RDF Semantics [Hayes and McBride, 2004]
and SPARQL 1.1 Query Language [Prud’hommeaux and Buil-Aranda, 2013]). For more
details of RDF and SPARQL we refer the interested reader to the original documents
and Angles and Gutierrez [2008], Gutierrez [2008], Pérez and Arenas [2009].

?nameX="Alice”

?x foaf:knows ?y ; PnameY="Bob” _.a foaf:name "Alice" .

foaf:name ?nameX. _:a foaf:knows _:b.
?y foaf:name ?nameY . _:b foaf:name "Bob".

\ 4

FIGURE 2.1: Matching a graph pattern (on the left) against an RDF graph (on the
right).
We denote by I, B and L the pair-wise disjoint sets of URIs, Blank nodes and Literals
respectively. An RDF triple, or simply a triple, denoted by (s, p,0), is a member of the
set (/UB) xIx (IUBUL). sis called the subject, p is called the predicate or property,
and o is called the object. An RDF graph is a set of RDF triples.

Definition 2.1. An RDF dataset is a set of RDF graphs.

In our context an RDF dataset contains only one RDF graph for simplicity, since the
number of graphs is irrelevant to the problem of this thesis. In the remaining part of

this thesis we use RDF dataset and RDF graph interchangeably.

We denote by T the set I U B U L, which is the set of RDF terms, and by V the set of
variables. A triple pattern is a member of the set (TUV) x (IUV) x (TUV).

Definition 2.2. A Basic Graph Pattern (BGP) is a set of triple patterns.

In the SPARQL syntax a BGP is represented as a list of triple patterns enclosed by

braces, as shown in table 2.1. BGPs are the building blocks of a more complex structure

Chapter 2. Preliminaries 13

called graph pattern. In this thesis we focus three basic forms of graph pattern shown
in table 2.1: conjunction graph pattern, that returns results matching all presented
BGPs; alternative graph pattern, that returns results matching either BGP; and optional
graph pattern, that returns results matching the first BGP as well as results matching
the second BGP if possible. We introduce binary operators Join, Union and LeftJoin
to represent the aforementioned three BGP compositions. A graph pattern can be

recursively defined as the following SPARQL algebra expressions:

Definition 2.3. 1) A BGP is a graph pattern; 2) if P;, P» are graph patterns, then
Join(Py, P5), Union(Py, P) and LeftJoin(P;, P2) are graph patterns.

TABLE 2.1: Examples of SPARQL syntax and algebra

Query form SPARQL syntax SPARQL algebra
BGP {?s:pl ?7vl. ?7s:p2 7v2 } BGP(7s :pl ?7vl . 7s :p2 7v2)
o {{7?7s:pl ?vl} Join(BGP(?s :pl 7vl),
Conjuction {7s:p27v2 } } BGP(7s :p2 7v2))
. {{7?s:pl ?vl} Union(BGP(7s :pl 7v1),
Altenatrive UNION {7s :p2 7v2 } } BGP(7s :p2 7v2))
Optional { ?s:pl ?vl LeftJoin(BGP(?s :pl 7v1),

OPTIONAL {?s :p2 7v2 } } BGP(7s :p2 7v2))

SPARQL is based around graph pattern matching, which is also the main subject of the
research described in this thesis. Although SPARQL queries are not only composed by
graph patterns, other components! are insignificant in the context of this thesis. In the
remaining part we do not distinguish SPARQL queries and graph patterns. Matching a
graph pattern against an RDF dataset is carried through matching triple patterns. The
results of the matching are variable-value pairs having the following property: replacing
the variables by their corresponding values makes the triple pattern a triple in the target
RDF graph. A result of matching a triple pattern ¢ against an RDF dataset d, is formally
defined as a partial function p : V' — T, that u(t) € d. p(t) is the triple obtained by
mapping the variables of ¢t to RDF terms according to p. p is called a solution mapping.
The domain of p denoted by dom(u) is the subset of V' where p is defined (in this case
dom(p) is the set of variables of ¢). Given a graph pattern p, we denote by var(p) the

set of variables occurring in p. The evaluation of p over an RDF dataset d, denoted

'For more details please refer to Prud’hommeaux and Buil-Aranda [2013]

Chapter 2. Preliminaries 14

by eval(d,p), is a set of solution mappings {u|dom(u) = var(p) A p(p) € d}. In the
remaining part of this thesis we refer the set of solution mapping as the bindings of a

SPARQL query (the evaluation of a query over a dataset to be precise).

We say two solution mappings p1, ug are compatible if for every v € dom(u1) Ndom(p2)
it holds that 1 (?v) = pe(?v), i.e. any variable occurs in both mappings must be mapped
to the same value. We denote the compatibility as emp(pu1, 12) whose value is “true” if
w1 and po are compatible. Let €1, 2o be sets of solution mappings, we define the join,

union, and set minus of 1, €2 as the following equations:

Q1 X Qo = {p1 U palpn € Q1 A pz € Qo Aemp(pr, p2) } (2.1)
QlLJQg:{,u\,uEQl\/,uEQQ} (2.2)
U\ Qo= {pulp€ QA p' € Qs — —emp(u, 1)} (2.3)

The results of evaluating conjunction, UNION and OPTIONAL queries are specified by

the following equations:

eval(d, Join(p1, p2)) = eval(d, p1) X eval(d, p2) (2.4)
eval(d, Union(p1, p2)) = eval(d, p1) U eval(d, p2) (2.5)

eval(d, LeftJoin(p1, p2)) = eval(d, Join(p1, p2)) U (eval(d, p1) \ eval(d, p2)) (2.6)

2.2 Basis of Distributed SPARQL Processing

By querying multiple RDF datasets, it is possible to get results that cannot be given
by any individual dataset. We formally describe this behaviour and give the basic rules

that are followed in this thesis.

Chapter 2. Preliminaries 15

Evaluating a SPARQL query over a set of RDF datasets is regarded as evaluating the
query over the RDF graph that is the union of these RDF datasets?. We denote by D
a set of RDF datasets, that is:

eval(D,p) = eval(G,p), where G = U d (2.7)
deD
In case of evaluating a query t; AND to, where t1, t5 are triple patterns, over two datasets

di and ds, the following equation holds following equation 2.4 and 2.7:

6?}al(d1 Uds,t7 AND tg)
=(eval(dy,t1) Ueval(da,t1)) X (eval(dy,ta) U eval(ds,ts)) (2.8)
=(eval(dy,t1) X eval(dy,t2)) U (eval(dz,t1) X eval(da,t2))

U (eval(dy,t2) ™ eval(da,t1)) U (eval(di,t1) X eval(da,ts)) (2.9)

For convenience, we call a join of results from the same dataset (e.g. eval(di,t1) ™
eval(dy, t2)) a same-site join, and one of results from different datasets (e.g. eval(dy,t1) X
eval(dg,ts)) a cross-site join. A same-site join equals evaluating all triple patterns to-
gether at a single dataset, which is the same behaviour of centralised SPARQL pro-
cessing. Meanwhile, equation 2.9 shows that the results of a distributed query includes
the results of all same-site joins and cross-site joins. Therefore, distributed SPARQL
query processing is more than evaluating a query at different datasets and combining
the results together. In addition, it is the cross-site joins that produce results which are
not available at any individual dataset. As shown in figure 2.2, either Dy or Dy alone
can answer the given query (i.e. the same-site join at either D; or Dg is empty), while
a result can be returned by evaluating t; and ty respectively at D; and Do (i.e. the

cross-site join eval(dy,t1) X eval(dz,t2) is not empty).

Some approaches [Quilitz, 2008, Schwarte et al., 2011] evaluate triple patterns as one
query when possible (i.e. all cross-site joins of these triple patterns are empty) to reduce

the number of results returned. However, it is unlikely to do so when many datasets

2The precise term here is a merge of RDF graphs, which is a little more complicated than union when
blank nodes are contained in RDF graphs. Details of RDF merge can be found in Hayes and McBride
[2004]

Chapter 2. Preliminaries 16

D1
t;: ?x foaf:knows ?y . (_:a foaf:knows _:b]

D2

b foaf:name "Bob"j

to: ?y foaf:name ?nameyY . (

FIGURE 2.2: Two triple patterns t; and to are evaluated against two datasets D; and
Ds. Either dataset can produce results for the two triple patterns, while together give
a valid result.

are involved®. In addition, evaluating multiple triple patterns together sometimes even
increases the number of results [Quilitz, 2008]. Therefore, in our approaches (described
in chapter 5 and 7) triple patterns are evaluated individually, and the results of each

triple pattern are joined afterwards.

2.3 Stages of Distributed SPARQL Query Processing

In this section we describe a staged architecture that covers many distributed SPARQL
query engines (e.g. DARQ, FedX, DSP, SPLENDID). This architecture divides dis-
tributed SPARQL query processing into a series of stages. Through these stages a
SPARQL query string is transformed into an efficient execution strategy, called a query
execution plan (QEP), composed by low level operations (e.g. executing triple patterns)
on remote datasets. Figure 2.3 illustrates how distributed SPARQL queries are pro-
cessed according to this architecture, in an environment that consists of a number of

SPARQL endpoints.

Given a SPARQL query string it is firstly parsed into a SPARQL algebra expression
that enable faster processing. Then the query engine loads service descriptions, which
are built from the metadata of involved datasets. Service descriptions are crucial for
later stages such as source selection and query optimisation. As stated in last section
(section 2.2), each triple pattern is evaluated individually against all datasets in order
to have complete results. In the meantime, it is possible to identify datasets that will
not contribute any result for a specific triple pattern. This stage is called source selec-

tion that eliminates irrelevant datasets for triple patterns based on service descriptions.

3From equation 2.9 it follows that the more triple patterns and datasets, the less the chance that all
cross-site joins are empty.

Chapter 2. Preliminaries 17

/—Dlstnbuted SPARQL Engme—\ Linked Open Data

N

Service Description [« [4— — — —Sub-query- — —_

(_Parse__>Cb

™)| sPARQL
Endpoint

Query: J

N

SPARQL
Endpoint

|<— Sub-query- 9

?x foaf:knows ?y ;
?x foaf:name ?nameX.
?y foaf:name ?nameY.

Source Seclection

J
N

SPARQL
Endpoint

Query Optimisation <— — -Sub-query— — >

|
|
|
|
|
|
|
|
|
|
|
|
|
l

,
nAAAAA D
U UyU UyU Uyu

(ES) !
N i
Query Execution I’____\ |
————— | Metadata - ————~
’ —___7

F1GURE 2.3: This figure shows different stages and relevant components of distributed
SPARQL processing. Solid frames present local components while dashed frames
present remote components. Local data flow is represented as solid lines while remote
data transfer is represented as dashed lines.

After associating triple patterns with datasets, the algebra expression is transformed
into a QEP that represents an execution strategy of the query containing operations of
executing triple patterns and joining results. For a given query more than one QEPs
can provide the same result but have different 1/O, CPU and communication costs in
terms of time. At the query optimisation stage, these equivalent QEPs are examined
and the one with minimum cost is selected. The optimal QEP is executed at the query

execution stage and the whole query processing finishes.

It is worth mentioning that the architecture described here is not the only possible way
for processing LD queries. For example, another LD query strategy, called link traversal
based query execution [Hartig, 2011], does not rely at all on metadata of data sources.
Rather, approaches following the link traversal strategy (e.g. Hartig and Bizer [2009] and
Ladwig and Tran [2011]) discover relevant data sources by resolving URIs in queries and
intermediate results. In this thesis we focus on approaches that follow the architecture

shown in figure 2.3 and others are out of the scope.

1. Query parsing compiles SPARQL query strings into algebra expressions, as
shown in table 2.1. All later steps operate on the algebraic expressions rather
than the original queries for the sake of efficiency and convenience. The query

parsing algorithm is described in the SPARQL specification and implemented in

Chapter 2. Preliminaries 18

SPARQL platforms (e.g. Jena* and Sesame®). Distributed SPARQL engines usu-

ally leave the task of query parsing to the platforms on which they are built.

2. Service descriptions provide structural and statistical information of data sources
for query processing. Service descriptions can be collected either from data sources
directly or from third party indices of those data sources. Detailed and accurate
service descriptions can lever the performance of later steps, especially for query
optimisation. In the mean time, they cost a lot to obtain and thus compromise
the scalability of linked data queries. In addition, it may be unrealistic to rely
on detailed service descriptions on a large scale since issues of incompatible or

incomplete service descriptions arise.

3. Source selection is the process by which each triple pattern in a query is as-
sociated to data sources that potentially can contribute result®. Source selection
filters out irrelevant sources to reduces overheads of later stages. In addition it
increases the accuracy of cost estimation of queries since only the statistics of rele-
vant datasets would be considered. Relevant data sources are usually identified by
analysing service descriptions, or directly checking the datasets for whether certain
triple patterns can be answered. More details of these methods are described in

section 3.2.

4. Query optimisation refers to the process that produces a QEP having the min-
imum cost w.r.t an objective cost function, called cost model. For a given query
there are more than one valid QEP that differ in the order and implementations
of operations. These QEPs compose the search space of query optimisation. The
search space is examined by an optimisation algorithm which uses the cost model

to assess each QEP and selects the one with minimum cost.

e Cost models include cost functions to estimate the costs of QEPs based on
statistics of service descriptions. The costs are usually measured in terms of
execution time of I/O, CPU instruction and communication over the network.
Communication is the dominant factor of distributed query processing, espe-

cially for LD queries which take place on the Web. The effectiveness of query

“http://incubator.apache.org/jena/

Shttp://www.openrdf . org/

5Source selection is close to the data localisation process [Ozsu and Valduriez, 1999] in distributed
DBMS that determines the fragments of data that are involved in a certain part of the query

http://incubator.apache.org/jena/
http://www.openrdf.org/

Chapter 2. Preliminaries 19

optimisation is closely relevant to the accuracy of cost models. Inaccurate
cost estimations lead to suboptimal QEPs, and thus affect the performance
of the actual query execution. To be accurate detailed statistics, provided
by service descriptions, are required. In the meantime collecting such service
descriptions is costly. In practice it is a trade off between the detail of service

descriptions and the accuracy of cost estimations.

e Optimisation algorithms explore the space of possible QEPs of given
queries, and produce the optimal QEPs based on estimations given by the
cost models. For queries whose search space is relatively small it is possi-
ble to identify the optimal QEPs using exhaustive search algorithms. For
queries having large search space this approach becomes very time consum-
ing. Instead, algorithms with less complexity, as well as heuristics are used

for complex queries to produce QEPs close to optimal within acceptable time.

Depending on the timing when the QEP is constructed relative to the time of
query execution, query optimisation can be divided into two categories: statistic
optimisation and dynamic optimisation. Static optimisation prepares the QEP
before query execution, based on estimations given by the cost model. Once the
QEP is constructed, it can be reused in multiple query executions, and thus the cost
of optimisation can be amortized. In addition, exhaustive search algorithms can be
used since the cost of any candidate QEP can be estimated, and the optimal QEP
can be found. Dynamic optimisation constructs the QEP during query execution.
The accurate statistics of operations executed previously can be used to determine
the best next move (the greedy approach). As a result, the optimal QEP may be
missed. Dynamic optimisation does not rely on service descriptions as much as

static optimisation does.

5. Query execution refers to the process of executing the QEPs produced in query
optimisation. This stage determines the actual implementation of each operation,
especially the implementation of join operations. In most distributed SPARQL en-
gines, join operations are implemented following an iterator model [Graefe, 1993]
which has been widely used in both centralised and distributed DBMS. Further-
more, the way in which those operations are executed is critical to the performance
of query execution. For example, operations can be pipelined and/or executed in

parallel [DeWitt and Gray, 1992]. More details are given in chapter 3.

Chapter 3

Related Work

ISTRIBUTED SPARQL query processing can be regarded as a special case

of query processing in distributed DBMSs. In Ozsu and Valduriez [1999]

distributed DBMSs have been classified w.r.t three dimensions: auton-

omy, distribution and heterogeneity. The autonomy refers to the distri-

bution of control. The distribution dimension refers to the distribution of data. Two
popular ways are client/server (CS) distribution, that data are hosted at server nodes
while client nodes provide application environment; and peer-to-peer (P2P) distribu-
tion, that every node has full DBMS functionality and is able to communicate with
each other. Heterogeneity refers to the differences among datasets, such as data mod-
els, query languages and networking protocols. Distributed SPARQL query processing
involves query engines and independent SPARQL endpoints, which form a autonomous,

CS-structured, homogeneous distributed DBMS whose scale is extremely large.

In the last a few decades many techniques have been developed to improve the efficiency
of query processing in distributed DBMSs. These techniques inspire and stimulate de-
velopment of distributed SPARQL query processing. However, most of these techniques
are developed for distributed DBMSs that have smaller scale, more accurate statistics,
and are often under uniformed administration. Meanwhile, detailed statistics of RDF
datasets are difficult to obtain on a large scale, and the communication between query
engines and SPARQL endpoints are via HT'TP requests. These unique features of dis-
tributed SPARQL determine that it is not possible to use only distributed DBMS tech-

niques, and set the demands for techniques specifically tailored for distributed SPARQL

21

Chapter 3. Related Work 22

processing.

This chapter is divided into three parts. First, we will give a comprehensive review
of relevant distributed DBMS techniques, which serves as the technical background for
distributed SPARQL approaches discussed in this thesis. This part focuses on techniques
of query optimisation and parallelism. The characteristics of the LD cloud make it very
difficult to build indices for RDF datasets on a large scale. The large number of RDF
datasets raises a high bar for maintaining detailed indices or statistics. In addition, many
RDF datasets can only be accessed via SPARQL endpoints which significantly limit the
efficiency of gathering statistics for building indices. Rather, it is more promising to rely
on metadata provide by RDF datasets using widely accepted format, such as VolD. As
a result we consider that indexing techniques and data structures are more appropriate
in environments of smaller scale rather than the LD cloud, and they are not covered in

the review.

In the second part, we discuss how distributed DBMS techniques, as well as unique

distributed SPARQL techniques, are adopted in existing distributed SPARQL engines.

Finally, a survey of RDF store benchmarks is given at the end of this chapter, which

serves as the background of the evaluation framework that we propose in chapter 4.

3.1 Distributed Query Processing Techniques

Query processing in distributed DBMS involves a broad range of techniques including
indexing data structures, query optimisation algorithms, cost models, implementation
of joins and execution of query operations. In this section we focus on techniques
significantly relevant to distributed SPARQL query processing, that mainly fall into

query optimisation and execution.

Due to the importance of query optimisation in distributed DBMS, a large number of
algorithms have been proposed. Existing optimisation algorithms belong to two basic
categories: exhaustive search and approximate algorithms. With a sufficiently accurate
cost model, exhaustive search algorithms guarantee to produce the optimal QEP at the
cost of exponential time and space complexity. These algorithms generate all possible

QEPs, estimate those QEPs using a given cost model, and identify the one with the

Chapter 3. Related Work 23

minimum estimated cost (i.e. enumerate all instances in the QEP searching space). A
representative among exhaustive search algorithms is dynamic programming, which is
first adopted in System R [Selinger et al., 1979] and later generalized for distributed
DBMS in System R* [Lohman, 1988]. Dynamic programming produces the optimal
QEP through several iterations. At the beginning it generates plans containing only
one operation (access operations). In each iteration, it joins plans generated in earlier
iterations to produce more complex plans (i.e. plans that contain more operations),
and prunes those plans which have alternatives that can do at least the same work at a
lower cost. At the end of the algorithm, the QEP which contains all operations and has
the lowest cost is selected as the optimal one. More detailed descriptions of dynamic

programming can be found in Kossmann and Stocker [2000].

The complexity of exhaustive search, including dynamic programming, makes it less
favourable to optimise complex queries. To this end, approximate algorithms, which
approximate the optimal plan with lower complexity, are proposed. Approximate al-
gorithms used for query optimisation can be further divided into heuristics and meta-
heuristics. Heuristics adopts predefined rules to filter out QEPs, and thus reduces com-
plexity. Greedy algorithms that adopt the “minimum cost rule” (i.e. keeping only the
operation with the minimum cost in each iteration) are widely used. Between dynamic
programming and greedy algorithms lies the family of iterative dynamic programming
(IDP), which can be regarded as a combination of dynamic programming and greedy
heuristics [Kossmann and Stocker, 2000]. Iterative dynamic programming provides the
flexibility to balance between the quality of QEP and the complexity of query optimi-
sation. Metaheuristics, including randomized algorithms and genetic algorithms, have
not been applied in distributed SPARQL optimisation by the time this paper is written,
and therefore are not discussed here. A detailed review of randomized algorithms and

genetic algorithms in query optimisation is given by Steinbrunn et al. [1997].

The effectiveness of query optimisation is closely related to the accuracy of cost models.
In DBMS, the cost of a QEP is usually estimated as the sum of the cost of all operations
of this plan [Mackert, 1988]. The cost of an operation consists of various resource
consumptions, such as CPU and memory, with different weight. In distributed DBMS,
communication cost becomes significant and this is even more true in an environment
like the LD cloud where communication is over the Internet via HT'TP protocols. The

cost of a QEP is closely related to the number of intermediate results. In statistic

Chapter 3. Related Work 24

optimisation, the number of intermediate results can be estimated using the concept
of selectivity factor [Selinger et al., 1979, Poosala and Ioannidis, 1997], which is the
expected fraction of results satisfying a condition. For example, the selectivity of having
head in a coin tossing is about 0.5. In the context of this thesis, the selectivity factor of
a triple pattern corresponds to the fraction of triples matching the pattern [Bernstein
et al., 2007]. The estimation of the selectivity of triple patterns will be described later in
this chapter. In dynamic optimisation, the accurate number of intermediate results can
be obtained from previous execution. Rather than the resource consumptions, response
time cost models focus on the time of query execution, and can reflect the advantages of
using parallelism in query execution. These cost models are usually chosen when query

response time is critical.

Query execution involves the implementations of the operations of a QEP and the way
to execute those operations. In QEPs, join operation (denoted by) is one of the fun-
damental and most difficult operations. Various implementations of the join operation,
such as Nested Loop Join (NLJ), Hash Join (HJ) and Merge Sort Join (MSJ), have
been proposed to improve the performance of query execution in DBMS. To execute
A x B, NLJ scans for each tuple of A, all tuples of B to find the join results; HJ
maintains a hash table to produce the join results; MSJ sorts the tuples of A and B
and then alternately scans A and B only once to compute the join results. A detailed
review of these join implementations is given by Mishra and Eich [1992]. In distributed
DBMS, two extensions are proposed in order to reduce communication cost. One is
Semijoin [Bernstein et al., 1981]. Given two tables A and B at two sites S; and So
receptively, Semijoin sends the column(s) of joined key(s) of A to Sz, computes the join
of B with those A tuples at Sy, sends the join results back to S; and matches these
results with A. This process can be formulated as A X B = A x (B x 7(A)), in which
X is the semijoin operator!, and 7(A) selects the join columns of A. Another variation
is Bind Join [Haas et al., 1997] that simulates a Nested-Loops Join in a heterogeneous
environment. Bind Join (BJ) is designed to take advantage of the fact that many com-
ponent databases accept input parameters and therefore intermediate bindings are sent
together with queries as additional filters. Both Semijoin and Bind Join send out extra
data to filter out undesired results at the remote dataset and thus can reduce network

overheads. In the meantime they also increase the number of operations [Ozsu and

!The semijoin operator denoted by x is different from Semijoin introduced above.

Chapter 3. Related Work 25

Valduriez, 1999]. Therefore, extra care should be taken to make sure that the network
traffic caused by sending out filter data and additional operations is not beyond the
amount of traffic saved by filtering out undesired result. Sometimes parallelism is an ef-
ficient technique that can reduce response time. To achieve parallelism, query execution
is usually broken down into tasks that can be executed in parallel, and multiple threads
are used to execute these tasks. For example, using multiple threads more than sites can
be queried simultaneously rather than sequentially. We can also partition A x B into
(A1 x B)U (As x B) where A = A; U Ay, and execute A1 X B and Az x B in parallel.
In a network in which the communication between data site is bursty, a join process can
be “blocked” when waiting for the delivery of tuples. In such a case, Double-Pipelined
(or non-blocking or symmetric) Hash Join (DPHJ) [Raschid and Su, 1986, Wilschut and
Apers, 1993, Urhan and Franklin, 1999, Ives et al., 1999] that fully exploits pipeline and
parallelism is widely adopted to reduce the response time. DPHJ maintains two hash
tables for A and B respectively. When a tuple of one table, assumed A, arrives, this
tuple is inserted into the hash table of A, and at the same time probed against the hash
table of B to find the matching tuples. DPHJ is able to continue the join process unless
the tuples of both tables are delayed. Also it can deliver the results of a query as soon

as possible.

3.2 Distributed SPARQL Query Engines

The differences between the Web of Data and distributed DBMS bring specific chal-
lenges to distributed SPARQL query processing. Compared to a distributed DBMS, the
Web of Data contains a much larger number of SPARQL endpoints whose ability are
constrained to query answering, and collecting service descriptions on a large scale is
not easy. Given that, some query engines, such as NetworkedGraph [Schenk and Staab,
2008], SemaPlorer [Schenk et al., 2009] and FedX [Schwarte et al., 2011] do not rely on
service descriptions, while others, such as DARQ and DSP, maintain local files which
contain basic statistics of SPARQL endpoints. Furthermore, sophisticated indexing tech-
niques are used to describe LD. Stuckenschmidt et al. [2004] proposed an index structure
based on property chain. Harth and Decker [2006], Neumann [2008] and Fletcher and
Beck [2009] proposed different approaches based on BT-tree that index all possible com-
binations of subject, predicate and object. Harth et al. [2010] used QTree to build RDF

Chapter 3. Related Work 26

data summaries. A good review of indexing techniques in SPARQL data management is
provided by Staab [2011]. In addition, tools like RDFStats [Langegger and Woss, 2009
are available for collecting statistics of RDF data. The above approaches are able to
provide detailed service descriptions, however, they cost much to build and cannot be
widely reused between different query engines. To this end, approaches such as SPARQL
1.1 Service Description [Williams and Institute, 2011], and especially, the Vocabulary
of Interlinked Datasets (VoID) [Alexander et al., 2009] are proposed to provide general
terms and patterns for describing RDF datasets. VolD describes datasets from four as-
pects: general information (e.g. title); access metadata (e.g. accessible URIS); structural
metadata (e.g. statistics) and linkages to other datasets. Compared to those preceding
indexing techniques, VoID can be easily released alongside the datasets, and discovered
via links in the data it describes or from known VolD repositories. The interoperability
and convenience of VoID attracts more and more attention from both data publishers
and consumers. For example, Bohm et al. [2011] introduced a MapReduce-based tool
named voiDgen which can generate VolD descriptions for Web-scale data. Meanwhile,
SPLENDID [Gorlitz and Staab, 2011], WoDQA [Akar et al., 2012] and LHD [Wang

et al., 2013] consumes VoID for source selection and query optimisation.

Source selection is significantly affected by service descriptions. When no service de-
scription is available, source selection can be done by explicitly binding URIs of data
sources to triple patterns (e.g. NetworkedGraph and SemaPlorer), or by sending an
ASK query to RDF datasets to check the existence of triple patterns in RDF datasets
(e.g. FedX). The result of an ASK query is “true” if the triple patterns in the query
exist in the dataset. The latter approach is accurate, but produces an equal amount of
query requests as well as directly evaluate each triple pattern as a normal query against
all data sources. Relevant sources also can be identified by analysing their metadata. A
widely used approach is predicate matching, where data sources having the same predi-
cate of the triple pattern are considered as relevant. Consequently, this method requires
that the location of predicates is recorded. A reason for matching predicates rather than
subjects or objects is that in general the number of distinct predicates is much smaller
than that of distinct subjects or objects [Hu et al., 2011b]2. DARQ, SemWIQ [Langegger

et al., 2008], DSP and LHD employ predicate matching by examining their description

2Another (probably more relevant) evidence is given by the statistics of the Billion Triple
Challenge 2012 (BTC2012) dataset which are available at http://gromgull.net/blog/2012/07/
some-basic-btc2012-stats/.

http://gromgull.net/blog/2012/07/some-basic-btc2012-stats/
http://gromgull.net/blog/2012/07/some-basic-btc2012-stats/

Chapter 3. Related Work 27

files. If the vocabularies or ontologies of the data sources are known, analysing the
classes to which subjects, predicates and objects belong also helps eliminate irrelevant
sources. Furthermore, Akar et al. [2012] proposed twelve rules that enable sophisticated
source selection by carefully examining VolD files. SPLENDID [Gorlitz and Staab, 2011]
adopts a mixed approach, that it firstly analyses the VolD files of data sources and then
checks the existence of those triple patterns that are not bound to any data source. Thus
SPLENDID accurately selects relevant data sources with lower network overhead than

a pure asking approach adopted in FedX.

Due to the even higher communication cost on the Web than in distributed DBMS,
many specific optimisation algorithms have been proposed to make distributed SPARQL
query processing more economic and efficient. Most of these algorithms are closely
related to (iterative) dynamic programming or greedy algorithms. For example, DARQ),

SPLENDID and LHD adopt (iterative) dynamic programming in their query optimiser.

In the meantime, Stocker et al. [2008], Vandervalk et al. [2009] and Wang et al. [2011]
(DSP) combine graph theory into query optimisation. They regard a Basic Graph
Pattern (BGP) as a graph and use minimum-spanning-tree (MST) algorithms (which
belong to greedy algorithms) to search for the optimal QEP3. Given a BGP subjects and
objects are regarded as vertices and predicates are edges. The weight of each edge is set
to the cost required to evaluate the edge given by the cost model. The optimal QEP of
the BGP is produced in the process that generates the MST of the corresponding graph.
The algorithm adopted by Vandervalk et al. [2009] and DSP firstly selects a concrete
vertex (i.e. not a variable) and adds the minimum edge connected to that vertex to
the MST%. Then the MST grows by adding the minimum edge that has only one vertex
in the MST (i.e. one vertex of the edge must be outside of the MST). Triple patterns
that correspond to edges in the MST are executed following the same order that those
edges are added to the MST. During the execution there may be triple patterns whose
both vertices have been bound to some values as a result of executing previous triple
patterns. Such triple patterns correspond to edges whose their both vertices are in the

MST but they are not included in the MST. They are used to filter intermediate results.

3Different from the other two, Stocker et al. [2008] take triple patterns, rather than subjects or
objects of triple patterns, as the nodes of graphs. That is, the graph of Stocker et al. [2008] represents
the relationship among triple patterns of a BGP while the graph of Vandervalk et al. [2009] and Wang
et al. [2011] represent the BGP itself. Also, Stocker et al. [2008] didn’t explicitly claim their algorithm,
which adopted Prim’s algorithm [Prim, 1957], as a MST algorithm.

4The algorithm can start with a variable vertex but doing so usually leads to more intermediate
results.

Chapter 3. Related Work 28

:has_comment
6

:has_creator
15

:has_tag
20

:has_reviewer
5

FIGURE 3.1: On each edge the top text gives the predicate and the bottom number

gives the weight. The algorithm firstly selects the minimum triple pattern connecting

to a concrete node and adds it to the MST. Then it selects the minimum triple pattern

that connects to existing MST but also has a node outside the MST. Triple patterns
with both nodes in the MST are used to filter intermediate results.

An example of the above process is shown in Figure 3.1. The algorithm consequently
selects edge :product :has__reviewer ?user and :product :has__comment ?comm. Then the
edge Zcomm :has_creator ?user becomes fully bound and is used to filter intermediate
results. The edge :product :has_tag ?tag is selected in the end. No matter which MST
algorithm is adopted, the key point is to select the minimum triple pattern at each
step and triple patterns that are fully bound in previous execution are used to filter

intermediate results.

Alongside the aforementioned algorithms, query rewriting heuristics, such as pushing
down filters, is applied in optimisation as well. Several such rules have been described

in Pérez and Arenas [2009].

The optimal plan is evaluated with respect to cost models, whose accuracy is effected
by statistics of data sources. In distributed SPARQL optimisation, the selectivity-based
cost model is used by most of SPARQL engines (OptARQ [Bernstein et al., 2007], Stocker
et al. [2008], DARQ, DSP, SPLENDID). Usually the selectivity of a triple pattern is
estimated as the product of the selectivity of subject, predicate and object of this triple
pattern, based on statistics of RDF datasets, under the assumption that each part is
independent and evenly distributed (unless extra knowledge is available about their
distributions) [Bernstein et al., 2007, Stocker et al., 2008, Quilitz, 2008, Wang et al.,
2011, Gorlitz and Staab, 2011, Akar et al., 2012, Wang et al., 2013]. The required

Chapter 3. Related Work 29

statistics can be obtained form VolD files. If pre-computed statistics are not sufficient,
heuristics are used to rank QEPs. For example, the variable-counting heuristics [Stocker
et al., 2008] (also adopted in FedX) takes advantage of general experiences, however, its

accuracy is arguable [Stocker et al., 2008].

The same as in distributed DBMS, execution of joins is critical for distributed SPARQL
query execution as well, and many well-established join techniques are used in distributed
SPARQL engines. Basic join implementations such as NLJ is used in DARQ for its
simplicity of implementation, and HJ is used in DSP and SPLENDID to gain improved
performance. The none-blocking join operator is used by Hartig and Bizer [2009] and
variations of DPHJ (or SHJ) are used by Ladwig and Tran [2010, 2011], Acosta et al.
[2011] to enable adaptive execution when data transfer on the Web is unstable. In order
to reduce network traffic, bind join is adopted in DARQ, DSP, FedX and SPLENDID,
while Semijoin is used by NetworkedGraphs [Schenk and Staab, 2008]. In DARQ and
DSP, variables of triple patterns are replaced by intermediate results®, and the bound
triple patterns are evaluated instead of the original ones. This implementation is best
used with engines that produce results in a streaming fashion (i.e. only one result is
materialised at a time). Since only one result is used to bound a triple pattern at
a time, it is simply extended with all results returned by executing the bound triple
pattern to produce results for future execution. FedX (and SPLENDID adopts this
method) transforms many bind joins as a long list of UNION clauses and therefore
enables processing of many results in one request. NetworkedGraphs attach intermediate
results as FILTER clauses with the original query to implement Semijoin. This approach
can process many intermediate results with one query request, but the returned results
have to be joined with those results used as filters. Under certain conditions, bind join
and Semijoin can reduce communication cost, however, result in longer execution time

since the operators being joined are executed sequentially.

As a summary, the choices of optimisation techniques of the most popular engines are

listed in table 3.1.

Apart from the aforementioned distributed SPARQL query engines, document-oriented,
keyword-based search engines are also present on the Web of Data, such as the ones by

Watson [D’Aquin et al., 2007], Sindice [Oren et al., 2008], Falcons [Cheng and Qu, 2009

"Here a result refers to a solution mapping, that maps a variable to a value [Prud’Hommeaux and
Seaborne, 2008].

Chapter 3. Related Work 30

TABLE 3.1: Optimisation techniques of popular query engines

DARQ DSP FedX SPLENDID LHD
Service
descrip- Local files Local files None VolD VolD
tions
Source Predicate Predicate Predlc'a te Predlcfi te
selection matchin matchin, ASK query matching, matching,

& & Asking ASK query
Cost Selectivity Selectivity Varﬁ?ie Selectivity Selectivity
model based based cou . 'g based based
heuristics

Opt. al- MST Heuristics IDP IDP, - Heuris-
gorithm tics
Join NLJ, BJ NLJ, BJ HJ, BJ HJ, BJ HJ, BJ

and SWSE [Hogan et al., 2012]. These semantic web search engines work in the same
way as typical web search engines (e.g. Google) by crawling RDF data and building
indices for quick looking up. Semantic web search engines could be a convenient way
to locate a piece of RDF data. However, since their support for SPARQL is limited or
even not available, they are not the right tool to answer distributed SPARQL queries at

the moment of writing.

3.3 RDF Store Benchmarking

The rapid growth of LD not only offers potentials for efficient distributed SPARQL
engines, but also raises demands for benchmarks that compare performance of query
over LD. Consequently, benchmarks covering different aspects of RDF stores have been
proposed. Here we roughly divide popular benchmarks into two categories based on

their assessment objectives:

e For comparing performance of reasoning: Lehigh University Benchmark (LUBM)
[Guo et al., 2005], University Ontology Benchmark (UOBM) [Ma et al., 2006]
which extends LUMB, and JustBench [Bail et al., 2010].

Chapter 3. Related Work 31

e For comparing performance of query processing: SP?Bench [Schmidt et al., 2009],
DBpedia SPARQL Benchmark [Morsey et al., 2011], Berlin SPARQL Benchmark
(BSBM) [Bizer and Schultz, 2009], FedBench [Schmidt et al., 2011}, and Social
Network Intelligence BenchMark (SIB) [Boncz et al.].

Since we examine approaches that focus on improving query efficiency, benchmarks
aiming to compare reasoning performance are out of scope. Therefore, we only review

benchmarks of the second category in this section.

SP2Bench focuses on testing typical features and operators of the SPARQL language.
Its dataset is based on the syntax of the DBLP database®, and a data generator is
provided to generate arbitrarily large data. The query mix of SP?Bench covers the

typical structure of SPARQL queries (e.g. star-shaped or chain-shaped queries).

Meanwhile, BSBM, which supersedes the DBpedia SPARQL Benchmark, is based in
a business use case in which customers review products having various features and
from different vendors. Its dataset contains the following classes: Product, ProductType,
ProductFeature, Producer, Vendor, Offer, Review, and Person. An overview of the data
model is shown in figure 3.2. BSBM also provides a scalable data generator. The
queries of BSBM reflex real-world requirement and mix different features and patterns
of SPARQL. Beside the benchmark itself, the authors (Christian Bizer and Andreas
Schultz) consequently published benchmark results for most existing RDF stores via
various sources (e.g. blog, web page, mailing list). This potentially encouraged many
other researchers to publish BSBM results as well, and makes BSBM one of the most

widely used benchmarks”.

Existing research suggests that aforementioned benchmarks (namely LUMB, SP?Bench
and BSBM) are relational-like and do not represent structure of real RDF datasets [Duan
and Kementsietsidis, 2011]. To this end, benchmarks simulate or use real world datasets
have been proposed as well. Especially, social network data attracts much attention due
to their graph structure. SIB simulates a social network scenario using a data generator
called S3G2 [Pham et al., 2013]. Meanwhile, Przyjaciel-Zablocki et al. [2013] argues
that SIB is still short of being realistic, and proposes a SPARQL 1.1 benchmark using

Shttp://www.informatik.uni-trier.de/~ley/db/

"A list of benchmarking results is available at the RDF Store Benchmarking page http://www.w3.
org/wiki/RdfStoreBenchmarking, in which BSBM results take a large proportion and most up to date
positions.

http://www.informatik.uni-trier.de/~ley/db/
http://www.w3.org/wiki/RdfStoreBenchmarking
http://www.w3.org/wiki/RdfStoreBenchmarking

Chapter 3. Related Work 32

Producer
Offer
rdfs:label Vendor
rdfs:comment bsbm:product
rdf:type bsbm:vendor rdfs:label
foaf:homepage 1..89 Product bsbm:price rdfs:comment
bsbm:country 1 bsbm:validFrom rdfitype
rdfs:label 4,32 | bsbmuvalidTo 1| foaf-homepage
rdfs:comment bsbm:deliveryDays 280.. | bsbm:country
rdfitype 1 bsbm:offerWebpage | 3730
ProductType bsbm:producer
bsbm:productFeature [9..22]
1.." | bsbm:productProperty Textuall
rd;silabel 1.% bsbm:EroductProEerthextuaIZ
rgf_st.comment - bsbm:productProperty Textual3 Review
r ..ype bsbm:productProperty Textual4 [0..1]
rdfs:subClassOf [1..0] bsbm:productProperty Textual5 [0..1] 2.16 | bsbm:reviewFor
bsbm:productPropertyNumeric1 - revireviewer Person
bsbm:productPropertyNumeric2 1 bsBm-reviewDate
1..* | bsbm:productPropertyNumeric3 dc‘titlé 2 37| foafname
ProductFeature 9 22 bsbm:productPropertyNumeric4 [0..1] re\-/'text foaf-mbox_shalsum
.. i} - i 1 &
bsbm:productPropertyNumeric5 [0..1] bsbm:rating [0..1] bsbm:country
rdfs:label bsbm:rating2 [0..1]
rdfs:comment bsbm:rating3 [0..1]
rdf:type bsbm:rating4 [0..1]

FIGURE 3.2: Overview of the BSBM data model [Bizer and Schultz, 2009

real world social network data. Moreover, FedBench, which is designed to evaluate

distributed queries, adopts real world data from multiple domains.

People may argue that real world data presumably has advantages of validity over artifi-
cial data. However, carefully designed artificial data, such as those provided by BSBM,
can reflex the real world, and their validity is approved by the wide acceptance of the
SPARQL community. Besides, artificial data are more flexible in terms of scalability and
extension capability, and help set up various environments more easily than real world
data. Especially for distributed query benchmarking, once real-world-based datasets
are chosen, they determines the contents as well as the scale and data distribution of
the RDF network the benchmark simulates. In case of evaluating features that are not
covered by the benchmark’s original design (e.g evaluating queries with co-reference),
artificial data can be extended with less efforts than real world data. To this end, we base
the evaluations of this thesis in an evaluation framework that uses artificial datasets.

Details of the framework are given in chapter 4.

Chapter 4

DSEF: A Distributed SPARQL

Evaluation Framework

N this thesis we investigate techniques that are promising to improve efficiency
of distributed queries in environment with or without co-reference. To compare
the efficiency of our approaches with existing ones, we developed a distributed
SPARQL evaluation framework (DSEF) that is capable of evaluating query en-

gines in distributed settings and with co-reference. Due to the unique requirement of
co-reference, DSEF is based on well-established artificial data (BSBM data), by which

we keep in line with existing benchmarking approaches.

4.1 Overview of the Evaluation Framework

DSEF is tailored for evaluating distributed SPARQL engines in networks of arbitrary

scales, and with co-reference taken into account.

DSEF provides a virtual-machine-based network architecture that can conveniently sim-
ulate networks of different sizes and computing power. Together with artificial data, this
architecture enables creation of LD networks having arbitrary numbers of endpoints and
triples. In addition, the distribution of data among endpoints is easily controlled using

a set of tools contained in DSEF'.

33

Chapter 4. Distributed SPARQL Evaluation Framework 34

For interoperability reasons we adopt the well-established dataset of BSBM. Besides,
we statistically investigate co-reference in the real world, based on which owl:sameAs
statements are generated. The assessment queries used in the framework are as well
based on BSBM queries. The original BSBM queries are designed to evaluate various
aspects of RDF stores and some features can introduce undesired disturbance to the
performance of distributed SPARQL engines. In DSEF, the BSBM queries are modified
in a way that retains the semantic of the original queries but prevents undesired perfor-
mance disturbance. The modification is neutral to all the engines that will be evaluated

in this thesis. Details of the assessment queries are given in section 4.3.

The framework tool set is able to 1) generate structured RDF data of an arbitrary size;
2) generate co-reference statements based on real-world proportion and distribution; 3)
divide a large amount of data into smaller pieces w.r.t specific distributions; 4) generate
detailed VoID descriptions; 5) efficiently dispatch data to remote RDF stores; 6) auto-

matically evaluate distributed SPARQL engines and collect desired testing statistics.

The architecture of DSEF is shown in figure 4.1. In the following we provide details
of datasets, assessment queries and each framework tool. In addition, we describe an

environment based on DSEF, in which evaluations in this thesis are performed.

4.2 Assessment Data and Co-Reference Generation

DSEF adopts the dataset of BSBM. Furthermore, to evaluate the performance of dis-
tributed SPARQL engines with the presence of co-reference, DSEF extends BSBM data
with owl:sameAs statements w.r.t real-world statistics. Existing research implies that
co-reference follows a power law distribution [Ding et al., 2010, Hu et al., 2011b], but
no explicit evidence is given. We analyse the data of Billion Triple Challenge (BTC)
2012! for statistics of co-reference. The BTC data is crawled from all LD, and can be

regarded as a snapshot of the entire LD cloud.

There are in total 1.4 billion triples of the BTC 2012 dataset?. 0.00246% of them,
which is equal to 3449341 triples, are owl:sameAs statements. We divided resources

into categories w.r.t to the number of co-reference relationships they have. That is,

"Mttp://challenge.semanticweb.org/
2This is confirmed by the result given by http://gromgull.net/blog/category/semantic-web/
billion-triple-challenge/

http://challenge.semanticweb.org/
http://gromgull.net/blog/category/semantic-web/billion-triple-challenge/
http://gromgull.net/blog/category/semantic-web/billion-triple-challenge/

Chapter 4. Distributed SPARQL FEvaluation Framework 35

~-VM RDF Network— — — — — — — — — ~

[\

| |

| SPARQL |

,yl Endpoint |

P SPARQL | |

’ [A Endpoint | |

RDF Data | | |

/ \]
e ="
| \ Sub-query /

Sub-query \ Sub-query

[
Local Machine
~ :

Data Distributor

Statistical
Splitter

VolID Generator

Data Generator
Other Data

Sources)

|
\ /
SPARQL Engine
r
Queries

FI1GURE 4.1: Solid arrows denote local data flow while dotted arrows denote remote
data flow. The data splitter splits data from either the data generator or the LD cloud
according to a given distribution. Then the data distributor uploads data to SPARQL
endpoints. After the endpoints are ready, the testdriver reads queries from a file and
calls the distributed SPARQL engine to process these queries. The engine processes the
queries and returns results to the testdriver. The testdriver records the time of query
processing and generates a performance report. Meanwhile the system monitor records
the memory and CPU usage and the network flow.

J

4
|
|

each category contains resources that have occurred in a certain number of owl:sameAs
statements. We accumulate the number of resources of each category, and produce the
diagram shown in figure 4.2. We find that points in figure 4.2 are approximate to a power
law distribution p(z) = az™?, where 8 = 2.528. The aforementioned percentage and
the distribution function are used by DSEF to generate co-reference for given datasets.
Later in the evaluation of this thesis a dataset of 70 million triples is used, and 0.18

million (0.0026) owl:sameAs statements are generated accordingly.

Generation of co-reference is achieved by linking resources using owl:sameAs. To re-
produce the distribution of real-world co-reference, we use a power law random number
generator. It accepts two parameters which are the power law exponent 5 = 2.528 and
the number of elements (i.e. distinct resources that have co-reference). For a given

resource, we use this generator to decide the number of owl:sameAs statements that

Chapter 4. Distributed SPARQL FEvaluation Framework 36

35

25} B

FIGURE 4.2: The horizontal axis presents categories of URIs (as subjects or objects)
having 5, 10, 15 ... co-reference respectively, while the vertical axis presents the number
of resources falling in each category.

link this resource with other randomly chosen resources. We also take into account that
resources of BSBM data fall into different classes as shown in figure 3.2. We generate
co-reference for each class separately to make sure that resources are only equivalent to
those in the same class. Furthermore, numbers of co-reference that are larger than the

total number of instances of a class (very rare) are discarded, and new ones are picked.

It should be noticed that our method focuses on reproducing the deviation of VoID
statistics, and the number of equivalent URIs of resources, those aspects that are closely
related to query optimisation. Like other artificial data, co-reference statements gener-
ated by our method are different from real-world data, but simulate co-reference in the
real linked data cloud in order to test the efficiency of optimisation techniques developed

in the real environment.

4.3 Assessment Query Set

The query mix of BSBM is designed to emulate real world use cases, and consequently
contains complex queries having multiple BGPs. In the meantime, most distributed
SPARQL engines (including all engines that will be evaluated in this thesis) perform
optimisation on BGPs rather than whole queries. Results of BGPs are aggregated by

internal functionalities of platforms on which the engines are built. For queries having

Chapter 4. Distributed SPARQL FEvaluation Framework 37

more than one BGPs, incompatibility may exist between platforms that use single-thread
aggregation (e.g. Jena®) and engines that use parallel optimisation and execution (e.g.
LHD). For instance, within a BGP LHD intensively uses parallelisation to produce many
results simultaneously, however, only one result is passed from one BGP to another at a
time by Jena. To this end, we transform BSBM queries into queries that are compatible
with parallel engines, in a way that the semantics of the original queries are preserved.

The following rules are used in this procedure:

e Queries initially having one BGP are left untouched (e.g. BSBM query 1).

e The UNION keyword is compatible with parallel engines in both Sesame and Jena.
Therefore queries having only UNION keywords are left untouched (e.g. BSBM

query 4 and 11).

e The OPTIONAL keyword is incompatible with parallelisation. If the BGP follow-
ing a OPTIONAL keyword has matching results, it is merged into the main BGP
(the one enclosing the optional BGP). Otherwise, the optional BGP is removed
(e.g. BSBM query 2, 7, 8).

By applying the aforementioned rules, optional results, if there are any, are merged into

mandatory results. If there is no optional result, query results remain unchanged.

In addition, all FILTER expressions are removed as well. This is because: 1) FILTER
expressions break a BGP into small pieces, and affect query performance in an undeter-
mined fashion; 2) there is mature research [Pérez and Arenas, 2009] on optimisation of
FILTER expressions (i.e. rewriting queries using FILTER values), which can be applied
on top of any other optimisation techniques. Removing FILTER helps solely revealing
the performance of other techniques; and 3) none of the engines that will be evaluated
in this thesis claims adoption of FILTER optimisation. Removing FILTER expressions

will not introduce inequity.

The assessment queries of DSEF are achieved after applying all aforementioned modifica-
tions. These queries especially emphasise the BGP optimisation and execution efficiency
of distributed SPARQL engines. A complete list of these queries is given in appendix
Al

3In detail, Jena streams results of one BGP to another, that only one result is passed at a time.
Consequently the optimisation and execution of the second BGP are constrained to single-thread.

Chapter 4. Distributed SPARQL FEvaluation Framework 38

4.4 Assessment Metrics

DSEF focuses on assessing the efficiency of distributed SPARQL engines, while also
aiming to provide insight of optimisation and execution techniques adopted by query
engines. In most SPARQL benchmarks (e.g. SP?2Bench, BSBM, FedBench) the number
of queries executed in a certain time period is used to measure the efficiency of query
processing. Query efficiency is jointly determined by the engines’ abilities of reducing
the size of network traffic and increasing the average data transmission rate. Therefore,
we further include network traffic, and transmission rate in the metrics of DSEF. The

following metrics are regarded as primary metrics in DSEF:

e Query per second (QPS), represents the average number of queries executed per

second.

e Network traffic, represents the total amount of network traffic (both incoming and

outgoing) produced due to executing queries.

e Transmission rate, represents the average speed of network communication. It is

calculated as the network traffic divided by the query execution time.

In the meantime DSEF also provides two secondary metrics, which are not included in

existing SPARQL benchmarks:

e CPU usage, presents the average percentage of CPU used to execute a certain

query.

e Memory usages, presents the average amount of memory used to execute a certain

query.

The secondary metrics are not used to compare the effectiveness of techniques adopted in
query engines. This is because CPU and memory usage are not optimisation objectives
of the engines under testing. Rather, the secondary metrics are used to verify that the

amount of system resources required by tested engines are practical.

Beside performance, DSEF also takes care of the correctness of query execution of engines

under testing. We prepare a RDF store that have all assessment data in it, and execute

Chapter 4. Distributed SPARQL FEvaluation Framework 39

the assessment queries against this centralised store. By that we obtain the correct result
of each query. Before evaluating an query engine we perform test runs and make sure
all engines give the correct answer. Thus we prevent engines to quickly return results

that are not correct.

4.5 The Framework Tool Set

The evaluation framework contains five tools: data generator, statistical splitter, VolD
generator, data dispatcher and test driver. In general, all tools are designed to be
adaptive and scalable (when required). Using these tools, RDF networks containing

large data can be set up conveniently. Details of each one is given below.

Data generator

The data generator extends the BSBM data generator with functionality of co-reference
generation. It first calls the BSBM generator to create RDF data of a certain size,
then uses the methods described in section 4.2 to generate corresponding instances of

co-reference.

As stated in section 3.3, the BSBM generator is built on a carefully designed data model
that reflects a business use case in which customers review products having various
features and from different vendors. The BSBM data has received a wide acceptance
in the LD community®. Co-reference is generated by following real world statistics and
distribution, as described in section 4.2. Both parts are reflective of the actual structure

of real world LD.

Generating co-reference within a certain class (e.g. Product) requires that all instances
of the class are available before creating owl:sameAs statements. For large datasets it is
impossible to hold instances of all classes in memory (sometimes even a single class does
not fit in memory). In order to gain efficiency and scalability at the same time, the data
generator firstly scans the given data only once to extract instances of all classes and

stores them on hard disk. This procedure employs streaming techniques and requires

1A list of benchmarking results is available at the RDF Store Benchmarking page http://www.w3.
org/wiki/RdfStoreBenchmarking, in which BSBM results take a large proportion and most up to date
positions.

http://www.w3. org/wiki/RdfStoreBenchmarking
http://www.w3. org/wiki/RdfStoreBenchmarking

Chapter 4. Distributed SPARQL Evaluation Framework 40

only a (small) constant amount of memory. Then the generator reads back instances of
one class at a time to generate co-reference. The hard disk is used as secondary storage

if a class contains more instances than the main memory can hold.

Statistical splitter

The statistical splitter accepts a RDF data file and a distribution function. It splits
the data into certain numbers of smaller pieces w.r.t to the given distribution. The
supported distributions include uniform distribution, normal distribution and power-

law distribution which is common on the Web.

The splitter scans through the given data file and determines the destination (i.e. a
data piece) of each triple based on the number given by an internal random number
generator. The frequency of the number of each data piece is determined by the given

distribution. This procedure requires constant memory since no data needs to be stored.

Data dispatcher

The data dispatcher is used to dispatch data to remote datasets. It accepts a file contain-
ing URIs of RDF datasets, and a corresponding list of RDF files. For efficiency multiple
threads are used to upload RDF data to remote datasets. Furthermore, the dispatcher
keeps records of the number of triples that have been uploaded. In case of connection
issues, interrupted uploading can be resumed according to those records. This feature

is necessary to upload a large number of triples.

VoID generator

The VoID generator produces VolD descriptions for given RDF data. The generated
VoID description contains the URI of the SPARQL endpoint of given data, which indi-
cates a potential query target. Furthermore, it contains the following statistics of each
dataset: 1) the total number of triples, distinct resources and distinct predicates; 2) for
each predicate, the number of triples, distinct subjects and objects. The latter statistics
are presented as property partitions. An example VolD description is shown in figure

5.2.

Chapter 4. Distributed SPARQL Evaluation Framework 41

Test driver

The test driver accepts a file of testing queries and a distributed SPARQL engine. It
automatically reads the queries and executes them using the given engine. Since the
responding time of SPARQL endpoints can get slower for continuous query execution,
breaks are left between the execution of each query (so that the endpoints can recover).
Currently we set a 10 second interval between runs of the same query, and a 10 minute
interval between execution of different queries based on previous experiences. For each
query the test driver records the average execution time and calculates the QPS. It also
records the average size of results. The result size is used to confirm that all engines
under testing return the same results, and to calculate the extra results led by co-
reference. The output of the test driver is a "csv" file that can be further processed. In
the meantime, the total network traffic of each query is recoded. With the responding
time we calculate the average transmission rate of a certain engine on a certain query.

Finally, we also record the CPU and memory usage of tested engines.

When distributed SPARQL engines are assessed using the framework, firstly RDF data
are obtained from the LD cloud or generated by the data generator. Once the data
are ready, it is split into pieces by the data splitter according to a certain distribution,
and also basic statistics of each piece of data can be collected by the statistics collector.
After that, the data distributor dispatches each piece of data to certain remote datasets.
Then the distributed SPARQL approach can be evaluated by the test driver against

those remote datasets.

DSEF extends the widely accepted benchmark BSBM for evaluating distributed SPARQL
engines with the presence of co-reference, and is able to simulate RDF networks of ar-
bitrary sizes. An initial version of DSEF has been published in Wang et al. [2011] and
used for evaluating DSP and LHD.

Chapter 5

Querying LD with Detailed VolD
Statistics

IVEN a distributed SPARQL engine, its efficiency results from the com-
pounding of techniques adopted in all four stages of distributed SPARQL
query processing. The effectiveness of query optimisation techniques
usually depends on the environment in which they are applied. In other

words, if a technique works well in certain environments, the same effectiveness is not

1 Therefore, it is necessary to distinguish dif-

guaranteed under other circumstances
ferent environments before determining the techniques we use for executing distributed

SPARQL queries efficiently.

As stated in chapter 2, source selection and query optimisation are closely related to
service descriptions. To this end, we distinguish two typical circumstances of the LD
cloud w.r.t different accuracy of service descriptions. We assume that, on a large scale,
it is preferred to obtain service descriptions from VolD files provided by each SPARQL
endpoint, than to maintain private indices and statistics for all data sources. Given that
assumption, we examine two typical scenarios in which VoID with different accuracy are
available. For each scenario we propose a scheme of techniques that aims to improve the

efficiency of distributed SPARQL query processing, and develop a distributed SPARQL

!This is a weaker implication of the No Free Lunch (NFL) theorem of search and optimisation, which
states that any two optimization algorithms are indistinguishable over all possible problems [Wolpert
and Macready, 1995, 1997]. Intuitively, no algorithm is good at solving all problems.

43

Chapter 5. Querying LD with Detailed VoID Statistics 44

engine based on the scheme. In this chapter we present the scheme and the correspond-
ing engine called LHD-s that work with detailed statistics. The other scheme will be
described in chapter 7.

5.1 Overview of LHD-s

As detailed in chapter 3, VolID can give statistics of either a whole dataset or its partitions
(either class partitions or property partitions). In most SPARQL queries, predicates are
explicitly given (except those having only variable predicates), while classes (of resources

in the queries) are not always known?

. Comnsequently, LHD-s is designed to work pri-
marily with statistics of property partitions while it can also benefit from statistics of

class partitions.

It is worth mentioning that at this moment VoID documents with statistics are only
provided by a few datasets®. However, publishing detailed statistics in VoID would be
straightforward once there are demands. In the case that detailed VoID statistics are
not available, we will show in chapter 7 and 8 that efficient query processing can be

achieved by exploiting runtime statistics.

With detailed VolD descriptions, it is possible to make reasonable cost estimation for
queries, and thus it is worth using optimisation algorithms that produce high quality
QEPs. For best results, LHD-s adopts a dynamic-programming-based approach in query
optimisation. Furthermore, LHD-s follows the static optimisation approach since 1) the
cost of any QEP can be estimated before query execution; 2) dynamic programming
generates complete QEPs before query execution. In order to increase efficiency of
query execution, we propose an execution system that employs parallelism at different
levels. With this execution system LHD-s is able to maximumly exploit the bandwidth
of data sources without overloading them. The architecture of LHD-s is shown in figure

5.1. Details of each component of LHD-s are given in the following sections.

2The classes of resources of a query can be known if there are triple patterns having rdf:type predicates
and concrete objects. Or, if schema of predicates are given, classes can be inferred from the domain and
range of predicates. However, neither is as common as the way in which a predicate is given in queries.
3Example VoID documents can be found at http://void.rkbexplorer.com/.

http://void.rkbexplorer.com/

Chapter 5. Querying LD with Detailed VoID Statistics 45

— -Query optimisation— — — — — — |
: e Query execution — — — — — .
I : |
> | Stats. | I
(0] | |
3
o | I
@ | L Plan
Plan
| Executor
| | |
[| |
I Sub-queries |
| | |
' : N
- B

F1GURE 5.1: Given a SPARQL query W first breaks it into independent sub-queries.
Each of these sub-queries is optimised by a dynamic programming (DP) based algorithm
using VoID statistics. The optimal QEP is executed by a plan executor, which does
not contact datasets directly, but submits query tasks to a communication manager
during the execution. The communication manager maintains physical connection to
each dataset individually.

5.2 VolD Service Descriptions

To gain best results of LHD-s query optimisation, we generate VolD files that contain
as detailed statistics as VoID can provide for all data sources. These statistics contain
the numbers of distinct subjects and objects, as well as the total number of triples, per
predicate partition. An example is given in figure 5.2. Although such VolD files are not
available from all SPARQL endpoints in the LD cloud, they are used here as the upper
bound of statistics that are nowadays possible to get from SPARQL endpoints. Similar
statistics are also required by SPLENDID Gorlitz and Staab [2011].

The example VoID file describes a dataset whose URI is d (line 1). This dataset contains
tq triples (line 4), sq distinct subjects (line 5) and o4 distinct objects (line 6). In addition,
there is a predicate p in d that is described by a property partition (line 8-13). In this
property partition, the number ¢4, (line 10) indicates how many triples in d are having p
as predicate. In addition, sg, and o4, respectively give the numbers of distinct subjects

or objects associated with p. The following relations hold for these statistics:

ti=> tdps 54 <D Sdp, 04 < Y 0dp (5.1)

pEd ped ped

Chapter 5. Querying LD with Detailed VoID Statistics 46

1: d a void:Dataset ;

2

3: # simple statistics:

4 void:triples “t4” ;

5: void:distinctSubjects “sq” ;

6 void:distinctObjects “04” ;

T: # statistics per predicate:

8 void:propertyPartition |
void:property p ;

10: void:triples “t4," ;

11: void:distinctSubjects “s4,,7 ;

12: void:distinctObjects “oq4,,” ;

13: I, [

14: .

15:].

FIGURE 5.2: Statistics in a VoID file

For simplicity, here p € d means p is a predicate in d. The first equation holds because
each triple belongs and only belongs to a predicate partition. For the later two, a
subject or an object may occur in multiple predicate partitions, and the number of
distinct subject/object of the dataset is no more than the sum of the numbers of distinct

subject /object of all predicate partitions.

VoID can also contains class partitions and corresponding statistics. However, class
partition statistics are mostly used to optimise only triple patterns with the rdf:type
property and bound objects. In this thesis we do not use class partitions since they are

not as widely used as property partitions.

5.3 Data Source Selection

Data source selection eliminates irrelevant data sources at an early stage and thus in-
creases the accuracy of cost estimation. LHD-s adopts a two-phase source selection that
is used in SPLENDID. First, LHD-s analyses predicate partitions in VolID files. Data
sources having the same predicate of a triple pattern are identified as relevant candi-
dates. Second, ASK queries enclosing the triple pattern are sent to these candidates,

and data sources that give positive response are kept.

Chapter 5. Querying LD with Detailed VolID Statistics 47

5.4 Cost Estimation

Most existing distributed SPARQL engines (e.g. DARQ, FedX and SPLENDID) use
cost models that estimate the number of (intermediate) bindings generated during query
execution. Here we propose a different cost model to estimate the responding time of a
QEP, to cope with LHD-s’ parallel execution system. Given a QEP, the basic operation
is the execution of triple patterns. Executing a triple pattern involves sending one or
more query requests, with or without pre-computed bindings, to all relevant endpoints,
and receiving corresponding results. We assume that the time of sending requests to or
receiving responses from SPARQL endpoints, is proportional to the number of bindings
enclosed in the communications. Using statistics of VolD files, we first estimate the

cardinality of outgoing and incoming bindings, and then estimate the response time of

a QEP.

From the VoID file shown in figure 5.2, we can have the total number of triples t4,
distinct subjects sy and objects o4 in d. We can also have the number of triples ¢4,
distinct subjects s4, and objects o4, in the partition of p. We assume that subjects and
objects are uniformly and independently distributed in data sources. In the following a
question marked letter (e.g. 7x) denotes a variable, a lower-case letter (e.g. s) denotes a
concrete value, and an upper-case letter (e.g. O) denotes either a variable or a concrete
values. Given a triple pattern T : {S P O}, we define a function sre(T') that gives the set
of relevant data sources of T'. We use sel(T,z) and card(T,x) to denote the selectivity
and cardinality of 2 € {S, P,O} w.r.t T respectively. It is worth noticing that the same

x can have different selectivity and cardinality in different triple patterns.

Chapter 5. Querying LD with Detailed VoID Statistics 48

5.4.1 Cardinality of a Single Triple Pattern

Given a single triple pattern 7" = {S P O}, the selectivity of each part is estimated
following the approach used in [Stocker et al., 2008, Quilitz, 2008], as follows:

1
if var(P) A —wvar(S),
- (P) A -war(S)
desre(T)
sel(T,S) = L if P =pA -war(S), (5.2)
Z Sd.p
desrc(T)
1 if var(9).
td.p
deng) t £ P = D,
sel(T, P) = desra(T) d (5.3)
1 if var(P).
1
if var(P) A —wvar(0O),
- (P) A ~var(0)
desre(T)
sel(T,0) = 1 if P =pA —war(0), (5.4)
Z Od.p
desre(T)
1 if var(O).

where var(X) is a function that returns true if X is a variable or false otherwise.
Assuming that sel(T, S), sel(T, P), and sel(T, O) are statistically independent [Selinger
et al., 1979, Christodoulakis, 1984], the selectivity of the triple pattern T is estimated
as sel(T) = sel(T,S) - sel(T, P) - sel(T,0). The cardinality of T is estimated as

card(T) = Z tq - sel(T) (5.5)

desre(T)
For a triple pattern having a variable subject and object, the estimated cardinality is
accurate (equals to > desre(T) tdp)- Since we consider only the relevant data sources of
T (rather than the “global graph” constructed as the union of all data sources), better

source selection can increase the accuracy of the estimation.

Chapter 5. Querying LD with Detailed VolID Statistics 49

5.4.2 Cardinality of Joined Triple Patterns

Estimating the cardinality of joined two triple patterns can be difficult without join

selectivity, defined as:

card(Ty x Ty)

Ty)X Ty) =
Sel(1 X 2) CGTd(Tl) . Card(T2)

Join selectivity are not available from VoID files, and can be costly to maintain. Two
triple patterns can join on subject-subject (SS), subject-object (SO), object-subject (OS)
and object-object (OO). Since the join order is insignificant here, for n distinct predi-

cates, a total 2n% + n records of join selectivity need to be stored?.

To walk around join selectivity DARQ and SPLENDID group triple patterns with the
same subject together and apply the following method. Given three triple patterns
Ty : {?x p1 o1}, To : {72 p2 02} and T3 : {?x p3 7y}, card(Ty X Ty) is estimated as
min(card(T), card(Ts)), and card(Th ® T3) is estimated as card(T) - card(T3). For
the first estimation to hold it requires that the domain of p; is a subset or a super-
set of the domain of ps°. The second estimation requires that the domain of p; is a
subset of the domain of p3. However, without schema of properties (e.g. domains and
ranges of properties) it is difficult to decide whether two properties commit to the above

requirements.

In LHD-s we take advantage of the fact that the cardinality of joined two triple patterns
is irrelevant to the join method. To approximate join selectivity we assume that two
triple patterns 77 : {7s p1 O1} and Ty : {7s ps Oz} are joined using bind join. If T3
is executed first, card(7T}) intermediate results are produced and are used to execute
T,. Each intermediate provides a value of ?s (not necessarily distinct), and thus the
result size of Ty is estimated as card(Ty) - sel(Ts, s) - card(T>). This is also regarded
as the cardinality of the join card(T); x T3), and the corresponding join selectivity is
sel(Th x Ty) = sel(Ts,s). Since the execution can be performed in the reverse order,

the join selectivity can be sel(717, s) as well. In order to combine both cases, we use the

“Stocker et al. [2008] have suggested that the number of records is 4n®. Tt could be that the join
order is considered significant.

5 A more precise requirement here is that the results of T} is a subset or a superset of the results of
T>. However, we cannot know that in advance from VolD files.

Chapter 5. Querying LD with Detailed VolD Statistics 50

geometric mean (sel(1y,s) - sel(Ts, 3))% as the join selectivity. For two arbitrary triple

patterns T3 : {S1 P1 O1} and Ty : {S2 P> O2} we have

\/sel(Tl,v) - sel(Ty,v) if v # @,
1 if v=¢.

sel(T1 X TQ) = (56)

where v is the join variable (but is regarded as concrete in estimation).

The cardinality of n joined triple patterns is estimated as a sequence of two-triple-pattern

join

n—1 n
card(Ty x Ty) - X Tp) = H sel(T;) Tiyq) - Hcard(Ti) (5.7)
i=1 i=1

5.4.3 A Response Time Cost Model

As a result of intensive use of parallelism, LHD-s adopts a response time cost model
rather than a network traffic model. To estimate a QEP we distinguish the execution of
join that require pre-computed bindings (e.g. bind join, Semijoin, denoted as (¢ X t),
where ¢ is a join or a triple pattern and ¢ is a triple pattern) from those which do not need
pre-computed bindings (e.g. hash join, nested loop join, denoted as (¢ % p), where ¢ and
p are joins or triple patterns). Two triple patterns involved in a hash join can be executed
in parallel while in a bind join they have to be executed in sequence. We call an access
plan an independent access plan if it executes a triple pattern directly, or a dependent
access plan if pre-computed bindings are used to execute a triple pattern®. We denote
an independent access plan of ¢ as acc(t), and a dependent access plan with bindings of
a sub-query ¢ as acc(q,t). We assume the response time of a query is proportional to
the number of bindings sent to and returned from a data source, and the response time

of a QEP is estimated using the following equations:

5Tt should be noticed that the execution of a dependent access plan also produces the results of a
bind join.

Chapter 5. Querying LD with Detailed VolID Statistics 51

cost(q @ p) = maz(cost(q), cost(p)) (5.8)
cost(q wp t) = cost(q) + cost(acc(card(q),) (5.9)
cost(acc(t)) = rty + card(t) - v, (5.10)
cost(acc(q,t) = card(q) - 1ty + card(q x t) - vt; (5.11)

where rt, is the time of sending a triple pattern or a pre-computed result to a data

source, and rt; is the time of receiving a result.

5.5 Identifying Independent Sub-Queries

LHD-s exploits parallelism intensively. We propose an algorithm that identifies inde-
pendent sub-queries, each of which can be optimised and executed in parallel. This
algorithm, named U7, increases the degree of parallelism in a way that network traffic
is not increased. In addition, LHD-s adopts dynamic programming to produce optimal
QEPs. However, dynamic programming can take a significant amount of time to opti-
mise queries with many triple patterns. Since ¥ breaks a large query into smaller ones,
the complexity of query optimisation is reduced without compromising the quality of
QEPs. By combining the algorithm presented below and dynamic programming, LHD-s’

optimiser can produce good quality QEPs within acceptable time.

SPARQL queries are composed by Basic Graph Patterns (BGPs), which are a set of
conjunctive triple patterns. A BGP can be regarded as a connected graph that subjects
and objects are nodes (or vertices) and triple patterns are edges. We observed that given
two edges (triple patterns) whose shared node is concrete (e.g. {s p1 7x. s p2 7y}), they
can be processed as two independent sub-queries without having side effects (in terms
of network traffic and responding time). This is because the cardinality of the shared
node (which is concrete) is not affected by any edge that connects to it. Furthermore,
this observation holds if the shared node is a variable whose cardinality does not change

during execution.

"W =PSI=Parallel Sub-query Identification

Chapter 5. Querying LD with Detailed VoID Statistics 52

We generalise the above observation as follows. We say a node has a fized cardinality if,
during the execution of edges connecting to it, its cardinality does not change more than a
certain percentage. If “removing” all fixed-cardinality nodes® results in disconnected sub-
graphs, these sub-graphs can be optimised and executed independently and in parallel.
For example, in the graph shown in figure 5.3, if both node B and C are fixed-cardinality
nodes, then we have three independent sub-graphs { AC, AB},{BC},{CD, BD}. If only

B has fixed cardinality, then the given graph cannot be further broken down®.

Figurge 5.3: If B and C are fixed-cardinality nodes, there are three independent
components shown by three different types of dash lines.

We propose algorithm ¥ (algorithm 1) to quickly break a connected graph into inde-
pendent sub-graphs. At the beginning the algorithm creates a sub-graph for each edge
(the loop at line 1). Then all nodes are scanned and sub-graphs that share a none-
fixed-cardinality node are merged into a bigger one (the loop at line 4). At the end of
this algorithm, all remaining sub-graphs can be processed in parallel. The time com-
plexity of the first loop is linear to the number of edges |E|. The merge operation in
the second loop can be done in constant time by maintaining a hash table that maps a
node to the set of its connected edges. Therefore, the complexity of the second loop is
linear to the number of vertices |V|. The complexity of algorithm ¥ (upper bound) is

O(max(|E], [V]))-

In practice, concrete nodes always have fixed-cardinality. Besides, if we can know in
advance that the cardinality of a variable node will probably remain the same, that
node can be regarded as a fixed-cardinality node as well. For example, in {?person

foaf:firstName ?frstN. ?person foaf:familyName ?fmName}, the cardinality of ?person

8Since removing a node produces broken edges that have only one node, a more precise description
here would be “regarding all edges that connect to a fixed-cardinality node as disconnected at this node”.

9 A more subtle case is that cardinality of both B and C' are only changed by AB and AC respectively,
while BC and BD have comparable cardinality at B, and BC and C'D have comparable cardinality at
C. That is, B and C are not fixed-cardinality nodes w.r.t all connecting edges, but they are w.r.t some
edges. In this case {CB},{CD, BD} can still be executed in parallel, and we say this two components
form a partial parallel group. However, identifying all partial parallel group can be costly and not worthy
in practice.

[L U

Chapter 5. Querying LD with Detailed VolD Statistics 53

Algorithm 1: U(V.E)

input : A connected graph (V, E)
output: Independent sub-graphs

foreach e € FE do
sub(e) < e;
end
foreach v € V A - fixCard(v) do
merge sub-graphs containing v;
end

probably remains the same during execution, since a dataset usually contains both the
first name and family name of a person. To accurately predict the invariability of a
node’s cardinality requires schema of properties. For instance, in the above example we
need to know that both properties have the same domain, have close numbers of distinct

subjects, and are closely relevant.

5.6 Optimising Queries for Parallel Execution

The optimiser of LHD-s is designed to produce parallel QEPs that explicitly indicate
concurrent execution of operators. Contrary to a parallel QEP, we call it a serial QEP if
contained operators are executed one after another!?. With a cost model that considers
parallel execution (such as the one presented in the previous section), it is straightforward
to produce parallel QEPs with dynamic programming. However, there are cost models
that do not take parallelism into account (e.g. those measure the total number of CPU
instructions or network traffic) and lead to serial plans. To make LHD-s more flexible,
we produce parallel plans in two steps. Given any cost model, LHD-s firstly find the
optimal plans using dynamic programming as normal, then the QEPs are transformed
into their parallel forms in a way that the keeps the estimated cost unchanged. This
two-step method enables LHD-s to produce QEPs with either minimum responding time

or network traffic.

10Serial QEPs can also be executed using multiple threads. For example, the optimiser of FedX
generates serial plans. However, each operator in a FedX plan is executed using multiple threads. We
refer to executing multiple operators in parallel as inter-operator parallelism, and using multiple threads
to execute an operator as inner-operator parallelism.

TN W N =

© o N O

Chapter 5. Querying LD with Detailed VoID Statistics 54

5.6.1 Generating Serial Query Plans

A QEP of a SPARQL query indicates the execution order and joins of all triple patterns.
To find the genuine optimal plan it is necessary to examine all permutations of possible
joins (in LHD-s the operators are hash join and bind join). Dynamic programming can
discard sub-optimal plans at an early stage and thus saves time. When optimising a
distributed SPARQL query the access plans of triple patterns are only determined by
the join operators (i.e. a dependent access plan is used only when the triple pattern is
joined by a bind join). Therefore, the dynamic programming used in LHD-s starts from
joining two triple patterns rather than building access plans, as shown in algorithm 2.
Generally dynamic programming considers all join operators to join two sub-plans (line

5). However, there are two cases that only one join operator needs to be considered.

Algorithm 2: DP(B)
input : A BGP as a set of triple patterns B
output: The optimal QEP 0ptPlan(B) of the BGP
for i =2 to |B| do
forall the S C BA|S|=1ido
OptPlan(S) <« 0;
forall the O C S do
OptPlan(S) «+ OptPlan(S) U joinPlans(OptPlan(0), OptPlan(S\O));
// prunePlans(optPlan(S)) is not necessary

end
end
end
return OptPlan(B)

First, if neither of the two sub-plans is an access plan of a triple pattern, they cannot
be joined using a bind join. This is because the behaviour of executing an arbitrary
operator is not clearly defined. For example, given two sub-plans p = T7 x T3 and
q = T3 x Ty that are joined using a bind join ¢ Xp ¢, it indicates that triple patterns
of ¢ should be executed with bindings of p. This is contradictory to the behaviour of
executing T3 and Ty that is specified by g. Therefore, only hash join is used to join two

join operators in LHD-s.

Second, the result of executing a triple pattern is independent of the access plan. When
joining a triple pattern T with a sub-plan p, the choice of access plan can be made by

comparing cost(q ® T') and cost(q xp T) and keeping the minimum.

© 00 N O NN W N e

[=
w N = O

Chapter 5. Querying LD with Detailed VolD Statistics 55

Applying the above two rules can significantly reduce the number of QEPs needed to
be examined (i.e. the searching space), and thus improves the performance of LHD-s’

optimiser.

5.6.2 Transforming Serial Query Plans into Parallel Plans

In a serial QEP it is bind join that makes the execution order significant. If in a QEP
all triple patterns are executed sequentially using independent access plans, any order of
execution produces the same amount of network traffic (and the same responding time if
parallelism is used). In other words, the only constraint on executing a triple pattern is
whether the depending bindings of this triple pattern is available or not. For independent
access plans the requirement is always met. LHD-s uses algorithm 3 to determine the
execution order of all access plans, which is a dependency tree. All independent access
plans are at the top level of the tree. Variables of access plans already in the trees are
regarded as bound. An independent access plan is added to the current level of the
tree once its dependency is met (i.e. the variable providing bindings to this access plan

becomes bound).

Algorithm 3: ParlTrans(p)
input : A QEP P
output: A dependency tree DT for the QEP

14 0;
bound « 0 ;
while P # () do
foreach access plan a € P do
if depVars(a) C bound then // Dependency check
DT (i) + DT(i)Ua ;
bound < bound U Vars(a) ;
P+ P\a;
end
end
141+ 1;
end
return DT

A QEP produced by our algorithm can be regarded as a partial-directed (i.e. some edges
are directed while others are not) graph as shown in figure 5.4. The nodes of the graph
are subjects or objects and the edges are triple patterns. An undirected edge represents

a plain access plan of a triple pattern, while a directed edge represents a dependent

Chapter 5. Querying LD with Detailed VolD Statistics 56

t1: mpp 7x,0

to : ?ZPQ 7}770 - /
ts: 7z p3 7x, 0
tg: Txpg 7k, 1

ts : ?v ps 7k, 2 Q
tg : 7V pg 7%, 3 ©
t7: s pr x, 4

(A) Ordered triple patterns (B) A corresponding QEP

FIGURE 5.4: An example query and its execution plan

access plan that consumes bindings from its starting node. Each edge has an execution
order number, that edges with the smaller order numbers executed earlier. Execution
order numbers are used to determine the execution order for edges connected to the
same node, but not edges connected to different nodes (i.e. two edges of different nodes
are executed in an undetermined order). The execution of the QEPs is data driven. As
bindings coming from SPARQL endpoints variables become bound, and triple patterns
depending on such variables are executed immediately. Thus, in LHD-s triple patterns

are executed as soon as QEPs permit to exploit bandwidth.

5.7 Parallel Query Execution System

To reduce responding time, we propose a parallel execution system that adopts par-
allelism at two levels. The first level is that join operators are executed in parallel
according to the aforementioned parallel plans. The second level includes parallel exe-
cution of each operator. For example, a bind join can be partitioned horizontally and
executed using multiple threads. We decouple the execution of QEPs from the communi-
cation with (i.e. sending queries to or receiving results from) data sources. The former is
controlled by the QEP executor, and the latter is managed by the communication man-
ager. The QEP executor submits query execution tasks to the communication manager.
The communication manager controls the traffic to each data source independently and

determines when a task is executed according to the availability of data sources. This

Chapter 5. Querying LD with Detailed VolD Statistics 57

design enables LHD-s to fully exploit the bandwidth and computing power of all data

sources.

5.7.1 Query Plan Executor

In the QEP executor, the results of executing an access plan is regarded as a data
stream. We use a quadruple {¢,n, s, E} to denote a stream which is the result of a triple
pattern t; n is the level of ¢ in the dependency tree, used as the execution order; s is
the node providing binding to this stream, and FE is a set of nodes where the stream
goes to. For a stream corresponding to an independent access plan, s is null and F
contains all variables of ¢ that are used as join variables. In the case of a dependent
access plan, s provides bindings and E contains the other node of . A stream consumes
bindings of s (if not empty) and pushes the results of evaluating ¢ to the nodes in FE.
A node v contains a set of incoming streams In and a set of outgoing streams Out. A
node joins the results of incoming streams and triggers certain outgoing streams. When
the execution starts, all streams having execution order 0 start. Incoming streams that
have not been processed are joined to provide intermediate result at the common node
they go to. An outgoing stream starts as soon as all incoming streams having smaller
execution order (i.e. the incoming streams that the outgoing stream depends on) start.
Once the result of an incoming stream is consumed by an outgoing stream, the incoming
stream is marked as “consumed” and will not be involved in future joins or passed to
later outgoing streams. Thus a stream will not be joined twice. In case no outgoing
streams exist for an incoming streams, these streams are redirected to a virtual node
where stores all intermediate results that are not consumed. At the end of the execution

the final result of the query is produced by joining all intermediate in the virtual node.

Figure 5.5 shows a step-by-step example of executing the QEP shown in figure 5.4. At the
beginning (figure 5.5a) three streams of execution order 0, (¢1,0, ¢, {?x}), (t2,0,¢,{7z})
and (t3,0,¢,{?x,7z}) start. Since ?y is not used as a join variable, no streams provide
data to it. The streams of to and t3 are joined and marked as consumed at node 7z.
Join result is pushed to the virtual node V since no outgoing stream exists at node 7z.
In the meantime, the streams of ¢; and ¢3 are joined at 7z (but not marked as consumed
yet). In the next step (figure 5.5b, stream (¢4, 1, 7z, {?k}) consumes the join results of

streams of ¢; and t3, both of which are marked as consumed at node 7z, and executes

Chapter 5. Querying LD with Detailed VolD Statistics 58

t, using a dependent access plan. The stream of ¢7 keeps waiting since the stream of
ts, whose execution order is smaller than ¢7, has not started yet. Step 3 (figure 5.5¢) is
similar to step 2 that executes t5 using a dependent access plan. In step 4 (figure 5.5d)
the stream of tg goes back into ?x but is not joined with any stream (since all other
incoming streams of 7z are marked as consumed). In the final step (figure 5.5e) only
the stream of tg is passed to the stream of ¢t7. The results of executing t; that go into
node ?s are passed to the virtual node V. All results (as streams) at V are joined to

produce the final results of a query.

5.7.2 Communication Manager

The actual execution of a query is managed by the communication manager. For each
data source the communication manager maintains several worker threads that send
query requests to and receive responses from the data source, and a queue that stores
tasks submitted to this data source. The number of threads of each data source is set
w.r.t the capability of and the connection to the data source. Once the QEP executor
invokes a stream, one or several query execution requests are submitted to the communi-
cation manager. A plain access plan generates only one request. For a dependent access
plan more than one request is possible since the input bindings of the dependent access
plan can be partitioned into multiple segments and then executed in parallel (i.e. using
horizontal partition [Kossmann, 2000] to achieve intra-operation parallelism [Hong and
Stonebraker, 1993]). For example, a dependent access plan that has ten input bindings
can be executed in parallel as two dependent access plans each with five input bindings
each, or even ten dependent access plans each with one input binding. For each request
from the QEP executor, the communication manager dispatches tasks to all relevant
data sources of the triple pattern of the request. A task first goes into the task queue,
waiting if all worker threads are busy, being executed otherwise. Once the task queue

becomes empty, all worker threads are suspended until new tasks come in.

The main advantage of using this communication manager is to control communication
to different data sources independently, and thus ensures that all data sources work
at their strength without being over flooded. Furthermore, separating plan executor
from communication manager enables QEP execution to proceed without waiting for

actual query execution (as long as some data sources are providing result streams), and

Chapter 5. Querying LD with Detailed VolD Statistics 59

query tasks are continuously submitted to the communication manager (to keep as many

worker threads working as possible).

5.8 Summary of LHD-s

In this chapter we describe our distributed SPARQL engine called LHD-s which is de-
signed for LD network having detailed service descriptions. LHD-s requires statistics of
property partitions, including the number of total triples, distinct subjects and objects of
each partition. It adopts a hybrid source selection approach (i.e. predicate-matching and
ASK selection) and a selectivity-based responding time cost model. Given a SPARQL
query, LHD-s firstly tries to break the query into sub-queries that can be optimised
and executed independently. Each sub-query is optimised in two steps. Firstly, a serial
QEP is generated using dynamic programming, whose complexity is reduced according
to characteristics of SPARQL queries. Secondly, the serial plan is transformed into a
parallel without increasing network traffic or execution time. The two-step approach
allows LHD-s to use an arbitrary cost model and optimisation algorithm with paral-
lelism. Optimised queries are executed using a highly parallel execution system. The
system adopts inter-operator parallelism as well as inner-operator parallelism. Further-
more, communication with each data source is managed independently according to the
bandwidth and computing power of the data source. Therefore, LHD-s can benefit from

higher bandwidth without suffering overload of remote data sources.

5.9 Implementation of LHD-s

The execution system of LHD-s is built using pipelined parallelism such as Double-
pipelined Hash Join [Raschid and Su, 1986] and XJoin [Urhan and Franklin, 1999].
Instead of using two hash tables like in a Double-pipelined Hash Join, we maintain
multiple hash tables at a node to enable joining more than two streams simultaneously.
A result coming from one stream is stored in the hash table of this stream, and at the
same time probed against the hash tables of other streams. For example, at a time three
streams a, b and c are joined at a node 7z, and three hash tables H,, H, and H. are
maintained respectively. Once a result comes from a, it is stored to the hash table H,

under the key of the value of 7z, and probed against H, and H. on the same value of

Chapter 5. Querying LD with Detailed VolD Statistics 60

7x. A join result is produced as soon as matching records are found in both Hy and H.,
and given to outgoing streams that consume the result. This multiple hash join enables
a node to execute several incoming streams as well as outgoing streams in parallel. The

execution will not be delayed unless all data sources stop providing results.

When executing a dependent access plan there could be duplicated values of the de-
pended variable (e.g. considering two input bindings (?z — x1,7y — y1), (P — x1, 7y —
y2) for triple pattern {?x p 7z}, only one value (?z — z1) is required by the dependent
access plan of the triple pattern). To eliminate unnecessary network traffic, we propose
the Hash Bind Join (HBJ) operator, that partitions the input bindings using a hash
table on the values of the depending variable (?x). Therefore we only use distinct values
to execute a dependent access plan, and the returned results of a specific input value
are joined with bindings of the same value in the hash table. When only one binding
is given for a dependent access plan, variables in the triple pattern of this access plan
are replaced by values of the given binding (i.e. the implementation of bind join in
DARQ and DSP). Otherwise the input bindings are attached as inline data using the
VALUES"Y syntax in the dependent access plan. For example, to execute {?z p 7z}
with input bindings (72 — z1,7y — v1),(?x — z1,7y — y2), firstly a hash table
1 = {(?x = x1,7y = v1),(Tx — 21,7y — y2)} is built. Then {z; p 7z} is evalu-
ated against relevant data sources. The results (7z — 21), (72 — 2z2) are joined with

(?7x = x1,7y = 1), (Tx = x1, 7y — y2) to produce the complete results.

The communication manager maintains a thread pool and a task pool for each data
source. The number of thread in each thread pool is set to a number (as large as possible)
that is lower than the maximum allowed concurrent connections to the corresponding
data source. The execution tasks to a data source are stored in its task poll. An idle
thread is invoked to executed a task if the task pool is not empty, otherwise all threads

are paused.

Yhttp://www.w3.org/TR/sparqlil-query/#inline-data

http://www.w3.org/TR/sparql11-query/#inline-data

Chapter 5. Querying LD with Detailed VolD Statistics

61

(A) Query execution step 1.
The execution starts with
three streams of order 0,
represented by dash lines.
Joined result of t5 and t3 is
pushed to the virtual node V'
for later use. Stream t; and
to are joined at 7z and wait
to be consumed by streams
of order 1.

(B) Query execution step 2.
Stream t4 which has execu-
tion order 1 starts since all
streams having smaller exe-
cution order have started. It
consumes the join result of ¢;
and to and pushes its result
to 7k. Stream t; which has
an execution order 4 remains
halting since the stream hav-
ing execution order 3 has not
started yet.

(¢) Query execution step 3.
Stream t5 starts execution in
the same manner as stream
ts. It consumes the result of
t4 and pushes result to 7v.

(D) Query execution step
4. Stream tg goes back to
?x. Since all other incoming
streams of 7z have been con-
sumed, tg will not be joined
with them. Now all incoming
streams at 7z started and t;
is ready to start.

(E) Query execution last
step. Stream t7 starts since
all incoming streams at 7z
whose execution orders are
smaller than 4 have started.
The result of ¢7 is pushed to
the virtual node V, at where
it is joined with the join re-
sult of t and t3 to produce
the final result.

FIGURE 5.5: Execution of a QEP

Chapter 6

Evaluating LHD-s

O demonstrate the performance of the combination of techniques for en-
vironments having detailed VoID descriptions, we evaluate LHD-s and
compare it with existing distributed SPARQL engines. In particular, the
cost model is evaluated in a calculation-based experiment. Meanwhile, it

is difficult to either comprehensively evaluate the optimisation algorithm and the query
execution system using only theoretical analysis, or to isolate their performance. As a
result, the performance of the optimisation algorithm and the query execution system
are evaluated together using the evaluation framework presented in chapter 4. Engines
used for comparison are FedX and SPLENDID. FedX adopts a straightforward heuristic-
based optimisation approach and a sophisticated parallel execution system. SPLENDID
emphasises on query optimisation while using a pipeline-based single thread execution
system. Their approaches are closely related to what we developed in LHD-s, and are
promising to be good references. Other engines are considered less appropriate for var-
ious reasons. For example, DARQ also provides a set of well designed techniques that
are related to our approach. However, it is not up to date and several evaluations
Schwarte et al. [2011], Wang et al. [2011] indicate that its efficiency is not as good as
recent engines. Another recent query engine, ANAPSID Acosta et al. [2011], focuses on
adaptive query processing techniques to cope with unstable networks. Also, insufficient
details are given about its query optimisation and query execution (except the adaptive

processing part). Therefore ANAPSID is not used as a reference.

63

Chapter 6. Evaluating LHD-s 64

6.1 Evaluating Cost Models

The core of cost models of LHD-s, FedX and SPLENDID is to estimate the cardinality
(the number of matching triples) of a single triple pattern or joins of triple patterns. To
measure these cost models’ accuracy, we compare the estimated cardinality of joins to
the real cardinality that are obtained by executing the joins. For single triple pattern,
the actual and estimated cardinality are equal if both the subject and object are vari-
ables, in which case the number of triples matching the predicate equals the number of
triple falling into this predicate partition. In case the subject or object is concrete, the
actual cardinality mainly depends on the specific value of the concrete subject or object.
Therefore, to have the accurate cardinality of triple patterns with only one variable, we
have to count over triples for every pair of subject-predicate or object-predicate. At
the same time, existing cost models (in DARQ, SPLENDID and LHD-s) adopt quite
similar methods to estimate a triple pattern with one variable due to limited statistics.
As a result, we do not compare cost models on estimating a single triple pattern. We
also exclude joins of an arbitrary number of triple patterns (i.e. n-nary joins). Because
obtaining the actual cardinality of n-nary joins requires executing all permutations of
triple patterns in them. In this thesis, we only evaluate cost models on estimating binary
joins whose triple patterns have only concrete predicates (e.g. {7s p1 To1, 7s p2 702}).

We will perform a more comprehensive test on cost models in the future.

6.1.1 Evaluation Method

To collect the actual cardinality of an arbitrary binary join of the aforementioned type,
we generate all possible joins and execute them against the evaluation datasets. Since
predicates of different queries can be irrelevant, we only join predicates of the same
query. For every query in the query set of the evaluation framework, we collect the
distinct predicates. For every two predicates p; and ps we generate a query in the form of
{?x p1 701, 7z pa 7oz} (SSjoin) and {?s1 p1 7x, 7x pa Tog} (OS join). Taking Query 1 (in
table A.1) as an example, the SS and OS joins of its four predicates (bsbm:productFeature
(pF), bsbm:productPropertyNumericl (pPN1), rdfs:label (1bl) and rdf:type (a)) are shown
in table 6.1. SS joins are listed in the top-right half of the table, and OS joins are in
the bottom-left part. Joins generated based on each query are merged and duplications

are eliminated. Due to the similarity of SS and OS joins, we only give the complete list

Chapter 6. Evaluating LHD-s 65

of SS joins (123 joins in total) in appendix A.2. With the actual cardinality of triple

patterns we calculate the join selectivity of each join.

TABLE 6.1: Possible SS & OS joins of Query 1. There are four triple patterns in Query

1. The upper right part of the table contains all SS joins of arbitrary two different

triple patterns. The lower left part contains all OS joins of arbitrary two different
triple patterns.

pF pPN1 Ibl a
F 7x pF 7ol. 7x pF 7ol. 7x pF 7ol.

p 7x pPN1702. ?x1bl 202. 7x a 702,
? ? ? ? ? ?

pPN1 ’s1 pPN1 7x. !x pPN1 ?0l. 7x pPNI1 ?ol.
7x pF 702. 7x 1bl 702. 7x a 702.

1bl 7s1 1bl 7x. 751 1bl 7x. 7x 1bl ?ol.
7x pF 702. 7x pPN1 702. 7x a 702.

a 7s1 a 7x. 7s1 a 7x. 77X a 7x.

7x pF 702. 7x pPN1 702. 7x 1bl 702.

We estimate each SS and OS join using cost models of FedX, SPLENDID and LHD-s
respectively and calculate the corresponding join selectivity. For clarity we describe
the behaviour of the three cost models on these joins. FedX counts the number of
variables of each triple pattern and all SS (or OS) joins are considered equal. Therefore
we say that FedX gives a constant cardinality for the same type of joins. We enlarge
FedX’s estimations by 6 orders of magnitude to make estimations of all engines have a
close order of magnitude. SPLENDID uses equation [] sel.s - card(Tynpound) t0 estimate
cardinality of SS joins. For OS join it uses equation card(Ty) - card(Ts) - sel(T1 x Ty),
where sel(T) x T») is the average selectivity of the join variable. In the original paper it
is not clear what the average selectivity of a variable refers to. However from the source
code of SPLENDID it is the arithmetic average of the selectivity of the join variable (i.e.
sel(SO) = (sel.s(p1)+sel.s(p2))/2. LHD-s uses equation card(T})-card(Tz)-sel(Ty x 1)

to estimate both SS and OS joins, where the join selectivity is given by equation 5.6.

It is not necessary that good cost models have to produce cardinality estimations close
to actual cardinality. In query optimisation it is the rank of joins by cardinality that
matters. Query optimisation will produce the same QEP, if for any two joins A and B in
a query, the rank (whether card(A) is larger or less than card(B)) produced by using A
and B’s estimated cardinality is the same as the ranking using their actual cardinality.

Therefore we introduce the concept of ranking accuracy, which is the percentage of

Chapter 6. Evaluating LHD-s 66

correct rank of arbitrary two joins based on estimated cardinality, to measure the quality
of cost models. To calculate the ranking accuracy we go through all pairs of joins. We
divide join pairs into different groups according to their distance, that is, in the group
of distance n, all pairs contain the ith and the i + nth joins. Any pair of triple patterns
belongs to a group. We check whether their estimated rank according to a cost model

is the same as actual rank and calculate the ranking accuracy of the cost model.

6.1.2 Results and Analysis

Join cardinality produced by the three cost models are compared with the actual car-
dinality in figure 6.1 and 6.2. Since many of the OS joins have 0 result, we present

cardinality of none-zero OS joins separately in figure 6.3.

1.00E+08

SS JOIN CARDINALITY

1.00E+06

1.00E+04

JOIN CARDINALTY

1.00E+02

1.00E+00
mm
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

—+—Base -=—LHDs SPLENDID —FedX

FIGURE 6.1: Base stands for the actual cardinality of joins. Gap indicates cardinality
of 0. Lines are for visual aid only.

Figure 6.1 and 6.2 shows that none of the cost models gives accurate estimations (all
estimations are several orders of magnitude away from the actual values). Therefore,
we focus on examining the trend of these estimations instead. In the aforementioned

figures joins from the same query are shown as points next to each other. It is shown

Chapter 6. Evaluating LHD-s 67

in figure 6.1 that cardinality produced by LHD-s and SPLENDID have a trend close to
the actual cardinality of SS joins. The ranking accuracy of each cost model is produced
by joins of up to a distance of 12 (i.e. the maximum possible distance since the largest

BPGs in this case have 12 triple patterns), as presented in table 6.2.

TABLE 6.2: Comparison of ranking accuracy on SS joins

DIST. LHD-s SPLD. FedX

1 72 70 41
2 74 72 44
3 75 72 40
4 66 63 44
5 71 67 42
6 71 68 40
7 73 72 39
8 71 70 42
9 78 76 42
10 68 66 48
11 65 64 46
12 72 71 44

It is clearly shown in table 6.2 that LHD-s has a slight advantage over SPLENDID on
joins of all presented distance. This is because that LHD-s produces a more accurate join
selectivity of SS joins than SPLENDID does (which is constant sel.s). In the meantime,
FedX’s comparison accuracy is lower than 50%, which indicates it probably gives an
incorrect comparison for an arbitrary two SS joins (having only concrete predicates).
It is worth noticing that FedX has several heuristics that are used to compare triple
patterns having concrete subjects or objects, and may show better performance for

types of joins that are not considered here.

On OS joins, even on none-zero OS joins, all engines fail to resemble the actual trend.
This implies that the main factor affecting cardinality of OS joins is not captured by any
of the engines. Due to the frequent occurrences of 0 in actual cardinalities, it may be
possible to identify such joins through analysis of the predicate schema. For instance,
if the range of the first predicate is disjoint with the domain of the second predicate,
we will conclude that the join is empty. Following this line, methods discussed in Akar
et al. [2012] may also be used to further refine estimation of OS joins, and it is part of

the future work.

Chapter 6. Evaluating LHD-s 68

1.00E+12

OS JOIN CARDINALITY

1.00E+10

o M M MF

1 “\“"A*"\..“.A",...f\,.,,.f;\”\...',...\f Il vy

JOIN CARDINALITY

1.00E+04

1.00E+02

1.00E+00
mm

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

—+—Base -=—LHDs SPLENDID —FedX

FIGURE 6.2: Base stands for the actual cardinality of joins. A gap indicates cardinality
of 0. Lines are for visual aid only.

6.2 Evaluating the Optimisation Algorithm and the Exe-

cution System

The effectiveness of optimisation algorithms and the efficiency of execution systems are
closely related actual queries. Instead of a calculation-based experiment, we evaluate
LHD-s using the evaluation framework and measure the optimisation algorithm and the

execution system indirectly via the overall query responding time and network traffic.

6.2.1 Experiment Settings

The experiment is set up using the framework presented in chapter 4. We prepare about
70 million RDF triples, which is in line with existing approaches [Quilitz, 2008, Schmidt
et al., 2011]. These triples are distributed to 20 SPARQL endpoints, which is largest

number of endpoints we can host, and more than existing approaches since we tend to

Chapter 6. Evaluating LHD-s 69

1.00E+08

OS JOIN CARDINALITY

| PN

1.00E+06 \ \

1.00E+04

101N CARDINALITY

1.00E+02

1.00E+00
~ o - n © ~ ® @

10
1
2
3

14

15

QuERY

—+—Base -8—LHDs SPLENDID —FedX

FIGURE 6.3: Base stands for the actual cardinality of joins. A gap indicates cardinality
of 0. Lines are for visual aid only.

perform evaluation on a larger scale. The backend of the endpoints are Sesame 2.6
and Apache Tomcat 62. Every two endpoints are hosted in a remote virtual machine
having 2.5 GB memory. The number of triples in each virtual machine is balanced to
prevent overrun of certain machines (e.g. the endpoint having maximum triples and the
one having minimum triples are hosted in the same virtual machine). Each distributed
SPARQL engine under testing (e.g. LHD-s) is run on a machine equipped with an Intel
Xeon W3520 2.67 GHz processor and 12 GB memory.

For each query presented in chapter 4, we perform 5 warm-up runs, and 20 test runs,
which enable all engines to have stable performance. The number of warm-up and test
runs are determined according to existing benchmarks [Bizer and Schultz, 2009, Schmidt
et al., 2011] as well as our own experiences. For each run a fresh instance of query engine
is used (i.e. each run can be regarded as standalone query processing). An engine is
considered incapable of finishing a query if it either 1) takes more than 5 minutes to
execute the query, or 2) keeps running into execution issues (such as not enough memory

or overrunning SPARQL endpoints) in three tries.

"http://sourceforge.net/projects/sesame/files/Sesame202/2.6.0/
®http://tomcat.apache.org/download-60.cgi

http://sourceforge.net/projects/sesame/files/Sesame%202/2.6.0/
http://tomcat.apache.org/download-60.cgi

Chapter 6. FEvaluating LHD-s

70

6.2.2 Results and Analysis

The QPS, incoming network traffic, outgoing network traffic and transmission rate are

shown in figure 6.4, 6.5, 6.6 and 6.7 respectively. In these figures 0 or NA stand for time

out queries.

4.5

~
LHDs-QPS 2
4 P
3.5
3
2.5 8
o
g 5
g ~N
2
1.5 3
(=]
3 ~ Iy
=] s o %
1 < S R S o
[(=] =) o -
g w28 ~ e)
05 © 2 § RY 923 0 8 g N o &
3 5 S 8 8- 3 s S 3 g
Igg S TEEFEEREE R B S 3
o o
0 SmZz>° =
Q1 Q2 Q3 Q4 Qs Q7 Qs Q10
W LHDs 0.4084 21023 0.5047 0.0345 0.0045 0.0456 3.9397 0.5116
WFedX 0 0.9784 0.2382 0.1347 0 0.3499 07012 0.8520
SPLENDID 0.0503 0.1905 0.0316 0 0 0.0042 0.0912 0.0657

F1GURE 6.4: QPS of LHD-s

Figure 6.4 shows that LHD-s is faster than FedX on most queries (except Q4, Q7 and

B 0.1137
B 0.1107
0.0380

Qi1

0.1137
0.1107
0.0380

Q10), and considerably faster than SPLENDID on all queries. In addition, LHD-s is

the only engine that successfully finishes all queries. FedX has time out on Q1 and Q5,

while SPLENDID has time out on Q4 and Q5. The time out is caused by the large

amount of intermediate results which is a result of low quality QEPs, especially for Q5.

Due to the design of BSBM, all assessment queries should be regarded as equally common

which property is inherited by the DSEF queries. In addition, all engines under testing

do not optimise for specific types of queries. Better performance on most queries suggests

higher probability of better performance on arbitrary queries. The higher performance

of LHD-s is primarily due to its parallel execution system, as we will demonstrate later.

Chapter 6. Evaluating LHD-s 71

1200

LHDs-INCOMING TRAFFIC

1014.96
1000

800

600

TRAFFIC (MB)

400

200

o
I 217.26

~
o0 o =] ~
) e Ron 2 3 % 2. 2
P I A B R Y d n o 00 o o] 00 = W
<L & R N o S < L < S M on v o9 ® N =5 N N
2 - N © . - I falr z 2 . © - o B S o o
Ql Q2 Q3 Q4 Q5 Q7 Q8 Q1o Qi1
B LHDs 217.26 1.52 59.03 73.07 1014.96 58.30 1.56 48.97 0.19
W FedX 0 2.74 3.78 10.67 0 6.41 3.61 3.83 0.21
SPLENDID 23.80 6.59 37.72 0 0 38.91 16.89 17.56 0.26

FIGURE 6.5: Incoming traffic of LHD-s

LHD-s produces the most network traffic among the three, as shown in Figure 6.5 and
6.6. One reason is that LHD-s optimises for minimum responding time rather than
minimum traffic. It is worth noticing that the extra network traffic is primarily due
to the incoming traffic, which implies that more hash joins are used instead of bind
joins. It can be a deliberate decision of the cost model to reduce responding time, or
due to incorrect cost estimation. A noticeable spike is shown in both Figure 6.5 and
6.6 on Q5. This is because Q5 generates huge amount of intermediate results which is
difficult to reduce. The huge amount of intermediate results also leads to the time out

of SPLENDID and FedX.

In section 5.7 we mentioned the side effects of the inter-operator parallelism (i.e. exe-
cuting multiple operators in parallel) of LHD-s. That is, if operators that execute triple
patterns are executed sequentially, bindings of a certain variable are likely to be reduced
as more triple patterns being executed. When operators are executed in parallel, the
same set of bindings may be used multiple times before reduction. This side effect can
potentially increase outgoing traffic. However, Figure 6.6 shows no sign of outgoing

traffic increase and indicates the side effect is not significant for the tested queries.

Chapter 6. Evaluating LHD-s 72

4000 LHDs-OUTGOING TRAFFIC

3543.96
3500

3000

2500

2000

TRAFFIC (MB)

1500

1000

500 8 3 &
o 0 ©)
© ﬁ 0 0 s 38 ﬂ A % 2 g o < 3; © 8 B i N m
X g 0 N X o o L < < < o g n I N © 4 o N A
v 2N docSfoTP2oz ZZPR T 66 NS SS 0
0 — — pr— - — — — —
Ql Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11
B LHDs 8.86 2.28 199.68 188.69 3543.96 188.28 3.59 7.66 0.15
W FedX 0 6.18 16.05 56.26 0 20.50 8.44 11.83 0.27
SPLENDID 26.58 6.84 42.35 0 0 41.64 17.44 19.53 0.23

FIGURE 6.6: Outgoing traffic of LHD-s

While both optimising for minimum network traffic, both figure 6.5 and 6.6 suggest
that FedX has a certain advantage over SPLENDID, except on Q1. Since dynamic
programming, which is adopted in SPLENDID, provides optimal plans w.r.t the cost
model, SPLENDID’s higher traffic can only result from inaccuracy of its cost model or
statistics. Since LHD-s and SPLENDID use similar methods to estimate cardinality,
inaccuracy of cost estimation is very likely in LHD-s as well. It could be that existing
cost models do not sufficiently exploit statistics of data sources. On the other hand, it
is possible that VoID cannot satisfy the requirement of more sophisticated cost models.
By extending the evaluation of cost models (section 6.1) to include arbitrary joins it is
possible to determine whether cost models of LHD-s and SPLENDID have acceptable
accuracy on n-nary joins. Furthermore, comparing QEPs generated by the three engines
with the actual optimal plans (identified by experiment) will enable us to precisely
measure the quality of each engine’s query optimisation. It will also provide insight of
which triple patterns are executed at an inappropriate time. These evaluations are in

our future plan.

The efficiency of LHD-s is primarily due to its parallel execution system, which increases

Chapter 6. Evaluating LHD-s 73

14

LHDs-TRANSMISSION RATE

S
12 3
a
10 «~
()}
@ 8
@
2
=
E 6
4 &
©
S B3 N
< o <
2 5 8 82 m Sy o9 2
m R X o Rm a2 a - @ Q o - o
N S o W < 1 o o og c,",,' g & v oo
SITHIITSEITHIH it
z2 2 z z o c o o
0 [|
Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Ql1
B LHDs 9.234 0.797 13.056 0.902 2.047 1.124 2.029 2.897 0.004
W FedX 0.000 0.872 0.472 0.901 0.000 0.942 0.845 1.334 0.005
SPLENDID 0.253 0.256 0.253 0.000 0.000 0.034 0.313 0.244 0.002

FIGURE 6.7: Average transmission rate of LHD-s

the transmission rate, as clearly shown in figure 6.7. In particular, the efficiency primar-
ily comes from the inter-operator parallelism of LHD-s. We can see that the network
traffic of the three engines on Q11 are comparable, since Q11 consists of single-triple
BGPs where no optimisation takes effect. The differences between the network traffic
of the three engines are primarily the results of querying overhead. For example, both
FedX and SPLENDID send ASK queries to select relevant data sources. In addition, no
inter-operator parallelism is used in LHD-s since there is only one pattern in each BGP.
Therefore, the transmission rate on Q11 is merely a result of inner-operator parallelism
(i.e. executing an operator with multiple threads). Since LHD-s and FedX have a close
transmission rate (and is higher than SPLENDID), it implies that their inner-operator
parallelism is equally effective at a low level of traffic amount?. Therefore, we conclude
that the advantage of LHD-s is essentially brought by the inter-operator parallelism.
The inter-operator parallelism of LHD-s is enabled by parallel QEPs (generated using
algorithm 3), and reinforced by the mechanism that maintains an independent thread

pool for each data source (i.e. potentially more threads are usable).

3With a large amount of network traffic FedX can suffer in that it does not maintain independent
thread pools for data sources. However, we cannot confirm that due to lack of appropriate testing
queries.

Chapter 6. Evaluating LHD-s 74

12

LHDs-CPU 11.21
10
8
s
5] 6
3
o)
<
‘ . - 2 @
) w3 ~ ©
¢ 3 © N N PN
2 - - -
~) o~ < o
R} S 0 3 9 E] i - oo
< o I S < < < o S o 239 8
c MZNmil = BzZRzZZlm mm BRI 55
a1 Q2 Q3 Qa4 Qs a7 Qs Q10 Qi1
WLHDs 2.33 0.38 0.91 2.60 3.34 2.90 0.35 0.54 0.11
WFedX 0 0.57 0.35 0.62 0 0.36 0.25 0.53 0.05
SPLENDID 2.16 1.86 2.56 0 0 11.21 1.69 2.68 0.01

FI1GURE 6.8: CPU usage of LHD-s

We also provide the average CPU and memory usage of the three engines in figure 6.8
and 6.9. However, the purpose of providing such information is only to demonstrate that
these engines require reasonable amounts of system resources. It is likely that the system
resources consumption of the three engines can be reduced with better engineering. All
three engines have low CPU usage. One possible reason for higher CPU usage of LHD-s
and SPLENDID than FedX is that the former two adopt dynamic programming which
is more complex than FedX’s heuristic-based optimisation. The memory consumption
of LHD-s and SPLENDID is also higher than FedX. This is primarily due to FedX
materialised a limited number of intermediate results* at one time, while the other two
materialised all available intermediate results (using normal lists). Therefore, memory
consumption of LHD-s and SPLENDID is likely to be reduced if less intermediate results
are materialised at one time. Moreover, LHD-s potentially maintains more threads than

the others and therefore consumes more memory.

4This is implemented using a data structure called queue in Java. It is essentially a special list that
blocks input if a certain number of entries exist in the list.

Chapter 6. FEvaluating LHD-s 75

=3
<
oo
n
n
-

1800 LHDs-MEMORY
1600
1400
1200

1000

800

USAGE (MB)

600

400

200

I, 917.57
[328.38

~ [185.20

T 1150.82
T 1150.80
[1204.23
» [152.69
NA
R 1263.95
NA
[1428.11
o [l 156.23
e 121113
| 155191
oo [N 179.90
T 1243.27
| 1535.02
© [l 165.38
T 1243.81

. 797.37

w [l 163.52

o
I 795.43
I 575.19

~ I 155.19

e E:

1 5
B LHDs 795.43 828.38 797.37 1204.23 1263.95 1428.11 1558.00 1551.91 1535.02
W FedX 0 185.20 163.52 152.69 0 156.23 155.19 179.90 165.38
W SPLENDID 917.57 1150.82 1150.80 0 0 1211.13 575.19 1243.27 1243.81

FIGURE 6.9: Memory usage of LHD-s

6.3 Evaluation Summary

In this chapter we evaluate a combination of techniques that include a VolD-based
response time cost model, a dynamic-programming-based optimisation algorithm, an
algorithm called ¥ to increase parallelism, and a parallel execution system. These
techniques are deployed in a distributed SPARQL engine named LHD-s. The efficiency
of LHD-s essentially benefits from its parallel execution system. In the meantime, such
gain comes at the cost of higher network traffic. Furthermore, it is shown that on joins
of two triple patterns, VoID-based cost models are more accurate than heuristics, and
the cost model used in LHD-s has advantage over other VolD-based cost models. In
the meantime, none of these VolD-based cost models are not sufficiently accurate, and
potentially lead to sub-optimal QEPs. It may due to either that existing VolD-based
cost models do not fully exploit VoID statistics, or that VoID is not able to provide
enough statistics for producing accurate estimations. This will be further investigated

in our future work with more sophisticated experiments.

Chapter 7

Optimising Queries with the

Presence of Co-reference

INKED Data are published by a large amount of independent publishers and
little coordination exists among them. In the LD cloud a URI uniquely iden-
tifies one resource, meanwhile, a resource can have more than one URIs.
Publishers are encouraged to reuse existing URIs to increase interoperabil-

ity [Heath and Bizer, 2011, Hyland et al., 2013]. On the other hand, they are free to
create their own URIs when publishing LD. On class' level, several vocabularies cover-
ing common domains, such as Friend of a Friend (FOAF)?, and Dublin Core Metadata
Initiative (DCMI)3, are shared in many datasets. On the instance level, however, poor
agreement is made on reusing URIs [Hogan et al., 2007]. For example, 23 different URIs
are found referring to the person Tim Berners-Lee out of 1.118 g statements [Hogan
et al., 2012]. This phenomenon, that multiple URIs refer to the same resource, is known
as co-reference. Co-reference exists in several fields such as linguistics and knowledge
management. Its existence is due to “inherently distributed and disparate nature of the
information” [Glaser et al., 2007]. Furthermore, the information carried by an URI may
depend on the context in which the URI is used. It is unlikely that a single URI is
accepted in all specific datasets in the LD cloud. One solution is provided by the OWL
[Carroll et al., 2012] vocabulary, which provides for co-referent URIs to be linked using

the “owl:sameAs” property. Much work have been done to resolve co-referent URIs for

' A class is regarded as a common name of a set of things.
*http://www.foaf-project.org/
3http://www.dublincore.org/documents/dcmi-terms/

T

http://www.foaf-project.org/
http://www.dublincore.org/documents/dcmi-terms/

Chapter 7. Optimising Queries with the Presence of Co-reference 78

LD [Hogan et al., 2007, Jaffri et al., 2008, Glaser et al., 2009, Hu et al., 2011a, Umbrich
et al., 2012].

In this chapter we do not explore co-reference resolution. Rather, we only examine
explicit co-reference (i.e. that is presented as owl:sameAs statements) and investigate
query optimisation having co-reference taken into account. Co-reference will not disap-
pear as LD evolves [Glaser et al., 2009]. Considering and coping with co-reference would

help further exploit the wealth of LD.

7.1 Challenges of Optimising Queries having Co-reference

For convenience of later discussions, we firstly extend the notion of co-reference to
queries. We say two queries are co-referent, or one is the other’s co-reference, if one
query is obtainable from replacing some URIs in the other query, with the co-referent
URIs of those URIs. It is worth mentioning that a query’s co-reference can be high
even if the concrete URIs in it only have a small amount of co-reference. Including
co-reference in SPARQL queries is about combining results that match any co-referent
version of the original queries. To the best of our knowledge, the OpenLink Virtuoso
is the only distributed engine that provides support of co-reference in a recent release?.
However, it focuses on co-reference resolution rather than query optimisation. Due to
the lack of existing solutions, users who want to have complete results of a query having
co-reference have to i) retrieve co-referent URIs for each URI in this query, ii) issue a
new query w.r.t each combination of co-referent URIs (i.e. executing the original query
as well as its co-referent slinging), and iii) combine results of all these queries. The total
number of involved queries equals to the number of the Cartesian product of co-referent
URIs of each URI in the original query. This naive approach can imply significant over-
head and poor performance when applied in the LD cloud. In the remain part of this
chapter this approach is referred to as the baseline approach to which our techniques

are compared.

Furthermore, introducing co-reference into distributed SPARQL queries potentially in-

creases the sizes of results and alters statistics in a nondeterministic manner. In chapter

4The support of co-reference first occurred in version 6.1.5 of OpenLink Virtuoso, which can be found
at http://freecode.com/projects/oplvirt/releases/342712.

http://freecode.com/projects/oplvirt/releases/342712

Chapter 7. Optimising Queries with the Presence of Co-reference 79

5 we show initial evidence that existing VolD-based cost models are not sufficiently ac-
curate, even with detailed VolD statistics. With co-reference this issue becomes more
severe since statistics of co-reference are not known. Due to the large scale of LD, it is

expensive, and sometimes impossible, to directly collect statistics of co-reference.

Consequently, a third challenge arises. Most existing distributed SPARQL engines fol-
low the static optimisation approach (including DARQ, SPLENDID, FedX and LHD-s).
Since accurate cost estimation is not guaranteed, static optimisation can be less effec-
tive. Alternatively, taking advantage of run-time statistics and re-optimising queries

adaptively during query execution can be promising to improve query performance.

Besides, it has been shown that the semantic of owl:sameAs is not strictly followed in the
real world LD. According to OWL, owl:sameAs is symmetric and transitive. However,
this is only true when the URIs linked by owl:sameAs refer to exactly the same resource.
In practice, co-referent URIs usually refer to similar resources [Halpin and Hayes, 2010]
or different aspects of a resource [Glaser et al., 2007]. Also, the equivalence of URIs
is usually context-dependent [Jaffri et al., 2008]. The above facts imply that, when
querying the LD, we have to distinguish co-referent URIs from different datasets and

cannot take advantage of the transitivity of owl:sameAs.

The final issue relates to the difficulty of distributed inferencing.Taking transitivity of
owl:sameAs as an example, if two statements {a owl:sameAs b} and {b owl:sameAs c}
are contained in different datasets, it is difficult to know the equivalence of a and ¢, unless
both statements are merged locally. The same issue applies on the symmetric property
of owl:sameAs. The symmetric breaks if an owl:sameAs statement is not contained
reciprocally by both the owners of the subject and the object. As a result we may get
different results with co-referent queries. These issues are more related to co-reference
resolution rather than querying LD. Meanwhile, the above issues become easier to be

addressed by a third-party co-reference services such as sameas.org.

In summary, processing queries having co-reference requires an efficient way to inte-
grate results from co-referent queries. Meanwhile, co-reference increases result sizes and
aggravates the difficulty of cost estimation. In the remain part of this chapter, we ex-
plore optimisation techniques for distributed queries in environments with co-reference
by means of LHD-d, which is a distributed SPARQL engine that we developed for that

purpose.

Chapter 7. Optimising Queries with the Presence of Co-reference 80

7.2 Overview of Optimisation Techniques in Environments

with Co-reference

To improve the efficiency of query processing in environments with co-reference, we
propose novel techniques to address the unique challenges described above. It is assumed
that co-reference statements are explicitly provided by RDF datasets, and our techniques

focus on improving query efficiency rather than co-reference resolution.

First, we propose a model called Virtual Graph to integrate co-reference. Using Virtual
Graph, queries having co-reference are transformed into normal queries that can be

optimised and executed using existing approaches.

Second, different from the static optimisation approach used in environments having
detailed statistics, here we optimise queries during query execution (i.e. dynamic opti-
misation). This enables LHD-d to take advantage of runtime statistics such as the actual
number of results of triple patterns. Consequently, LHD-d uses a MST-based algorithm

to incrementally construct the optimal QEPs.

In addition, we further exploit the ¥ (algorithm 1) with the help of runtime statistics.

Query optimisation and execution are interleaved and highly parallel.

Besides the above techniques that are especially tailored for query processing with co-
reference, several techniques that have been successfully tested with LHD-s are adopted
as well: VoID is used as complementary statistics for choosing the first step in the dy-
namic optimisation (when the runtime statistics are not available yet); predicate match-
ing is used for source selection; and the parallel execution system is used to increase

transmission rate.

We deployed the aforementioned techniques in LHD-d, which is shown in figure 7.1.

Details of each component is given in the following sections.

7.3 Addressing Co-reference using Virtual Graph

Given a SPARQL query having URIs with co-reference, the query itself as well as its
co-referent queries have to be executed to get comprehensive results. For example, given

a triple pattern {?z foaf:knows pg} and a co-reference statement {py owl:sameAs p;},

Chapter 7. Optimising Queries with the Presence of Co-reference 81

Query
(o

ptimisation \I ~ ‘Query execution— — — — — —~

Virtual
Graph

Sub-queries

FI1GURE 7.1: A SPARQL query and its co-reference are firstly transformed by Virtual
Graph into a query having pre-existing bindings. The transformed query is gradually
processed through optimisation-execution (OE) cycles. In each OE cycle, ¥ firstly
breaks the query into sub-queries, each of which is optimised in parallel by a MST-
based algorithm using runtime statistics. The runtime statistics are provided by the
plan executor, after executing the QEP of the last OE cycle.

we actually have to execute both {?x foaf:knows pg} and {?z foaf:knows p;}. As we dis-
cussed before, this straightforward way is not practical to handle complex queries. Here
we propose a model called Virtual Graph that transforms queries having co-reference

into normal queries that can be executed by any distributed SPARQL engine.

Virtual Graph utilises the idea that each node, concrete or not, can be regarded as
a variable with different number of values. A concrete node is regarded as a variable
bound to a single value. When taking co-reference into account, a concrete vertex is
regarded as a variable whose values are the union of its original URIs and all co-referent
ones. In addition, triple patterns sharing the same object and subject can be regarded
as a variable predicate with multiple values. These variables are called virtual nodes or
virtual edges. A graph containing virtual nodes or edges is called a Virtual Graph. As
shown in figure 7.2, there are two predicates between oy and ?x, which are combined
into one virtual edge having two values. The cost of a virtual edge is calculated in the
following steps. Firstly all parallel edges contained in the virtual edge are estimated
using equation 5.5 and the minimum one is selected. Then remaining parallel edges are
calculated again as if the previous selected triple pattern has been evaluated. The sum

of cost of all parallel edges is used as the cost of the virtual edge.

The transformation of Virtual Graph is applied before query execution. Firstly, for each

Chapter 7. Optimising Queries with the Presence of Co-reference 82

01 @ ?X
O_{pZ, p3}_(:/\

FIGURE 7.2: In the middle is the graph representation of the query on top. Solid cycles
represent concrete values while dashed cycles represent variables. Bottom shows the
corresponding Virtual Graph. The virtual edge has two values: py and ps.

concrete value v in a given query, our engine generates a query {v owl:sameAs 7coref}
to all data services that may contain equivalent URIs of v. Then a variable vertex 7v
is created to replace the original concrete vertex. All equivalent URIs of v, including v
itself, are added to the new variable vertex 7v. The whole transformation is analogous
to the process shown in figure 7.2. After this transformation, co-reference in a query is
processed together in a single query, and thus generates much less query requests than
using the baseline approach. In addition, it increases the possibility of benefiting from

parallelism.

Meanwhile, Virtual Graph is also useful to process queries in which more than one

5. Such queries form multigraphs that contain

properties exist between two resources
parallel edges, that is, edges that share the same end-nodes. For a graph without
parallel edges, the optimal QEP corresponds to the MST of a query graph. For a
multigraph, however, it could be a challenge to construct the optimal QEP using MST-
based algorithm. From a graph theory perspective, the MST of a multigraph can be
computed in two steps: 1) for parallel edges sharing the same nodes, retain only the
minimum edge, and then 2) apply an ordinary MST algorithm to the modified graph.
However, this approach may lead to false QEPs for SPARQL queries. The issue arises

from selecting the minimum edge, that is, the triple pattern with lowest cost, out of

parallel edges. Once the minimum edge is selected and executed, edges sharing nodes

SAn example is given by the 3rd and the 5th triple patterns in Q2, which are %Produc-
tXYZ% bsbm:producer ?p and %ProductXYZ% dc:publisher ?p respectively.

Chapter 7. Optimising Queries with the Presence of Co-reference 83

with this edge become bound and are used to prune existing bindings. Thus, the selection
of the minimum edge involves not only its own cost, but also the cost of parallel edges.
This behaviour is better captured by Virtual Graph. Virtual Graph is also useful for
engines that adopt exhaustive search algorithms, as it reduces parallel edges into one

edge.

7.4 Interleaved Query Optimisation and Execution

The presence of co-reference changes the statistics of data sources. These changes are
nondeterministic for query engines since no statistics are currently available for co-
referent URILs. To compensate, we propose an approach that interleaves query optimisa-
tion and execution (i.e. dynamic optimisation), to take advantage of statistics available

during query processing.

In LHD-d a query is also divided into independent sub-queries using ¥ (V,E) (algorithm
1), and even further. In LHD-s, only concrete nodes are regarded as fix-cardinality. In
LHD-d, since the cardinality of executed triple patterns is precisely known, we are able
to identify more fix-cardinality nodes using the following heuristics: 1) if the estimations
of the cardinality of a variable ?v w.r.t all its connected triple patterns are close (i.e. for
each triple pattern T; having v, card(T;, 7v) is close to the same number) the number of
bindings of 7v probably will not change (equation 7.1); if the number of existing bindings

of ?v is very small, it probably will not change (equation 7.2).

card(T;, v)

T,. T 2) : cara i, 'v)
v j € conn(?v) 1 90% < card(T), 70)

< 110% (7.1)

or

|7v| < min (card(T,?v))/10 (7.2)

Teconn(?v)

where conn(7v) gives all triple patterns that are connected to 7v and |?v| is the number

of existing bindings of v. As in LHD-s, each sub-query is processed in parallel.

The effectiveness of the above two heuristics depends on the accuracy of cardinality
estimation. In LHD-s, the estimated cardinality can be inaccurate if it is based on

another estimation. Therefore, the heuristics are not used in LHD-s by default. In the

Chapter 7. Optimising Queries with the Presence of Co-reference 84

mean time, they are used in LHD-d in where actual number of bindings are used in

cardinality estimation. More details will be given in chapter 7.

As a result of interleaving query optimisation and execution, the optimisation algorithm
is performed more than once during query processing. With this in mind, we use a greedy
algorithm in the query optimisation of LHD-d. First, greedy algorithms generally have
time complexity lower than dynamic programming (or other exhaustive algorithms).
Since optimisation is performed at each time an actual result size becomes available,
greedy algorithms can reduce the optimisation time. Second, the accuracy advantage
of dynamic programming does not hold in the circumstances of dynamic optimisation.
Dynamic programming requires estimated cardinality of all triple patterns. During the
construction of a QEP, it is likely the case that the cardinality of some triple patterns is
estimated using both pre-computed statistics as well as the actual size of intermediate
results. We have shown in chapter 5 that estimated result sizes deviate from the actual
sizes. Therefore, dynamic programming is likely to change its decision (a partial QEP)
when a new accurate result size becomes available. On the contrary, greedy algorithms
build the optimal plan incrementally and require only actual sizes of results of previ-
ously executed triple patterns. Thus greedy algorithms can better benefit from runtime

statistics.

Given a (sub-)query graph, we use the MST algorithm, shown in algorithm 4, to find
the order of triple pattern execution in real time. Each time the algorithm is called, it
maintains a list of remaining edges ordered by their estimated cardinality® from low to
high. If an edge has two possible costs (i.e. if it can be executed by either a hash join
and a bind join), the smaller one is chosen. Then the algorithm returns and removes the
minimum edge (it belongs to the MST), which is going to be executed. It also returns
edges whose subjects and objects are all bound (i.e. edges that do not belong to the

MST), which are used to prune existing bindings.

The overview of query execution of LHD-d is shown as algorithm 5. Firstly a given
query is broken into sub-graphs. For each sub-graph a new thread is created. At each
step, minimum-cost triple patterns are selected (lines 6) and executed (line 7 to 8).
Then cost of remaining edges (executed edges are removed at the end of algorithm

NextEdges(V, E)) are updated using runtime statistics and Execute(V, E) is called

SResponding time estimation of edges as it only needed to determine usage of parallelisation. Since
U (V,E) takes over parallelism decision in LHD-d, we only estimate the result sizes of edges.

N

© 0 N O A W N

I
= o

Chapter 7. Optimising Queries with the Presence of Co-reference 85

Algorithm 4: NextEdges(V,E)

input : A connected (sub-)graph (V, E)
output: next a set of edges to be executed

edges < sort(E);

next < edges|0];

next < next U findBoundEdges(edges);
FE < edges — next;

recursively. It should be noted that a sub-graph can be further divided in future call of

Ezxecute(V, E) w.r.t updated edge cost.

Algorithm 5: Execute(V,E)

input : A connected (sub-)graph (V, E)

if E is empty then
return;

end

components < V(V, E);

foreach sub-graph (V', E') € components create a new thread do
next < NextEdges(V', E');
evaluate next[0];
use remaining edges of next to prune bindings;
update costs of edges in E’;
Ezxecute(V', E');

end

7.5 Summary of LHD-d

In this chapter we described an engine named LHD-d that aims to provide an efficient
solution for querying LD having co-reference. In LHD-d, we proposed a model called
Virtual Graph for co-reference integration, and a dynamic optimisation approach to ex-
ploit runtime statistics. Virtual Graph regards a node having co-reference as a variable
with pre-existing values, and transforms a query having co-reference to a regular query
with pre-existing bindings. Following the transformation the query is broken into in-
dependent sub-queries that are processed in parallel. Each sub-query is processed in a
recursive manner that each step of the recursion consists of an optimisation phase and
an execution phase. The minimum triple pattern is identified by a MST algorithm in
the optimisation phase, and is executed. Consequently, the number of results is used to

re-calculate the cost of remaining triples.

Chapter 7. Optimising Queries with the Presence of Co-reference 86

7.6 Implementation

The implementation of Virtual Graph and the interleaved optimisation-execution pro-
cedure is trivial given the aforementioned descriptions. Besides, a large proportion of
the infrastructure implementation of LHD-s, such as the communication manager and
the Hash Bind Join operator, is reused in LHD-d. However, LHD-d uses normal hash
join instead of the Double-pipelined Hash Join. This is because LHD-d requires the size

of the entire results of a triple pattern before executing another one.

Chapter 8

Evaluating LHD-d

N this chapter we evaluate the query processing efficiency of LHD-d in two situ-
ations: 1) with a subset of statistics that VoID can provide!; and 2) having
co-reference?. In the former situation LHD-d is compared with LHD-s and
FedX, to examine the effectiveness of its dynamic optimisation approach. In

the latter situation LHD-d is evaluated using the evaluation framework with added
co-reference statements, and compared with the baseline approach of processing co-

referenced queries. This part focuses on examining the effectiveness of Virtual Graph.

8.1 Evaluating the Dynamic Optimisation Approach

The dynamic optimisation approach enables LHD-d to take advantage of runtime statis-
tics and thus improves the accuracy of cardinality estimation. In the meantime, it
limits the ability of producing universally optimal QEPs. In this section we evaluate
LHD-d using the evaluation framework and compare its results with those of LHD-s and
FedX. This experiment uses the same settings as in chapter 5 (i.e. 70 million triples
distributed among 20 endpoints, and detailed VoID descriptions of all endpoints). It

should be noticed that LHD-d only requires the number of triples of each predicate.

Tt does not really matter what statistics are available, since they are only used for determine the first
choice in dynamic optimisation. However, in practice the most common statistics contained in VolD
files are selectivity of predicates.

2In the evaluation having co-reference it subsumes the situation of less statistics. The intention here
is to emphasise two different aspect of LHD-d.

87

Chapter 8. Evaluating LHD-d 88

8.1.1 Results and Analysis

We present the QPS, the incoming and outgoing traffic, and the transmission rate of
engines under testing respectively in figure 8.1, 8.2, 8.3 and 8.4. “0” and “NA” stand
for failures of execution. We do not include the system resource consumption of LHD-d
because it is close to LHD-s. The results of LHD-s and FedX are same as those in

chapter 5 since the experiment settings did not change.

5 3
8 LHDd-QPS
4.5 =)
53
(2]
a o
3.5
3
.
& o N
d2.5 S A
N)
2 R
-
1.5 ©
~ o [N
[-)} -
3 3 3 g =
1 0 =} o K © o ©
© © o S © o
o O mn o o
< S c & n 0 o ~ < «
05 © ©° o I M g o © o L R
=} M < o o =S - - oo
1 E HERIR B Il:::
0 = [| Zm°° = - - mm
Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Ql1

HLHDd 0.4163 4.6033 2.2427 0.8486 0.0042 0.8105 1.7078 0.6088 0.1175
HLHDs 0.4084 2.1023 0.5047 0.0345 0.0045 0.0456 3.9397 0.5116 0.1137
H FedX 0 0.9784 0.2382 0.1347 0 0.3499 0.7012 0.8520 0.1107

Ficure 8.1: QPS of LHD-d

It is shown in figure 8.1 that LHD-d has an higher QPS over LHD-s on most queries
(and becomes the fastest engine on most queries). Especially, significant performance
boost is shown on Q2, Q3, Q4 and Q7. The boost on Q2 and Q4 is primarily due to
increased transmission rate (figure 8.4), on Q3 is due to decreased network traffic (figure
8.2 and 8.3), and on Q7 is due to both factors. LHD-d is slower than LHD-s on Q8 (but
still two times faster than FedX), which is due to its relatively slow transmission rate.

On Q10 LHD-d shows slight improvement, but FedX is still the one with highest QPS.

LHD-d has the least network traffic on most queries except Q1, Q4 and Q10 (figure
8.2 and 8.3). It is worth noticing that in LHD-d parallelisation is determined by the W

algorithm (algorithm 1) in a way that network traffic is not increased. Each sub-query

Chapter 8. Fvaluating LHD-d 89

1200 LHDd-INCOMING TRAFFIC

1014.96
1000

825.81

800

600

TRAFFIC (MB)

400

200

I 298.56
L I 217.26

~
g 82 @ w 5

n N & o B oo BN & T B
< © K N ~ S < N S Rw & J ¥ 0 o =N
sidsm-mlE ZcflecSs " gM® S5 5S

Q2 Q3 Qa Q5 Q7 Qs Q10 Q11

WLHDd 298.56 1.65 1.29 58.32 825.81 0.24 0.77 27.95 0.18

BWLHDs 217.26 1.52 59.03 73.07 1014.96 58.30 1.56 48.97 0.19

W FedX 0 2.74 3.78 10.67 0 6.41 3.61 3.83 0.21

FIGURE 8.2: Incoming traffic of LHD-d

is optimised with an aim of minimum traffic. Compared with the network traffic of
FedX and SPLENDID (recalling that SPLENDID produces more traffic than FedX), we
conclude that using runtime statistics yields more accurate cardinality estimation and
leads to QEPs that are closer to optimal. The results further reinforce the previous

discussion that the existing cost models or VolD statistics are not sufficiently accurate.

The transmission rate of LHD-d varies on different queries. On Q1, Q2 and Q4 LHD-d
has even higher transmission rate than LHD-s, while on Q3, Q7 and Q8 its transmission
rate is relatively low. A closer look reveals that LHD-d produces insignificant amount
of network traffic on Q3, Q7 and Q8, and still has highest QPS on these queries. Since
LHD-d and LHD-s use the same communication management system, they have close
inter-operator parallelism on simple queries, which is confirmed by the transmission rate

on Q11.

In summary, the dynamic optimisation approach employed in LHD-d (i.e. using run-
time statistics with the ¥ algorithm and the MST-based optimisation algorithm) better
balances between reducing network traffic and increasing average transmission rate, and

thus shows a higher overall efficiency. The primary advantage of LHD-d results from

Chapter 8. Fvaluating LHD-d 90

4000 LHDd-OUTGOING TRAFFIC
3543.96
3500
3000 A
~
N
wn
~
2500
@
=3
£ 2000
=
=
1500
1000
=<} <2} (-]
500 3 g2 o
o~ Q un 2 XY ¥ o o0
N O O ®©® ©® «w =W © g = _: W = N 0 O T O VW O g NN
N ® € 1 N = o o g < 0 gI\LQQMLDHHF!N
o 222 ads -l -mlla 2cflf-irns<srSces
Ql Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11
M LHDd 12.22 2.50 1.81 101.61 2527.53 0.56 1.78 4.39 0.14
B LHDs 8.86 2.28 199.68 188.69 3543.96 188.28 3.59 7.66 0.15
B FedX 0 6.18 16.05 56.26 0 20.50 8.44 11.83 0.27

FI1GURE 8.3: Outgoing traffic of LHD-d

the ¥ algorithm and the usage of runtime statistics. Runtime statistics lead to more
accurate cardinality estimation than VoID statistics, and better QEPs can be produced.
This consequently demonstrates that dynamic optimisation is promising for large scale

LD queries, in which cases detailed statistics are difficult to obtain.

8.2 Evaluating LHD-d including Co-Reference

In this section we evaluate the efficiency of the optimisation techniques for addressing
co-reference (i.e. the Virtual Graph and the aforementioned dynamic optimisation ap-
proach), that are employed in LHD-d. We compare the performance of LHD-d and the
number of query results in situations that are with or without co-reference, to explore
the impact of co-reference. In addition, we compare LHD-d with the baseline approach
of processing co-referenced queries, to demonstrate the effectiveness of Virtual Graph.
The above-mentioned two evaluations has demonstrated that: 1) Taking co-reference
into distributed SPARQL queries yields a large amount of supplementary results, but

also significantly increase query responding time; and 2) the concept of Virtual Graph

Chapter 8. Evaluating LHD-d 91

<
o
N
o

16

LHDd-TRANSMISSION RATE

14 13.571

©
o0
a
I
-

12

10

RATE (MB/S)

~
]
® S B 3 ~
% 5% 3y S,%p3
- N N N o o S
25 g 8§ 3 RN K S
c °© g o o @ S < S g 348
< 2 S S © o
il TRIERI T N0 11 R
Ql Q2 Q3 Q4 Q5 Q7 Q8 Q10 Qi1
WLHDd 12.936 1.908 0.697 13.571 1.412 0.064 0.434 1.969 0.004
W LHDs 9.234 0.797 13.056 0.902 2.047 1.124 2.029 2.897 0.004
W FedX 0.000 0.872 0.472 0.901 0.000 0.942 0.845 1.334 0.005

FIGURE 8.4: Average transmission rate of LHD-d

for BGPs (together with the dynamic optimisation approach) effectively reduce the time

required for processing co-reference of queries.

8.2.1 Experiment Settings

This experiment continues to use the same settings as the previous one (i.e. 70 mil-
lion triples distributed among 20 SPARQL endpoints) with 0.18 million additional co-
reference statements (0.25% of 70 million triples). These co-reference statements are
generated following the method described in section 4.2, based on the proportion and
distribution of co-reference in the real world. In addition, all LIMIT modifiers are

removed from the query set to show the extra results brought by co-reference.

The baseline approach with which LHD-d is compared first generates the Cartesian
product of all co-referent URIs (including the original URIs) in a given query. For each
entry of the Cartesian product a new query is created by replacing the concrete URIs
in the query having co-reference of the entry. Finally every new query is executed using

LHD-d without Virtual Graph turned on. The union of the results of all co-referent

Chapter 8. Evaluating LHD-d 92

queries is regarded as the result of the baseline approach. In other words, the baseline

approach only differs from LHD-d on the usage of Virtual Graph.

8.2.2 Results and Analysis

In the remainder of this section we use LHD-d* to represent the evaluation results of
LHD-d obtained with the presence of co-reference, and LHD-d to represent the results

without co-reference taken into account.

We show in table 8.1 that both LHD-d and the baseline approach produce the same sizes
of results having co-reference taken into account. This confirms the ability of Virtual
Graph to fully retrieve additional results due to co-reference. Meanwhile, the result
sizes are raised many times (even orders of magnitude on specific queries) by the small
proportion of additional co-reference statements. The result sizes of Q5 and Q11 remain
the same for different reasons. Q5 selects for products that share the same feature with
a given product. There are 14499 distinct products in our dataset, all of which are
already contained in the result of Q5 without co-reference. By turning on co-reference
support in LHD-d, many more intermediate results are generated (demonstrated by the
network traffic of Q5 in figure 8.6), but the final result does not change. The reason for
Q11 is straightforward. Q11 does not have concrete subjects or objects, so its result size

remains the same.

Three reasons are relevant to the significant amount of additional results. First, a single
vocabulary is shared by all endpoints. Second, in our datasets co-reference exists between
instances of all classes (e.g. Products, Product Features). Consequently, Cartesian
product of a large size is probably produced by the co-reference of the concrete subjects
and objects in a query. Third, instances of the same class have similar relationships
with instances of other classes. Therefore, each co-referent URI may well lead to a valid

result.

In the real world, domains, in where datasets have a similar structure as the dataset in
our experiment, are likely to gain the same boost of results by supporting co-reference in

distributed SPARQL engines. In domains having only part of the above three conditions,

Chapter 8. Evaluating LHD-d 93

it is unknown whether the same amount of extra result will be produced by taking co-
reference into account. Investigating the structure of datasets which are connected by

co-reference of different domains is in our future plan.

TABLE 8.1: Comparison of result sizes with or without co-reference. The first columns

represent result sizes with the presence of co-reference returned by LHD-d* and the

naive approach while the last column represents result sizes without the presence of co-

reference returned by LHD-d. It is clear that co-reference significantly increase result
sizes.

Query LHD-d* Naive LHD-d
Q1 7397 7397 53

Q2 103 103 29

Q3 23 23 8

Q4 65510 NA 29

Q5 14499 NA 14499
Q7 1579 NA 63

Q8 101 101 21

Q10 32 32 12

Q11 10 10 10

We present the QPS, the incoming and outgoing traffic, and the transmission rate of
LHD-d*, LHD-d, and the baseline approach respectively in figure 8.5, 8.6, 8.7 and 8.8.

“0” and “NA” stand for failures of execution.

It is shown in figure 8.5 that the efficiency of query processing is decreased multifold
after introducing co-reference. Especially, the QPS of the baseline approach is orders
of magnitude lower than that of LHD-d (without co-reference). Moreover, the base-
line approach fails on several queries (Q4, Q5 and Q7) that have a large result size.
Although LHD-d* still has low QPS on a few queries, it substantially increases the ef-
ficiency of co-reference query processing.On Q10 LHD-d* has an even higher QPS than
LHD-d, indicating a good QEP that overcomes the negative effect of co-reference, is
generated. Q11 has no co-reference, and the three approaches show close QPS. This in-
dicates that the impact on QPS solely comes from introducing co-reference rather than
the modification of query engines. Recalling that the usage of Virtual Graph is the only

difference between LHD-d* and the baseline approach, we conclude that processing all

Chapter 8. Fvaluating LHD-d 94

>
RS LHDd*-QPS
45 B
q
3.5
3
g 25 w»”&
2 &
N
1.5 g
N
il W >
o ©
1 N 0"2;» oA g’.\/\ &
S
»° gf‘@’ Q?Q’ Qﬁ% M
0.5 © o Qﬂb S © 2
Q'BOQQ@H IQ‘& ob& N 0-00“ N e-@v N & oo oY
0 . > | -l mmn
Q1 Q2 Q3 Q4 Qs Q7 Q8 Q10 Q11
BLHDd* 0.0120 1.2048 0.4322 0.0014 0.0045 0.2262 0.5230 0.7748 0.1257
B Native 0.0011 0.9607 0.0261 0 0 0 0.5369 0.0702 0.1291

£ LHDd 0.4163 4.6033 2.2427 0.8486 0.0042 0.8105 1.7078 0.6088 0.1175

FIGURE 8.5: QPS of LHD-d having co-reference (LHD-d*)

co-referent URIs together improves query efficiency. Later we will provide evidence that
this improvement is because the Virtual Graph enables LHD-d* not only to process more
co-referent queries at a time, but also to produce the optimal QEPs w.r.t all co-referent
URIs. On the contrary, although the baseline approach produces optimal plans for each

co-referent query, the total query time is not necessarily minimised.

From the network traffic of both LHD-d* and the baseline approach (figure 8.6 and 8.7)
it is shown that co-reference increase the sizes of intermediate results to a large extent.
In the meantime, LHD-d* shows much less amount of network traffic compared to the
baseline approach. It confirms that Virtual Graph enables LHD-d* to find better QEPs
that lead to lower network traffic. Otherwise, if the same QEPs were followed by both
LHD-d* and the baseline approach, higher transmission rate may occur since the Virtual
Graph enables more co-referent queries to be processed at the same time. However, the

amount of network traffic would not change much.

LHD-d* and the baseline approach have the same amount of traffic on Q11, which is
slightly larger than that of LHD-d. Along with the same transmission rate of LHD-

d* and the baseline approach on Q11 (figure 8.8), it can be confirmed that both cases

Chapter 8. Evaluating LHD-d 95

70000 @

& LHDd*-INCOMING TRAFFIC

60000

50000
@ 40000
=3
o
=
& 30000

20000

&
5
10000 & &
3
N < » & o 5 & N Q&
8 W 00 @ R S & @90 & @?’Q o P T PP
0 = . — - — = -
Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

W LHDd* 416.01 3.73 117.37 347.77 7837.59 19.90 10.30 4.16 0.32

M Native 66644.63 577.25 5109.97 0 0 0 36.20 205.67 0.31

£ LHDd 298.56 1.65 1.29 58.32 825.81 0.24 0.77 27.95 0.18

FIGURE 8.6: Incoming traffic of LHD-d having co-reference (LHD-d*)

have the same behaviour. The extra traffic and transmission rate over LHD-d is due to

searching for co-reference of Q11 (although no co-referent URIs are found).

The transmission rate of LHD-d* is not always higher than that of LHD-d and the
baseline approach on different queries. This further confirms that Virtual Graph enables
LHD-d* to generate QEPs especially tailored w.r.t all co-referent queries. It is because
at any step during query execution more traffic is generated by LHD-d* since all co-
referent URIs are processed together. If the same QEPs were generated in LHD-d*,
the transmission rate of LHD-d* would always be no less than LHD-d and the baseline

approach.

Chapter 8. Fvaluating LHD-d 96

16000 LHDd*-OUTGQING TRAFFIC
\({,’9

16000

14000

12000

10000

TRAFFIC (MB)

8000
6000 q"?’%
w
4000
A
2000 o &
I 0’.9 oS ’& & «,» x”?’ K I & @x @ & & g b‘;o & '» B
0
Q1 QZ QlO Q11
W LHDd* 1241.14 9.04 71.78 1302.67 15959.15 63.47 27.70 11.24 0.24
M Native 4128.88 26.47 138.85 0 0 0 41.37 110.45 0.24
£ LHDd 12.22 2.50 1.81 101.61 2527.53 0.56 1.78 4.39 0.14

FIGURE 8.7: Outgoing traffic of LHD-d having co-reference (LHD-d*)

8.3 Evaluation Summary

In this chapter we evaluate a combination of optimisation techniques for environments
with co-reference. These techniques include a Virtual Graph model to address co-
reference, a MST-based algorithm to dynamically optimises queries using runtime statis-
tics, and the ¥ algorithm that potentially identifies more parallel sub-queries using run-
time statistics. The evaluation clearly demonstrates the effectiveness of Virtual Graph
on improving query performance having co-reference taken into account. The perfor-
mance gain is due to two factors: 1) Virtual Graph reduces the number of requests
required for addressing co-referent URIs; 2) Virtual Graph enables the optimiser to find
the optimal QEP w.r.t all co-referent queries of a given query. In the meantime, the
evaluation further demonstrates the advantage of dynamic optimisation in environments

where accurate statistics are not available.

Chapter 8. Evaluating LHD-d

70
LHDd*-TRANSMISSION RATE
)
ES

60 st

50
- 40
@
£
o
& 30

20 © \3

© S A
¥ 4 Sy
& ge '
10 A ® %
5 o & 0 N p > O
»? I N BN I & R o Naiee o w7 &S
Ql Q2 Q3 Q4 Q5 Q7 Q8 Q10 Ql1

W LHDd* 1.992 1.539 8.176 0.233 10.676 1.886 1.987 1.193 0.007
B Native 7.769 57.999 13.696 0.000 0.000 0.000 4.165 2.220 0.007
£ LHDd 12.936 1.908 0.697 13.571 1.412 0.064 0.434 1.969 0.004

FIGURE 8.8: Average transmission rate of LHD-d having co-reference (LHD-d*)

Chapter 9

Conclusions and Future Work

HE uprising Web of Data leads to a new era of data consuming, in which
web applications are able to understand information and cooperate with
humans on complex tasks. Modern web applications have already shown
the trend of rich data interaction, which relies on low latency queries.

The Semantic Web technologies potentially raise the interaction between applications
and data to a Web scale. Tasks involving federation of multiple datasets, such as the
example described in chapter 1, will no longer limited by individual or organisation
boundaries. Lucy will be able to find the most appropriate doctor for her mother on
this planet (if by that time remote medical treatment will no more be a problem). The
loss of data boundaries will in turn stimulate more sophisticated applications that are
capable for tasks more complex than looking for doctors. There is a strong demand for

approaches that can efficiently query the Web of Data.

Querying the Web of Data, or distributed SPARQL query processing, can benefit from
the developments in distributed DBMS. However, most distributed DBMS derive their
efficiency from reliable connections among datasets, predictable data structure and con-
trolled statistics, neither of which can be expected from LD due to its large scale and
distributed nature. Besides, co-reference, the phenomenon of the same resource referred

to by multiple URIs, puts forward unique challenges to querying LD.

Motivated by the above demands, we investigated schemes that jointly use novel tech-

niques that are tailored for distributed SPARQL queries, as well as distributed DBMS

99

Chapter 9. Conclusions and Future Work 100

techniques. We propose two sets of optimisation techniques, implemented in two dis-

tributed SPARQL engines, LHD-s and LHD-d, for typical scenarios on the Web of Data.

In addition, we propose DSEF, a scalable and flexible evaluation framework for dis-
tributed SPARQL queries. Using DSEF we compared the LHD schemes with other
approved approaches. Based on the results we established the open issues of existing

query processing techniques and propose promising alternatives.

In the following we firstly summarise DSEF and the two LHD schemes, followed by
conclusions regarding distributed SPARQL query processing. In addition we describe

our future plans based on the open issues revealed by our evaluation.

9.1 Summary of DSEF

DSEF is a benchmark tailored for evaluating distributed SPARQL engines in networks of
arbitrary scales. The flexibility and scalability of DSEF derive from a VM-based network
architecture and the use of artificial data. Moreover, DSEF uniquely introduces the
ability of simulating co-reference in a given RDF network, based on real-world proportion

and distribution of co-reference.

The aforementioned features are backed by a set of scalable and efficient tools, which

provide convenient functionalities including:

Generating RDF data of arbitrary sizes, with optional co-reference statements (i.e.

owl:sameAs triples).
e Dividing RDF data into smaller pieces according to a given distribution.
e Producing detailed VoID files for given RDF data.

e Simultaneously uploading data to remote datasets, with the ability to resume

interrupted transmission.

e Automatically testing given engines and generating reports as “csv” files.

These tools enable quick setting up of required experimental environments, and gathering

statistics of tested engines.

Chapter 9. Conclusions and Future Work 101

DSEF adopts widely accepted BSBM data and queries to establish soundness. The
assessment queries are carefully adjusted in a way that better explores inner mechanism
of tested engines in distributed settings, while retaining the queries’ original semantics.

DSEF includes three primary metrics:

e Query per second (QPS), represents the average number of queries executed per

second.

e Network traffic, represents the total amount of network traffic (both incoming and

outgoing) produced due to executing queries.

e Transmission rate, represents the average speed of network communication. It is

calculated as the network traffic divided by the query execution time.

In particular DSEF further includes two secondary metrics to monitor system resource

consumptions:

e CPU usage, presents the average percentage of CPU used to execute a certain

query.

e Memory usages, presents the average amount of memory used to execute a certain

query.

9.2 Summary of LHD-s

LHD-s is a distributed SPARQL engine developed based on a scheme of techniques that
are tailored for RDF networks with detailed VolD statistics.

The VolD statistics contain the number of triples, distinct subjects and objects per
predicate, and are used by a selectivity-based responding time cost model. In the cost
model we use a new method to estimate cardinality of joined triple patterns, which
is the basis of cost estimation. We demonstrate that on queries that have two triple
patterns and no concrete subjects or objects, the proposed method outperforms existing
approaches on the DSEF environment. The effectiveness of our cost model over more
complex queries is unknown, due to the significant complexity of performing experiments

with all possible queries.

Chapter 9. Conclusions and Future Work 102

LHD-s follows a static optimisation approach. A dynamic-programming-based optimi-
sation algorithm is used to select the QEP having the minimum responding time. While
dynamic programming guarantees to find the optimal plans per cost model, it has a high
growth of order of complexity. To further improve its efficiency, we take advantage of
certain join operators and introduce heuristics to reduce complexity without decreasing
QEP quality (details are mentioned in section 5.6.1). Furthermore, the optimisation of
LHD-s is able to produce QEPs for parallel execution using cost models that are not
parallelism aware. This is achieved by transforming the QEP, generated in the aforemen-
tioned step, to its parallel form. This parallel transformation only reduces the executing

time of the original QEP, without increasing other costs unchanged.

Parallelism is intensively used through both query optimisation and execution of LHD-s.
We introduce the side-effect-free parallelism, which increases the degree of parallelism
without increasing network traffic. More specifically, we propose an efficient (in terms of
time complexity) algorithm called ¥ (parallel sub-query identification, algorithm 1), to
identify sub-queries that can be optimised and executed independently from each other,
by analysing the invariance of cardinality of variables (i.e. fixed-cardinality nodes).
It is worth mentioning that the ¥ algorithm is applied to queries, while the parallel
transformation in optimisation is applied to QEPs. In terms of occurrence time, the
former takes place at the beginning of the whole query processing, while the latter
happens after a QEP is produced. In LHD-s, parallelism is resolved by both ¥ and
parallel QEPs.

LHD-s provides a parallel query execution system that is able to maximise the trans-
mission rate for given QEPs. It decouples the logical execution of QEPs and physical
communication with RDF datasets. The former is regulated by a plan executor that
starts execution of a triple pattern as soon as its depending bindings are ready. The
execution does not directly contact remote endpoints, but submits execution tasks to a
communication manager, which controls physical communications with RDF datasets.
The number of concurrent connections to each dataset is individually maintained, w.r.t
the available bandwidth to and the computing power of the dataset. Thus LHD-s is
able to exploit transmission rate to the uttermost. Once a triple pattern is executed,
its bindings are delivered back to the plan executor and pushes forward execution of

remaining triple patterns.

Chapter 9. Conclusions and Future Work 103

9.3 Summary of LHD-d

In contrast to LHD-s, LHD-d is developed based on a scheme of techniques that are

designed for RDF networks having co-reference, and less accurate statistics.

Co-reference is taken into account in LHD-d using a model called Virtual Graph. Virtual
Graph considers a concrete URI having co-reference as a variable with pre-existing values
which include the original URI and its co-reference. By applying the Virtual Graph, a
query and its co-reference are evaluated collectively as a regular single query with pre-
existing bindings. We provide evidence that Virtual Graph not only saves the effort of
evaluating each co-reference query individually, but also enables query optimisation to

take all co-reference into account simultaneously.

The presence of co-reference alters data statistics in a nondeterministic fashion. Instead
of obtaining statistics of RDF datasets from VolD files, LHD-d primarily relies on statis-
tics that become available at runtime. After a triple pattern is executed, its accurate
result size is known, which is used to estimate costs of remaining triple patterns. This
method prevents propagation of estimation errors of early stages, and minimises the

possibility of bad choices.

Due to the usage of runtime statistics, LHD-d follows a dynamic optimisation approach,
in which query optimisation and execution are interleaved. Since the result sizes keep
updating in each optimisation-execution cycle (OE cycle), LHD-d adopts a MST-based
algorithm to select the minimum remaining triple pattern (in terms of estimated result
size). The MST-based optimisation focuses on reducing network traffic (since it is dif-
ficult to resolve parallelism within an OE cycle), and leaves decisions of parallelism to

v,

The ¥ algorithm is exploited even further in LHD-d. First, W is applied at the beginning
of each OE cycle, and fully determines the parallelism of LHD-d. Second, benefiting from
runtime statistics, two heuristics for determining fixed-cardinality variables are added.
As more fixed-cardinality variables are likely to be found, the chance of having a higher

degree of parallelism is increased.

LHD-d adopts the same parallel execution system as in LHD-s. The only difference is

that LHD-d uses normal Hash Joins in the places where Double-pipelined Hash Joins

Chapter 9. Conclusions and Future Work 104

(DHJs) are used. This is because LHD-d requires the size of all results of a triple pattern,

which is not available from DHJs.

9.4 Conclusions

The main conclusion following the evaluation results is that either or both VoID statistics
and existing selectivity-based cost models are not sufficiently accurate. It is drawn from
two observations: 1) LHD-s optimises queries for minimum responding time, however,
it is slower than LHD-d; and 2) SPLENDID, whose optimisation objective is minimum
network traffic, produces more traffic than FedX, whose optimisation is based on heuris-
tics. Recalling that both LHD-s and SPLENDID adopt dynamic programming, VolD

statistics and cost models are the only remaining sources leading to sub-optimal plans.

In this thesis we tested our approaches in an environment having up to 20 endpoints.
In the LD cloud this number could be larger and it would be more difficult to maintain
accurate statistics. Based on the previous conclusion and the encouraging results of
LHD-d, we in addition conclude that using runtime statistics and dynamic optimisation
is promising for LD queries in general. Furthermore, the effectiveness of ¥ algorithm
is better exploited with dynamic optimisation, which better balances transmission rate

and traffic.

Informatively, we notice that some types of queries significantly benefit from query
optimisation while others are difficult to optimise. For example, Q5 generates a large
amount of intermediate results regardless of the optimisation techniques. We call such
queries inefficient queries. For such queries more efficient execution techniques will
play an important part to reduce query response time and optimisation will probably
increase query response time. Furthermore, although it can be difficult to investigate
general rules to identify inefficient queries before execution (until accurate statistics and
cost models are developed), it is possible to provide guidelines to SPARQL users to avoid
such queries, by studying the structure and composition of queries. A trivial example
will be the query {?s ?p 70}, which will return everything from a dataset. A more subtle
case is that star shaped queries with variables at the centre are more likely to generate
a large amount of intermediate result than chain shaped queries. Graph theory is likely

to provide insight on this subject.

Chapter 9. Conclusions and Future Work 105

9.5 Future Work

Despite the encouraging results we described in this thesis, there is still a variety of
work required for both further improving the performance of LHD-s and LHD-d, and
exploring open issues of distributed SPARQL processing in general. Following these two

lines, this section breaks our future plans into two segments.

9.5.1 Short-term Plans on Improving the Proposed Methods

The most urgent enhancement for LHD-s is to improve the accuracy of cost estimation.
However, since it is related to statistics-based engines in general, we leave it to the

section in which general issues are discussed.

In the near future, both LHD-s and LHD-d will be evaluated in the real world. Such
experiment will provide more comprehensive understanding of adopted techniques and
clues for further enhancements. Especially, for specific domains, it is possible to take
advantage of knowledge that is not widely available, and to adopt specific optimisation.
A promising direction could be extending the work described in Akar et al. [2012], to
filter out groups of triple patterns that will not produce any result. Moreover, due to the
limitation of our evaluation with co-reference, it is unknown in which domains a small
portion of co-reference will lead to a large number of additional results. The correlation
between the structure of co-reference and the effectiveness of Virtual Graph is also
unknown. Real-world evaluation will be complementary to the lab based benchmarking
presented in this thesis and provide more comprehensive insight of distributed SPARQL
optimisation. Further studies will need to be conducted to take both evaluation into

account.

In the LHD schemes we focus on techniques of query optimisation and parallelism.
To become fully practical distributed engines, assistant techniques such as caching are
necessary. In addition, since the aggregation of BGPs in Jena constrains the usage of

parallelism, it is worth implementing the aggregation in a parallelism compatible way.

9.5.2 Long-term Plans on Open Issues of Distributed SPARQL

The main open issue exposed by this thesis is the lack of effective and concise statistics
of RDF datasets, or accurate cost models. In section 6.1 we described experiments to
analyse the characteristics of cardinality of complex joins. This is the first step of inves-
tigating the aforementioned open issue. There are two possible directions depending on
the results. The first direction is looking for cost models that do not necessarily produce
accurate estimations, but correctly compare two arbitrary joins based on existing VoID
statistics. However, recalling the vast number of sophisticated indices in distributed
DBMS, this direction could be impossible due to the inherent limitations of VoID. To
this end, the second direction is to identify the most essential statistics required for
comparing arbitrary joins, and extend VoID with the ability to include those statistics.

Those statistics have to be concise to be widely available on the Web of Data.

In the meantime, as shown by the evaluation, a promising direction for future distributed
SPARQL processing is to exploit runtime statistics with dynamic optimisation. Since in
dynamic optimisation only the initial choice is made from pre-existing statistics (even
the initial choice can be made purely using heuristics, just like FedX), the responsibility
of providing detailed statistics is relieved from data providers. The primary future work
on exploiting runtime statistics is to explore sampling techniques that retrieve statistics
without waiting for finishing a triple pattern, which consequently enables engines to
use pipelined parallelism (e.g. Double-pipelined Hash Join). Besides, to develop more
sophisticated algorithms for dynamic optimisation is also an important part of our future

work.

The use of pipelined parallelism not only elevates the efficiency of LD queries, but
also increases adaptivity of query processing. Adaptive query processing has been well
developed in distributed DBMS, however, limited work has been done for distributed
SPARQL (as far as we know, ANAPSID [Acosta et al., 2011] is the only work on adaptive
SPARQL evaluation). The Web of Data contains RDF datasets of various kinds, and

adaptivity is no less important than efficiency.

Appendix A

Experiment Queries

TABLE A.1: Assessment queries of the evaluation framework

Query 1

WHERE {
?product
7product
?product
?product
7product
}

ORDER BY
LIMIT 10

SELECT DISTINCT 7product 7label

rdfs:label 7label .

a %ProductType’ .

bsbm:productFeature %ProductFeaturel’, .

bsbm: productFeature %ProductFeature2y, .

bsbm:productPropertyNumericl 7valuel

7label

Continued on next page

107

Table A.1 — continued from previous page

Query 2

SELECT 7label 7comment 7producer 7productFeature

?propertyTextuall 7propertyTextual2 7propertyTextual3

?propertyNumericl

?propertyTextualb

WHERE {

?propertyNumeric2 ?propertyTextuald

?propertyNumeric4

%ProductXYZ}, rdfs:label ?label .

%ProductXYZ), rdfs:comment 7comment

%ProductXYZ) bsbm:producer 7p .

7p rdfs:label 7producer .

%#ProductXYZ}% dc:publisher 7p .

%ProductXYZ), bsbm:productFeature 7f

7f rdfs:label 7productFeature .

%ProductXYZ},
%ProductXYZy,
%ProductXYZ},
%ProductXYZy,
%ProductXYZ’
}

bsbm
bsbm
bsbm
bsbm

bsbm

:productPropertyTextuall
:productPropertyTextual2
:productPropertyTextual3
:productPropertyNumericl

:productPropertyNumeric2

?propertyTextuall
?propertyTextual2 .
?propertyTextual3 .
?propertyNumericl

?propertyNumeric2 .

Continued on next page

Table A.1 — continued from previous page

Query 3

SELECT 7product 7label

WHERE {
7product
?product
?product
7product
7product
?product
?product
}

ORDER BY
LIMIT 10

rdfs:label 7label

a %ProductType, .

bsbm: productFeature %ProductFeaturel’, .
bsbm:productPropertyNumericl 7pil
bsbm:productPropertyNumeric3 7p3 .
bsbm: productFeature %ProductFeature2y, .

rdfs:label 7testVar .

7?label

Continued on next page

Table A.1 — continued from previous page

Query 4

SELECT DISTINCT 7product 7label 7propertyTextual
WHERE {

{

?product rdfs:label 7label

?product rdf:type %ProductTypel .

?product bsbm:productFeature %ProductFeaturely, .
?product bsbm:productFeature ProductFeature2), .
?product bsbm:productPropertyTextuall 7propertyTextual
?product bsbm:productPropertyNumericl 7pl

} UNION {

?product rdfs:label 7label

?product rdf:type %ProductTypel .

?product bsbm:productFeature JProductFeaturel), .
?product bsbm:productFeature %ProductFeature3), .
?product bsbm:productPropertyTextuall 7propertyTextual
?product bsbm:productPropertyNumeric2 7p2

b

b

ORDER BY 7label

OFFSET 5

LIMIT 10

Continued on next page

Table A.1 — continued from previous page

Query 5

SELECT DISTINCT 7product 7productLabel

WHERE {

?product rdfs:label 7productLabel

%ProductXYZ), bsbm:productFeature ?prodFeature

?product bsbm:productFeature ?prodFeature

%ProductXYZ) bsbm:productPropertyNumericl 7origPropertyl
?product bsbm:productPropertyNumericl 7?simPropertyl
%ProductXYZ}, bsbm:productPropertyNumeric2 TorigProperty?2
?product bsbm:productPropertyNumeric2 7simProperty2 .

}

ORDER BY 7productLabel

LIMIT 5

Continued on next page

Table A.1 — continued from previous page

Query 7

SELECT 7productlLabel 7offer 7price 7vendor 7?vendorTitle
?review 7revTitle 7reviewer 7revName 7ratingl 7rating?2
WHERE {

%ProductXYZ}% rdfs:label ?productLabel .

?offer bsbm:product %ProductXYZj .

7offer bsbm:price 7price

?offer bsbm:vendor ?vendor .

?vendor rdfs:label 7vendorTitle

?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE>
7offer dc:publisher 7vendor .

7offer bsbm:validTo 7date

?review bsbm:reviewFor)ProductXYZ), .

?review rev:reviewer 7reviewer .

?reviewer foaf:name 7revName .

?review dc:title 7revTitle

¥

Continued on next page

Table A.1 — continued from previous page

Query 8

SELECT 7title 7text 7reviewDate 7reviewer 7reviewerName
?ratingl 7rating2 7rating3 7rating4
WHERE {

?review bsbm:reviewFor %ProductXYZ}, .
?review dc:title 7title

Preview rev:text 7text

?review bsbm:reviewDate 7reviewDate
Preview rev:reviewer 7reviewer
?reviewer foaf:name 7reviewerName
?review bsbm:ratingl 7ratingl
?review bsbm:rating2 7rating?2
?review bsbm:rating3 7rating3
?review bsbm:rating4 ?rating4d

}

ORDER BY DESC(7reviewDate)

LIMIT 20

Continued on next page

Table A.1 — continued from previous page

Query 10

SELECT DISTINCT 7offer 7price

WHERE {

?offer bsbm:product %ProductXYZ) .
?offer bsbm:vendor ?vendor .

7offer dc:publisher 7vendor .

?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> .
7offer bsbm:deliveryDays 7deliveryDays .
7offer bsbm:price 7price .

7offer bsbm:validTo 7date .

}

ORDER BY xsd:double(str(?price))

LIMIT 10

Query 11

SELECT 7property 7hasValue 7isValueOf
WHERE {

{ %0fferXYZ), ?property 7hasValue }
UNION

{ 7isValueOf 7property %0fferXYZ} }

+

TABLE A.2: SS joins of distinct predicates

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s bsbm:productFeature> 7ol ;

bsbm:productPropertyNumericl> 702

}

SELECT =*

WHERE

{ ?s bsbm:productFeature> 7ol ;
a 702 .

}

SELECT =*

WHERE

{ ?s bsbm:productFeature> %ol ;
rdfs:label> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:productPropertyNumericl>
a 702 .

¥

701

b

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s bsbm:productPropertyNumericl> 7ol ;
rdfs:label> 702 .

}

SELECT =

WHERE

{78 a 701 ;
rdfs:label> 702 .
}

SELECT =*
WHERE
{ ?s bsbm:productFeature> %ol ;

bsbm:producer> 702

3

SELECT =*
WHERE
{ ?s bsbm:productFeature> 7ol ;

bsbm:productPropertyTextuall> 702
b

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s bsbm:productFeature> 7ol ;

rdfs:comment> 702 .

}

SELECT =*
WHERE
{ ?s bsbm:productFeature> 7ol ;

bsbm:productPropertyTextual2> 702
b

SELECT =*

WHERE

{ ?s bsbm:productFeature> %ol ;
dc:publisher> 702 .

}

SELECT =*
WHERE
{ ?s bsbm:productFeature> 7ol ;

bsbm:productPropertyTextual3> 7o2
b

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s bsbm:productFeature> 7ol ;

bsbm:productPropertyNumeric2> 702

}

SELECT =
WHERE
{ ?s bsbm:producer> 7ol ;

bsbm:productPropertyTextuall> 702
b

SELECT =*
WHERE
{ ?s bsbm:producer> 7ol ;

rdfs:comment> 702 .

3

SELECT =*
WHERE
{ ?s bsbm:producer> 7ol ;

bsbm:productPropertyNumericl> 702

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s bsbm:producer> 7ol ;

bsbm:productPropertyTextual2> 702
}

SELECT =

WHERE

{ ?s bsbm:producer> 7ol ;
dc:publisher> 702 .

}

SELECT =*
WHERE
{ ?s bsbm:producer> 7ol ;

bsbm:productPropertyTextual3> 7o2
}

SELECT =*

WHERE

{ ?s bsbm:producer> 7ol ;
rdfs:label> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s bsbm:producer> 7ol ;

bsbm:productPropertyNumeric2> 702

}

SELECT =*

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;
rdfs:comment> 702 .

b

SELECT =

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;
bsbm:productPropertyNumericl> 702

X

SELECT =

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;

bsbm:productPropertyTextual2> 702
b

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;
dc:publisher> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;
bsbm:productPropertyTextual3> 7o2

b

SELECT =*

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;
rdfs:label> 702 .

X

SELECT =

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;

bsbm:productPropertyNumeric2> 702

¥

Continued on next page

Table A.2 — continued from previous page

SELECT *
WHERE
{ ?s rdfs:comment> 7ol ;

bsbm:productPropertyNumericl> 702

}

SELECT x
WHERE
{ ?s rdfs:comment> 7ol ;

bsbm:productPropertyTextual2> 702
b

SELECT

WHERE

{ ?s rdfs:comment> 7ol ;
dc:publisher> 702 .

}

SELECT
WHERE
{ ?s rdfs:comment> 7?01 ;

bsbm:productPropertyTextual3> 7o2
b

Continued on next page

Table A.2 — continued from previous page

SELECT

WHERE

{ ?s rdfs:comment> 7ol ;
rdfs:label> 702 .

}

SELECT x
WHERE
{ ?s rdfs:comment> 7ol ;

bsbm:productPropertyNumeric2> 702

}

SELECT *
WHERE
{ ?s bsbm:productPropertyNumericl> 7ol ;

bsbm:productPropertyTextual2> 7o2
}

SELECT =*

WHERE

{ ?s bsbm:productPropertyNumericl> 7ol ;
dc:publisher> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s bsbm:productPropertyNumericl> 7ol ;
bsbm:productPropertyTextual3> 702

}

SELECT =*

WHERE

{ ?s bsbm:productPropertyNumericl> 7ol ;
bsbm:productPropertyNumeric2> 702

b

SELECT =*

WHERE

{ ?s bsbm:productPropertyTextual2> 7ol ;
dc:publisher> 702 .

X

SELECT =

WHERE

{ ?s bsbm:productPropertyTextual2> 7ol ;

bsbm:productPropertyTextual3> 7o2
b

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s bsbm:productPropertyTextual2> 7ol ;
rdfs:label> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:productPropertyTextual2> 7ol ;

bsbm:productPropertyNumeric2> 702

}

SELECT =*
WHERE
{ ?s dc:publisher> %ol ;

bsbm:productPropertyTextual3> 7o2
}

SELECT =

WHERE

{ ?s dc:publisher> 7ol ;
rdfs:label> 702 .

}

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s dc:publisher> 7ol ;

bsbm:productPropertyNumeric2> 702

}

SELECT =*

WHERE

{ ?s bsbm:productPropertyTextual3> 7ol ;
rdfs:label> 702 .

b

SELECT =*

WHERE

{ ?s bsbm:productPropertyTextual3> 7ol ;

bsbm:productPropertyNumeric2> 702

3

SELECT =*

WHERE

{ ?s rdfs:label> 7ol ;
bsbm:productPropertyNumeric2> 702

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s bsbm:productFeature> 7ol ;

bsbm:productPropertyNumeric3> 702

}

SELECT =*
WHERE
{ ?s bsbm:productPropertyNumericl>

bsbm:productPropertyNumeric3> 702

}

701

I

SELECT *

WHERE

{7s a 701 ;
bsbm:productPropertyNumeric3> 7o2

3

SELECT =*

WHERE

{ ?s rdfs:label> 7ol ;
bsbm:productPropertyNumeric3> 7o2

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s bsbm:productPropertyTextuall> 7ol ;
a 702 .

}

SELECT *

WHERE

{78 a 701 ;
bsbm:productPropertyNumeric2> 702

}

SELECT =*
WHERE
{ ?s foaf:name> 7ol ;

bsbm:country> 702 .

3

SELECT
WHERE
{ ?s foaf:name> 7ol ;

bsbm:vendor> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT %
WHERE
{ ?s foaf:name> 7ol ;

bsbm:price> 7o2 .

}

SELECT x
WHERE
{ ?s foaf:name> 7ol ;

bsbm:reviewFor> 702

}

SELECT

WHERE

{ ?s foaf:name> 7ol ;
bsbm:validTo> 702 .

3

SELECT *

WHERE

{ ?s foaf:name> 7ol ;
dc:publisher> 702 .

}

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s foaf:name> 7ol ;
bsbm:product> 702 .

}

SELECT =

WHERE

{ ?s foaf:name> 7ol ;
rdfs:label> 702 .

}

SELECT

WHERE

{ ?s foaf:name> 7ol ;
dc:title> 702 .

3

SELECT
WHERE
{ ?s foaf:name> 7ol ;

rev:reviewer> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =
WHERE
{ ?s bsbm:country> 7ol ;

bsbm:vendor> 702 .

}

SELECT =
WHERE
{ ?s bsbm:country> 7ol ;

bsbm:price> 702 .

}

SELECT =*
WHERE
{ ?s bsbm:country> 7ol ;

bsbm:reviewFor> 702

3

SELECT =

WHERE

{ ?s bsbm:country> 7ol ;
bsbm:validTo> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =*

WHERE

{ ?s bsbm:country> 7ol ;
dc:publisher> 702 .

}

SELECT =

WHERE

{ ?s bsbm:country> 7ol ;
bsbm:product> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:country> 7ol ;
rdfs:label> 7o2 .

}

SELECT =*

WHERE

{ ?s bsbm:country> 7ol ;
dc:title> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =
WHERE
{ ?s bsbm:country> 7ol ;

rev:reviewer> 702 .

}

SELECT x
WHERE
{ ?s bsbm:vendor> 7ol ;

bsbm:price> 702 .

}

SELECT =*
WHERE
{ ?s bsbm:vendor> %ol ;

bsbm:reviewFor> 702

3

SELECT =

WHERE

{ ?s bsbm:vendor> 7ol ;
bsbm:validTo> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT

WHERE

{ ?s bsbm:vendor> 7ol ;
dc:publisher> 702 .

}

SELECT *

WHERE

{ ?s bsbm:vendor> 7ol ;
bsbm:product> 702 .

}

SELECT

WHERE

{ ?s bsbm:vendor> %ol ;
rdfs:label> 702 .

}

SELECT

WHERE

{ ?s bsbm:vendor> 7ol ;
dc:title> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT *
WHERE
{ ?s bsbm:vendor> 7ol ;

rev:reviewer> 702 .

}

SELECT =
WHERE
{ ?s bsbm:price> 7ol ;

bsbm:reviewFor> 702

}

SELECT =*

WHERE

{ ?s bsbm:price> 7ol ;
bsbm:validTo> 702 .

3

SELECT =*

WHERE

{ ?s bsbm:price> 7ol ;
dc:publisher> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s bsbm:price> 7ol ;
bsbm:product> 702 .

}

SELECT =

WHERE

{ ?s bsbm:price> 7ol ;
rdfs:label> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:price> 7ol ;
dc:title> 702 .

3

SELECT =*

WHERE

{ ?s bsbm:price> 7ol ;
rev:reviewer> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT

WHERE

{ ?s bsbm:reviewFor> 7ol ;
bsbm:validTo> 702 .

}

SELECT *

WHERE

{ ?s bsbm:reviewFor> 7ol ;
dc:publisher> 702 .

}

SELECT

WHERE

{ ?s bsbm:reviewFor> 701l ;
bsbm:product> 702 .

3

SELECT *

WHERE

{ ?s bsbm:reviewFor> 7ol ;
rdfs:label> 702 .

}

Continued on next page

Table A.2 — continued from previous page

SELECT

WHERE

{ ?s bsbm:reviewFor> 7ol ;
dc:title> 702 .

}

SELECT x
WHERE
{ ?s bsbm:reviewFor> 7ol ;

rev:reviewer> 702 .

}

SELECT

WHERE

{ ?s bsbm:validTo> 7ol ;
dc:publisher> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:validTo> %ol ;
bsbm:product> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =

WHERE

{ ?s bsbm:validTo> 7ol ;
rdfs:label> 702 .

}

SELECT *

WHERE

{ ?s bsbm:validTo> %ol ;
dc:title> 702 .

}

SELECT =*
WHERE
{ ?s bsbm:validTo> 7ol ;

rev:reviewer> 702 .

3

SELECT *

WHERE

{ ?s dc:publisher> 7ol ;
bsbm:product> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =*

WHERE

{ ?s dc:publisher> 7ol ;
dc:title> 702 .

}

SELECT =
WHERE
{ ?s dc:publisher> 7ol ;

rev:reviewer> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:product> %ol ;
rdfs:label> 7o2 .

}

SELECT =*

WHERE

{ ?s bsbm:product> 7ol ;
dc:title> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =*
WHERE
{ ?s bsbm:product> 7ol ;

rev:reviewer> 702 .

}

SELECT *

WHERE

{ ?s rdfs:label> 7ol ;
dc:title> 702 .

}

SELECT =*
WHERE
{ ?s rdfs:label> 7?01 ;

rev:reviewer> 702 .

3

SELECT =*

WHERE

{ ?s dc:title> 7?01 ;
rev:reviewer> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT %
WHERE
{ ?s foaf:name> 7ol ;

bsbm:reviewDate> 702 .

}

SELECT x
WHERE
{ ?s foaf:name> 7ol ;

rev:text> 702 .

}

SELECT =*
WHERE
{ ?s bsbm:reviewFor> 7ol ;

bsbm:reviewDate> 702 .

3

SELECT
WHERE
{ ?s bsbm:reviewFor> 7ol ;

rev:text> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT

WHERE

{ 7?s bsbm:reviewDate> 7ol ;
rev:text> 702 .

}

SELECT *

WHERE

{ ?s bsbm:reviewDate> 7ol ;
dc:title> 702 .

}

SELECT

WHERE

{ ?s bsbm:reviewDate> 7ol ;

rev:reviewer> 702 .

3

SELECT *

WHERE

{ ?s rev:text> 701 ;
dc:title> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT %
WHERE
{ ?s rev:text> 7ol ;

rev:reviewer> 702 .

}

SELECT =

WHERE

{ ?s bsbm:deliveryDays> 7ol ;
bsbm:country> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:deliveryDays> 7ol ;
bsbm:price> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:deliveryDays> 7ol ;

bsbm:vendor> 702 .

¥

Continued on next page

Table A.2 — continued from previous page

SELECT =*

WHERE

{ ?s bsbm:deliveryDays> 7ol ;
bsbm:validTo> 702 .

}

SELECT =

WHERE

{ ?s bsbm:deliveryDays> 7ol ;
dc:publisher> 702 .

}

SELECT =*

WHERE

{ ?s bsbm:deliveryDays> 7ol ;
bsbm:product> 702 .

3

Bibliography

M Acosta, ME Vidal, and T Lampo. ANAPSID: An adaptive query processing en-
gine for SPARQL endpoints. In proceedings of the International Semantic Web Con-
ference (ISWC), pages 18-34, 2011. URL http://www.springerlink.com/index/
56475624X7744457 .pdf.

Ziya Akar, Tayfun Gokmen Halag, and Erdem Eser Ekinci. Querying the web of
interlinked datasets using VoID descriptions. In proceedings of the Linked Data
on the Web Workshop (LDOW) , at the International World Wide Web Confer-
ence (WWW), 2012. URL http://events.linkeddata.org/ldow2012/papers/
ldow2012-paper-06.pdf.

Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing
linked datasets on the design and usage of VoID , the “Vocabulary of Interlinked
Datasets”. In proceedings of the Linked Data on the Web Workshop (LDOW) , at the
International World Wide Web Conference (WWW), 2009.

Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In proceedings
of the International Semantic Web Conference (ISWC), pages 114-129, 2008. URL
http://www.springerlink.com/index/71v586v1j2j43156.pdf.

S Bail, B Parsia, and U Sattler. JustBench: A framework for OWL benchmarking.
In proceedings of the International Semantic Web Conference (ISWC), pages 32-47,
2010. URL http://1link.springer.com/chapter/10.1007/978-3-642-17746-0_3.

T DBerners-Lee. Linked data-design issues, 2006. URL http://www.w3.org/

DesignIssues/LinkedData.html.

147

http://www.springerlink.com/index/56475624X7744457.pdf
http://www.springerlink.com/index/56475624X7744457.pdf
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-06.pdf
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-06.pdf
http://www.springerlink.com/index/7lv586v1j2j43156.pdf
http://link.springer.com/chapter/10.1007/978-3-642-17746-0_3
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

T Berners-Lee, J Hendler, and O Lassila. The Semantic Web: A new form of Web
content that is meaningful to computers will unleash a revolution of new possibilities.

Scientific American, 2001.

Abraham Bernstein, Christoph Kiefer, and Markus Stocker. OptARQ : a SPARQL
optimization approach based on triple pattern selectivity estimation. Technical report,

Technical Report ifi-2007.03, Department of Informatics, University of Zurich, 2007.

Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve, and
James B. Rothnie. Query processing in a system for distributed databases (SDD-
1). ACM Transactions on Database Systems, 6(4):602—625, December 1981. ISSN
03625915. doi: 10.1145/319628.319650. URL http://dl.acm.org/citation.cfm?

1d=319628.319650.

Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark. International
Journal On Semantic Web and Information Systems (IJSWIS) - Special Issue on
Scalability and Performance of Semantic Web Systems, 5(2):1-24, 2009.

Christoph Bohm, Johannes Lorey, and Felix Naumann. Creating voiD descriptions for
Web-scale data. Web Semantics: Science, Services and Agents on the World Wide
Web, 9(3):339-345, 2011. ISSN 1570-8268. URL http://www.sciencedirect.com/

science/article/pii/S1570826811000370.

Peter Boncz, Minh-Duc Pham, Orri Erling, Ivan Mikhailov, and Yrjana Rankka. Social
Network Intelligence BenchMark. URL http://www.w3.org/wiki/Social_Network_

Intelligence_BenchMark.

Jeremy Carroll, Ivan Herman, and Peter F. Patel-Schneider. OWL 2 Web Ontology
Language RDF-Based Semantics (Second Edition), 2012. URL http://www.w3.org/
TR/2012/REC-owl2-rdf-based-semantics-20121211/.

Gong Cheng and Yuzhong Qu. Searching linked objects with Falcons: approach,
implementation and evaluation. International Journal on Semantic Web and
Information Systems, 5(3):49-70, 2009. ISSN 15526283. doi: 10.4018/jswis.
2009081903. URL http://services.igi-global.com/resolvedoi/resolve.aspx?

doi=10.4018/jswis.2009081903.

S. Christodoulakis. Implications of certain assumptions in database performance evau-

ation. ACM Transactions on Database Systems, 9(2):163-186, May 1984. ISSN

http://dl.acm.org/citation.cfm?id=319628.319650
http://dl.acm.org/citation.cfm?id=319628.319650
http://www.sciencedirect.com/science/article/pii/S1570826811000370
http://www.sciencedirect.com/science/article/pii/S1570826811000370
http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jswis.2009081903
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jswis.2009081903

03625915. doi: 10.1145/329.318578. URL http://dl.acm.org/citation.cfm?id=
329.318578.

Mathieu D’Aquin, Claudio Baldassarre, Laurian Gridinoc, Sofia Angeletou, Marta
Sabou, and Enrico Motta. Characterizing knowledge on the semantic web with Wat-
son. In proceedings of the Fvaluation of Ontologies and Ontology-Based Tools Work-
shop (EON), in conjuction with the International Semantic Web Conference (ISWC),
volume 329, pages 1-10, 2007. URL http://oro.open.ac.uk/23555/.

David DeWitt and Jim Gray. Parallel database systems: the future of high perfor-
mance database systems. Communications of the ACM, 35(6):85-98, June 1992. ISSN
00010782. doi: 10.1145/129888.129894. URL http://dl.acm.org/citation.cfm?
1id=129888.129894.

Li Ding, Joshua Shinavier, Zhenning Shangguan, and Deborah McGuinness. SameAs
networks and beyond: Analyzing deployment status and implications of owl: sameAs
in linked data. In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika,
Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors, proceedings of the
International Semantic Web Conference (ISWC), volume 6496 of Lecture Notes in
Computer Science, pages 145-160, Berlin, Heidelberg, 2010. ISBN 978-3-642-17745-
3. doi: 10.1007/978-3-642-17746-0. URL http://www.springerlink.com/index/
Q1359571L25472PK. pdf.

S Duan and A Kementsietsidis. Apples and oranges: a comparison of RDF benchmarks
and real RDF datasets. In proceedings of the ACM SIGMOD International Conference
on Management of data (SIGMOD), 2011. URL http://dl.acm.org/citation.cfm?
id=1989340.

G.H.L. Fletcher and P.W. Beck. Scalable indexing of RDF graphs for efficient join
processing. In proceeding of the 18th ACM conference on Information and knowledge
management, pages 1513-1516, 2009. URL http://portal.acm.org/citation.cfm?
id=1646159.

Hugh Glaser, Tim Lewy, Ian Millard, and Ben Dowling. On coreference and the Semantic

Web. In proceedings of the European Semantic Web Conference (ESWC), 2007.

Hugh Glaser, Afraz Jaffri, and Ian Millard. Managing Co-reference on the Semantic web.
In proceedings of the Linked Data on the Web Workshop (LDOW) , at the International

http://dl.acm.org/citation.cfm?id=329.318578
http://dl.acm.org/citation.cfm?id=329.318578
http://oro.open.ac.uk/23555/
http://dl.acm.org/citation.cfm?id=129888.129894
http://dl.acm.org/citation.cfm?id=129888.129894
http://www.springerlink.com/index/Q1359571L25472PK.pdf
http://www.springerlink.com/index/Q1359571L25472PK.pdf
http://dl.acm.org/citation.cfm?id=1989340
http://dl.acm.org/citation.cfm?id=1989340
http://portal.acm.org/citation.cfm?id=1646159
http://portal.acm.org/citation.cfm?id=1646159

World Wide Web Conference (WWW), 2009. URL http://eprints.soton.ac.uk/
267587/.

Olaf Gorlitz and Steffen Staab. SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions. In proceedings of the Consuming Linked Data Workshop(COLD),
2011.

Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Sur-
veys, 25(2):73-169, June 1993. ISSN 03600300. doi: 10.1145/152610.152611. URL

http://portal.acm.org/citation.cfm?id=152610.152611.

Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web, 3(2-3):158—
182, 2005. ISSN 1570-8268. URL http://linkinghub.elsevier.com/retrieve/
pii/S1570826805000132.

Claudio Gutierrez. Foundations of RDF databases. Reasoning Web. Semantic Tech-
nologies for Information Systems, 5689:158-204, 2008. URL http://videolectures.

net/site/normal_dl/tag=25799/eswc08_gutierrez_frdf_01.pdf.

L.M. Haas, D. Kossmann, E.L. Wimmers, and J. Yang. Optimizing queries across
diverse data sources. In proceedings of the International Conference on Very Large
Data Bases, pages 276-285, 1997. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.12.7606&rep=repl&type=pdf.

H Halpin and PJ Hayes. When owl: sameAs isn’t the same: An analysis of identity
links on the semantic web. proceedings of the Linked Data on the Web Workshop
(LDOW) , at the International World Wide Web Conference (WWW), 2010. URL

http://events.linkeddata.org/1dow2010/papers/1dow2010_paper09.pdf.

Andreas Harth and S. Decker. Optimized index structures for querying rdf from the
web. In proceedings of the Third Latin American Web Congress (LA-WEB), page 10,
2006. ISBN 0769524710. URL http://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=1592360.

Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, K.U. Sattler, and Jiirgen
Umbrich. Data summaries for on-demand queries over linked data. In Proceedings

of the 19th international conference on World wide web, pages 411-420, New York,

http://eprints.soton.ac.uk/267587/
http://eprints.soton.ac.uk/267587/
http://portal.acm.org/citation.cfm?id=152610.152611
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000132
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000132
http://videolectures.net/site/normal_dl/tag=25799/eswc08_gutierrez_frdf_01.pdf
http://videolectures.net/site/normal_dl/tag=25799/eswc08_gutierrez_frdf_01.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7606&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7606&rep=rep1&type=pdf
http://events.linkeddata.org/ldow2010/papers/ldow2010_paper09.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592360
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592360

New York, USA, 2010. ISBN 9781605587998. doi: 10.1145/1772690.1772733. URL

http://portal.acm.org/citation.cfm?id=1772733.

Olaf Hartig. Zero-Knowledge query planning for an iterator implementation of link
traversal based query execution. In Grigoris Antoniou, Marko Grobelnik, Elena
Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Pan, ed-
itors, proceedings of the European Semantic Web Conference (ESWC), volume 6643
of ESWC(C"11, pages 154-169, 2011. ISBN 9783642210334. URL http://dx.doi.org/
10.1007/978-3-642-21034-1_11.

Olaf Hartig and Christian Bizer. Executing SPARQL Queries over the Web of Linked
Data. The Semantic Web-ISWC' 2009, 5823:293-309, 2009. URL http://wuw.
springerlink.com/index/Q37381173G66W7N2.pdf.

Patrick Hayes and Brian McBride. RDF semantics, 2004. URL http://www.w3.org/

TR/rdf-mt/.

Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a global data
space. Synthesis Lectures on the Semantic Web: Theory and Technology, 1(1):1-136,
February 2011. ISSN 2160-4711. doi: 10.2200/S00334ED1V01Y201102WBE001. URL

http://wuw.citeulike.org/user/mikel_egana/article/10524056.

Aidan Hogan, Andreas Harth, and S Decker. Performing object consolidation on the
semantic web data graph. In proceedings of 1st 13: Identity, Identifiers, Identification
Workshop, 2007. URL http://aran.library.nuigalway.ie/xmlui/handle/10379/
493.

Aidan Hogan, Andreas Harth, Jirgen Umbrich, Sheila Kinsella, Axel Polleres, and
Stefan Decker. Searching and browsing Linked Data with SWSE: the Semantic
Web search engine. Semantic Search over the Web, pages 361-414, 2012. ISSN
15708268. doi: 10.1016/j.websem.2011.06.004. URL http://linkinghub.elsevier.

com/retrieve/pii/S1570826811000473.

W. Hong and M. Stonebraker. Optimization of parallel query execution plans in XPRS.
Distributed and Parallel Databases, (1):9-32, 1993. doi: 10.1109/PDIS.1991.183106.

Wei Hu, Jianfeng Chen, and Yuzhong Qu. A self-training approach for resolving object

coreference on the semantic web. In proceedings of the International Conference on

http://portal.acm.org/citation.cfm?id=1772733
http://dx.doi.org/10.1007/978-3-642-21034-1_11
http://dx.doi.org/10.1007/978-3-642-21034-1_11
http://www.springerlink.com/index/Q37381173G66W7N2.pdf
http://www.springerlink.com/index/Q37381173G66W7N2.pdf
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.citeulike.org/user/mikel_egana/article/10524056
http://aran.library.nuigalway.ie/xmlui/handle/10379/493
http://aran.library.nuigalway.ie/xmlui/handle/10379/493
http://linkinghub.elsevier.com/retrieve/pii/S1570826811000473
http://linkinghub.elsevier.com/retrieve/pii/S1570826811000473

World Wide Web (WWW), page 87, March 2011a. ISBN 9781450306324. doi: 10.1145/
1963405.1963421. URL http://dl.acm.org/citation.cfm?id=1963405.1963421.

Wei Hu, Jianfeng Chen, Hang Zhang, and Yuzhong Qu. How matchable are four
thousand ontologies on the semantic Web. The Semantic Web: Research and Ap-
plications, 6643:290-304, 2011b. doi: 10.1007/978-3-642-21034-1. URL http:
//www.springerlink.com/index/259681U010372545.pdf.

Bernadette Hyland, Boris Villazén-Terrazas, and Ghislain Atemezing. Best practices
for publishing Linked Data (W3C editor’s draft 13 March 2013), 2013. URL https:

//dvcs.w3.org/hg/gld/raw-file/default/bp/index.html.

Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S. Weld.
An adaptive query execution system for data integration. ACM SIGMOD Record, 28
(2):299-310, June 1999. ISSN 01635808. doi: 10.1145/304181.304209. URL http:

//dl.acm.org/citation.cfm?id=304181.304209.

Afraz Jaffri, Hugh Glaser, and Tan Millard. Uri disambiguation in the context of linked
data. In proceedings of the Linked Data on the Web Workshop (LDOW) , at the Inter-
national World Wide Web Conference (WWW), 2008. URL http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.142.9313%amp; rep=repl&type=pdf.

G. Klyne, J.J. Carroll, and B. McBride. Resource description framework (RDF): Con-
cepts and abstract syntax, 2004. URL http://www.w3.org/TR/rdf-concepts/.

Donald Kossmann. The state of the art in distributed query processing. ACM Computing
Surveys (CSUR), 32(4):422-469, 2000. ISSN 0360-0300. URL http://portal.acm.
org/citation.cfm?id=371598&dl=.

Donald Kossmann and Konrad Stocker. Iterative dynamic programming: a new class of
query optimization algorithms. ACM Transactions on Database Systems, 25(1):43-82,
March 2000. ISSN 03625915. doi: 10.1145/352958.352982. URL http://doi.acm.
org/10.1145/352958.352982.

G. Ladwig and Thanh Tran. Linked Data Query Processing Strategies. The Semantic
Web-ISWC 2010, pages 453—-469, 2010. URL http://www.springerlink.com/index/
Q6385N8J0071156U. pdf.

http://dl.acm.org/citation.cfm?id=1963405.1963421
http://www.springerlink.com/index/259681U010372545.pdf
http://www.springerlink.com/index/259681U010372545.pdf
https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html
https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html
http://dl.acm.org/citation.cfm?id=304181.304209
http://dl.acm.org/citation.cfm?id=304181.304209
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.9313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.9313&rep=rep1&type=pdf
http://www.w3.org/TR/rdf-concepts/
http://portal.acm.org/citation.cfm?id=371598&dl=
http://portal.acm.org/citation.cfm?id=371598&dl=
http://doi.acm.org/10.1145/352958.352982
http://doi.acm.org/10.1145/352958.352982
http://www.springerlink.com/index/Q6385N8J0071156U.pdf
http://www.springerlink.com/index/Q6385N8J0071156U.pdf

Giinter Ladwig and Thanh Tran. SIHJoin: Querying remote and local Linked
Data. The Semantic Web: Research and Applications, 6643:139-153, 2011.
doi: 10.1007/978-3-642-21034-1. URL http://www.springerlink.com/content/
d7v4716326776wTl/.

Andreas Langegger and Wolfram Woss. RDFStats - An extensible RDF statistics gen-
erator and library. In proceedings of the International Workshop on Database and
Ezxpert Systems Application, pages 79-83, August 2009. ISBN 978-0-7695-3763-4. doi:
10.1109/DEXA.2009.25. URL http://www.computer.org/portal/web/csdl/doi/
10.1109/DEXA.2009.25.

Andreas Langegger, Wolfram W68, and Martin Blochl. A Semantic Web middleware for
virtual data integration on the Web. The Semantic Web Research and Applications,
5021:493-507, 2008. ISSN 03029743. doi: 10.1007/978-3-540-68234-9\ 37. URL
http://www.springerlink.com/index/1804822517684043.pdf.

Guy M. Lohman. Grammar-like functional rules for representing query optimization
alternatives. ACM SIGMOD Record, 17(3):18-27, June 1988. ISSN 01635808. doi:
10.1145/971701.50204. URL http://dl.acm.org/citation.cfm?id=971701.50204.

L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete OWL ontology
benchmark. The Semantic Web: Research and Applications, 4011:125-139, 2006. URL

http://www.springerlink.com/index/10wu543x26350462.pdf.

LF Mackert. R* optimizer validation and performance evaluation for dis-
tributed queries. Proceedings of the 1986 ACM SIGMOD international
conference on Management of data (SIGMOD ’86), pages 149-159, Au-
gust 1988. URL http://dl.acm.org/citation.cfm?id=645913.671480http:
//books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=
Rx+optimizer+validation+and+performance+evaluation+for+distributed+

queries&ots=t9pgbzRm4f&sig=vDISxHagqMECEkY67Q1kcGgZm7ZU.

Priti Mishra and Margaret H. M.H. Eich. Join processing in relational databases.
ACM Computing Surveys (CSUR), 24(1):63-113, January 1992. ISSN 0360-0300.
doi: 10.1001/archoto.2007.12. URL http://portal.acm.org/citation.cfm?id=
128764&dl=http://dl.acm.org/citation.cfm?id=128762.128764.

http://www.springerlink.com/content/d7v4716326776w7l/
http://www.springerlink.com/content/d7v4716326776w7l/
http://www.computer.org/portal/web/csdl/doi/10.1109/DEXA.2009.25
http://www.computer.org/portal/web/csdl/doi/10.1109/DEXA.2009.25
http://www.springerlink.com/index/1804822517684043.pdf
http://dl.acm.org/citation.cfm?id=971701.50204
http://www.springerlink.com/index/l0wu543x26350462.pdf
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://portal.acm.org/citation.cfm?id=128764&dl= http://dl.acm.org/citation.cfm?id=128762.128764
http://portal.acm.org/citation.cfm?id=128764&dl= http://dl.acm.org/citation.cfm?id=128762.128764

M Morsey, J Lehmann, S Auer, and ACN Ngomo. DBpedia SPARQL benchmark-
performance assessment with real queries on real data. The Semantic Web-ISWC 2011,
2011. URL http://link.springer.com/chapter/10.1007/978-3-642-25073-6_
29.

Thomas Neumann. RDF-3X: a RISC-style engine for RDF. proceedings of the VLDB
Endowment, pages 647-659, 2008. URL http://portal.acm.org/citation.cfm?
1d=1453856.1453927.

Eyal Oren, R Delbru, M Catasta, R Cyganiak, H. Stenzhorn, and G. Tummarello.
Sindice. com: A document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies, 3(1):37-52, 2008. URL http://

inderscience.metapress.com/index/3518208222365647 . pdf.

MT Ozsu and P. Valduriez. Principles of distributed database systems. 1999. ISBN
8177581775. URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=

intitle:Principles+of+distributed+database+systems#0.

J Pérez and Marcelo Arenas. Semantics and Complexity of SPARQL. ACM Transactions
on Database Systems (TODS), 2009. URL http://portal.acm.org/citation.cfm?
id=1567274.1567278.

MD Pham, P Boncz, and O Erling. S3G2: a scalable structure-correlated so-
cial graph generator. Selected Topics in Performance Evaluation and Benchmark-
ing, 7755:156-172, 2013. URL http://link.springer.com/chapter/10.1007/
978-3-642-36727-4_11.

Viswanath Poosala and Yannis E. loannidis. Selectivity Estimation Without the At-
tribute Value Independence Assumption. In proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB), pages 486-495, August 1997. ISBN
1-55860-470-7. URL http://dl.acm.org/citation.cfm?id=645923.673638.

R.C. Prim. Shortest connection networks and some generalizations. Bell system techni-
cal journal, 36(6):1389-1401, 1957. URL http://orion.research.bell-labs.com/
BSTJ/images/Vol36/bstj36-6-1389.pdf.

Eric Prud’hommeaux and C Buil-Aranda. SPARQL 1.1 federated query, 2013. URL

http://www.w3.org/TR/sparqlll-federated-query/.

http://link.springer.com/chapter/10.1007/978-3-642-25073-6_29
http://link.springer.com/chapter/10.1007/978-3-642-25073-6_29
http://portal.acm.org/citation.cfm?id=1453856.1453927
http://portal.acm.org/citation.cfm?id=1453856.1453927
http://inderscience.metapress.com/index/3518208222365647.pdf
http://inderscience.metapress.com/index/3518208222365647.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Principles+of+distributed+database+systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Principles+of+distributed+database+systems#0
http://portal.acm.org/citation.cfm?id=1567274.1567278
http://portal.acm.org/citation.cfm?id=1567274.1567278
http://link.springer.com/chapter/10.1007/978-3-642-36727-4_11
http://link.springer.com/chapter/10.1007/978-3-642-36727-4_11
http://dl.acm.org/citation.cfm?id=645923.673638
http://orion.research.bell-labs.com/BSTJ/images/Vol36/bstj36-6-1389.pdf
http://orion.research.bell-labs.com/BSTJ/images/Vol36/bstj36-6-1389.pdf
http://www.w3.org/TR/sparql11-federated-query/

Eric Prud’Hommeaux and Andy Seaborne. SPARQL query language for RDF, 2008.
URL http://www.w3.org/TR/rdf-sparql-query/.

M Przyjaciel-Zablocki, A Schétzle, T Hornung, and I Taxidou. Towards a SPARQL
1.1 Feature Benchmark on Real-World Social Network Data. In proceedings of the 1st
International Workhop on Benchmarking RDF Systems, 2013. URL http://ceur-vs.
org/Vol-981/BeRSys2013paperl.pdf.

Bastian Quilitz. Querying distributed RDF data sources with SPARQL. The Se-
mantic Web: Research and Applications, pages 524-538, 2008. URL http://www.

springerlink.com/index/hm1v15q75371640p.pdf.

Louiqa Raschid and Stanley Y. W. Su. A parallel processing strategy for evaluating
recursive queries. In proceedings of the 12th International Conference on Very Large
Data Bases (VLDB), pages 412-419, August 1986. ISBN 0-934613-18-4. URL http:

//dl.acm.org/citation.cfm?id=645913.671471.

Simon Schenk and S. Staab. Networked graphs: a declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the web. In proceeding of the
International Conference on World Wide Web (WWW), pages 585-594, 2008. URL

http://portal.acm.org/citation.cfm?id=1367497.1367577.

Simon Schenk, Carsten Saathoff, and Steffen Staab. SemaPlorer-Interactive semantic
exploration of data and media based on a federated cloud infrastructure. Web Seman-

tics: Science, Services and Agents on the World Wide Web, 7(4):298-304, 2009.

M. Schmidt, O. Gorlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench:
A benchmark suite for federated semantic data query processing. ISWC 2011,
2011. URL http://www.informatik.uni-freiburg.de/~mschmidt/docs/iswcll_
fedbench.pdf.

Michael Schmidt, Thomas Hornung, Georg Lausen, and C. Pinkel. SP2Bench: A
SPARQL performance benchmark. In proceedings of the International Conference
on Data Engineering, pages 222-233, 2009. URL http://ieeexplore.ieee.org/

xpls/abs_all. jsp?arnumber=4812405.

A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization

Techniques for Federated Query Processing on Linked Data. In proceedings of the

http://www.w3.org/TR/rdf-sparql-query/
http://ceur-ws.org/Vol-981/BeRSys2013paper1.pdf
http://ceur-ws.org/Vol-981/BeRSys2013paper1.pdf
http://www.springerlink.com/index/hm1v15q75371640p.pdf
http://www.springerlink.com/index/hm1v15q75371640p.pdf
http://dl.acm.org/citation.cfm?id=645913.671471
http://dl.acm.org/citation.cfm?id=645913.671471
http://portal.acm.org/citation.cfm?id=1367497.1367577
http://www.informatik.uni-freiburg.de/~mschmidt/docs/iswc11_fedbench.pdf
http://www.informatik.uni-freiburg.de/~mschmidt/docs/iswc11_fedbench.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812405
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812405

International Semantic Web Conference (ISWC), 2011. URL http://iswc2011.

semanticweb.org/fileadmin/iswc/Papers/Research_Paper/05/70310592.pdf.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD),
page 23, New York, New York, USA, May 1979. ISBN 089791001X. doi: 10.1145/
582095.582099. URL http://portal.acm.org/citation.cfm?id=582095.582099.

Steffen Staab. Federated data management and query optimization for Linked
Open Data. New Directions in Web Data Management 1, 331:109-137, 2011.
doi: 10.1007/978-3-642-17551-0\ 5. URL http://www.springerlink.com/index/
B2470QJ11563Q242.pdf.

Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and randomized
optimization for the join ordering problem. The International Journal on Very Large
Data Bases, 6(3):191-208, August 1997. ISSN 1066-8888. doi: 10.1007/s007780050040.
URL http://portal.acm.org/citation.cfm?id=765554.765556.

Markus Stocker, Andy Seaborne, Abraham Bernstein, C. Kiefer, and D. Reynolds.
SPARQL basic graph pattern optimization using selectivity estimation. In proceeding
of the International Conference on World Wide Web (WWW), pages 595-604, 2008.
URL http://portal.acm.org/citation.cfm?id=1367497.1367578.

Heiner Stuckenschmidt, Richard Vdovjak, G.J. Houben, and J. Broekstra. Index struc-
tures and algorithms for querying distributed RDF repositories. In proceedings of the
International Conference on World Wide Web (WWW), pages 631-639, 2004. URL

http://portal.acm.org/citation.cfm?id=988758.

J Umbrich, A Hogan, A Polleres, and S Decker. Improving the Recall of Live Linked
Data Querying through Reasoning. Web Reasoning and Rule Systems, 7497:188-204,
2012. doi: 10.1007/978-3-642-33203-6. URL http://www.springerlink.com/index/
10.1007/978-3-642-33203-6.

T Urhan and MJ Franklin. XJoin: Getting fast answers from slow and bursty networks.

University of Maryland Technical Report CS-TR-3994 (Feb.), 1999.

Ben P. Vandervalk, E. Luke McCarthy, and Mark D. Wilkinson. Optimization of
Distributed SPARQL Queries Using Edmonds’ Algorithm and Prim’s Algorithm.

http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Research_Paper/05/70310592.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Research_Paper/05/70310592.pdf
http://portal.acm.org/citation.cfm?id=582095.582099
http://www.springerlink.com/index/B2470QJ11563Q242.pdf
http://www.springerlink.com/index/B2470QJ11563Q242.pdf
http://portal.acm.org/citation.cfm?id=765554.765556
http://portal.acm.org/citation.cfm?id=1367497.1367578
http://portal.acm.org/citation.cfm?id=988758
http://www.springerlink.com/index/10.1007/978-3-642-33203-6
http://www.springerlink.com/index/10.1007/978-3-642-33203-6

In proceedings of the International Conference on Computational Science and En-
gineering, volume 1, pages 330-337, 2009. doi: 10.1109/CSE.2009.144. URL
http://www.computer.org/portal/web/csdl/doi/10.1109/CSE.2009.144.

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis. Evaluating graph traversal al-
gorithms for distributed SPARQL query optimization. In proceedings of the Joint
International Semantic Technology Conference (JIST), 2011.

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis. LHD: Optimising Linked Data
query processing using parallelisation. In proceedings of the Linked Data on the Web

Workshop (LDOW) , at the International World Wide Web Conference (WWW), 2013.

Gregory Todd Williams and Rensselaer Polytechnic Institute. SPARQL 1.1 Service
Description. W3C Working Draft (12 May 2011), 2011.

AN Wilschut and PMG Apers. Dataflow query execution in a parallel main-
memory environment. In proceedings of the International Conference on Parallel
and Distributed Information Systems, pages 68—77, December 1993. ISBN 0-8186-
2295-4. URL http://dl.acm.org/citation.cfm?id=382009.383658http://www.

springerlink.com/index/R2274PH377725185.pdf.

DH Wolpert and WG Macready. No free lunch theorems for search. Technical report,
Technical Report SFI-TR-95-02-010 (Santa Fe Institute), 1995. URL http://delta.

cs.cinvestav.mx/~ccoello/compevol/nfl.pdf.

DH Wolpert and WG Macready. No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67-82, 1997. URL http://ieeexplore.

ieee.org/xpls/abs_all. jsp?arnumber=585893.

http://www.computer.org/portal/web/csdl/doi/10.1109/CSE.2009.144
http://dl.acm.org/citation.cfm?id=382009.383658 http://www.springerlink.com/index/R2274PH377725185.pdf
http://dl.acm.org/citation.cfm?id=382009.383658 http://www.springerlink.com/index/R2274PH377725185.pdf
http://delta.cs.cinvestav.mx/~ccoello/compevol/nfl.pdf
http://delta.cs.cinvestav.mx/~ccoello/compevol/nfl.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=585893
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=585893

