
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Querying the Web of Data
with Low Latency:

High Performance Distributed
SPARQL Processing and Benchmarking

by

Xin Wang

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Web and Internet Science Group
Electronics and Computer Science

Faculty of Physical and Applied Sciences

April 2014

http://www.soton.ac.uk
mailto:xinxinbird@gmail.com
http://www.wais.ecs.soton.ac.uk/
http://www.ecs.soton.ac.uk
http://www.engineering.soton.ac.uk

“You will never be happy if you continue to search for what happiness consists of. You

will never live if you are looking for the meaning of life.”

Albert Camus

UNIVERSITY OF SOUTHAMPTON

Abstract
Web and Internet Science Group

Electronics and Computer Science

Faculty of Physical and Applied Sciences

Doctor of Philosophy

by Xin Wang

The Web of Data extends the World Wide Web (WWW) in a way that applications

can understand information and cooperate with humans on complex tasks. The basis of

performing complex tasks is low latency queries over the Web of Data. The large scale

and distributed nature of the Web of Data have negative impacts on several critical

factors for efficient query processing, including fast data transmission between datasets,

predictable data distribution and statistics that summarise and describe certain pat-

terns in the data. Moreover, it is common on the Web of Data that the same resource

is identified by multiple URIs. This phenomenon, named co-reference, potentially in-

creases the complexity of query processing, and makes it even harder to obtain accurate

statistics. With the aforementioned challenges, it is not clear whether it is possible to

achieve efficient queries on the Web of Data on a large scale.

In this thesis, we explore techniques to improve the efficiency of querying the Web of

Data on a large scale. More specifically, we investigate two typical scenarios on the

Web of Data, which are: 1) the scenario in which all datasets provide detailed statistics

that are possibly available on a large scale, and 2) the scenario in which co-reference

is taken into account, and datasets’ statistics are not reliable. For each scenario we

explore existing and novel optimisation techniques that are tailored for querying the

Web of Data, as well as well developed techniques with careful adjustments.

For the scenario with detailed statistics we provide a scheme that implements a statis-

tics query optimisation approach that requires detailed statistics, and intensively exploits

parallelism. We propose an efficient algorithm called Parallel Sub-query Identification

http://www.soton.ac.uk
http://www.wais.ecs.soton.ac.uk/
http://www.ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
mailto:xinxinbird@gmail.com

(Ψ) to increase the degree of parallelism. Ψ breaks a SPARQL query into sub-queries

that can be processed in parallel while not increasing network traffic. We combine Ψ

with dynamic programming to produce query plans with both minimum costs and a fair

degree of parallelism. Furthermore, we develop a mechanism that maximally exploits

bandwidth and computing power of datasets. For the scenario having co-reference and

without reliable statistics we provide a scheme that implements a dynamic query opti-

misation approach that takes co-reference into account, and utilises runtime statistics

to elevate query efficiency even further. We propose a model called Virtual Graph to

transform a query and all its co-referent siblings into a single query with pre-defined

bindings. Virtual Graph reduces the large number of outgoing and incoming requests

that is required to process co-referent queries individually. Moreover, Virtual Graph

enables query optimisers to find the optimal plan with respect to all co-referent queries

as a whole. Ψ is used in this scheme as well but provides a higher degree of paral-

lelism with the help of runtime statistics. A Minimum-Spanning-Tree-based algorithm

is used in this scheme as a result of using runtime statistics. The same parallel execution

mechanism used in the previous scenario is adopted here as well.

In order to examine the effectiveness of our schemes in practice, we deploy the above

approaches in two distributed SPARQL engines, LHD-s and LHD-d respectively. Both

engines are implemented using a popular Java-based platform for building Semantic

Web applications. They can be used as either standalone applications or integrated into

existing systems that require quick response of Linked Data queries.

We also propose a scalable and flexible benchmark, called Distributed SPARQL Evalu-

ation Framework (DSEF), for evaluating optimisation approaches in the Web of Data.

DSEF adopts a expandable virtual-machine-based structure and provides a set of effi-

cient tools to help easily set up RDF networks of arbitrary sizes. We further investigate

the proportion and distribution of co-reference in the real world, based on which DESF

is able to simulate co-reference for given RDF datasets. DSEF bases its soundness in

the usage of widely accepted assessment data and queries.

By comparing both LHD-s and LHD-d with existing approaches using DSEF, we pro-

vide evidence that neither existing statistics provided by datasets nor cost estimation

methods, are sufficiently accurate. On the other hand, dynamic optimisation using run-

time statistics together with carefully tuned parallelism are promising for significantly

reducing the latency of large scale queries on the Web of Data. We also demonstrate

that Ψ and Virtual Graph algorithms significantly increase query efficiency for queries

with or without co-reference.

In summary, the contributions of this these include: 1) proposing two schemes for im-

proving query efficiency in two typical scenarios in the Web of Data; 2) providing imple-

mentations, named LHD-s and LHD-d, for the two schemes respectively; 3) proposing a

scalable and flexible evaluation framework for distributed SPARQL engines called DSEF;

and 4) showing evidence that runtime-statistics-based dynamic optimisation with par-

allelism are promising to reduce latency of Linked Data queries on a large scale.

Contents

Abstract iv

List of Figures xi

List of Tables xiii

List of Algorithms xv

Declaration of Authorship xvi

Acknowledgements xvii

Abbreviations xviii

1 Introduction 1
1.1 The Semantic Web, Linked Data and the Web of Data 2
1.2 Issues of Querying Linked Data . 3
1.3 Hypothesis and Contributions . 5
1.4 Thesis Overview . 8

2 Preliminaries 11
2.1 Basis of RDF and SPARQL Query Language 12
2.2 Basis of Distributed SPARQL Processing 14
2.3 Stages of Distributed SPARQL Query Processing 16

3 Related Work 21
3.1 Distributed Query Processing Techniques 22
3.2 Distributed SPARQL Query Engines . 25
3.3 RDF Store Benchmarking . 30

4 DSEF: A Distributed SPARQL Evaluation Framework 33
4.1 Overview of the Evaluation Framework . 33
4.2 Assessment Data and Co-Reference Generation 34
4.3 Assessment Query Set . 36
4.4 Assessment Metrics . 38

vii

Contents viii

4.5 The Framework Tool Set . 39

5 Querying LD with Detailed VoID Statistics 43
5.1 Overview of LHD-s . 44
5.2 VoID Service Descriptions . 45
5.3 Data Source Selection . 46
5.4 Cost Estimation . 47

5.4.1 Cardinality of a Single Triple Pattern 48
5.4.2 Cardinality of Joined Triple Patterns 49
5.4.3 A Response Time Cost Model . 50

5.5 Identifying Independent Sub-Queries . 51
5.6 Optimising Queries for Parallel Execution 53

5.6.1 Generating Serial Query Plans . 54
5.6.2 Transforming Serial Query Plans into Parallel Plans 55

5.7 Parallel Query Execution System . 56
5.7.1 Query Plan Executor . 57
5.7.2 Communication Manager . 58

5.8 Summary of LHD-s . 59
5.9 Implementation of LHD-s . 59

6 Evaluating LHD-s 63
6.1 Evaluating Cost Models . 64

6.1.1 Evaluation Method . 64
6.1.2 Results and Analysis . 66

6.2 Evaluating the Optimisation Algorithm and the Execution System 68
6.2.1 Experiment Settings . 68
6.2.2 Results and Analysis . 70

6.3 Evaluation Summary . 75

7 Optimising Queries with the Presence of Co-reference 77
7.1 Challenges of Optimising Queries having Co-reference 78
7.2 Overview of Optimisation Techniques in Environments with Co-reference 80
7.3 Addressing Co-reference using Virtual Graph 80
7.4 Interleaved Query Optimisation and Execution 83
7.5 Summary of LHD-d . 85
7.6 Implementation . 86

8 Evaluating LHD-d 87
8.1 Evaluating the Dynamic Optimisation Approach 87

8.1.1 Results and Analysis . 88
8.2 Evaluating LHD-d including Co-Reference 90

8.2.1 Experiment Settings . 91
8.2.2 Results and Analysis . 92

8.3 Evaluation Summary . 96

9 Conclusions and Future Work 99
9.1 Summary of DSEF . 100
9.2 Summary of LHD-s . 101

Contents ix

9.3 Summary of LHD-d . 103
9.4 Conclusions . 104
9.5 Future Work . 105

9.5.1 Short-term Plans on Improving the Proposed Methods 105
9.5.2 Long-term Plans on Open Issues of Distributed SPARQL 106

A Experiment Queries 107

Bibliography 147

List of Figures

1.1 Booking a doctor using Semantic Web technologies 2

2.1 Graph pattern matching . 12
2.2 Matching triple patterns against two datasets 16
2.3 An overview of distributed SPARQL query processing 17

3.1 Generating the optimal QEP using a MST algorithm 28
3.2 Overview of the BSBM data model . 32

4.1 Architecture of DSEF . 35
4.2 Distribution of co-reference . 36

5.1 Architecture of LHD-s . 45
5.2 Statistics in a VoID file . 46
5.3 Independent components of a graph . 52
5.4 An example query and its execution plan 56
5.5 Execution of a QEP . 61

6.1 Cardinality of SS joins . 66
6.2 Cardinality of OS joins . 68
6.3 Cardinality of none-zero OS joins . 69
6.4 QPS of LHD-s . 70
6.5 Incoming traffic of LHD-s . 71
6.6 Outgoing traffic of LHD-s . 72
6.7 Average transmission rate of LHD-s . 73
6.8 CPU usage of LHD-s . 74
6.9 Memory usage of LHD-s . 75

7.1 Architecture of LHD-d . 81
7.2 Virtual Graph . 82

8.1 QPS of LHD-d . 88
8.2 Incoming traffic of LHD-d . 89
8.3 Outgoing traffic of LHD-d . 90
8.4 Average transmission rate of LHD-d . 91
8.5 QPS of LHD-d having co-reference (LHD-d∗) 94
8.6 Incoming traffic of LHD-d having co-reference (LHD-d∗) 95
8.7 Outgoing traffic of LHD-d having co-reference (LHD-d∗) 96
8.8 Average transmission rate of LHD-d having co-reference (LHD-d∗) 97

xi

List of Tables

2.1 Examples of SPARQL syntax and algebra 13

3.1 Optimisation techniques of popular query engines 30

6.1 Possible SS & OS joins of Query 1. There are four triple patterns in Query
1. The upper right part of the table contains all SS joins of arbitrary two
different triple patterns. The lower left part contains all OS joins of
arbitrary two different triple patterns. 65

6.2 Comparison of ranking accuracy on SS joins 67

8.1 Comparison of result sizes with or without co-reference. The first columns
represent result sizes with the presence of co-reference returned by LHD-
d∗ and the naive approach while the last column represents result sizes
without the presence of co-reference returned by LHD-d. It is clear that
co-reference significantly increase result sizes. 93

A.1 Assessment queries of the evaluation framework 107
A.2 SS joins of distinct predicates . 114

xiii

List of Algorithms

1 Parallel sub-query Identification . 53

2 QEP generation of LHD-s . 54

3 Parallel QEP transformation . 55

4 QEP generation of LHD-d . 85

5 Query execution of LHD-d . 85

xv

Declaration of Authorship

I, Xin Wang, declare that this thesis titled, ‘Querying the Web of Data: Distributed
SPARQL Optimisation Techniques and Evaluation’ and the work presented in it are my
own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree
at this University.

� Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

� Where I have consulted the published work of others, this is always clearly at-
tributed.

� Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

xvi

Acknowledgements

First of all, I would like to thank my supervisor Dr. Thanassis Tiropanis for his in-
valuable guidance, support and encouragement. I am very grateful for his consistent
encouragement, as well as patience, which kept me in hope. His vigour to research and
positive attitudes towards life and work will continue to stimulate me to make progress
in my future career. Meanwhile, I also would like to thank another supervisor Prof.
Hugh C. Davis for his great suggestions. All in all, this thesis would never have gone
this far without them. Moreover, I want to thank my colleges in the Web and Internet
Science Group of University of Southampton, both past and present, for their generous
help through my Ph.D. study. I am indebted to Areeb Alowisheq, Dr. Tope Omitola
and Dr. Ian Millard. I have enjoyed all the discussions with them, both academic and
non-academic. My personal thanks are due to many friends in Southampton, Jiadi Yao,
Mr. Anthony Robson, Mrs. Ela Robson and etc. They have easy and enrich my life in
the last four years. Finally, I would like to thank my parents and grandparents for their
unconditional love and support.

xvii

Abbreviations

BGP Basic Graph Pattern

BSBM Berlin SPARQL Benchmark

DBMS Database Management System

DSEF Distributed SPARQL Evaluation Framework

HJ Hash Join

IDP Iterative Dynamic Prpgramming

LD Linked Data

LAN Local Area Network

MSJ Merge Sort Join

NLJ Nested Loop Join

Ψ Parallel Subgraph Identification

QEP Query Execution Plan

QPS Query Per Second

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

VG Virtual Graph

VM Virtual Machine

VoID Vocabulary of Interlinked Datasets

xix

Chapter 1

Introduction

The World Wide Web (or simply the Web) plays an important role in pro-

viding information. It contains a huge amount of interlinked documents1

the number of which is still increasing. With the help of various tools

such as search engines (e.g. Google), people can easily access a significant

amount of the information on the Web. However, the potential of the Web is far from

being fully exploited since most of information on the Web is stored as documents, which

are readable by humans but not understandable by machines2. A Web with machine-

readable information (i.e. data) will enable collaboration between machines and humans,

as well as sophisticated programmatic processing. A demonstrating example was given

by Berners-Lee et al. [2001], describing a scenario in which a family carries out daily

tasks with the assistance of software agents based on the information on the Web. As

shown in Figure 1.1, Lucy’s mother needed to see doctors. Looking for an appropriate

doctor requires identifying candidates according to mother’s prescription, and checking

the doctors’ availability. Instead of doing these by herself, Lucy instructed her appli-

cation to perform the task. The application firstly queried mom’s prescription that is

available as machine-understandable data, then queried for appropriate doctors in the

same manner. In the above example, the basis of the automation is that the machine

can “understand” the information of Lucy’s mother and the doctors.
1Here a “document” refers to a set of texts that are readable by humans, such as an article, or a

web page. Later in the text we use “data” to refer to structured information that can be processed by
machines.

2There are applications that are design to understand specific types of documents on the Web.
However, generally speaking there is no application can understand an arbitrary document on the Web,
since the Web is not initially designed for machine processing.

1

Chapter 1. Introduction 2

Query for

Doctors

Mom s
prescribed
treatment

Query for

Lucy

Figure 1.1: Booking a doctor using Semantic Web technologies

1.1 The Semantic Web, Linked Data and the Web of Data

To achieve machine readability, rather than solely relying on improving machines’ natu-

ral language processing ability, researchers proposed the idea of associating web content

with explicit semantics. This idea, called the Semantic Web, provides a collection of stan-

dard Semantic Web technologies that gradually transform the current web of documents

into a collection of data. Data in the Semantic Web are represented using a common

format called the Resource Description Framework (RDF) [Hayes and McBride, 2004]

which is a graph-based data model. RDF is designed to be able to make assertions

about both on-line documents and entities in the real world, which extends the express-

ibility of the Semantic Web. In addition, RDF data can be accessed and processed by

any application that complies with standard Semantic Web technologies. Representing

information using RDF makes the first step to transform the Web into a data space and

thus enables automation on more complex tasks based on knowledge on the Web.

Machine-readable data is not the whole story. The Semantic Web is decentralised in na-

ture (since it extends the WWW) and data on it can be isolated. This isolation reduces

the interoperability of data and limits the usability of the whole Semantic Web. Con-

sequently, when publishing RDF data, providing references or links to relevant datasets

becomes equally significant. Guidelines have been introduced by Tim Berners-Lee for

creating interlinked RDF data, referred to as Linked Data (LD) [Berners-Lee, 2006].

Chapter 1. Introduction 3

Repeatedly publishing LD will finally diminish data islands and lead to a global, inter-

connected data space, or the Web of Data.

1.2 Issues of Querying Linked Data

With the emergence of the Web of Data, both the quality and amount of LD are in-

creasing. Small pieces of LD can be embedded in documents. In the meantime, it

is also important to store relatively large LD in standalone repositories for convenient

access and complex processing. These LD repositories can be accessed, or queried, us-

ing the SPARQL Protocol and RDF Query Language (SPARQL) [Prud’Hommeaux and

Seaborne, 2008], which enables consumers of the Web of Data to send queries and receive

results over HTTP connections.

In the Web of Data, it is very likely that applications access data (using SPARQL)

from different repositories rather than a single source. Furthermore SPARQL queries

tend to be much more structured and complex than the keyword-matching approach

adopted by most of the contemporary searching engines. In the simple “finding doctor”

example both the mother’s prescriptions and the doctors’ information can be stored at

many different sites (Figure 1.1). To find an appropriate doctor the application has

to issue multiple queries to those datasets, and these queries are related in a way that

together they produce the desired answer. Extra care should be taken to dispatch these

queries to datasets that probably can give part of the answer. Considering the large scale

and distributed nature of LD, the ability of efficiently processing distributed SPARQL

queries (in terms of time, network traffic etc.) can be a significant requirement of those

applications. In the mean time, it is not clear whether such efficiency is achievable

using standard Semantic Web technologies. For example, distributed queries is not

explicitly supported in the first version of SPARQL specification, SPARQL 1.0. In

the latest SPARQL 1.1 [Prud’hommeaux and Buil-Aranda, 2013], a SERVICE keyword

is provided to evaluate certain triple patterns against explicitly provided data sources.

The SERVICE keyword enables straightforward data federation when users know exactly

which SPARQL endpoints can potentially answer a portion of a query. However, when a

fair amount of data sources are involved, this method can be cumbersome and inefficient.

In addition, SPARQL does not specify the infrastructure of distributed query execution,

Chapter 1. Introduction 4

where sophisticated techniques can take place and improve query performance as well

as scalability.

From a broader view, distributed SPARQL queries share many characteristics with

queries of distributed database management systems (DBMS). In a distributed DBMS,

performance and scalability of query processing are closely related to network overhead

and latency introduced in data transfer [Özsu and Valduriez, 1999], and the same rela-

tionship is also applicable in distributed SPARQL queries. As a result, many techniques

that are developed to improve the performance of queries of distributed DBMS become

relevant in the context of processing distributed SPARQL queries. For example, dy-

namic programming, which is widely used in distributed DBMS query optimisation, is

also adopted in SPARQL query engines such as DARQ [Quilitz, 2008] and SPLENDID

[Görlitz and Staab, 2011]. On the other hand, however, there are also differences be-

tween distributed SPARQL queries and distributed DBMS queries. For example, in most

distributed DBMS data can be shipped among datasets. In addition, statistics of data,

including frequency and distribution of certain patterns in the data, can be prepared

according to the demand of query optimisation. However, the above advantages are not

available in the LD cloud on a large scale. Furthermore, accurate and rich statistics,

which are critical to query optimisation, are difficult to obtain on a large scale. There

is a trend for datasets to adopt the Vocabulary of Interlinked Datasets (VoID) [Alexan-

der et al., 2009] which provides an interoperative way to publish general information as

well as statistics of the datasets. However, statistics provided by VoID are coarse and

not flexible to meet different optimisation demands. Concerns of distributed DBMS,

such as network traffic and query processing time, can be even more important in the

LD context. When querying LD, all data are transferred through the Internet which

is, generally speaking, slower and less stable than in distributed DBMS which tends to

use local area network (LAN). The large scale of the LD cloud, and limitations such

as network bandwidth and computing power of datasets bring more challenges into the

research of distributed SPARQL query optimisation.

Moreover, in the LD cloud it is common to have multiple URIs referring to the same

entity, which is known as co-reference. Co-reference exists in several fields such as

linguistics and knowledge management, due to “inherently distributed and disparate

nature of the information” [Glaser et al., 2007]. It is unlikely that a single URI can

be accepted in all specific datasets in the LD cloud. In LD co-reference relationships

Chapter 1. Introduction 5

between URIs are represented using the owl:sameAs property [Carroll et al., 2012].

When querying the Web of Data, taking owl:sameAs statements into account increase

the possibility of having additional results. Meanwhile, many unique challenges arise and

extra care is required for processing distributed SPARQL queries having co-reference.

Similarities between distributed SPARQL and distributed DBMS make a strong case to

exploit well-developed distributed DBMS techniques in the context of SPARQL. On the

other hand unique challenges of distributed SPARQL processing demand specifically

tailored approaches. Additionally, we hypothesise that efficiency in query processing

cannot be achieved by an individual technique. Rather, it is the combination of tech-

niques that leads to better performance. Due to the complexity of the Web of Data, it

is unlikely to have one set of techniques that can provide desirable performance under

all circumstances. To this end, schemes of techniques have to be tailored with respect

to (w.r.t) certain environments.

1.3 Hypothesis and Contributions

In this thesis we explore a variety of techniques for improving the efficiency of distributed

SPARQL query processing on large scale. It is posited in this thesis that, obtaining

statistics from VoID files provided by RDF datasets, is the preferred or even only choice,

for distributed SPARQL query processing in large-scale RDF networks. It follows that

only limited statistics are available for query processing, and the presence of co-reference

further decreases the accuracy of VoID statistics.

Based on the above assumptions we hypothesise that:

• VoID files or existing selectivity-based cost estimation methods are not sufficiently

accurate for approximating QEPs that lead to minimum response time.

• It is possible to significantly reduce response time of LD queries on a large scale,

by using both runtime statistics and parallelism.

• It is possible to address co-reference in LD queries within acceptable time, by

considering co-referent URIs as a variable with multiple values.

Chapter 1. Introduction 6

The investigation of the aforementioned hypotheses would require: 1) typical scenarios,

which could reflect the influence of statistics and co-reference on query efficiency, and in

the mean time reasonably simulate the actual Web of Data; 2) an evaluation framework,

which is capable of providing quantify and fair comparison among different approaches

of LD queries in a wide range of scenarios on the Web of Data; 3) novel approaches

designed to exploit statistics as well as co-reference in typical scenarios; 4) implements

of the proposed approaches, which are compared with the state-of-the-art solutions over

a large RDF network so as to obtain convincing evidence. Following this methodology,

the contribution of this thesis could be summarise as follow.

We propose a benchmark called Distributed SPARQL Evaluation Framework (DSEF),

that evaluates optimisation approaches in environments reflecting the actual Web of

Data. By utilising artificial data and a virtual-machine-based infrastructure, DSEF

is able to simulate RDF networks of arbitrary sizes. DSEF extends the data of the

widely accepted Berlin SPARQL Benchmark (BSBM) [Bizer and Schultz, 2009] with co-

reference, based on the distribution of co-reference in the real world. We also carefully

modify the queries of BSBM in a way that emphases query efficiency in distributed

settings while not loosing the original semantics of the queries. DSEF offers a set of

scalable tools with which users can 1) generate an arbitrary number of triples following

the BSBM data model; 2) generate co-reference for a dataset following the distribution

of co-reference in the real world; 3) split and dispatch a dataset to remote endpoints

following a given distribution; 4) generate detailed VoID statistics and 5) automatically

evaluate distributed SPARQL engines and generate assessment reports.

We examine two typical scenarios on the Web of Data. In one scenario VoID files con-

taining detailed statistics is provided by all datasets. We consider such statistics as the

up bound of statistics that can be available on a large scale in the LD cloud. In the

other scenario, co-reference is taken into account in query processing. As stated before,

statistics of co-reference are unlikely to be included in VoID, and therefore more ran-

domness will be introduced into query optimisation decisions. This scenario also covers a

more general case that no reliable VoID statistics are available, which we consider as the

lower bound of available statistics in the LD cloud. With respect to the characteristic

of each scenario we investigate and propose different techniques. For the scenario with

detailed VoID statistics, we propose an algorithm called Ψ to increase the degree of par-

allelism of query execution and thus better exploit available bandwidth and computing

Chapter 1. Introduction 7

resources. While parallelism can increase the efficiency of query execution, it tend to

increase intermediate result size and thus increase network traffic, which is considered

undesirable. Ψ identifies for a given query the components that can be processed in

parallel without increasing network traffic. Since detailed statistics are available in this

scenario, we adopt a static optimisation approach3 that exhaustively searches for the

optimal query execution plan. The static optimisation happens after Ψ breaks a query

into smaller components which altogether are less complex to optimise than the original

query. Furthermore, we develop a mechanism that maximally exploits bandwidth and

computing power of datasets to further increase query efficiency.

For the scenario having co-reference, we propose a model called Virtual Graph (VG) that

regards co-referent URIs as a variable with pre-defined bindings. Instead of issuing a

separate query for each co-referent query of the original one, VG combines all co-referent

queries into one query to save query requests and enable optimisation with respect to

all co-referent queries. Due to the presence of co-reference, VoID statistics are no more

reliable. As a result, we exploit runtime statistics in this scenario, and combine Ψ with

a dynamic optimisation approach. A query is firstly processed by Ψ and each sub-query

is optimised by the dynamic optimisation using runtime statistics. The break-then-

optimise process repeats each time new statistics become available during execution.

The parallel execution mechanism used in the previous scenario is applied here as well.

We implement both optimisation schemes as two distributed SPARQL engines, LHD-

s (“s” for “static optimisation”) and LHD-d (“d” for “dynamic optimisation”). Both

engines are built using Jena4, which is a well established Java-based platform for building

Semantic Web applications. LHD-s and LHD-d can be used as standalone query engines

or integrated into systems that require efficient LD queries. Using DESF we evaluate

LHD-s, LHD-d and existing distributed SPARQL engines, and provide evidence that

supports our hypotheses.

This thesis also contains contributions that are derived from the creation of LHD engines

and DSEF, and are potentially beneficial for other researchers in the same area. A

complete list of our contributions is detailed below.
3Static optimisation optimises queries before execution, as opposed to dynamic optimisation, which

optimises queries during execution.
4http://jena.apache.org/

http://jena.apache.org/

Chapter 1. Introduction 8

• We provide a comprehensive and in depth review of relevant distributed DBMS

techniques and the-state-of-the-art approaches of distributed SPARQL processing.

• We propose and develop DSEF, a flexible and scalable benchmark for evaluating

distributed SPARQL engines in environments reflecting the actual Web of Data.

In addition we investigate the distribution of co-reference in the real world, based

on which DSEF is able to simulate co-reference for arbitrary datasets.

• We propose an algorithm called Ψ that increases the degree of parallelism in query

processing without increasing network traffic. We combine Ψ with a VoID-based

static optimisation approach for the scenario in which detailed VoID statistics

are available. Furthermore we propose a parallel query execution mechanism that

exploits bandwidth of remote endpoints. Based on the above techniques we develop

a distributed SPARQL engine called LHD-s.

• We propose a model called Virtual Graph that transfers a query and its co-reference

into a single query with pre-defined bindings. We combine Virtual Graph, Ψ

and a runtime-based dynamic optimisation approach for the scenario in which

co-reference is taken into account. Based on the above techniques as well as the

parallel execution mechanism we develop a distributed SPARQL engine called

LHD-d.

• We design and perform experiments that examine LHD and existing engines in

detail. The experiments confirm that our optimisation schemes substantially im-

prove query efficiency. Furthermore, the experiments provide evidence that VoID

files or existing cost estimation methods are not sufficiently accurate, and runtime-

statistics-based query optimisation is promising.

1.4 Thesis Overview

The remaining part of this thesis is organised as follows:

Beginning with chapter 2 we explain terminologies used in this thesis and formally de-

scribe the basis of distributed SPARQL. Also in this chapter we describe the architecture

Chapter 1. Introduction 9

of distributed SPARQL processing. Following the preliminaries, query processing tech-

niques that are well developed in distributed DBMS, as well as existing approaches of

querying the Web of Data, are reviewed in chapter 3.

The core of this document includes the two LHD schemes and their evaluations. We

firstly describe DSEF in chapter 4, to provide necessary details of later evaluations. In

the following four chapters we provide details of the two LHD schemes and their eval-

uations. LHD-s is described in chapter 5, including: 1) the scenario that the scheme

targets and corresponding challenges; 2) details of adopted techniques and implementa-

tion of the scheme. The evaluation of LHD-s is given in the following chapter (chapter

6), in which the scheme is thoroughly analysed. Following the same structure, LHD-d

is described in chapter 7 and evaluated in chapter 8.

Finally, conclusions regarding techniques of the two schemes, open issues of querying

the Web of Data, and our future plans are provided in chapter 9.

Chapter 2

Preliminaries

In thesis we base our discussion upon two concepts: RDF and SPARQL. On the

Semantic Web information is represented using RDF, which is a World Wide

Web Consortium (W3C) standard data model [Hayes and McBride, 2004]. RDF

makes statements about web resources and real-world entities in the form of

triples each of which consists of a subject, a predicate and an object. The subject refers

to the resource described in the statement and the predicate expresses the relation

between the subject and the object. RDF is very flexible to model various information

on the Semantic Web.

SPARQL is the query language for RDF which is also a W3C standard. A SPARQL

query contains triple patterns which are triples having variable subjects, predicates or

objects. Each triple pattern matches one or more triples. Complex queries can be

constructed by combining many triple patterns together. Since both RDF and SPARQL

are W3C standards, they provide excellent interoperability across the Semantic Web.

In order to provide a clear context for discussions in this thesis, we introduce in this

chapter basic terminologies and concepts that are necessary for the remaining part of

this thesis. In the following we give formal definitions of RDF and SPARQL. Based on

those definitions we describe the behaviours of distributed SPARQL query evaluation.

In addition we describe four stages of distributed SPARQL processing that exist in many

distributed SPARQL engines.

11

Chapter 2. Preliminaries 12

2.1 Basis of RDF and SPARQL Query Language

SPARQL is based on matching graph patterns against RDF datasets, each of which

contains one or more RDF graphs. Intuitively, a graph pattern can be regarded as

an RDF graph having variables. A successful matching between a graph pattern and an

RDF graph represents the procedure that by replacing variables in the graph pattern with

concrete values, the graph pattern becomes a sub-graph of the RDF graph. An example

is given by figure 2.1. In this section we describe the aforementioned concepts using

formal definitions, following RDF and SPARQL specifications (namely RDF Concepts

and Abstract Syntax [Klyne et al., 2004], RDF Semantics [Hayes and McBride, 2004]

and SPARQL 1.1 Query Language [Prud’hommeaux and Buil-Aranda, 2013]). For more

details of RDF and SPARQL we refer the interested reader to the original documents

and Angles and Gutierrez [2008], Gutierrez [2008], Pérez and Arenas [2009].

?x foaf:knows ?y ;

 foaf:name ?nameX .

?y foaf:name ?nameY .

_:a foaf:name "Alice" .

_:a foaf:knows _:b .

_:b foaf:name "Bob" .

?nameX= Alice

?nameY= Bob

Figure 2.1: Matching a graph pattern (on the left) against an RDF graph (on the
right).

We denote by I, B and L the pair-wise disjoint sets of URIs, Blank nodes and Literals

respectively. An RDF triple, or simply a triple, denoted by (s, p, o), is a member of the

set (I ∪B)× I× (I ∪B∪L). s is called the subject, p is called the predicate or property,

and o is called the object. An RDF graph is a set of RDF triples.

Definition 2.1. An RDF dataset is a set of RDF graphs.

In our context an RDF dataset contains only one RDF graph for simplicity, since the

number of graphs is irrelevant to the problem of this thesis. In the remaining part of

this thesis we use RDF dataset and RDF graph interchangeably.

We denote by T the set I ∪ B ∪ L, which is the set of RDF terms, and by V the set of

variables. A triple pattern is a member of the set (T ∪ V)× (I ∪ V)× (T ∪ V).

Definition 2.2. A Basic Graph Pattern (BGP) is a set of triple patterns.

In the SPARQL syntax a BGP is represented as a list of triple patterns enclosed by

braces, as shown in table 2.1. BGPs are the building blocks of a more complex structure

Chapter 2. Preliminaries 13

called graph pattern. In this thesis we focus three basic forms of graph pattern shown

in table 2.1: conjunction graph pattern, that returns results matching all presented

BGPs; alternative graph pattern, that returns results matching either BGP; and optional

graph pattern, that returns results matching the first BGP as well as results matching

the second BGP if possible. We introduce binary operators Join, Union and LeftJoin

to represent the aforementioned three BGP compositions. A graph pattern can be

recursively defined as the following SPARQL algebra expressions:

Definition 2.3. 1) A BGP is a graph pattern; 2) if P1, P2 are graph patterns, then

Join(P1, P2), Union(P1, P2) and LeftJoin(P1, P2) are graph patterns.

Table 2.1: Examples of SPARQL syntax and algebra

Query form SPARQL syntax SPARQL algebra

BGP { ?s :p1 ?v1 . ?s :p2 ?v2 } BGP(?s :p1 ?v1 . ?s :p2 ?v2)

Conjuction { { ?s :p1 ?v1 }
{?s :p2 ?v2 } }

Join(BGP(?s :p1 ?v1),
BGP(?s :p2 ?v2))

Altenatrive { { ?s :p1 ?v1 }
UNION {?s :p2 ?v2 } }

Union(BGP(?s :p1 ?v1),
BGP(?s :p2 ?v2))

Optional { ?s :p1 ?v1
OPTIONAL {?s :p2 ?v2 } }

LeftJoin(BGP(?s :p1 ?v1),
BGP(?s :p2 ?v2))

SPARQL is based around graph pattern matching, which is also the main subject of the

research described in this thesis. Although SPARQL queries are not only composed by

graph patterns, other components1 are insignificant in the context of this thesis. In the

remaining part we do not distinguish SPARQL queries and graph patterns. Matching a

graph pattern against an RDF dataset is carried through matching triple patterns. The

results of the matching are variable-value pairs having the following property: replacing

the variables by their corresponding values makes the triple pattern a triple in the target

RDF graph. A result of matching a triple pattern t against an RDF dataset d, is formally

defined as a partial function µ : V → T , that µ(t) ∈ d. µ(t) is the triple obtained by

mapping the variables of t to RDF terms according to µ. µ is called a solution mapping.

The domain of µ denoted by dom(µ) is the subset of V where µ is defined (in this case

dom(µ) is the set of variables of t). Given a graph pattern p, we denote by var(p) the

set of variables occurring in p. The evaluation of p over an RDF dataset d, denoted
1For more details please refer to Prud’hommeaux and Buil-Aranda [2013]

Chapter 2. Preliminaries 14

by eval(d, p), is a set of solution mappings {µ|dom(µ) = var(p) ∧ µ(p) ∈ d}. In the

remaining part of this thesis we refer the set of solution mapping as the bindings of a

SPARQL query (the evaluation of a query over a dataset to be precise).

We say two solution mappings µ1, µ2 are compatible if for every ?v ∈ dom(µ1)∩dom(µ2)

it holds that µ1(?v) = µ2(?v), i.e. any variable occurs in both mappings must be mapped

to the same value. We denote the compatibility as cmp(µ1, µ2) whose value is “true” if

µ1 and µ2 are compatible. Let Ω1, Ω2 be sets of solution mappings, we define the join,

union, and set minus of Ω1, Ω2 as the following equations:

Ω1 on Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ cmp(µ1, µ2)} (2.1)

Ω1 ∪ Ω2 = {µ|µ ∈ Ω1 ∨ µ ∈ Ω2} (2.2)

Ω1 \ Ω2 = {µ|µ ∈ Ω1 ∧ ∀µ′. µ′ ∈ Ω2 → ¬cmp(µ, µ′)} (2.3)

The results of evaluating conjunction, UNION and OPTIONAL queries are specified by

the following equations:

eval(d, Join(p1, p2)) = eval(d, p1) on eval(d, p2) (2.4)

eval(d,Union(p1, p2)) = eval(d, p1) ∪ eval(d, p2) (2.5)

eval(d,LeftJoin(p1, p2)) = eval(d, Join(p1, p2)) ∪ (eval(d, p1) \ eval(d, p2)) (2.6)

2.2 Basis of Distributed SPARQL Processing

By querying multiple RDF datasets, it is possible to get results that cannot be given

by any individual dataset. We formally describe this behaviour and give the basic rules

that are followed in this thesis.

Chapter 2. Preliminaries 15

Evaluating a SPARQL query over a set of RDF datasets is regarded as evaluating the

query over the RDF graph that is the union of these RDF datasets2. We denote by D

a set of RDF datasets, that is:

eval(D, p) = eval(G, p), where G =
⋃
d∈D

d (2.7)

In case of evaluating a query t1 AND t2, where t1, t2 are triple patterns, over two datasets

d1 and d2, the following equation holds following equation 2.4 and 2.7:

eval(d1 ∪ d2, t1 AND t2)

=(eval(d1, t1) ∪ eval(d2, t1)) on (eval(d1, t2) ∪ eval(d2, t2)) (2.8)

=(eval(d1, t1) on eval(d1, t2)) ∪ (eval(d2, t1) on eval(d2, t2))

∪ (eval(d1, t2) on eval(d2, t1)) ∪ (eval(d1, t1) on eval(d2, t2)) (2.9)

For convenience, we call a join of results from the same dataset (e.g. eval(d1, t1) on

eval(d1, t2)) a same-site join, and one of results from different datasets (e.g. eval(d1, t1) on

eval(d2, t2)) a cross-site join. A same-site join equals evaluating all triple patterns to-

gether at a single dataset, which is the same behaviour of centralised SPARQL pro-

cessing. Meanwhile, equation 2.9 shows that the results of a distributed query includes

the results of all same-site joins and cross-site joins. Therefore, distributed SPARQL

query processing is more than evaluating a query at different datasets and combining

the results together. In addition, it is the cross-site joins that produce results which are

not available at any individual dataset. As shown in figure 2.2, either D1 or D2 alone

can answer the given query (i.e. the same-site join at either D1 or D2 is empty), while

a result can be returned by evaluating t1 and t2 respectively at D1 and D2 (i.e. the

cross-site join eval(d1, t1) on eval(d2, t2) is not empty).

Some approaches [Quilitz, 2008, Schwarte et al., 2011] evaluate triple patterns as one

query when possible (i.e. all cross-site joins of these triple patterns are empty) to reduce

the number of results returned. However, it is unlikely to do so when many datasets
2The precise term here is a merge of RDF graphs, which is a little more complicated than union when

blank nodes are contained in RDF graphs. Details of RDF merge can be found in Hayes and McBride
[2004]

Chapter 2. Preliminaries 16

t2: ?y foaf:name ?nameY .

t1: ?x foaf:knows ?y . _:a foaf:knows _:b

D1

_:b foaf:name "Bob"

D2

Figure 2.2: Two triple patterns t1 and t2 are evaluated against two datasets D1 and
D2. Either dataset can produce results for the two triple patterns, while together give
a valid result.

are involved3. In addition, evaluating multiple triple patterns together sometimes even

increases the number of results [Quilitz, 2008]. Therefore, in our approaches (described

in chapter 5 and 7) triple patterns are evaluated individually, and the results of each

triple pattern are joined afterwards.

2.3 Stages of Distributed SPARQL Query Processing

In this section we describe a staged architecture that covers many distributed SPARQL

query engines (e.g. DARQ, FedX, DSP, SPLENDID). This architecture divides dis-

tributed SPARQL query processing into a series of stages. Through these stages a

SPARQL query string is transformed into an efficient execution strategy, called a query

execution plan (QEP), composed by low level operations (e.g. executing triple patterns)

on remote datasets. Figure 2.3 illustrates how distributed SPARQL queries are pro-

cessed according to this architecture, in an environment that consists of a number of

SPARQL endpoints.

Given a SPARQL query string it is firstly parsed into a SPARQL algebra expression

that enable faster processing. Then the query engine loads service descriptions, which

are built from the metadata of involved datasets. Service descriptions are crucial for

later stages such as source selection and query optimisation. As stated in last section

(section 2.2), each triple pattern is evaluated individually against all datasets in order

to have complete results. In the meantime, it is possible to identify datasets that will

not contribute any result for a specific triple pattern. This stage is called source selec-

tion that eliminates irrelevant datasets for triple patterns based on service descriptions.
3From equation 2.9 it follows that the more triple patterns and datasets, the less the chance that all

cross-site joins are empty.

Chapter 2. Preliminaries 17

Parse

Metadata

Distributed SPARQL Engine

Service Description

Source Seclection

Query Optimisation

Query Execution

Linked Open Data

SPARQL

Endpoint

SPARQL

Endpoint

SPARQL

Endpoint

Query

?x foaf:knows ?y ;

?x foaf:name ?nameX.

?y foaf:name ?nameY.

Sub-query

Sub-query

Sub-query

Figure 2.3: This figure shows different stages and relevant components of distributed
SPARQL processing. Solid frames present local components while dashed frames
present remote components. Local data flow is represented as solid lines while remote
data transfer is represented as dashed lines.

After associating triple patterns with datasets, the algebra expression is transformed

into a QEP that represents an execution strategy of the query containing operations of

executing triple patterns and joining results. For a given query more than one QEPs

can provide the same result but have different I/O, CPU and communication costs in

terms of time. At the query optimisation stage, these equivalent QEPs are examined

and the one with minimum cost is selected. The optimal QEP is executed at the query

execution stage and the whole query processing finishes.

It is worth mentioning that the architecture described here is not the only possible way

for processing LD queries. For example, another LD query strategy, called link traversal

based query execution [Hartig, 2011], does not rely at all on metadata of data sources.

Rather, approaches following the link traversal strategy (e.g. Hartig and Bizer [2009] and

Ladwig and Tran [2011]) discover relevant data sources by resolving URIs in queries and

intermediate results. In this thesis we focus on approaches that follow the architecture

shown in figure 2.3 and others are out of the scope.

1. Query parsing compiles SPARQL query strings into algebra expressions, as

shown in table 2.1. All later steps operate on the algebraic expressions rather

than the original queries for the sake of efficiency and convenience. The query

parsing algorithm is described in the SPARQL specification and implemented in

Chapter 2. Preliminaries 18

SPARQL platforms (e.g. Jena4 and Sesame5). Distributed SPARQL engines usu-

ally leave the task of query parsing to the platforms on which they are built.

2. Service descriptions provide structural and statistical information of data sources

for query processing. Service descriptions can be collected either from data sources

directly or from third party indices of those data sources. Detailed and accurate

service descriptions can lever the performance of later steps, especially for query

optimisation. In the mean time, they cost a lot to obtain and thus compromise

the scalability of linked data queries. In addition, it may be unrealistic to rely

on detailed service descriptions on a large scale since issues of incompatible or

incomplete service descriptions arise.

3. Source selection is the process by which each triple pattern in a query is as-

sociated to data sources that potentially can contribute result6. Source selection

filters out irrelevant sources to reduces overheads of later stages. In addition it

increases the accuracy of cost estimation of queries since only the statistics of rele-

vant datasets would be considered. Relevant data sources are usually identified by

analysing service descriptions, or directly checking the datasets for whether certain

triple patterns can be answered. More details of these methods are described in

section 3.2.

4. Query optimisation refers to the process that produces a QEP having the min-

imum cost w.r.t an objective cost function, called cost model. For a given query

there are more than one valid QEP that differ in the order and implementations

of operations. These QEPs compose the search space of query optimisation. The

search space is examined by an optimisation algorithm which uses the cost model

to assess each QEP and selects the one with minimum cost.

• Cost models include cost functions to estimate the costs of QEPs based on

statistics of service descriptions. The costs are usually measured in terms of

execution time of I/O, CPU instruction and communication over the network.

Communication is the dominant factor of distributed query processing, espe-

cially for LD queries which take place on the Web. The effectiveness of query
4http://incubator.apache.org/jena/
5http://www.openrdf.org/
6Source selection is close to the data localisation process [Özsu and Valduriez, 1999] in distributed

DBMS that determines the fragments of data that are involved in a certain part of the query

http://incubator.apache.org/jena/
http://www.openrdf.org/

Chapter 2. Preliminaries 19

optimisation is closely relevant to the accuracy of cost models. Inaccurate

cost estimations lead to suboptimal QEPs, and thus affect the performance

of the actual query execution. To be accurate detailed statistics, provided

by service descriptions, are required. In the meantime collecting such service

descriptions is costly. In practice it is a trade off between the detail of service

descriptions and the accuracy of cost estimations.

• Optimisation algorithms explore the space of possible QEPs of given

queries, and produce the optimal QEPs based on estimations given by the

cost models. For queries whose search space is relatively small it is possi-

ble to identify the optimal QEPs using exhaustive search algorithms. For

queries having large search space this approach becomes very time consum-

ing. Instead, algorithms with less complexity, as well as heuristics are used

for complex queries to produce QEPs close to optimal within acceptable time.

Depending on the timing when the QEP is constructed relative to the time of

query execution, query optimisation can be divided into two categories: statistic

optimisation and dynamic optimisation. Static optimisation prepares the QEP

before query execution, based on estimations given by the cost model. Once the

QEP is constructed, it can be reused in multiple query executions, and thus the cost

of optimisation can be amortized. In addition, exhaustive search algorithms can be

used since the cost of any candidate QEP can be estimated, and the optimal QEP

can be found. Dynamic optimisation constructs the QEP during query execution.

The accurate statistics of operations executed previously can be used to determine

the best next move (the greedy approach). As a result, the optimal QEP may be

missed. Dynamic optimisation does not rely on service descriptions as much as

static optimisation does.

5. Query execution refers to the process of executing the QEPs produced in query

optimisation. This stage determines the actual implementation of each operation,

especially the implementation of join operations. In most distributed SPARQL en-

gines, join operations are implemented following an iterator model [Graefe, 1993]

which has been widely used in both centralised and distributed DBMS. Further-

more, the way in which those operations are executed is critical to the performance

of query execution. For example, operations can be pipelined and/or executed in

parallel [DeWitt and Gray, 1992]. More details are given in chapter 3.

Chapter 3

Related Work

Distributed SPARQL query processing can be regarded as a special case

of query processing in distributed DBMSs. In Özsu and Valduriez [1999]

distributed DBMSs have been classified w.r.t three dimensions: auton-

omy, distribution and heterogeneity. The autonomy refers to the distri-

bution of control. The distribution dimension refers to the distribution of data. Two

popular ways are client/server (CS) distribution, that data are hosted at server nodes

while client nodes provide application environment; and peer-to-peer (P2P) distribu-

tion, that every node has full DBMS functionality and is able to communicate with

each other. Heterogeneity refers to the differences among datasets, such as data mod-

els, query languages and networking protocols. Distributed SPARQL query processing

involves query engines and independent SPARQL endpoints, which form a autonomous,

CS-structured, homogeneous distributed DBMS whose scale is extremely large.

In the last a few decades many techniques have been developed to improve the efficiency

of query processing in distributed DBMSs. These techniques inspire and stimulate de-

velopment of distributed SPARQL query processing. However, most of these techniques

are developed for distributed DBMSs that have smaller scale, more accurate statistics,

and are often under uniformed administration. Meanwhile, detailed statistics of RDF

datasets are difficult to obtain on a large scale, and the communication between query

engines and SPARQL endpoints are via HTTP requests. These unique features of dis-

tributed SPARQL determine that it is not possible to use only distributed DBMS tech-

niques, and set the demands for techniques specifically tailored for distributed SPARQL

21

Chapter 3. Related Work 22

processing.

This chapter is divided into three parts. First, we will give a comprehensive review

of relevant distributed DBMS techniques, which serves as the technical background for

distributed SPARQL approaches discussed in this thesis. This part focuses on techniques

of query optimisation and parallelism. The characteristics of the LD cloud make it very

difficult to build indices for RDF datasets on a large scale. The large number of RDF

datasets raises a high bar for maintaining detailed indices or statistics. In addition, many

RDF datasets can only be accessed via SPARQL endpoints which significantly limit the

efficiency of gathering statistics for building indices. Rather, it is more promising to rely

on metadata provide by RDF datasets using widely accepted format, such as VoID. As

a result we consider that indexing techniques and data structures are more appropriate

in environments of smaller scale rather than the LD cloud, and they are not covered in

the review.

In the second part, we discuss how distributed DBMS techniques, as well as unique

distributed SPARQL techniques, are adopted in existing distributed SPARQL engines.

Finally, a survey of RDF store benchmarks is given at the end of this chapter, which

serves as the background of the evaluation framework that we propose in chapter 4.

3.1 Distributed Query Processing Techniques

Query processing in distributed DBMS involves a broad range of techniques including

indexing data structures, query optimisation algorithms, cost models, implementation

of joins and execution of query operations. In this section we focus on techniques

significantly relevant to distributed SPARQL query processing, that mainly fall into

query optimisation and execution.

Due to the importance of query optimisation in distributed DBMS, a large number of

algorithms have been proposed. Existing optimisation algorithms belong to two basic

categories: exhaustive search and approximate algorithms. With a sufficiently accurate

cost model, exhaustive search algorithms guarantee to produce the optimal QEP at the

cost of exponential time and space complexity. These algorithms generate all possible

QEPs, estimate those QEPs using a given cost model, and identify the one with the

Chapter 3. Related Work 23

minimum estimated cost (i.e. enumerate all instances in the QEP searching space). A

representative among exhaustive search algorithms is dynamic programming, which is

first adopted in System R [Selinger et al., 1979] and later generalized for distributed

DBMS in System R∗ [Lohman, 1988]. Dynamic programming produces the optimal

QEP through several iterations. At the beginning it generates plans containing only

one operation (access operations). In each iteration, it joins plans generated in earlier

iterations to produce more complex plans (i.e. plans that contain more operations),

and prunes those plans which have alternatives that can do at least the same work at a

lower cost. At the end of the algorithm, the QEP which contains all operations and has

the lowest cost is selected as the optimal one. More detailed descriptions of dynamic

programming can be found in Kossmann and Stocker [2000].

The complexity of exhaustive search, including dynamic programming, makes it less

favourable to optimise complex queries. To this end, approximate algorithms, which

approximate the optimal plan with lower complexity, are proposed. Approximate al-

gorithms used for query optimisation can be further divided into heuristics and meta-

heuristics. Heuristics adopts predefined rules to filter out QEPs, and thus reduces com-

plexity. Greedy algorithms that adopt the “minimum cost rule” (i.e. keeping only the

operation with the minimum cost in each iteration) are widely used. Between dynamic

programming and greedy algorithms lies the family of iterative dynamic programming

(IDP), which can be regarded as a combination of dynamic programming and greedy

heuristics [Kossmann and Stocker, 2000]. Iterative dynamic programming provides the

flexibility to balance between the quality of QEP and the complexity of query optimi-

sation. Metaheuristics, including randomized algorithms and genetic algorithms, have

not been applied in distributed SPARQL optimisation by the time this paper is written,

and therefore are not discussed here. A detailed review of randomized algorithms and

genetic algorithms in query optimisation is given by Steinbrunn et al. [1997].

The effectiveness of query optimisation is closely related to the accuracy of cost models.

In DBMS, the cost of a QEP is usually estimated as the sum of the cost of all operations

of this plan [Mackert, 1988]. The cost of an operation consists of various resource

consumptions, such as CPU and memory, with different weight. In distributed DBMS,

communication cost becomes significant and this is even more true in an environment

like the LD cloud where communication is over the Internet via HTTP protocols. The

cost of a QEP is closely related to the number of intermediate results. In statistic

Chapter 3. Related Work 24

optimisation, the number of intermediate results can be estimated using the concept

of selectivity factor [Selinger et al., 1979, Poosala and Ioannidis, 1997], which is the

expected fraction of results satisfying a condition. For example, the selectivity of having

head in a coin tossing is about 0.5. In the context of this thesis, the selectivity factor of

a triple pattern corresponds to the fraction of triples matching the pattern [Bernstein

et al., 2007]. The estimation of the selectivity of triple patterns will be described later in

this chapter. In dynamic optimisation, the accurate number of intermediate results can

be obtained from previous execution. Rather than the resource consumptions, response

time cost models focus on the time of query execution, and can reflect the advantages of

using parallelism in query execution. These cost models are usually chosen when query

response time is critical.

Query execution involves the implementations of the operations of a QEP and the way

to execute those operations. In QEPs, join operation (denoted by on) is one of the fun-

damental and most difficult operations. Various implementations of the join operation,

such as Nested Loop Join (NLJ), Hash Join (HJ) and Merge Sort Join (MSJ), have

been proposed to improve the performance of query execution in DBMS. To execute

A on B, NLJ scans for each tuple of A, all tuples of B to find the join results; HJ

maintains a hash table to produce the join results; MSJ sorts the tuples of A and B

and then alternately scans A and B only once to compute the join results. A detailed

review of these join implementations is given by Mishra and Eich [1992]. In distributed

DBMS, two extensions are proposed in order to reduce communication cost. One is

Semijoin [Bernstein et al., 1981]. Given two tables A and B at two sites S1 and S2

receptively, Semijoin sends the column(s) of joined key(s) of A to S2, computes the join

of B with those A tuples at S2, sends the join results back to S1 and matches these

results with A. This process can be formulated as A on B = A on (B n π(A)), in which

n is the semijoin operator1, and π(A) selects the join columns of A. Another variation

is Bind Join [Haas et al., 1997] that simulates a Nested-Loops Join in a heterogeneous

environment. Bind Join (BJ) is designed to take advantage of the fact that many com-

ponent databases accept input parameters and therefore intermediate bindings are sent

together with queries as additional filters. Both Semijoin and Bind Join send out extra

data to filter out undesired results at the remote dataset and thus can reduce network

overheads. In the meantime they also increase the number of operations [Özsu and
1The semijoin operator denoted by n is different from Semijoin introduced above.

Chapter 3. Related Work 25

Valduriez, 1999]. Therefore, extra care should be taken to make sure that the network

traffic caused by sending out filter data and additional operations is not beyond the

amount of traffic saved by filtering out undesired result. Sometimes parallelism is an ef-

ficient technique that can reduce response time. To achieve parallelism, query execution

is usually broken down into tasks that can be executed in parallel, and multiple threads

are used to execute these tasks. For example, using multiple threads more than sites can

be queried simultaneously rather than sequentially. We can also partition A on B into

(A1 on B) ∪ (A2 on B) where A = A1 ∪A2, and execute A1 on B and A2 on B in parallel.

In a network in which the communication between data site is bursty, a join process can

be “blocked” when waiting for the delivery of tuples. In such a case, Double-Pipelined

(or non-blocking or symmetric) Hash Join (DPHJ) [Raschid and Su, 1986, Wilschut and

Apers, 1993, Urhan and Franklin, 1999, Ives et al., 1999] that fully exploits pipeline and

parallelism is widely adopted to reduce the response time. DPHJ maintains two hash

tables for A and B respectively. When a tuple of one table, assumed A, arrives, this

tuple is inserted into the hash table of A, and at the same time probed against the hash

table of B to find the matching tuples. DPHJ is able to continue the join process unless

the tuples of both tables are delayed. Also it can deliver the results of a query as soon

as possible.

3.2 Distributed SPARQL Query Engines

The differences between the Web of Data and distributed DBMS bring specific chal-

lenges to distributed SPARQL query processing. Compared to a distributed DBMS, the

Web of Data contains a much larger number of SPARQL endpoints whose ability are

constrained to query answering, and collecting service descriptions on a large scale is

not easy. Given that, some query engines, such as NetworkedGraph [Schenk and Staab,

2008], SemaPlorer [Schenk et al., 2009] and FedX [Schwarte et al., 2011] do not rely on

service descriptions, while others, such as DARQ and DSP, maintain local files which

contain basic statistics of SPARQL endpoints. Furthermore, sophisticated indexing tech-

niques are used to describe LD. Stuckenschmidt et al. [2004] proposed an index structure

based on property chain. Harth and Decker [2006], Neumann [2008] and Fletcher and

Beck [2009] proposed different approaches based on B+-tree that index all possible com-

binations of subject, predicate and object. Harth et al. [2010] used QTree to build RDF

Chapter 3. Related Work 26

data summaries. A good review of indexing techniques in SPARQL data management is

provided by Staab [2011]. In addition, tools like RDFStats [Langegger and Woss, 2009]

are available for collecting statistics of RDF data. The above approaches are able to

provide detailed service descriptions, however, they cost much to build and cannot be

widely reused between different query engines. To this end, approaches such as SPARQL

1.1 Service Description [Williams and Institute, 2011], and especially, the Vocabulary

of Interlinked Datasets (VoID) [Alexander et al., 2009] are proposed to provide general

terms and patterns for describing RDF datasets. VoID describes datasets from four as-

pects: general information (e.g. title); access metadata (e.g. accessible URIs); structural

metadata (e.g. statistics) and linkages to other datasets. Compared to those preceding

indexing techniques, VoID can be easily released alongside the datasets, and discovered

via links in the data it describes or from known VoID repositories. The interoperability

and convenience of VoID attracts more and more attention from both data publishers

and consumers. For example, Böhm et al. [2011] introduced a MapReduce-based tool

named voiDgen which can generate VoID descriptions for Web-scale data. Meanwhile,

SPLENDID [Görlitz and Staab, 2011], WoDQA [Akar et al., 2012] and LHD [Wang

et al., 2013] consumes VoID for source selection and query optimisation.

Source selection is significantly affected by service descriptions. When no service de-

scription is available, source selection can be done by explicitly binding URIs of data

sources to triple patterns (e.g. NetworkedGraph and SemaPlorer), or by sending an

ASK query to RDF datasets to check the existence of triple patterns in RDF datasets

(e.g. FedX). The result of an ASK query is “true” if the triple patterns in the query

exist in the dataset. The latter approach is accurate, but produces an equal amount of

query requests as well as directly evaluate each triple pattern as a normal query against

all data sources. Relevant sources also can be identified by analysing their metadata. A

widely used approach is predicate matching, where data sources having the same predi-

cate of the triple pattern are considered as relevant. Consequently, this method requires

that the location of predicates is recorded. A reason for matching predicates rather than

subjects or objects is that in general the number of distinct predicates is much smaller

than that of distinct subjects or objects [Hu et al., 2011b]2. DARQ, SemWIQ [Langegger

et al., 2008], DSP and LHD employ predicate matching by examining their description
2Another (probably more relevant) evidence is given by the statistics of the Billion Triple

Challenge 2012 (BTC2012) dataset which are available at http://gromgull.net/blog/2012/07/
some-basic-btc2012-stats/.

http://gromgull.net/blog/2012/07/some-basic-btc2012-stats/
http://gromgull.net/blog/2012/07/some-basic-btc2012-stats/

Chapter 3. Related Work 27

files. If the vocabularies or ontologies of the data sources are known, analysing the

classes to which subjects, predicates and objects belong also helps eliminate irrelevant

sources. Furthermore, Akar et al. [2012] proposed twelve rules that enable sophisticated

source selection by carefully examining VoID files. SPLENDID [Görlitz and Staab, 2011]

adopts a mixed approach, that it firstly analyses the VoID files of data sources and then

checks the existence of those triple patterns that are not bound to any data source. Thus

SPLENDID accurately selects relevant data sources with lower network overhead than

a pure asking approach adopted in FedX.

Due to the even higher communication cost on the Web than in distributed DBMS,

many specific optimisation algorithms have been proposed to make distributed SPARQL

query processing more economic and efficient. Most of these algorithms are closely

related to (iterative) dynamic programming or greedy algorithms. For example, DARQ,

SPLENDID and LHD adopt (iterative) dynamic programming in their query optimiser.

In the meantime, Stocker et al. [2008], Vandervalk et al. [2009] and Wang et al. [2011]

(DSP) combine graph theory into query optimisation. They regard a Basic Graph

Pattern (BGP) as a graph and use minimum-spanning-tree (MST) algorithms (which

belong to greedy algorithms) to search for the optimal QEP3. Given a BGP subjects and

objects are regarded as vertices and predicates are edges. The weight of each edge is set

to the cost required to evaluate the edge given by the cost model. The optimal QEP of

the BGP is produced in the process that generates the MST of the corresponding graph.

The algorithm adopted by Vandervalk et al. [2009] and DSP firstly selects a concrete

vertex (i.e. not a variable) and adds the minimum edge connected to that vertex to

the MST4. Then the MST grows by adding the minimum edge that has only one vertex

in the MST (i.e. one vertex of the edge must be outside of the MST). Triple patterns

that correspond to edges in the MST are executed following the same order that those

edges are added to the MST. During the execution there may be triple patterns whose

both vertices have been bound to some values as a result of executing previous triple

patterns. Such triple patterns correspond to edges whose their both vertices are in the

MST but they are not included in the MST. They are used to filter intermediate results.
3Different from the other two, Stocker et al. [2008] take triple patterns, rather than subjects or

objects of triple patterns, as the nodes of graphs. That is, the graph of Stocker et al. [2008] represents
the relationship among triple patterns of a BGP while the graph of Vandervalk et al. [2009] and Wang
et al. [2011] represent the BGP itself. Also, Stocker et al. [2008] didn’t explicitly claim their algorithm,
which adopted Prim’s algorithm [Prim, 1957], as a MST algorithm.

4The algorithm can start with a variable vertex but doing so usually leads to more intermediate
results.

Chapter 3. Related Work 28

?tag
:produc

t

?user

?comm
:has_comment

6

:has_reviewer
5

:has_tag
20

:has_creator
15

Figure 3.1: On each edge the top text gives the predicate and the bottom number
gives the weight. The algorithm firstly selects the minimum triple pattern connecting
to a concrete node and adds it to the MST. Then it selects the minimum triple pattern
that connects to existing MST but also has a node outside the MST. Triple patterns

with both nodes in the MST are used to filter intermediate results.

An example of the above process is shown in Figure 3.1. The algorithm consequently

selects edge :product :has_reviewer ?user and :product :has_comment ?comm. Then the

edge ?comm :has_creator ?user becomes fully bound and is used to filter intermediate

results. The edge :product :has_tag ?tag is selected in the end. No matter which MST

algorithm is adopted, the key point is to select the minimum triple pattern at each

step and triple patterns that are fully bound in previous execution are used to filter

intermediate results.

Alongside the aforementioned algorithms, query rewriting heuristics, such as pushing

down filters, is applied in optimisation as well. Several such rules have been described

in Pérez and Arenas [2009].

The optimal plan is evaluated with respect to cost models, whose accuracy is effected

by statistics of data sources. In distributed SPARQL optimisation, the selectivity-based

cost model is used by most of SPARQL engines (OptARQ [Bernstein et al., 2007], Stocker

et al. [2008], DARQ, DSP, SPLENDID). Usually the selectivity of a triple pattern is

estimated as the product of the selectivity of subject, predicate and object of this triple

pattern, based on statistics of RDF datasets, under the assumption that each part is

independent and evenly distributed (unless extra knowledge is available about their

distributions) [Bernstein et al., 2007, Stocker et al., 2008, Quilitz, 2008, Wang et al.,

2011, Görlitz and Staab, 2011, Akar et al., 2012, Wang et al., 2013]. The required

Chapter 3. Related Work 29

statistics can be obtained form VoID files. If pre-computed statistics are not sufficient,

heuristics are used to rank QEPs. For example, the variable-counting heuristics [Stocker

et al., 2008] (also adopted in FedX) takes advantage of general experiences, however, its

accuracy is arguable [Stocker et al., 2008].

The same as in distributed DBMS, execution of joins is critical for distributed SPARQL

query execution as well, and many well-established join techniques are used in distributed

SPARQL engines. Basic join implementations such as NLJ is used in DARQ for its

simplicity of implementation, and HJ is used in DSP and SPLENDID to gain improved

performance. The none-blocking join operator is used by Hartig and Bizer [2009] and

variations of DPHJ (or SHJ) are used by Ladwig and Tran [2010, 2011], Acosta et al.

[2011] to enable adaptive execution when data transfer on the Web is unstable. In order

to reduce network traffic, bind join is adopted in DARQ, DSP, FedX and SPLENDID,

while Semijoin is used by NetworkedGraphs [Schenk and Staab, 2008]. In DARQ and

DSP, variables of triple patterns are replaced by intermediate results5, and the bound

triple patterns are evaluated instead of the original ones. This implementation is best

used with engines that produce results in a streaming fashion (i.e. only one result is

materialised at a time). Since only one result is used to bound a triple pattern at

a time, it is simply extended with all results returned by executing the bound triple

pattern to produce results for future execution. FedX (and SPLENDID adopts this

method) transforms many bind joins as a long list of UNION clauses and therefore

enables processing of many results in one request. NetworkedGraphs attach intermediate

results as FILTER clauses with the original query to implement Semijoin. This approach

can process many intermediate results with one query request, but the returned results

have to be joined with those results used as filters. Under certain conditions, bind join

and Semijoin can reduce communication cost, however, result in longer execution time

since the operators being joined are executed sequentially.

As a summary, the choices of optimisation techniques of the most popular engines are

listed in table 3.1.

Apart from the aforementioned distributed SPARQL query engines, document-oriented,

keyword-based search engines are also present on the Web of Data, such as the ones by

Watson [D’Aquin et al., 2007], Sindice [Oren et al., 2008], Falcons [Cheng and Qu, 2009]
5Here a result refers to a solution mapping, that maps a variable to a value [Prud’Hommeaux and

Seaborne, 2008].

Chapter 3. Related Work 30

Table 3.1: Optimisation techniques of popular query engines

DARQ DSP FedX SPLENDID LHD

Service
descrip-
tions

Local files Local files None VoID VoID

Source
selection

Predicate
matching

Predicate
matching ASK query

Predicate
matching,
Asking

Predicate
matching,
ASK query

Cost
model

Selectivity
based

Selectivity
based

Variable
counting
heuristics

Selectivity
based

Selectivity
based

Opt. al-
gorithm IDP MST Heuristics IDP IDP, Heuris-

tics

Join NLJ, BJ NLJ, BJ HJ, BJ HJ, BJ HJ, BJ

and SWSE [Hogan et al., 2012]. These semantic web search engines work in the same

way as typical web search engines (e.g. Google) by crawling RDF data and building

indices for quick looking up. Semantic web search engines could be a convenient way

to locate a piece of RDF data. However, since their support for SPARQL is limited or

even not available, they are not the right tool to answer distributed SPARQL queries at

the moment of writing.

3.3 RDF Store Benchmarking

The rapid growth of LD not only offers potentials for efficient distributed SPARQL

engines, but also raises demands for benchmarks that compare performance of query

over LD. Consequently, benchmarks covering different aspects of RDF stores have been

proposed. Here we roughly divide popular benchmarks into two categories based on

their assessment objectives:

• For comparing performance of reasoning: Lehigh University Benchmark (LUBM)

[Guo et al., 2005], University Ontology Benchmark (UOBM) [Ma et al., 2006]

which extends LUMB, and JustBench [Bail et al., 2010].

Chapter 3. Related Work 31

• For comparing performance of query processing: SP2Bench [Schmidt et al., 2009],

DBpedia SPARQL Benchmark [Morsey et al., 2011], Berlin SPARQL Benchmark

(BSBM) [Bizer and Schultz, 2009], FedBench [Schmidt et al., 2011], and Social

Network Intelligence BenchMark (SIB) [Boncz et al.].

Since we examine approaches that focus on improving query efficiency, benchmarks

aiming to compare reasoning performance are out of scope. Therefore, we only review

benchmarks of the second category in this section.

SP2Bench focuses on testing typical features and operators of the SPARQL language.

Its dataset is based on the syntax of the DBLP database6, and a data generator is

provided to generate arbitrarily large data. The query mix of SP2Bench covers the

typical structure of SPARQL queries (e.g. star-shaped or chain-shaped queries).

Meanwhile, BSBM, which supersedes the DBpedia SPARQL Benchmark, is based in

a business use case in which customers review products having various features and

from different vendors. Its dataset contains the following classes: Product, ProductType,

ProductFeature, Producer, Vendor, Offer, Review, and Person. An overview of the data

model is shown in figure 3.2. BSBM also provides a scalable data generator. The

queries of BSBM reflex real-world requirement and mix different features and patterns

of SPARQL. Beside the benchmark itself, the authors (Christian Bizer and Andreas

Schultz) consequently published benchmark results for most existing RDF stores via

various sources (e.g. blog, web page, mailing list). This potentially encouraged many

other researchers to publish BSBM results as well, and makes BSBM one of the most

widely used benchmarks7.

Existing research suggests that aforementioned benchmarks (namely LUMB, SP2Bench

and BSBM) are relational-like and do not represent structure of real RDF datasets [Duan

and Kementsietsidis, 2011]. To this end, benchmarks simulate or use real world datasets

have been proposed as well. Especially, social network data attracts much attention due

to their graph structure. SIB simulates a social network scenario using a data generator

called S3G2 [Pham et al., 2013]. Meanwhile, Przyjaciel-Zablocki et al. [2013] argues

that SIB is still short of being realistic, and proposes a SPARQL 1.1 benchmark using
6http://www.informatik.uni-trier.de/~ley/db/
7A list of benchmarking results is available at the RDF Store Benchmarking page http://www.w3.

org/wiki/RdfStoreBenchmarking, in which BSBM results take a large proportion and most up to date
positions.

http://www.informatik.uni-trier.de/~ley/db/
http://www.w3.org/wiki/RdfStoreBenchmarking
http://www.w3.org/wiki/RdfStoreBenchmarking

Chapter 3. Related Work 32

Figure 3.2: Overview of the BSBM data model [Bizer and Schultz, 2009]

real world social network data. Moreover, FedBench, which is designed to evaluate

distributed queries, adopts real world data from multiple domains.

People may argue that real world data presumably has advantages of validity over artifi-

cial data. However, carefully designed artificial data, such as those provided by BSBM,

can reflex the real world, and their validity is approved by the wide acceptance of the

SPARQL community. Besides, artificial data are more flexible in terms of scalability and

extension capability, and help set up various environments more easily than real world

data. Especially for distributed query benchmarking, once real-world-based datasets

are chosen, they determines the contents as well as the scale and data distribution of

the RDF network the benchmark simulates. In case of evaluating features that are not

covered by the benchmark’s original design (e.g evaluating queries with co-reference),

artificial data can be extended with less efforts than real world data. To this end, we base

the evaluations of this thesis in an evaluation framework that uses artificial datasets.

Details of the framework are given in chapter 4.

Chapter 4

DSEF: A Distributed SPARQL

Evaluation Framework

In this thesis we investigate techniques that are promising to improve efficiency

of distributed queries in environment with or without co-reference. To compare

the efficiency of our approaches with existing ones, we developed a distributed

SPARQL evaluation framework (DSEF) that is capable of evaluating query en-

gines in distributed settings and with co-reference. Due to the unique requirement of

co-reference, DSEF is based on well-established artificial data (BSBM data), by which

we keep in line with existing benchmarking approaches.

4.1 Overview of the Evaluation Framework

DSEF is tailored for evaluating distributed SPARQL engines in networks of arbitrary

scales, and with co-reference taken into account.

DSEF provides a virtual-machine-based network architecture that can conveniently sim-

ulate networks of different sizes and computing power. Together with artificial data, this

architecture enables creation of LD networks having arbitrary numbers of endpoints and

triples. In addition, the distribution of data among endpoints is easily controlled using

a set of tools contained in DSEF.

33

Chapter 4. Distributed SPARQL Evaluation Framework 34

For interoperability reasons we adopt the well-established dataset of BSBM. Besides,

we statistically investigate co-reference in the real world, based on which owl:sameAs

statements are generated. The assessment queries used in the framework are as well

based on BSBM queries. The original BSBM queries are designed to evaluate various

aspects of RDF stores and some features can introduce undesired disturbance to the

performance of distributed SPARQL engines. In DSEF, the BSBM queries are modified

in a way that retains the semantic of the original queries but prevents undesired perfor-

mance disturbance. The modification is neutral to all the engines that will be evaluated

in this thesis. Details of the assessment queries are given in section 4.3.

The framework tool set is able to 1) generate structured RDF data of an arbitrary size;

2) generate co-reference statements based on real-world proportion and distribution; 3)

divide a large amount of data into smaller pieces w.r.t specific distributions; 4) generate

detailed VoID descriptions; 5) efficiently dispatch data to remote RDF stores; 6) auto-

matically evaluate distributed SPARQL engines and collect desired testing statistics.

The architecture of DSEF is shown in figure 4.1. In the following we provide details

of datasets, assessment queries and each framework tool. In addition, we describe an

environment based on DSEF, in which evaluations in this thesis are performed.

4.2 Assessment Data and Co-Reference Generation

DSEF adopts the dataset of BSBM. Furthermore, to evaluate the performance of dis-

tributed SPARQL engines with the presence of co-reference, DSEF extends BSBM data

with owl:sameAs statements w.r.t real-world statistics. Existing research implies that

co-reference follows a power law distribution [Ding et al., 2010, Hu et al., 2011b], but

no explicit evidence is given. We analyse the data of Billion Triple Challenge (BTC)

20121 for statistics of co-reference. The BTC data is crawled from all LD, and can be

regarded as a snapshot of the entire LD cloud.

There are in total 1.4 billion triples of the BTC 2012 dataset2. 0.00246% of them,

which is equal to 3449341 triples, are owl:sameAs statements. We divided resources

into categories w.r.t to the number of co-reference relationships they have. That is,
1http://challenge.semanticweb.org/
2This is confirmed by the result given by http://gromgull.net/blog/category/semantic-web/

billion-triple-challenge/

http://challenge.semanticweb.org/
http://gromgull.net/blog/category/semantic-web/billion-triple-challenge/
http://gromgull.net/blog/category/semantic-web/billion-triple-challenge/

Chapter 4. Distributed SPARQL Evaluation Framework 35

Sub-query

Sub-query

Sub-query

RDF Data

Local Machine

Queries

Statistical

Splitter

Data Generator

System Monitor

Testdriver

Data Distributor

VoID Generator

VM RDF Network

SPARQL

Endpoint

SPARQL

Endpoint
SPARQL

Endpoint

Queries

Other Data

Sources

SPARQL Engine

Figure 4.1: Solid arrows denote local data flow while dotted arrows denote remote
data flow. The data splitter splits data from either the data generator or the LD cloud
according to a given distribution. Then the data distributor uploads data to SPARQL
endpoints. After the endpoints are ready, the testdriver reads queries from a file and
calls the distributed SPARQL engine to process these queries. The engine processes the
queries and returns results to the testdriver. The testdriver records the time of query
processing and generates a performance report. Meanwhile the system monitor records
the memory and CPU usage and the network flow.

each category contains resources that have occurred in a certain number of owl:sameAs

statements. We accumulate the number of resources of each category, and produce the

diagram shown in figure 4.2. We find that points in figure 4.2 are approximate to a power

law distribution p(x) = αx−β, where β = 2.528. The aforementioned percentage and

the distribution function are used by DSEF to generate co-reference for given datasets.

Later in the evaluation of this thesis a dataset of 70 million triples is used, and 0.18

million (0.0026) owl:sameAs statements are generated accordingly.

Generation of co-reference is achieved by linking resources using owl:sameAs. To re-

produce the distribution of real-world co-reference, we use a power law random number

generator. It accepts two parameters which are the power law exponent β = 2.528 and

the number of elements (i.e. distinct resources that have co-reference). For a given

resource, we use this generator to decide the number of owl:sameAs statements that

Chapter 4. Distributed SPARQL Evaluation Framework 36

Figure 4.2: The horizontal axis presents categories of URIs (as subjects or objects)
having 5, 10, 15 ... co-reference respectively, while the vertical axis presents the number
of resources falling in each category.

link this resource with other randomly chosen resources. We also take into account that

resources of BSBM data fall into different classes as shown in figure 3.2. We generate

co-reference for each class separately to make sure that resources are only equivalent to

those in the same class. Furthermore, numbers of co-reference that are larger than the

total number of instances of a class (very rare) are discarded, and new ones are picked.

It should be noticed that our method focuses on reproducing the deviation of VoID

statistics, and the number of equivalent URIs of resources, those aspects that are closely

related to query optimisation. Like other artificial data, co-reference statements gener-

ated by our method are different from real-world data, but simulate co-reference in the

real linked data cloud in order to test the efficiency of optimisation techniques developed

in the real environment.

4.3 Assessment Query Set

The query mix of BSBM is designed to emulate real world use cases, and consequently

contains complex queries having multiple BGPs. In the meantime, most distributed

SPARQL engines (including all engines that will be evaluated in this thesis) perform

optimisation on BGPs rather than whole queries. Results of BGPs are aggregated by

internal functionalities of platforms on which the engines are built. For queries having

Chapter 4. Distributed SPARQL Evaluation Framework 37

more than one BGPs, incompatibility may exist between platforms that use single-thread

aggregation (e.g. Jena3) and engines that use parallel optimisation and execution (e.g.

LHD). For instance, within a BGP LHD intensively uses parallelisation to produce many

results simultaneously, however, only one result is passed from one BGP to another at a

time by Jena. To this end, we transform BSBM queries into queries that are compatible

with parallel engines, in a way that the semantics of the original queries are preserved.

The following rules are used in this procedure:

• Queries initially having one BGP are left untouched (e.g. BSBM query 1).

• The UNION keyword is compatible with parallel engines in both Sesame and Jena.

Therefore queries having only UNION keywords are left untouched (e.g. BSBM

query 4 and 11).

• The OPTIONAL keyword is incompatible with parallelisation. If the BGP follow-

ing a OPTIONAL keyword has matching results, it is merged into the main BGP

(the one enclosing the optional BGP). Otherwise, the optional BGP is removed

(e.g. BSBM query 2, 7, 8).

By applying the aforementioned rules, optional results, if there are any, are merged into

mandatory results. If there is no optional result, query results remain unchanged.

In addition, all FILTER expressions are removed as well. This is because: 1) FILTER

expressions break a BGP into small pieces, and affect query performance in an undeter-

mined fashion; 2) there is mature research [Pérez and Arenas, 2009] on optimisation of

FILTER expressions (i.e. rewriting queries using FILTER values), which can be applied

on top of any other optimisation techniques. Removing FILTER helps solely revealing

the performance of other techniques; and 3) none of the engines that will be evaluated

in this thesis claims adoption of FILTER optimisation. Removing FILTER expressions

will not introduce inequity.

The assessment queries of DSEF are achieved after applying all aforementioned modifica-

tions. These queries especially emphasise the BGP optimisation and execution efficiency

of distributed SPARQL engines. A complete list of these queries is given in appendix

A.1.
3In detail, Jena streams results of one BGP to another, that only one result is passed at a time.

Consequently the optimisation and execution of the second BGP are constrained to single-thread.

Chapter 4. Distributed SPARQL Evaluation Framework 38

4.4 Assessment Metrics

DSEF focuses on assessing the efficiency of distributed SPARQL engines, while also

aiming to provide insight of optimisation and execution techniques adopted by query

engines. In most SPARQL benchmarks (e.g. SP2Bench, BSBM, FedBench) the number

of queries executed in a certain time period is used to measure the efficiency of query

processing. Query efficiency is jointly determined by the engines’ abilities of reducing

the size of network traffic and increasing the average data transmission rate. Therefore,

we further include network traffic, and transmission rate in the metrics of DSEF. The

following metrics are regarded as primary metrics in DSEF:

• Query per second (QPS), represents the average number of queries executed per

second.

• Network traffic, represents the total amount of network traffic (both incoming and

outgoing) produced due to executing queries.

• Transmission rate, represents the average speed of network communication. It is

calculated as the network traffic divided by the query execution time.

In the meantime DSEF also provides two secondary metrics, which are not included in

existing SPARQL benchmarks:

• CPU usage, presents the average percentage of CPU used to execute a certain

query.

• Memory usages, presents the average amount of memory used to execute a certain

query.

The secondary metrics are not used to compare the effectiveness of techniques adopted in

query engines. This is because CPU and memory usage are not optimisation objectives

of the engines under testing. Rather, the secondary metrics are used to verify that the

amount of system resources required by tested engines are practical.

Beside performance, DSEF also takes care of the correctness of query execution of engines

under testing. We prepare a RDF store that have all assessment data in it, and execute

Chapter 4. Distributed SPARQL Evaluation Framework 39

the assessment queries against this centralised store. By that we obtain the correct result

of each query. Before evaluating an query engine we perform test runs and make sure

all engines give the correct answer. Thus we prevent engines to quickly return results

that are not correct.

4.5 The Framework Tool Set

The evaluation framework contains five tools: data generator, statistical splitter, VoID

generator, data dispatcher and test driver. In general, all tools are designed to be

adaptive and scalable (when required). Using these tools, RDF networks containing

large data can be set up conveniently. Details of each one is given below.

Data generator

The data generator extends the BSBM data generator with functionality of co-reference

generation. It first calls the BSBM generator to create RDF data of a certain size,

then uses the methods described in section 4.2 to generate corresponding instances of

co-reference.

As stated in section 3.3, the BSBM generator is built on a carefully designed data model

that reflects a business use case in which customers review products having various

features and from different vendors. The BSBM data has received a wide acceptance

in the LD community4. Co-reference is generated by following real world statistics and

distribution, as described in section 4.2. Both parts are reflective of the actual structure

of real world LD.

Generating co-reference within a certain class (e.g. Product) requires that all instances

of the class are available before creating owl:sameAs statements. For large datasets it is

impossible to hold instances of all classes in memory (sometimes even a single class does

not fit in memory). In order to gain efficiency and scalability at the same time, the data

generator firstly scans the given data only once to extract instances of all classes and

stores them on hard disk. This procedure employs streaming techniques and requires
4A list of benchmarking results is available at the RDF Store Benchmarking page http://www.w3.

org/wiki/RdfStoreBenchmarking, in which BSBM results take a large proportion and most up to date
positions.

http://www.w3. org/wiki/RdfStoreBenchmarking
http://www.w3. org/wiki/RdfStoreBenchmarking

Chapter 4. Distributed SPARQL Evaluation Framework 40

only a (small) constant amount of memory. Then the generator reads back instances of

one class at a time to generate co-reference. The hard disk is used as secondary storage

if a class contains more instances than the main memory can hold.

Statistical splitter

The statistical splitter accepts a RDF data file and a distribution function. It splits

the data into certain numbers of smaller pieces w.r.t to the given distribution. The

supported distributions include uniform distribution, normal distribution and power-

law distribution which is common on the Web.

The splitter scans through the given data file and determines the destination (i.e. a

data piece) of each triple based on the number given by an internal random number

generator. The frequency of the number of each data piece is determined by the given

distribution. This procedure requires constant memory since no data needs to be stored.

Data dispatcher

The data dispatcher is used to dispatch data to remote datasets. It accepts a file contain-

ing URIs of RDF datasets, and a corresponding list of RDF files. For efficiency multiple

threads are used to upload RDF data to remote datasets. Furthermore, the dispatcher

keeps records of the number of triples that have been uploaded. In case of connection

issues, interrupted uploading can be resumed according to those records. This feature

is necessary to upload a large number of triples.

VoID generator

The VoID generator produces VoID descriptions for given RDF data. The generated

VoID description contains the URI of the SPARQL endpoint of given data, which indi-

cates a potential query target. Furthermore, it contains the following statistics of each

dataset: 1) the total number of triples, distinct resources and distinct predicates; 2) for

each predicate, the number of triples, distinct subjects and objects. The latter statistics

are presented as property partitions. An example VoID description is shown in figure

5.2.

Chapter 4. Distributed SPARQL Evaluation Framework 41

Test driver

The test driver accepts a file of testing queries and a distributed SPARQL engine. It

automatically reads the queries and executes them using the given engine. Since the

responding time of SPARQL endpoints can get slower for continuous query execution,

breaks are left between the execution of each query (so that the endpoints can recover).

Currently we set a 10 second interval between runs of the same query, and a 10 minute

interval between execution of different queries based on previous experiences. For each

query the test driver records the average execution time and calculates the QPS. It also

records the average size of results. The result size is used to confirm that all engines

under testing return the same results, and to calculate the extra results led by co-

reference. The output of the test driver is a "csv" file that can be further processed. In

the meantime, the total network traffic of each query is recoded. With the responding

time we calculate the average transmission rate of a certain engine on a certain query.

Finally, we also record the CPU and memory usage of tested engines.

When distributed SPARQL engines are assessed using the framework, firstly RDF data

are obtained from the LD cloud or generated by the data generator. Once the data

are ready, it is split into pieces by the data splitter according to a certain distribution,

and also basic statistics of each piece of data can be collected by the statistics collector.

After that, the data distributor dispatches each piece of data to certain remote datasets.

Then the distributed SPARQL approach can be evaluated by the test driver against

those remote datasets.

DSEF extends the widely accepted benchmark BSBM for evaluating distributed SPARQL

engines with the presence of co-reference, and is able to simulate RDF networks of ar-

bitrary sizes. An initial version of DSEF has been published in Wang et al. [2011] and

used for evaluating DSP and LHD.

Chapter 5

Querying LD with Detailed VoID

Statistics

Given a distributed SPARQL engine, its efficiency results from the com-

pounding of techniques adopted in all four stages of distributed SPARQL

query processing. The effectiveness of query optimisation techniques

usually depends on the environment in which they are applied. In other

words, if a technique works well in certain environments, the same effectiveness is not

guaranteed under other circumstances1. Therefore, it is necessary to distinguish dif-

ferent environments before determining the techniques we use for executing distributed

SPARQL queries efficiently.

As stated in chapter 2, source selection and query optimisation are closely related to

service descriptions. To this end, we distinguish two typical circumstances of the LD

cloud w.r.t different accuracy of service descriptions. We assume that, on a large scale,

it is preferred to obtain service descriptions from VoID files provided by each SPARQL

endpoint, than to maintain private indices and statistics for all data sources. Given that

assumption, we examine two typical scenarios in which VoID with different accuracy are

available. For each scenario we propose a scheme of techniques that aims to improve the

efficiency of distributed SPARQL query processing, and develop a distributed SPARQL
1This is a weaker implication of the No Free Lunch (NFL) theorem of search and optimisation, which

states that any two optimization algorithms are indistinguishable over all possible problems [Wolpert
and Macready, 1995, 1997]. Intuitively, no algorithm is good at solving all problems.

43

Chapter 5. Querying LD with Detailed VoID Statistics 44

engine based on the scheme. In this chapter we present the scheme and the correspond-

ing engine called LHD-s that work with detailed statistics. The other scheme will be

described in chapter 7.

5.1 Overview of LHD-s

As detailed in chapter 3, VoID can give statistics of either a whole dataset or its partitions

(either class partitions or property partitions). In most SPARQL queries, predicates are

explicitly given (except those having only variable predicates), while classes (of resources

in the queries) are not always known2. Consequently, LHD-s is designed to work pri-

marily with statistics of property partitions while it can also benefit from statistics of

class partitions.

It is worth mentioning that at this moment VoID documents with statistics are only

provided by a few datasets3. However, publishing detailed statistics in VoID would be

straightforward once there are demands. In the case that detailed VoID statistics are

not available, we will show in chapter 7 and 8 that efficient query processing can be

achieved by exploiting runtime statistics.

With detailed VoID descriptions, it is possible to make reasonable cost estimation for

queries, and thus it is worth using optimisation algorithms that produce high quality

QEPs. For best results, LHD-s adopts a dynamic-programming-based approach in query

optimisation. Furthermore, LHD-s follows the static optimisation approach since 1) the

cost of any QEP can be estimated before query execution; 2) dynamic programming

generates complete QEPs before query execution. In order to increase efficiency of

query execution, we propose an execution system that employs parallelism at different

levels. With this execution system LHD-s is able to maximumly exploit the bandwidth

of data sources without overloading them. The architecture of LHD-s is shown in figure

5.1. Details of each component of LHD-s are given in the following sections.
2The classes of resources of a query can be known if there are triple patterns having rdf:type predicates

and concrete objects. Or, if schema of predicates are given, classes can be inferred from the domain and
range of predicates. However, neither is as common as the way in which a predicate is given in queries.

3Example VoID documents can be found at http://void.rkbexplorer.com/.

http://void.rkbexplorer.com/

Chapter 5. Querying LD with Detailed VoID Statistics 45

Query optimisation
Query execution

DP
Plan

Executor

VoID

Plan
Comm.

Manager

Results

TasksΨ Sub-queries

Q
u
e
ry

Data

Data

Data

Stats.

Figure 5.1: Given a SPARQL query Ψ first breaks it into independent sub-queries.
Each of these sub-queries is optimised by a dynamic programming (DP) based algorithm
using VoID statistics. The optimal QEP is executed by a plan executor, which does
not contact datasets directly, but submits query tasks to a communication manager
during the execution. The communication manager maintains physical connection to
each dataset individually.

5.2 VoID Service Descriptions

To gain best results of LHD-s query optimisation, we generate VoID files that contain

as detailed statistics as VoID can provide for all data sources. These statistics contain

the numbers of distinct subjects and objects, as well as the total number of triples, per

predicate partition. An example is given in figure 5.2. Although such VoID files are not

available from all SPARQL endpoints in the LD cloud, they are used here as the upper

bound of statistics that are nowadays possible to get from SPARQL endpoints. Similar

statistics are also required by SPLENDID Görlitz and Staab [2011].

The example VoID file describes a dataset whose URI is d (line 1). This dataset contains

td triples (line 4), sd distinct subjects (line 5) and od distinct objects (line 6). In addition,

there is a predicate p in d that is described by a property partition (line 8-13). In this

property partition, the number td.p (line 10) indicates how many triples in d are having p

as predicate. In addition, sd.p and od.p respectively give the numbers of distinct subjects

or objects associated with p. The following relations hold for these statistics:

td =
∑
p∈d

td.p, sd ≤
∑
p∈d

sd.p, od ≤
∑
p∈d

od.p (5.1)

Chapter 5. Querying LD with Detailed VoID Statistics 46

1: d a void:Dataset ;
2: . . .
3: # simple statistics:
4: void:triples “td” ;
5: void:distinctSubjects “sd” ;
6: void:distinctObjects “od” ;
7: # statistics per predicate:
8: void:propertyPartition [
9: void:property p ;
10: void:triples “td.p” ;
11: void:distinctSubjects “sd.p” ;
12: void:distinctObjects “od.p” ;
13:], [
14: . . .
15:].

Figure 5.2: Statistics in a VoID file

For simplicity, here p ∈ d means p is a predicate in d. The first equation holds because

each triple belongs and only belongs to a predicate partition. For the later two, a

subject or an object may occur in multiple predicate partitions, and the number of

distinct subject/object of the dataset is no more than the sum of the numbers of distinct

subject/object of all predicate partitions.

VoID can also contains class partitions and corresponding statistics. However, class

partition statistics are mostly used to optimise only triple patterns with the rdf:type

property and bound objects. In this thesis we do not use class partitions since they are

not as widely used as property partitions.

5.3 Data Source Selection

Data source selection eliminates irrelevant data sources at an early stage and thus in-

creases the accuracy of cost estimation. LHD-s adopts a two-phase source selection that

is used in SPLENDID. First, LHD-s analyses predicate partitions in VoID files. Data

sources having the same predicate of a triple pattern are identified as relevant candi-

dates. Second, ASK queries enclosing the triple pattern are sent to these candidates,

and data sources that give positive response are kept.

Chapter 5. Querying LD with Detailed VoID Statistics 47

5.4 Cost Estimation

Most existing distributed SPARQL engines (e.g. DARQ, FedX and SPLENDID) use

cost models that estimate the number of (intermediate) bindings generated during query

execution. Here we propose a different cost model to estimate the responding time of a

QEP, to cope with LHD-s’ parallel execution system. Given a QEP, the basic operation

is the execution of triple patterns. Executing a triple pattern involves sending one or

more query requests, with or without pre-computed bindings, to all relevant endpoints,

and receiving corresponding results. We assume that the time of sending requests to or

receiving responses from SPARQL endpoints, is proportional to the number of bindings

enclosed in the communications. Using statistics of VoID files, we first estimate the

cardinality of outgoing and incoming bindings, and then estimate the response time of

a QEP.

From the VoID file shown in figure 5.2, we can have the total number of triples td,

distinct subjects sd and objects od in d. We can also have the number of triples td.p,

distinct subjects sd.p and objects od.p in the partition of p. We assume that subjects and

objects are uniformly and independently distributed in data sources. In the following a

question marked letter (e.g. ?x) denotes a variable, a lower-case letter (e.g. s) denotes a

concrete value, and an upper-case letter (e.g. O) denotes either a variable or a concrete

values. Given a triple pattern T : {S P O}, we define a function src(T) that gives the set

of relevant data sources of T . We use sel(T, x) and card(T, x) to denote the selectivity

and cardinality of x ∈ {S, P,O} w.r.t T respectively. It is worth noticing that the same

x can have different selectivity and cardinality in different triple patterns.

Chapter 5. Querying LD with Detailed VoID Statistics 48

5.4.1 Cardinality of a Single Triple Pattern

Given a single triple pattern T = {S P O}, the selectivity of each part is estimated

following the approach used in [Stocker et al., 2008, Quilitz, 2008], as follows:

sel(T, S) =



1∑
d∈src(T)

sd
if var(P) ∧ ¬var(S),

1∑
d∈src(T)

sd.p
if P = p ∧ ¬var(S),

1 if var(S).

(5.2)

sel(T, P) =



∑
d∈src(T)

td.p∑
d∈src(T)

td
if P = p,

1 if var(P).

(5.3)

sel(T,O) =



1∑
d∈src(T)

od
if var(P) ∧ ¬var(O),

1∑
d∈src(T)

od.p
if P = p ∧ ¬var(O),

1 if var(O).

(5.4)

where var(X) is a function that returns true if X is a variable or false otherwise.

Assuming that sel(T, S), sel(T, P), and sel(T,O) are statistically independent [Selinger

et al., 1979, Christodoulakis, 1984], the selectivity of the triple pattern T is estimated

as sel(T) = sel(T, S) · sel(T, P) · sel(T,O). The cardinality of T is estimated as

card(T) =
∑

d∈src(T)
td · sel(T) (5.5)

For a triple pattern having a variable subject and object, the estimated cardinality is

accurate (equals to
∑
d∈src(T) td.p). Since we consider only the relevant data sources of

T (rather than the “global graph” constructed as the union of all data sources), better

source selection can increase the accuracy of the estimation.

Chapter 5. Querying LD with Detailed VoID Statistics 49

5.4.2 Cardinality of Joined Triple Patterns

Estimating the cardinality of joined two triple patterns can be difficult without join

selectivity, defined as:

sel(T1 on T2) = card(T1 on T2)
card(T1) · card(T2)

Join selectivity are not available from VoID files, and can be costly to maintain. Two

triple patterns can join on subject-subject (SS), subject-object (SO), object-subject (OS)

and object-object (OO). Since the join order is insignificant here, for n distinct predi-

cates, a total 2n2 + n records of join selectivity need to be stored4.

To walk around join selectivity DARQ and SPLENDID group triple patterns with the

same subject together and apply the following method. Given three triple patterns

T1 : {?x p1 o1}, T2 : {?x p2 o2} and T3 : {?x p3 ?y}, card(T1 on T2) is estimated as

min(card(T1), card(T2)), and card(T1 on T3) is estimated as card(T1) · card(T3). For

the first estimation to hold it requires that the domain of p1 is a subset or a super-

set of the domain of p2
5. The second estimation requires that the domain of p1 is a

subset of the domain of p3. However, without schema of properties (e.g. domains and

ranges of properties) it is difficult to decide whether two properties commit to the above

requirements.

In LHD-s we take advantage of the fact that the cardinality of joined two triple patterns

is irrelevant to the join method. To approximate join selectivity we assume that two

triple patterns T1 : {?s p1 O1} and T2 : {?s p2 O2} are joined using bind join. If T1

is executed first, card(T1) intermediate results are produced and are used to execute

T2. Each intermediate provides a value of ?s (not necessarily distinct), and thus the

result size of T2 is estimated as card(T1) · sel(T2, s) · card(T2). This is also regarded

as the cardinality of the join card(T1 on T2), and the corresponding join selectivity is

sel(T1 on T2) = sel(T2, s). Since the execution can be performed in the reverse order,

the join selectivity can be sel(T1, s) as well. In order to combine both cases, we use the
4Stocker et al. [2008] have suggested that the number of records is 4n2. It could be that the join

order is considered significant.
5A more precise requirement here is that the results of T1 is a subset or a superset of the results of

T2. However, we cannot know that in advance from VoID files.

Chapter 5. Querying LD with Detailed VoID Statistics 50

geometric mean (sel(T1, s) · sel(T2, s))
1
2 as the join selectivity. For two arbitrary triple

patterns T1 : {S1 P1 O1} and T2 : {S2 P2 O2} we have

sel(T1 on T2) =


√
sel(T1, v) · sel(T2, v) if v 6= φ,

1 if v = φ.
(5.6)

where v is the join variable (but is regarded as concrete in estimation).

The cardinality of n joined triple patterns is estimated as a sequence of two-triple-pattern

join

card(T1 on T2 on · · · on Tn) =
n−1∏
i=1

sel(Ti on Ti+1) ·
n∏
i=1

card(Ti) (5.7)

5.4.3 A Response Time Cost Model

As a result of intensive use of parallelism, LHD-s adopts a response time cost model

rather than a network traffic model. To estimate a QEP we distinguish the execution of

join that require pre-computed bindings (e.g. bind join, Semijoin, denoted as (q onB t),

where q is a join or a triple pattern and t is a triple pattern) from those which do not need

pre-computed bindings (e.g. hash join, nested loop join, denoted as (q on p), where q and

p are joins or triple patterns). Two triple patterns involved in a hash join can be executed

in parallel while in a bind join they have to be executed in sequence. We call an access

plan an independent access plan if it executes a triple pattern directly, or a dependent

access plan if pre-computed bindings are used to execute a triple pattern6. We denote

an independent access plan of t as acc(t), and a dependent access plan with bindings of

a sub-query q as acc(q, t). We assume the response time of a query is proportional to

the number of bindings sent to and returned from a data source, and the response time

of a QEP is estimated using the following equations:
6It should be noticed that the execution of a dependent access plan also produces the results of a

bind join.

Chapter 5. Querying LD with Detailed VoID Statistics 51

cost(q on p) = max(cost(q), cost(p)) (5.8)

cost(q onB t) = cost(q) + cost(acc(card(q), t)) (5.9)

cost(acc(t)) = rtq + card(t) · rtt (5.10)

cost(acc(q, t) = card(q) · rtq + card(q on t) · rtt (5.11)

where rtq is the time of sending a triple pattern or a pre-computed result to a data

source, and rtt is the time of receiving a result.

5.5 Identifying Independent Sub-Queries

LHD-s exploits parallelism intensively. We propose an algorithm that identifies inde-

pendent sub-queries, each of which can be optimised and executed in parallel. This

algorithm, named Ψ7, increases the degree of parallelism in a way that network traffic

is not increased. In addition, LHD-s adopts dynamic programming to produce optimal

QEPs. However, dynamic programming can take a significant amount of time to opti-

mise queries with many triple patterns. Since Ψ breaks a large query into smaller ones,

the complexity of query optimisation is reduced without compromising the quality of

QEPs. By combining the algorithm presented below and dynamic programming, LHD-s’

optimiser can produce good quality QEPs within acceptable time.

SPARQL queries are composed by Basic Graph Patterns (BGPs), which are a set of

conjunctive triple patterns. A BGP can be regarded as a connected graph that subjects

and objects are nodes (or vertices) and triple patterns are edges. We observed that given

two edges (triple patterns) whose shared node is concrete (e.g. {s p1 ?x. s p2 ?y}), they

can be processed as two independent sub-queries without having side effects (in terms

of network traffic and responding time). This is because the cardinality of the shared

node (which is concrete) is not affected by any edge that connects to it. Furthermore,

this observation holds if the shared node is a variable whose cardinality does not change

during execution.
7Ψ=PSI=Parallel Sub-query Identification

Chapter 5. Querying LD with Detailed VoID Statistics 52

We generalise the above observation as follows. We say a node has a fixed cardinality if,

during the execution of edges connecting to it, its cardinality does not change more than a

certain percentage. If “removing” all fixed-cardinality nodes8 results in disconnected sub-

graphs, these sub-graphs can be optimised and executed independently and in parallel.

For example, in the graph shown in figure 5.3, if both node B and C are fixed-cardinality

nodes, then we have three independent sub-graphs {AC,AB}, {BC}, {CD,BD}. If only

B has fixed cardinality, then the given graph cannot be further broken down9.

Figure 5.3: If B and C are fixed-cardinality nodes, there are three independent
components shown by three different types of dash lines.

We propose algorithm Ψ (algorithm 1) to quickly break a connected graph into inde-

pendent sub-graphs. At the beginning the algorithm creates a sub-graph for each edge

(the loop at line 1). Then all nodes are scanned and sub-graphs that share a none-

fixed-cardinality node are merged into a bigger one (the loop at line 4). At the end of

this algorithm, all remaining sub-graphs can be processed in parallel. The time com-

plexity of the first loop is linear to the number of edges |E|. The merge operation in

the second loop can be done in constant time by maintaining a hash table that maps a

node to the set of its connected edges. Therefore, the complexity of the second loop is

linear to the number of vertices |V |. The complexity of algorithm Ψ (upper bound) is

O(max(|E|, |V |)).

In practice, concrete nodes always have fixed-cardinality. Besides, if we can know in

advance that the cardinality of a variable node will probably remain the same, that

node can be regarded as a fixed-cardinality node as well. For example, in {?person

foaf:firstName ?frstN. ?person foaf:familyName ?fmName}, the cardinality of ?person
8Since removing a node produces broken edges that have only one node, a more precise description

here would be “regarding all edges that connect to a fixed-cardinality node as disconnected at this node”.
9A more subtle case is that cardinality of both B and C are only changed by AB and AC respectively,

while BC and BD have comparable cardinality at B, and BC and CD have comparable cardinality at
C. That is, B and C are not fixed-cardinality nodes w.r.t all connecting edges, but they are w.r.t some
edges. In this case {CB}, {CD, BD} can still be executed in parallel, and we say this two components
form a partial parallel group. However, identifying all partial parallel group can be costly and not worthy
in practice.

Chapter 5. Querying LD with Detailed VoID Statistics 53

Algorithm 1: Ψ(V,E)
input : A connected graph (V,E)
output: Independent sub-graphs

1 foreach e ∈ E do
2 sub(e) ← e;
3 end
4 foreach v ∈ V ∧ ¬ fixCard(v) do
5 merge sub-graphs containing v;
6 end

probably remains the same during execution, since a dataset usually contains both the

first name and family name of a person. To accurately predict the invariability of a

node’s cardinality requires schema of properties. For instance, in the above example we

need to know that both properties have the same domain, have close numbers of distinct

subjects, and are closely relevant.

5.6 Optimising Queries for Parallel Execution

The optimiser of LHD-s is designed to produce parallel QEPs that explicitly indicate

concurrent execution of operators. Contrary to a parallel QEP, we call it a serial QEP if

contained operators are executed one after another10. With a cost model that considers

parallel execution (such as the one presented in the previous section), it is straightforward

to produce parallel QEPs with dynamic programming. However, there are cost models

that do not take parallelism into account (e.g. those measure the total number of CPU

instructions or network traffic) and lead to serial plans. To make LHD-s more flexible,

we produce parallel plans in two steps. Given any cost model, LHD-s firstly find the

optimal plans using dynamic programming as normal, then the QEPs are transformed

into their parallel forms in a way that the keeps the estimated cost unchanged. This

two-step method enables LHD-s to produce QEPs with either minimum responding time

or network traffic.
10Serial QEPs can also be executed using multiple threads. For example, the optimiser of FedX

generates serial plans. However, each operator in a FedX plan is executed using multiple threads. We
refer to executing multiple operators in parallel as inter-operator parallelism, and using multiple threads
to execute an operator as inner-operator parallelism.

Chapter 5. Querying LD with Detailed VoID Statistics 54

5.6.1 Generating Serial Query Plans

A QEP of a SPARQL query indicates the execution order and joins of all triple patterns.

To find the genuine optimal plan it is necessary to examine all permutations of possible

joins (in LHD-s the operators are hash join and bind join). Dynamic programming can

discard sub-optimal plans at an early stage and thus saves time. When optimising a

distributed SPARQL query the access plans of triple patterns are only determined by

the join operators (i.e. a dependent access plan is used only when the triple pattern is

joined by a bind join). Therefore, the dynamic programming used in LHD-s starts from

joining two triple patterns rather than building access plans, as shown in algorithm 2.

Generally dynamic programming considers all join operators to join two sub-plans (line

5). However, there are two cases that only one join operator needs to be considered.

Algorithm 2: DP(B)
input : A BGP as a set of triple patterns B
output: The optimal QEP OptPlan(B) of the BGP

1 for i = 2 to |B| do
2 forall the S ⊂ B ∧ |S| = i do
3 OptPlan(S)← ∅;
4 forall the O ⊂ S do
5 OptPlan(S)← OptPlan(S) ∪ joinPlans(OptPlan(O), OptPlan(S\O));

// prunePlans(optPlan(S)) is not necessary
6 end
7 end
8 end
9 return OptPlan(B)

First, if neither of the two sub-plans is an access plan of a triple pattern, they cannot

be joined using a bind join. This is because the behaviour of executing an arbitrary

operator is not clearly defined. For example, given two sub-plans p = T1 on T2 and

q = T3 on T4 that are joined using a bind join q onB q, it indicates that triple patterns

of q should be executed with bindings of p. This is contradictory to the behaviour of

executing T3 and T4 that is specified by q. Therefore, only hash join is used to join two

join operators in LHD-s.

Second, the result of executing a triple pattern is independent of the access plan. When

joining a triple pattern T with a sub-plan p, the choice of access plan can be made by

comparing cost(q on T) and cost(q onB T) and keeping the minimum.

Chapter 5. Querying LD with Detailed VoID Statistics 55

Applying the above two rules can significantly reduce the number of QEPs needed to

be examined (i.e. the searching space), and thus improves the performance of LHD-s’

optimiser.

5.6.2 Transforming Serial Query Plans into Parallel Plans

In a serial QEP it is bind join that makes the execution order significant. If in a QEP

all triple patterns are executed sequentially using independent access plans, any order of

execution produces the same amount of network traffic (and the same responding time if

parallelism is used). In other words, the only constraint on executing a triple pattern is

whether the depending bindings of this triple pattern is available or not. For independent

access plans the requirement is always met. LHD-s uses algorithm 3 to determine the

execution order of all access plans, which is a dependency tree. All independent access

plans are at the top level of the tree. Variables of access plans already in the trees are

regarded as bound. An independent access plan is added to the current level of the

tree once its dependency is met (i.e. the variable providing bindings to this access plan

becomes bound).

Algorithm 3: ParlTrans(p)
input : A QEP P
output: A dependency tree DT for the QEP

1 i← 0 ;
2 bound ← ∅ ;
3 while P 6= ∅ do
4 foreach access plan a ∈ P do
5 if depVars(a) ⊂ bound then // Dependency check
6 DT (i)← DT (i) ∪ a ;
7 bound← bound ∪ Vars(a) ;
8 P ← P\a ;
9 end

10 end
11 i← i+ 1 ;
12 end
13 return DT

A QEP produced by our algorithm can be regarded as a partial-directed (i.e. some edges

are directed while others are not) graph as shown in figure 5.4. The nodes of the graph

are subjects or objects and the edges are triple patterns. An undirected edge represents

a plain access plan of a triple pattern, while a directed edge represents a dependent

Chapter 5. Querying LD with Detailed VoID Statistics 56

t1 : m p1 ?x, 0
t2 : ?z p2 ?y, 0
t3 : ?z p3 ?x, 0
t4 : ?x p4 ?k, 1
t5 : ?v p5 ?k, 2
t6 : ?v p6 ?x, 3
t7 : ?s p7 ?x, 4

(a) Ordered triple patterns

m

?x

?z

?y

?k

?s

?v

2

3
4

1

0

0

0

(b) A corresponding QEP

Figure 5.4: An example query and its execution plan

access plan that consumes bindings from its starting node. Each edge has an execution

order number, that edges with the smaller order numbers executed earlier. Execution

order numbers are used to determine the execution order for edges connected to the

same node, but not edges connected to different nodes (i.e. two edges of different nodes

are executed in an undetermined order). The execution of the QEPs is data driven. As

bindings coming from SPARQL endpoints variables become bound, and triple patterns

depending on such variables are executed immediately. Thus, in LHD-s triple patterns

are executed as soon as QEPs permit to exploit bandwidth.

5.7 Parallel Query Execution System

To reduce responding time, we propose a parallel execution system that adopts par-

allelism at two levels. The first level is that join operators are executed in parallel

according to the aforementioned parallel plans. The second level includes parallel exe-

cution of each operator. For example, a bind join can be partitioned horizontally and

executed using multiple threads. We decouple the execution of QEPs from the communi-

cation with (i.e. sending queries to or receiving results from) data sources. The former is

controlled by the QEP executor, and the latter is managed by the communication man-

ager. The QEP executor submits query execution tasks to the communication manager.

The communication manager controls the traffic to each data source independently and

determines when a task is executed according to the availability of data sources. This

Chapter 5. Querying LD with Detailed VoID Statistics 57

design enables LHD-s to fully exploit the bandwidth and computing power of all data

sources.

5.7.1 Query Plan Executor

In the QEP executor, the results of executing an access plan is regarded as a data

stream. We use a quadruple {t, n, s, E} to denote a stream which is the result of a triple

pattern t; n is the level of t in the dependency tree, used as the execution order; s is

the node providing binding to this stream, and E is a set of nodes where the stream

goes to. For a stream corresponding to an independent access plan, s is null and E

contains all variables of t that are used as join variables. In the case of a dependent

access plan, s provides bindings and E contains the other node of t. A stream consumes

bindings of s (if not empty) and pushes the results of evaluating t to the nodes in E.

A node v contains a set of incoming streams In and a set of outgoing streams Out. A

node joins the results of incoming streams and triggers certain outgoing streams. When

the execution starts, all streams having execution order 0 start. Incoming streams that

have not been processed are joined to provide intermediate result at the common node

they go to. An outgoing stream starts as soon as all incoming streams having smaller

execution order (i.e. the incoming streams that the outgoing stream depends on) start.

Once the result of an incoming stream is consumed by an outgoing stream, the incoming

stream is marked as “consumed” and will not be involved in future joins or passed to

later outgoing streams. Thus a stream will not be joined twice. In case no outgoing

streams exist for an incoming streams, these streams are redirected to a virtual node

where stores all intermediate results that are not consumed. At the end of the execution

the final result of the query is produced by joining all intermediate in the virtual node.

Figure 5.5 shows a step-by-step example of executing the QEP shown in figure 5.4. At the

beginning (figure 5.5a) three streams of execution order 0, (t1, 0, φ, {?x}), (t2, 0, φ, {?z})

and (t3, 0, φ, {?x, ?z}) start. Since ?y is not used as a join variable, no streams provide

data to it. The streams of t2 and t3 are joined and marked as consumed at node ?z.

Join result is pushed to the virtual node V since no outgoing stream exists at node ?z.

In the meantime, the streams of t1 and t3 are joined at ?x (but not marked as consumed

yet). In the next step (figure 5.5b, stream (t4, 1, ?x, {?k}) consumes the join results of

streams of t1 and t3, both of which are marked as consumed at node ?x, and executes

Chapter 5. Querying LD with Detailed VoID Statistics 58

t4 using a dependent access plan. The stream of t7 keeps waiting since the stream of

t6, whose execution order is smaller than t7, has not started yet. Step 3 (figure 5.5c) is

similar to step 2 that executes t5 using a dependent access plan. In step 4 (figure 5.5d)

the stream of t6 goes back into ?x but is not joined with any stream (since all other

incoming streams of ?x are marked as consumed). In the final step (figure 5.5e) only

the stream of t6 is passed to the stream of t7. The results of executing t7 that go into

node ?s are passed to the virtual node V . All results (as streams) at V are joined to

produce the final results of a query.

5.7.2 Communication Manager

The actual execution of a query is managed by the communication manager. For each

data source the communication manager maintains several worker threads that send

query requests to and receive responses from the data source, and a queue that stores

tasks submitted to this data source. The number of threads of each data source is set

w.r.t the capability of and the connection to the data source. Once the QEP executor

invokes a stream, one or several query execution requests are submitted to the communi-

cation manager. A plain access plan generates only one request. For a dependent access

plan more than one request is possible since the input bindings of the dependent access

plan can be partitioned into multiple segments and then executed in parallel (i.e. using

horizontal partition [Kossmann, 2000] to achieve intra-operation parallelism [Hong and

Stonebraker, 1993]). For example, a dependent access plan that has ten input bindings

can be executed in parallel as two dependent access plans each with five input bindings

each, or even ten dependent access plans each with one input binding. For each request

from the QEP executor, the communication manager dispatches tasks to all relevant

data sources of the triple pattern of the request. A task first goes into the task queue,

waiting if all worker threads are busy, being executed otherwise. Once the task queue

becomes empty, all worker threads are suspended until new tasks come in.

The main advantage of using this communication manager is to control communication

to different data sources independently, and thus ensures that all data sources work

at their strength without being over flooded. Furthermore, separating plan executor

from communication manager enables QEP execution to proceed without waiting for

actual query execution (as long as some data sources are providing result streams), and

Chapter 5. Querying LD with Detailed VoID Statistics 59

query tasks are continuously submitted to the communication manager (to keep as many

worker threads working as possible).

5.8 Summary of LHD-s

In this chapter we describe our distributed SPARQL engine called LHD-s which is de-

signed for LD network having detailed service descriptions. LHD-s requires statistics of

property partitions, including the number of total triples, distinct subjects and objects of

each partition. It adopts a hybrid source selection approach (i.e. predicate-matching and

ASK selection) and a selectivity-based responding time cost model. Given a SPARQL

query, LHD-s firstly tries to break the query into sub-queries that can be optimised

and executed independently. Each sub-query is optimised in two steps. Firstly, a serial

QEP is generated using dynamic programming, whose complexity is reduced according

to characteristics of SPARQL queries. Secondly, the serial plan is transformed into a

parallel without increasing network traffic or execution time. The two-step approach

allows LHD-s to use an arbitrary cost model and optimisation algorithm with paral-

lelism. Optimised queries are executed using a highly parallel execution system. The

system adopts inter-operator parallelism as well as inner-operator parallelism. Further-

more, communication with each data source is managed independently according to the

bandwidth and computing power of the data source. Therefore, LHD-s can benefit from

higher bandwidth without suffering overload of remote data sources.

5.9 Implementation of LHD-s

The execution system of LHD-s is built using pipelined parallelism such as Double-

pipelined Hash Join [Raschid and Su, 1986] and XJoin [Urhan and Franklin, 1999].

Instead of using two hash tables like in a Double-pipelined Hash Join, we maintain

multiple hash tables at a node to enable joining more than two streams simultaneously.

A result coming from one stream is stored in the hash table of this stream, and at the

same time probed against the hash tables of other streams. For example, at a time three

streams a, b and c are joined at a node ?x, and three hash tables Ha, Hb and Hc are

maintained respectively. Once a result comes from a, it is stored to the hash table Ha

under the key of the value of ?x, and probed against Hb and Hc on the same value of

Chapter 5. Querying LD with Detailed VoID Statistics 60

?x. A join result is produced as soon as matching records are found in both Hb and Hc,

and given to outgoing streams that consume the result. This multiple hash join enables

a node to execute several incoming streams as well as outgoing streams in parallel. The

execution will not be delayed unless all data sources stop providing results.

When executing a dependent access plan there could be duplicated values of the de-

pended variable (e.g. considering two input bindings (?x→ x1, ?y → y1), (?x→ x1, ?y →

y2) for triple pattern {?x p ?z}, only one value (?x→ x1) is required by the dependent

access plan of the triple pattern). To eliminate unnecessary network traffic, we propose

the Hash Bind Join (HBJ) operator, that partitions the input bindings using a hash

table on the values of the depending variable (?x). Therefore we only use distinct values

to execute a dependent access plan, and the returned results of a specific input value

are joined with bindings of the same value in the hash table. When only one binding

is given for a dependent access plan, variables in the triple pattern of this access plan

are replaced by values of the given binding (i.e. the implementation of bind join in

DARQ and DSP). Otherwise the input bindings are attached as inline data using the

VALUES11 syntax in the dependent access plan. For example, to execute {?x p ?z}

with input bindings (?x → x1, ?y → y1), (?x → x1, ?y → y2), firstly a hash table

x1 → {(?x → x1, ?y → y1), (?x → x1, ?y → y2)} is built. Then {x1 p ?z} is evalu-

ated against relevant data sources. The results (?z → z1), (?z → z2) are joined with

(?x→ x1, ?y → y1), (?x→ x1, ?y → y2) to produce the complete results.

The communication manager maintains a thread pool and a task pool for each data

source. The number of thread in each thread pool is set to a number (as large as possible)

that is lower than the maximum allowed concurrent connections to the corresponding

data source. The execution tasks to a data source are stored in its task poll. An idle

thread is invoked to executed a task if the task pool is not empty, otherwise all threads

are paused.

11http://www.w3.org/TR/sparql11-query/#inline-data

http://www.w3.org/TR/sparql11-query/#inline-data

Chapter 5. Querying LD with Detailed VoID Statistics 61

(a) Query execution step 1.
The execution starts with
three streams of order 0,
represented by dash lines.
Joined result of t2 and t3 is
pushed to the virtual node V
for later use. Stream t1 and
t2 are joined at ?x and wait
to be consumed by streams

of order 1.

(b) Query execution step 2.
Stream t4 which has execu-
tion order 1 starts since all
streams having smaller exe-
cution order have started. It
consumes the join result of t1
and t2 and pushes its result
to ?k. Stream t7 which has
an execution order 4 remains
halting since the stream hav-
ing execution order 3 has not

started yet.

(c) Query execution step 3.
Stream t5 starts execution in
the same manner as stream
t4. It consumes the result of
t4 and pushes result to ?v.

(d) Query execution step
4. Stream t6 goes back to
?x. Since all other incoming
streams of ?x have been con-
sumed, t6 will not be joined
with them. Now all incoming
streams at ?x started and t7

is ready to start.

(e) Query execution last
step. Stream t7 starts since
all incoming streams at ?x
whose execution orders are
smaller than 4 have started.
The result of t7 is pushed to
the virtual node V , at where
it is joined with the join re-
sult of t2 and t3 to produce

the final result.

Figure 5.5: Execution of a QEP

Chapter 6

Evaluating LHD-s

To demonstrate the performance of the combination of techniques for en-

vironments having detailed VoID descriptions, we evaluate LHD-s and

compare it with existing distributed SPARQL engines. In particular, the

cost model is evaluated in a calculation-based experiment. Meanwhile, it

is difficult to either comprehensively evaluate the optimisation algorithm and the query

execution system using only theoretical analysis, or to isolate their performance. As a

result, the performance of the optimisation algorithm and the query execution system

are evaluated together using the evaluation framework presented in chapter 4. Engines

used for comparison are FedX and SPLENDID. FedX adopts a straightforward heuristic-

based optimisation approach and a sophisticated parallel execution system. SPLENDID

emphasises on query optimisation while using a pipeline-based single thread execution

system. Their approaches are closely related to what we developed in LHD-s, and are

promising to be good references. Other engines are considered less appropriate for var-

ious reasons. For example, DARQ also provides a set of well designed techniques that

are related to our approach. However, it is not up to date and several evaluations

Schwarte et al. [2011], Wang et al. [2011] indicate that its efficiency is not as good as

recent engines. Another recent query engine, ANAPSID Acosta et al. [2011], focuses on

adaptive query processing techniques to cope with unstable networks. Also, insufficient

details are given about its query optimisation and query execution (except the adaptive

processing part). Therefore ANAPSID is not used as a reference.

63

Chapter 6. Evaluating LHD-s 64

6.1 Evaluating Cost Models

The core of cost models of LHD-s, FedX and SPLENDID is to estimate the cardinality

(the number of matching triples) of a single triple pattern or joins of triple patterns. To

measure these cost models’ accuracy, we compare the estimated cardinality of joins to

the real cardinality that are obtained by executing the joins. For single triple pattern,

the actual and estimated cardinality are equal if both the subject and object are vari-

ables, in which case the number of triples matching the predicate equals the number of

triple falling into this predicate partition. In case the subject or object is concrete, the

actual cardinality mainly depends on the specific value of the concrete subject or object.

Therefore, to have the accurate cardinality of triple patterns with only one variable, we

have to count over triples for every pair of subject-predicate or object-predicate. At

the same time, existing cost models (in DARQ, SPLENDID and LHD-s) adopt quite

similar methods to estimate a triple pattern with one variable due to limited statistics.

As a result, we do not compare cost models on estimating a single triple pattern. We

also exclude joins of an arbitrary number of triple patterns (i.e. n-nary joins). Because

obtaining the actual cardinality of n-nary joins requires executing all permutations of

triple patterns in them. In this thesis, we only evaluate cost models on estimating binary

joins whose triple patterns have only concrete predicates (e.g. {?s p1 ?o1, ?s p2 ?o2}).

We will perform a more comprehensive test on cost models in the future.

6.1.1 Evaluation Method

To collect the actual cardinality of an arbitrary binary join of the aforementioned type,

we generate all possible joins and execute them against the evaluation datasets. Since

predicates of different queries can be irrelevant, we only join predicates of the same

query. For every query in the query set of the evaluation framework, we collect the

distinct predicates. For every two predicates p1 and p2 we generate a query in the form of

{?x p1 ?o1, ?x p2 ?o2} (SS join) and {?s1 p1 ?x, ?x p2 ?o2} (OS join). Taking Query 1 (in

table A.1) as an example, the SS and OS joins of its four predicates (bsbm:productFeature

(pF), bsbm:productPropertyNumeric1 (pPN1), rdfs:label (lbl) and rdf:type (a)) are shown

in table 6.1. SS joins are listed in the top-right half of the table, and OS joins are in

the bottom-left part. Joins generated based on each query are merged and duplications

are eliminated. Due to the similarity of SS and OS joins, we only give the complete list

Chapter 6. Evaluating LHD-s 65

of SS joins (123 joins in total) in appendix A.2. With the actual cardinality of triple

patterns we calculate the join selectivity of each join.

Table 6.1: Possible SS & OS joins of Query 1. There are four triple patterns in Query
1. The upper right part of the table contains all SS joins of arbitrary two different
triple patterns. The lower left part contains all OS joins of arbitrary two different

triple patterns.

pF pPN1 lbl a

pF ?x pF ?o1.
?x pPN1 ?o2.

?x pF ?o1.
?x lbl ?o2.

?x pF ?o1.
?x a ?o2.

pPN1 ?s1 pPN1 ?x.
?x pF ?o2.

?x pPN1 ?o1.
?x lbl ?o2.

?x pPN1 ?o1.
?x a ?o2.

lbl ?s1 lbl ?x.
?x pF ?o2.

?s1 lbl ?x.
?x pPN1 ?o2.

?x lbl ?o1.
?x a ?o2.

a ?s1 a ?x.
?x pF ?o2.

?s1 a ?x.
?x pPN1 ?o2.

?x a ?x.
?x lbl ?o2.

We estimate each SS and OS join using cost models of FedX, SPLENDID and LHD-s

respectively and calculate the corresponding join selectivity. For clarity we describe

the behaviour of the three cost models on these joins. FedX counts the number of

variables of each triple pattern and all SS (or OS) joins are considered equal. Therefore

we say that FedX gives a constant cardinality for the same type of joins. We enlarge

FedX’s estimations by 6 orders of magnitude to make estimations of all engines have a

close order of magnitude. SPLENDID uses equation
∏
sel.s · card(Tunbound) to estimate

cardinality of SS joins. For OS join it uses equation card(T1) · card(T2) · sel(T1 on T2),

where sel(T1 on T2) is the average selectivity of the join variable. In the original paper it

is not clear what the average selectivity of a variable refers to. However from the source

code of SPLENDID it is the arithmetic average of the selectivity of the join variable (i.e.

sel(SO) = (sel.s(p1)+sel.s(p2))/2. LHD-s uses equation card(T1)·card(T2)·sel(T1 on T2)

to estimate both SS and OS joins, where the join selectivity is given by equation 5.6.

It is not necessary that good cost models have to produce cardinality estimations close

to actual cardinality. In query optimisation it is the rank of joins by cardinality that

matters. Query optimisation will produce the same QEP, if for any two joins A and B in

a query, the rank (whether card(A) is larger or less than card(B)) produced by using A

and B’s estimated cardinality is the same as the ranking using their actual cardinality.

Therefore we introduce the concept of ranking accuracy, which is the percentage of

Chapter 6. Evaluating LHD-s 66

correct rank of arbitrary two joins based on estimated cardinality, to measure the quality

of cost models. To calculate the ranking accuracy we go through all pairs of joins. We

divide join pairs into different groups according to their distance, that is, in the group

of distance n, all pairs contain the ith and the i+ nth joins. Any pair of triple patterns

belongs to a group. We check whether their estimated rank according to a cost model

is the same as actual rank and calculate the ranking accuracy of the cost model.

6.1.2 Results and Analysis

Join cardinality produced by the three cost models are compared with the actual car-

dinality in figure 6.1 and 6.2. Since many of the OS joins have 0 result, we present

cardinality of none-zero OS joins separately in figure 6.3.

Figure 6.1: Base stands for the actual cardinality of joins. Gap indicates cardinality
of 0. Lines are for visual aid only.

Figure 6.1 and 6.2 shows that none of the cost models gives accurate estimations (all

estimations are several orders of magnitude away from the actual values). Therefore,

we focus on examining the trend of these estimations instead. In the aforementioned

figures joins from the same query are shown as points next to each other. It is shown

Chapter 6. Evaluating LHD-s 67

in figure 6.1 that cardinality produced by LHD-s and SPLENDID have a trend close to

the actual cardinality of SS joins. The ranking accuracy of each cost model is produced

by joins of up to a distance of 12 (i.e. the maximum possible distance since the largest

BPGs in this case have 12 triple patterns), as presented in table 6.2.

Table 6.2: Comparison of ranking accuracy on SS joins

DIST. LHD-s SPLD. FedX

1 72 70 41
2 74 72 44
3 75 72 40
4 66 63 44
5 71 67 42
6 71 68 40
7 73 72 39
8 71 70 42
9 78 76 42
10 68 66 48
11 65 64 46
12 72 71 44

It is clearly shown in table 6.2 that LHD-s has a slight advantage over SPLENDID on

joins of all presented distance. This is because that LHD-s produces a more accurate join

selectivity of SS joins than SPLENDID does (which is constant sel.s). In the meantime,

FedX’s comparison accuracy is lower than 50%, which indicates it probably gives an

incorrect comparison for an arbitrary two SS joins (having only concrete predicates).

It is worth noticing that FedX has several heuristics that are used to compare triple

patterns having concrete subjects or objects, and may show better performance for

types of joins that are not considered here.

On OS joins, even on none-zero OS joins, all engines fail to resemble the actual trend.

This implies that the main factor affecting cardinality of OS joins is not captured by any

of the engines. Due to the frequent occurrences of 0 in actual cardinalities, it may be

possible to identify such joins through analysis of the predicate schema. For instance,

if the range of the first predicate is disjoint with the domain of the second predicate,

we will conclude that the join is empty. Following this line, methods discussed in Akar

et al. [2012] may also be used to further refine estimation of OS joins, and it is part of

the future work.

Chapter 6. Evaluating LHD-s 68

Figure 6.2: Base stands for the actual cardinality of joins. A gap indicates cardinality
of 0. Lines are for visual aid only.

6.2 Evaluating the Optimisation Algorithm and the Exe-

cution System

The effectiveness of optimisation algorithms and the efficiency of execution systems are

closely related actual queries. Instead of a calculation-based experiment, we evaluate

LHD-s using the evaluation framework and measure the optimisation algorithm and the

execution system indirectly via the overall query responding time and network traffic.

6.2.1 Experiment Settings

The experiment is set up using the framework presented in chapter 4. We prepare about

70 million RDF triples, which is in line with existing approaches [Quilitz, 2008, Schmidt

et al., 2011]. These triples are distributed to 20 SPARQL endpoints, which is largest

number of endpoints we can host, and more than existing approaches since we tend to

Chapter 6. Evaluating LHD-s 69

Figure 6.3: Base stands for the actual cardinality of joins. A gap indicates cardinality
of 0. Lines are for visual aid only.

perform evaluation on a larger scale. The backend of the endpoints are Sesame 2.61

and Apache Tomcat 62. Every two endpoints are hosted in a remote virtual machine

having 2.5 GB memory. The number of triples in each virtual machine is balanced to

prevent overrun of certain machines (e.g. the endpoint having maximum triples and the

one having minimum triples are hosted in the same virtual machine). Each distributed

SPARQL engine under testing (e.g. LHD-s) is run on a machine equipped with an Intel

Xeon W3520 2.67 GHz processor and 12 GB memory.

For each query presented in chapter 4, we perform 5 warm-up runs, and 20 test runs,

which enable all engines to have stable performance. The number of warm-up and test

runs are determined according to existing benchmarks [Bizer and Schultz, 2009, Schmidt

et al., 2011] as well as our own experiences. For each run a fresh instance of query engine

is used (i.e. each run can be regarded as standalone query processing). An engine is

considered incapable of finishing a query if it either 1) takes more than 5 minutes to

execute the query, or 2) keeps running into execution issues (such as not enough memory

or overrunning SPARQL endpoints) in three tries.
1http://sourceforge.net/projects/sesame/files/Sesame%202/2.6.0/
2http://tomcat.apache.org/download-60.cgi

http://sourceforge.net/projects/sesame/files/Sesame%202/2.6.0/
http://tomcat.apache.org/download-60.cgi

Chapter 6. Evaluating LHD-s 70

6.2.2 Results and Analysis

The QPS, incoming network traffic, outgoing network traffic and transmission rate are

shown in figure 6.4, 6.5, 6.6 and 6.7 respectively. In these figures 0 or NA stand for time

out queries.

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDs 0.4084 2.1023 0.5047 0.0345 0.0045 0.0456 3.9397 0.5116 0.1137

FedX 0 0.9784 0.2382 0.1347 0 0.3499 0.7012 0.8520 0.1107

SPLENDID 0.0503 0.1905 0.0316 0 0 0.0042 0.0912 0.0657 0.0380

0
.4

0
8

4

2
.1

0
2

3

0
.5

0
4

7

0
.0

3
4

5

0
.0

0
4

5

0
.0

4
5

6

3
.9

3
9

7

0
.5

1
1

6

0
.1

1
3

7

N
A

0
.9

7
8

4

0
.2

3
8

2

0
.1

3
4

7

N
A

0
.3

4
9

9 0
.7

0
1

2

0
.8

5
2

0

0
.1

1
0

7

0
.0

5
0

3

0
.1

9
0

5

0
.0

3
1

6

N
A

N
A

0
.0

0
4

2

0
.0

9
1

2

0
.0

6
5

7

0
.0

3
8

0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q
P
S

LHDs-QPS

Figure 6.4: QPS of LHD-s

Figure 6.4 shows that LHD-s is faster than FedX on most queries (except Q4, Q7 and

Q10), and considerably faster than SPLENDID on all queries. In addition, LHD-s is

the only engine that successfully finishes all queries. FedX has time out on Q1 and Q5,

while SPLENDID has time out on Q4 and Q5. The time out is caused by the large

amount of intermediate results which is a result of low quality QEPs, especially for Q5.

Due to the design of BSBM, all assessment queries should be regarded as equally common

which property is inherited by the DSEF queries. In addition, all engines under testing

do not optimise for specific types of queries. Better performance on most queries suggests

higher probability of better performance on arbitrary queries. The higher performance

of LHD-s is primarily due to its parallel execution system, as we will demonstrate later.

Chapter 6. Evaluating LHD-s 71

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDs 217.26 1.52 59.03 73.07 1014.96 58.30 1.56 48.97 0.19

FedX 0 2.74 3.78 10.67 0 6.41 3.61 3.83 0.21

SPLENDID 23.80 6.59 37.72 0 0 38.91 16.89 17.56 0.26

2
1

7
.2

6

1
.5

2 5
9

.0
3

7
3

.0
7

1014.96

5
8

.3
0

1
.5

6 4
8

.9
7

0
.1

9

N
A

2
.7

4

3
.7

8

1
0

.6
7

N
A

6
.4

1

3
.6

1

3
.8

3

0
.2

1

2
3

.8
0

6
.5

9

3
7

.7
2

N
A

N
A 3

8
.9

1

1
6

.8
9

1
7

.5
6

0
.2

6

0

200

400

600

800

1000

1200

TR
A

FF
IC

 (
M

B
)

LHDs-INCOMING TRAFFIC

Figure 6.5: Incoming traffic of LHD-s

LHD-s produces the most network traffic among the three, as shown in Figure 6.5 and

6.6. One reason is that LHD-s optimises for minimum responding time rather than

minimum traffic. It is worth noticing that the extra network traffic is primarily due

to the incoming traffic, which implies that more hash joins are used instead of bind

joins. It can be a deliberate decision of the cost model to reduce responding time, or

due to incorrect cost estimation. A noticeable spike is shown in both Figure 6.5 and

6.6 on Q5. This is because Q5 generates huge amount of intermediate results which is

difficult to reduce. The huge amount of intermediate results also leads to the time out

of SPLENDID and FedX.

In section 5.7 we mentioned the side effects of the inter-operator parallelism (i.e. exe-

cuting multiple operators in parallel) of LHD-s. That is, if operators that execute triple

patterns are executed sequentially, bindings of a certain variable are likely to be reduced

as more triple patterns being executed. When operators are executed in parallel, the

same set of bindings may be used multiple times before reduction. This side effect can

potentially increase outgoing traffic. However, Figure 6.6 shows no sign of outgoing

traffic increase and indicates the side effect is not significant for the tested queries.

Chapter 6. Evaluating LHD-s 72

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDs 8.86 2.28 199.68 188.69 3543.96 188.28 3.59 7.66 0.15

FedX 0 6.18 16.05 56.26 0 20.50 8.44 11.83 0.27

SPLENDID 26.58 6.84 42.35 0 0 41.64 17.44 19.53 0.23

8
.8

6

2
.2

8 1
9

9
.6

8

1
8

8
.6

9

3543.96

1
8

8
.2

8

3
.5

9

7
.6

6

0
.1

5

N
A

6
.1

8

1
6

.0
5

5
6

.2
6

N
A

2
0

.5
0

8
.4

4

1
1

.8
3

0
.2

7

2
6

.5
8

6
.8

4

4
2

.3
5

N
A

N
A 4
1

.6
4

1
7

.4
4

1
9

.5
3

0
.2

3

0

500

1000

1500

2000

2500

3000

3500

4000
TR

A
FF

IC
 (

M
B

)

LHDs-OUTGOING TRAFFIC

Figure 6.6: Outgoing traffic of LHD-s

While both optimising for minimum network traffic, both figure 6.5 and 6.6 suggest

that FedX has a certain advantage over SPLENDID, except on Q1. Since dynamic

programming, which is adopted in SPLENDID, provides optimal plans w.r.t the cost

model, SPLENDID’s higher traffic can only result from inaccuracy of its cost model or

statistics. Since LHD-s and SPLENDID use similar methods to estimate cardinality,

inaccuracy of cost estimation is very likely in LHD-s as well. It could be that existing

cost models do not sufficiently exploit statistics of data sources. On the other hand, it

is possible that VoID cannot satisfy the requirement of more sophisticated cost models.

By extending the evaluation of cost models (section 6.1) to include arbitrary joins it is

possible to determine whether cost models of LHD-s and SPLENDID have acceptable

accuracy on n-nary joins. Furthermore, comparing QEPs generated by the three engines

with the actual optimal plans (identified by experiment) will enable us to precisely

measure the quality of each engine’s query optimisation. It will also provide insight of

which triple patterns are executed at an inappropriate time. These evaluations are in

our future plan.

The efficiency of LHD-s is primarily due to its parallel execution system, which increases

Chapter 6. Evaluating LHD-s 73

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDs 9.234 0.797 13.056 0.902 2.047 1.124 2.029 2.897 0.004

FedX 0.000 0.872 0.472 0.901 0.000 0.942 0.845 1.334 0.005

SPLENDID 0.253 0.256 0.253 0.000 0.000 0.034 0.313 0.244 0.002

9
.2

3
4

0
.7

9
7

1
3

.0
5

6

0
.9

0
2 2

.0
4

7

1
.1

2
4 2
.0

2
9 2
.8

9
7

0
.0

0
4

N
A

0
.8

7
2

0
.4

7
2

0
.9

0
1

N
A

0
.9

4
2

0
.8

4
5

1
.3

3
4

0
.0

0
5

0
.2

5
3

0
.2

5
6

0
.2

5
3

N
A

N
A

0
.0

3
4

0
.3

1
3

0
.2

4
4

0
.0

0
2

0

2

4

6

8

10

12

14

R
AT

E
(M

B
/S

)

LHDs-TRANSMISSION RATE

Figure 6.7: Average transmission rate of LHD-s

the transmission rate, as clearly shown in figure 6.7. In particular, the efficiency primar-

ily comes from the inter-operator parallelism of LHD-s. We can see that the network

traffic of the three engines on Q11 are comparable, since Q11 consists of single-triple

BGPs where no optimisation takes effect. The differences between the network traffic

of the three engines are primarily the results of querying overhead. For example, both

FedX and SPLENDID send ASK queries to select relevant data sources. In addition, no

inter-operator parallelism is used in LHD-s since there is only one pattern in each BGP.

Therefore, the transmission rate on Q11 is merely a result of inner-operator parallelism

(i.e. executing an operator with multiple threads). Since LHD-s and FedX have a close

transmission rate (and is higher than SPLENDID), it implies that their inner-operator

parallelism is equally effective at a low level of traffic amount3. Therefore, we conclude

that the advantage of LHD-s is essentially brought by the inter-operator parallelism.

The inter-operator parallelism of LHD-s is enabled by parallel QEPs (generated using

algorithm 3), and reinforced by the mechanism that maintains an independent thread

pool for each data source (i.e. potentially more threads are usable).
3With a large amount of network traffic FedX can suffer in that it does not maintain independent

thread pools for data sources. However, we cannot confirm that due to lack of appropriate testing
queries.

Chapter 6. Evaluating LHD-s 74

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDs 2.33 0.38 0.91 2.60 3.34 2.90 0.35 0.54 0.11

FedX 0 0.57 0.35 0.62 0 0.36 0.25 0.53 0.05

SPLENDID 2.16 1.86 2.56 0 0 11.21 1.69 2.68 0.01

2
.3
3

0
.3
8 0
.9
1

2
.6
0 3
.3
4

2
.9
0

0
.3
5

0
.5
4

0
.1
1

N
A

0
.5
7

0
.3
5

0
.6
2

N
A 0
.3
6

0
.2
5

0
.5
3

0
.0
5

2
.1
6

1
.8
6 2
.5
6

N
A

N
A

11.21

1
.6
9

2
.6
8

0
.0
1

0

2

4

6

8

10

12
U

SA
G

E
(%

)

LHDs-CPU

Figure 6.8: CPU usage of LHD-s

We also provide the average CPU and memory usage of the three engines in figure 6.8

and 6.9. However, the purpose of providing such information is only to demonstrate that

these engines require reasonable amounts of system resources. It is likely that the system

resources consumption of the three engines can be reduced with better engineering. All

three engines have low CPU usage. One possible reason for higher CPU usage of LHD-s

and SPLENDID than FedX is that the former two adopt dynamic programming which

is more complex than FedX’s heuristic-based optimisation. The memory consumption

of LHD-s and SPLENDID is also higher than FedX. This is primarily due to FedX

materialised a limited number of intermediate results4 at one time, while the other two

materialised all available intermediate results (using normal lists). Therefore, memory

consumption of LHD-s and SPLENDID is likely to be reduced if less intermediate results

are materialised at one time. Moreover, LHD-s potentially maintains more threads than

the others and therefore consumes more memory.
4This is implemented using a data structure called queue in Java. It is essentially a special list that

blocks input if a certain number of entries exist in the list.

Chapter 6. Evaluating LHD-s 75

1 2 3 4 5 6 7 8 9

LHDs 795.43 828.38 797.37 1204.23 1263.95 1428.11 1558.00 1551.91 1535.02

FedX 0 185.20 163.52 152.69 0 156.23 155.19 179.90 165.38

SPLENDID 917.57 1150.82 1150.80 0 0 1211.13 575.19 1243.27 1243.81

7
9
5
.4
3

8
2
8
.3
8

7
9
7
.3
7

1
2
0
4
.2
3

1
2
6
3
.9
5 1
4
2
8
.1
1

1
5
5
8
.0
0

1
5
5
1
.9
1

1
5
3
5
.0
2

N
A

1
8
5
.2
0

1
6
3
.5
2

1
5
2
.6
9

N
A

1
5
6
.2
3

1
5
5
.1
9

1
7
9
.9
0

1
6
5
.3
8

9
1
7
.5
7

1
1
5
0
.8
2

1
1
5
0
.8
0

N
A

N
A

1
2
1
1
.1
3

5
7
5
.1
9

1
2
4
3
.2
7

1
2
4
3
.8
1

0

200

400

600

800

1000

1200

1400

1600

1800

U
SA

G
E

(M
B

)

LHDs-MEMORY

Figure 6.9: Memory usage of LHD-s

6.3 Evaluation Summary

In this chapter we evaluate a combination of techniques that include a VoID-based

response time cost model, a dynamic-programming-based optimisation algorithm, an

algorithm called Ψ to increase parallelism, and a parallel execution system. These

techniques are deployed in a distributed SPARQL engine named LHD-s. The efficiency

of LHD-s essentially benefits from its parallel execution system. In the meantime, such

gain comes at the cost of higher network traffic. Furthermore, it is shown that on joins

of two triple patterns, VoID-based cost models are more accurate than heuristics, and

the cost model used in LHD-s has advantage over other VoID-based cost models. In

the meantime, none of these VoID-based cost models are not sufficiently accurate, and

potentially lead to sub-optimal QEPs. It may due to either that existing VoID-based

cost models do not fully exploit VoID statistics, or that VoID is not able to provide

enough statistics for producing accurate estimations. This will be further investigated

in our future work with more sophisticated experiments.

Chapter 7

Optimising Queries with the

Presence of Co-reference

Linked Data are published by a large amount of independent publishers and

little coordination exists among them. In the LD cloud a URI uniquely iden-

tifies one resource, meanwhile, a resource can have more than one URIs.

Publishers are encouraged to reuse existing URIs to increase interoperabil-

ity [Heath and Bizer, 2011, Hyland et al., 2013]. On the other hand, they are free to

create their own URIs when publishing LD. On class1 level, several vocabularies cover-

ing common domains, such as Friend of a Friend (FOAF)2, and Dublin Core Metadata

Initiative (DCMI)3, are shared in many datasets. On the instance level, however, poor

agreement is made on reusing URIs [Hogan et al., 2007]. For example, 23 different URIs

are found referring to the person Tim Berners-Lee out of 1.118 g statements [Hogan

et al., 2012]. This phenomenon, that multiple URIs refer to the same resource, is known

as co-reference. Co-reference exists in several fields such as linguistics and knowledge

management. Its existence is due to “inherently distributed and disparate nature of the

information” [Glaser et al., 2007]. Furthermore, the information carried by an URI may

depend on the context in which the URI is used. It is unlikely that a single URI is

accepted in all specific datasets in the LD cloud. One solution is provided by the OWL

[Carroll et al., 2012] vocabulary, which provides for co-referent URIs to be linked using

the “owl:sameAs” property. Much work have been done to resolve co-referent URIs for
1A class is regarded as a common name of a set of things.
2http://www.foaf-project.org/
3http://www.dublincore.org/documents/dcmi-terms/

77

http://www.foaf-project.org/
http://www.dublincore.org/documents/dcmi-terms/

Chapter 7. Optimising Queries with the Presence of Co-reference 78

LD [Hogan et al., 2007, Jaffri et al., 2008, Glaser et al., 2009, Hu et al., 2011a, Umbrich

et al., 2012].

In this chapter we do not explore co-reference resolution. Rather, we only examine

explicit co-reference (i.e. that is presented as owl:sameAs statements) and investigate

query optimisation having co-reference taken into account. Co-reference will not disap-

pear as LD evolves [Glaser et al., 2009]. Considering and coping with co-reference would

help further exploit the wealth of LD.

7.1 Challenges of Optimising Queries having Co-reference

For convenience of later discussions, we firstly extend the notion of co-reference to

queries. We say two queries are co-referent, or one is the other’s co-reference, if one

query is obtainable from replacing some URIs in the other query, with the co-referent

URIs of those URIs. It is worth mentioning that a query’s co-reference can be high

even if the concrete URIs in it only have a small amount of co-reference. Including

co-reference in SPARQL queries is about combining results that match any co-referent

version of the original queries. To the best of our knowledge, the OpenLink Virtuoso

is the only distributed engine that provides support of co-reference in a recent release4.

However, it focuses on co-reference resolution rather than query optimisation. Due to

the lack of existing solutions, users who want to have complete results of a query having

co-reference have to i) retrieve co-referent URIs for each URI in this query, ii) issue a

new query w.r.t each combination of co-referent URIs (i.e. executing the original query

as well as its co-referent slinging), and iii) combine results of all these queries. The total

number of involved queries equals to the number of the Cartesian product of co-referent

URIs of each URI in the original query. This naïve approach can imply significant over-

head and poor performance when applied in the LD cloud. In the remain part of this

chapter this approach is referred to as the baseline approach to which our techniques

are compared.

Furthermore, introducing co-reference into distributed SPARQL queries potentially in-

creases the sizes of results and alters statistics in a nondeterministic manner. In chapter
4The support of co-reference first occurred in version 6.1.5 of OpenLink Virtuoso, which can be found

at http://freecode.com/projects/oplvirt/releases/342712.

http://freecode.com/projects/oplvirt/releases/342712

Chapter 7. Optimising Queries with the Presence of Co-reference 79

5 we show initial evidence that existing VoID-based cost models are not sufficiently ac-

curate, even with detailed VoID statistics. With co-reference this issue becomes more

severe since statistics of co-reference are not known. Due to the large scale of LD, it is

expensive, and sometimes impossible, to directly collect statistics of co-reference.

Consequently, a third challenge arises. Most existing distributed SPARQL engines fol-

low the static optimisation approach (including DARQ, SPLENDID, FedX and LHD-s).

Since accurate cost estimation is not guaranteed, static optimisation can be less effec-

tive. Alternatively, taking advantage of run-time statistics and re-optimising queries

adaptively during query execution can be promising to improve query performance.

Besides, it has been shown that the semantic of owl:sameAs is not strictly followed in the

real world LD. According to OWL, owl:sameAs is symmetric and transitive. However,

this is only true when the URIs linked by owl:sameAs refer to exactly the same resource.

In practice, co-referent URIs usually refer to similar resources [Halpin and Hayes, 2010]

or different aspects of a resource [Glaser et al., 2007]. Also, the equivalence of URIs

is usually context-dependent [Jaffri et al., 2008]. The above facts imply that, when

querying the LD, we have to distinguish co-referent URIs from different datasets and

cannot take advantage of the transitivity of owl:sameAs.

The final issue relates to the difficulty of distributed inferencing.Taking transitivity of

owl:sameAs as an example, if two statements {a owl:sameAs b} and {b owl:sameAs c}

are contained in different datasets, it is difficult to know the equivalence of a and c, unless

both statements are merged locally. The same issue applies on the symmetric property

of owl:sameAs. The symmetric breaks if an owl:sameAs statement is not contained

reciprocally by both the owners of the subject and the object. As a result we may get

different results with co-referent queries. These issues are more related to co-reference

resolution rather than querying LD. Meanwhile, the above issues become easier to be

addressed by a third-party co-reference services such as sameas.org.

In summary, processing queries having co-reference requires an efficient way to inte-

grate results from co-referent queries. Meanwhile, co-reference increases result sizes and

aggravates the difficulty of cost estimation. In the remain part of this chapter, we ex-

plore optimisation techniques for distributed queries in environments with co-reference

by means of LHD-d, which is a distributed SPARQL engine that we developed for that

purpose.

Chapter 7. Optimising Queries with the Presence of Co-reference 80

7.2 Overview of Optimisation Techniques in Environments

with Co-reference

To improve the efficiency of query processing in environments with co-reference, we

propose novel techniques to address the unique challenges described above. It is assumed

that co-reference statements are explicitly provided by RDF datasets, and our techniques

focus on improving query efficiency rather than co-reference resolution.

First, we propose a model called Virtual Graph to integrate co-reference. Using Virtual

Graph, queries having co-reference are transformed into normal queries that can be

optimised and executed using existing approaches.

Second, different from the static optimisation approach used in environments having

detailed statistics, here we optimise queries during query execution (i.e. dynamic opti-

misation). This enables LHD-d to take advantage of runtime statistics such as the actual

number of results of triple patterns. Consequently, LHD-d uses a MST-based algorithm

to incrementally construct the optimal QEPs.

In addition, we further exploit the Ψ (algorithm 1) with the help of runtime statistics.

Query optimisation and execution are interleaved and highly parallel.

Besides the above techniques that are especially tailored for query processing with co-

reference, several techniques that have been successfully tested with LHD-s are adopted

as well: VoID is used as complementary statistics for choosing the first step in the dy-

namic optimisation (when the runtime statistics are not available yet); predicate match-

ing is used for source selection; and the parallel execution system is used to increase

transmission rate.

We deployed the aforementioned techniques in LHD-d, which is shown in figure 7.1.

Details of each component is given in the following sections.

7.3 Addressing Co-reference using Virtual Graph

Given a SPARQL query having URIs with co-reference, the query itself as well as its

co-referent queries have to be executed to get comprehensive results. For example, given

a triple pattern {?x foaf:knows p0} and a co-reference statement {p0 owl:sameAs p1},

Chapter 7. Optimising Queries with the Presence of Co-reference 81

Query
optimisation Query execution

MST

Plan

Executor

Ψ

Sub-queries

Plan

Stats.

Comm.

Manager

Results

Tasks

Virtual

Graph

Q
u

e
ry

Data

Data

Data

Figure 7.1: A SPARQL query and its co-reference are firstly transformed by Virtual
Graph into a query having pre-existing bindings. The transformed query is gradually
processed through optimisation-execution (OE) cycles. In each OE cycle, Ψ firstly
breaks the query into sub-queries, each of which is optimised in parallel by a MST-
based algorithm using runtime statistics. The runtime statistics are provided by the
plan executor, after executing the QEP of the last OE cycle.

we actually have to execute both {?x foaf:knows p0} and {?x foaf:knows p1}. As we dis-

cussed before, this straightforward way is not practical to handle complex queries. Here

we propose a model called Virtual Graph that transforms queries having co-reference

into normal queries that can be executed by any distributed SPARQL engine.

Virtual Graph utilises the idea that each node, concrete or not, can be regarded as

a variable with different number of values. A concrete node is regarded as a variable

bound to a single value. When taking co-reference into account, a concrete vertex is

regarded as a variable whose values are the union of its original URIs and all co-referent

ones. In addition, triple patterns sharing the same object and subject can be regarded

as a variable predicate with multiple values. These variables are called virtual nodes or

virtual edges. A graph containing virtual nodes or edges is called a Virtual Graph. As

shown in figure 7.2, there are two predicates between o2 and ?x, which are combined

into one virtual edge having two values. The cost of a virtual edge is calculated in the

following steps. Firstly all parallel edges contained in the virtual edge are estimated

using equation 5.5 and the minimum one is selected. Then remaining parallel edges are

calculated again as if the previous selected triple pattern has been evaluated. The sum

of cost of all parallel edges is used as the cost of the virtual edge.

The transformation of Virtual Graph is applied before query execution. Firstly, for each

Chapter 7. Optimising Queries with the Presence of Co-reference 82

Figure 7.2: In the middle is the graph representation of the query on top. Solid cycles
represent concrete values while dashed cycles represent variables. Bottom shows the
corresponding Virtual Graph. The virtual edge has two values: p2 and p3.

concrete value v in a given query, our engine generates a query {v owl:sameAs ?coref}

to all data services that may contain equivalent URIs of v. Then a variable vertex ?v

is created to replace the original concrete vertex. All equivalent URIs of v, including v

itself, are added to the new variable vertex ?v. The whole transformation is analogous

to the process shown in figure 7.2. After this transformation, co-reference in a query is

processed together in a single query, and thus generates much less query requests than

using the baseline approach. In addition, it increases the possibility of benefiting from

parallelism.

Meanwhile, Virtual Graph is also useful to process queries in which more than one

properties exist between two resources5. Such queries form multigraphs that contain

parallel edges, that is, edges that share the same end-nodes. For a graph without

parallel edges, the optimal QEP corresponds to the MST of a query graph. For a

multigraph, however, it could be a challenge to construct the optimal QEP using MST-

based algorithm. From a graph theory perspective, the MST of a multigraph can be

computed in two steps: 1) for parallel edges sharing the same nodes, retain only the

minimum edge, and then 2) apply an ordinary MST algorithm to the modified graph.

However, this approach may lead to false QEPs for SPARQL queries. The issue arises

from selecting the minimum edge, that is, the triple pattern with lowest cost, out of

parallel edges. Once the minimum edge is selected and executed, edges sharing nodes
5An example is given by the 3rd and the 5th triple patterns in Q2, which are %Produc-

tXYZ% bsbm:producer ?p and %ProductXYZ% dc:publisher ?p respectively.

Chapter 7. Optimising Queries with the Presence of Co-reference 83

with this edge become bound and are used to prune existing bindings. Thus, the selection

of the minimum edge involves not only its own cost, but also the cost of parallel edges.

This behaviour is better captured by Virtual Graph. Virtual Graph is also useful for

engines that adopt exhaustive search algorithms, as it reduces parallel edges into one

edge.

7.4 Interleaved Query Optimisation and Execution

The presence of co-reference changes the statistics of data sources. These changes are

nondeterministic for query engines since no statistics are currently available for co-

referent URIs. To compensate, we propose an approach that interleaves query optimisa-

tion and execution (i.e. dynamic optimisation), to take advantage of statistics available

during query processing.

In LHD-d a query is also divided into independent sub-queries using Ψ(V,E) (algorithm

1), and even further. In LHD-s, only concrete nodes are regarded as fix-cardinality. In

LHD-d, since the cardinality of executed triple patterns is precisely known, we are able

to identify more fix-cardinality nodes using the following heuristics: 1) if the estimations

of the cardinality of a variable ?v w.r.t all its connected triple patterns are close (i.e. for

each triple pattern Ti having v, card(Ti, ?v) is close to the same number) the number of

bindings of ?v probably will not change (equation 7.1); if the number of existing bindings

of ?v is very small, it probably will not change (equation 7.2).

∀ Ti, Tj ∈ conn(?v) : 90% <
card(Ti, ?v)
card(Tj , ?v) < 110% (7.1)

or

|?v| < min
T∈conn(?v)

(card(T, ?v))/10 (7.2)

where conn(?v) gives all triple patterns that are connected to ?v and |?v| is the number

of existing bindings of v. As in LHD-s, each sub-query is processed in parallel.

The effectiveness of the above two heuristics depends on the accuracy of cardinality

estimation. In LHD-s, the estimated cardinality can be inaccurate if it is based on

another estimation. Therefore, the heuristics are not used in LHD-s by default. In the

Chapter 7. Optimising Queries with the Presence of Co-reference 84

mean time, they are used in LHD-d in where actual number of bindings are used in

cardinality estimation. More details will be given in chapter 7.

As a result of interleaving query optimisation and execution, the optimisation algorithm

is performed more than once during query processing. With this in mind, we use a greedy

algorithm in the query optimisation of LHD-d. First, greedy algorithms generally have

time complexity lower than dynamic programming (or other exhaustive algorithms).

Since optimisation is performed at each time an actual result size becomes available,

greedy algorithms can reduce the optimisation time. Second, the accuracy advantage

of dynamic programming does not hold in the circumstances of dynamic optimisation.

Dynamic programming requires estimated cardinality of all triple patterns. During the

construction of a QEP, it is likely the case that the cardinality of some triple patterns is

estimated using both pre-computed statistics as well as the actual size of intermediate

results. We have shown in chapter 5 that estimated result sizes deviate from the actual

sizes. Therefore, dynamic programming is likely to change its decision (a partial QEP)

when a new accurate result size becomes available. On the contrary, greedy algorithms

build the optimal plan incrementally and require only actual sizes of results of previ-

ously executed triple patterns. Thus greedy algorithms can better benefit from runtime

statistics.

Given a (sub-)query graph, we use the MST algorithm, shown in algorithm 4, to find

the order of triple pattern execution in real time. Each time the algorithm is called, it

maintains a list of remaining edges ordered by their estimated cardinality6 from low to

high. If an edge has two possible costs (i.e. if it can be executed by either a hash join

and a bind join), the smaller one is chosen. Then the algorithm returns and removes the

minimum edge (it belongs to the MST), which is going to be executed. It also returns

edges whose subjects and objects are all bound (i.e. edges that do not belong to the

MST), which are used to prune existing bindings.

The overview of query execution of LHD-d is shown as algorithm 5. Firstly a given

query is broken into sub-graphs. For each sub-graph a new thread is created. At each

step, minimum-cost triple patterns are selected (lines 6) and executed (line 7 to 8).

Then cost of remaining edges (executed edges are removed at the end of algorithm

NextEdges(V,E)) are updated using runtime statistics and Execute(V,E) is called
6Responding time estimation of edges as it only needed to determine usage of parallelisation. Since

Ψ(V,E) takes over parallelism decision in LHD-d, we only estimate the result sizes of edges.

Chapter 7. Optimising Queries with the Presence of Co-reference 85

Algorithm 4: NextEdges(V,E)
input : A connected (sub-)graph (V,E)
output: next a set of edges to be executed

1 edges← sort(E);
2 next← edges[0];
3 next← next ∪ findBoundEdges(edges);
4 E ← edges− next;

recursively. It should be noted that a sub-graph can be further divided in future call of

Execute(V,E) w.r.t updated edge cost.

Algorithm 5: Execute(V,E)
input : A connected (sub-)graph (V,E)

1 if E is empty then
2 return;
3 end
4 components← Ψ(V,E);
5 foreach sub-graph (V ′, E′) ∈ components create a new thread do
6 next← NextEdges(V ′, E′);
7 evaluate next[0];
8 use remaining edges of next to prune bindings;
9 update costs of edges in E′;

10 Execute(V ′, E′);
11 end

7.5 Summary of LHD-d

In this chapter we described an engine named LHD-d that aims to provide an efficient

solution for querying LD having co-reference. In LHD-d, we proposed a model called

Virtual Graph for co-reference integration, and a dynamic optimisation approach to ex-

ploit runtime statistics. Virtual Graph regards a node having co-reference as a variable

with pre-existing values, and transforms a query having co-reference to a regular query

with pre-existing bindings. Following the transformation the query is broken into in-

dependent sub-queries that are processed in parallel. Each sub-query is processed in a

recursive manner that each step of the recursion consists of an optimisation phase and

an execution phase. The minimum triple pattern is identified by a MST algorithm in

the optimisation phase, and is executed. Consequently, the number of results is used to

re-calculate the cost of remaining triples.

Chapter 7. Optimising Queries with the Presence of Co-reference 86

7.6 Implementation

The implementation of Virtual Graph and the interleaved optimisation-execution pro-

cedure is trivial given the aforementioned descriptions. Besides, a large proportion of

the infrastructure implementation of LHD-s, such as the communication manager and

the Hash Bind Join operator, is reused in LHD-d. However, LHD-d uses normal hash

join instead of the Double-pipelined Hash Join. This is because LHD-d requires the size

of the entire results of a triple pattern before executing another one.

Chapter 8

Evaluating LHD-d

In this chapter we evaluate the query processing efficiency of LHD-d in two situ-

ations: 1) with a subset of statistics that VoID can provide1; and 2) having

co-reference2. In the former situation LHD-d is compared with LHD-s and

FedX, to examine the effectiveness of its dynamic optimisation approach. In

the latter situation LHD-d is evaluated using the evaluation framework with added

co-reference statements, and compared with the baseline approach of processing co-

referenced queries. This part focuses on examining the effectiveness of Virtual Graph.

8.1 Evaluating the Dynamic Optimisation Approach

The dynamic optimisation approach enables LHD-d to take advantage of runtime statis-

tics and thus improves the accuracy of cardinality estimation. In the meantime, it

limits the ability of producing universally optimal QEPs. In this section we evaluate

LHD-d using the evaluation framework and compare its results with those of LHD-s and

FedX. This experiment uses the same settings as in chapter 5 (i.e. 70 million triples

distributed among 20 endpoints, and detailed VoID descriptions of all endpoints). It

should be noticed that LHD-d only requires the number of triples of each predicate.
1It does not really matter what statistics are available, since they are only used for determine the first

choice in dynamic optimisation. However, in practice the most common statistics contained in VoID
files are selectivity of predicates.

2In the evaluation having co-reference it subsumes the situation of less statistics. The intention here
is to emphasise two different aspect of LHD-d.

87

Chapter 8. Evaluating LHD-d 88

8.1.1 Results and Analysis

We present the QPS, the incoming and outgoing traffic, and the transmission rate of

engines under testing respectively in figure 8.1, 8.2, 8.3 and 8.4. “0” and “NA” stand

for failures of execution. We do not include the system resource consumption of LHD-d

because it is close to LHD-s. The results of LHD-s and FedX are same as those in

chapter 5 since the experiment settings did not change.

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd 0.4163 4.6033 2.2427 0.8486 0.0042 0.8105 1.7078 0.6088 0.1175

LHDs 0.4084 2.1023 0.5047 0.0345 0.0045 0.0456 3.9397 0.5116 0.1137

FedX 0 0.9784 0.2382 0.1347 0 0.3499 0.7012 0.8520 0.1107

0
.4
1
6

4
.6
0
3

2
.2
4
3

0
.8
4
9

0
.0
0
4

0
.8
1
1

1
.7
0
8

0
.6
0
9

0
.1
1
70
.4
0
8

2
.1
0
2

0
.5
0
5

0
.0
3
4

0
.0
0
4

0
.0
4
6

3
.9
4
0

0
.5
1
2

0
.1
1
4

N
A

0
.9
7
8

0
.2
3
8

0
.1
3
5

N
A

0
.3
5
0 0
.7
0
1

0
.8
5
2

0
.1
1
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Q
P
S

LHDd-QPS

Figure 8.1: QPS of LHD-d

It is shown in figure 8.1 that LHD-d has an higher QPS over LHD-s on most queries

(and becomes the fastest engine on most queries). Especially, significant performance

boost is shown on Q2, Q3, Q4 and Q7. The boost on Q2 and Q4 is primarily due to

increased transmission rate (figure 8.4), on Q3 is due to decreased network traffic (figure

8.2 and 8.3), and on Q7 is due to both factors. LHD-d is slower than LHD-s on Q8 (but

still two times faster than FedX), which is due to its relatively slow transmission rate.

On Q10 LHD-d shows slight improvement, but FedX is still the one with highest QPS.

LHD-d has the least network traffic on most queries except Q1, Q4 and Q10 (figure

8.2 and 8.3). It is worth noticing that in LHD-d parallelisation is determined by the Ψ

algorithm (algorithm 1) in a way that network traffic is not increased. Each sub-query

Chapter 8. Evaluating LHD-d 89

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd 298.56 1.65 1.29 58.32 825.81 0.24 0.77 27.95 0.18

LHDs 217.26 1.52 59.03 73.07 1014.96 58.30 1.56 48.97 0.19

FedX 0 2.74 3.78 10.67 0 6.41 3.61 3.83 0.21

2
9

8
.5

6

1
.6

5

1
.2

9 5
8

.3
2

8
2

5
.8

1

0
.2

4

0
.7

7

2
7

.9
5

0
.1

8

2
1

7
.2

6

1
.5

2 5
9

.0
3

7
3

.0
7

1014.96

5
8

.3
0

1
.5

6 4
8

.9
7

0
.1

9

N
A

2
.7

4

3
.7

8

1
0

.6
7

N
A

6
.4

1

3
.6

1

3
.8

3

0
.2

1

0

200

400

600

800

1000

1200

TR
A

FF
IC

 (
M

B
)

LHDd-INCOMING TRAFFIC

Figure 8.2: Incoming traffic of LHD-d

is optimised with an aim of minimum traffic. Compared with the network traffic of

FedX and SPLENDID (recalling that SPLENDID produces more traffic than FedX), we

conclude that using runtime statistics yields more accurate cardinality estimation and

leads to QEPs that are closer to optimal. The results further reinforce the previous

discussion that the existing cost models or VoID statistics are not sufficiently accurate.

The transmission rate of LHD-d varies on different queries. On Q1, Q2 and Q4 LHD-d

has even higher transmission rate than LHD-s, while on Q3, Q7 and Q8 its transmission

rate is relatively low. A closer look reveals that LHD-d produces insignificant amount

of network traffic on Q3, Q7 and Q8, and still has highest QPS on these queries. Since

LHD-d and LHD-s use the same communication management system, they have close

inter-operator parallelism on simple queries, which is confirmed by the transmission rate

on Q11.

In summary, the dynamic optimisation approach employed in LHD-d (i.e. using run-

time statistics with the Ψ algorithm and the MST-based optimisation algorithm) better

balances between reducing network traffic and increasing average transmission rate, and

thus shows a higher overall efficiency. The primary advantage of LHD-d results from

Chapter 8. Evaluating LHD-d 90

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd 12.22 2.50 1.81 101.61 2527.53 0.56 1.78 4.39 0.14

LHDs 8.86 2.28 199.68 188.69 3543.96 188.28 3.59 7.66 0.15

FedX 0 6.18 16.05 56.26 0 20.50 8.44 11.83 0.27

1
2

.2
2

2
.5

0

1
.8

1

1
0

1
.6

1

2
5

2
7

.5
3

0
.5

6

1
.7

8

4
.3

9

0
.1

4

8
.8

6

2
.2

8 1
9

9
.6

8

1
8

8
.6

9

3543.96

1
8

8
.2

8

3
.5

9

7
.6

6

0
.1

5

N
A

6
.1

8

1
6

.0
5

5
6

.2
6

N
A

2
0

.5
0

8
.4

4

1
1

.8
3

0
.2

7

0

500

1000

1500

2000

2500

3000

3500

4000
TR

A
FF

IC
 (

M
B

)

LHDd-OUTGOING TRAFFIC

Figure 8.3: Outgoing traffic of LHD-d

the Ψ algorithm and the usage of runtime statistics. Runtime statistics lead to more

accurate cardinality estimation than VoID statistics, and better QEPs can be produced.

This consequently demonstrates that dynamic optimisation is promising for large scale

LD queries, in which cases detailed statistics are difficult to obtain.

8.2 Evaluating LHD-d including Co-Reference

In this section we evaluate the efficiency of the optimisation techniques for addressing

co-reference (i.e. the Virtual Graph and the aforementioned dynamic optimisation ap-

proach), that are employed in LHD-d. We compare the performance of LHD-d and the

number of query results in situations that are with or without co-reference, to explore

the impact of co-reference. In addition, we compare LHD-d with the baseline approach

of processing co-referenced queries, to demonstrate the effectiveness of Virtual Graph.

The above-mentioned two evaluations has demonstrated that: 1) Taking co-reference

into distributed SPARQL queries yields a large amount of supplementary results, but

also significantly increase query responding time; and 2) the concept of Virtual Graph

Chapter 8. Evaluating LHD-d 91

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd 12.936 1.908 0.697 13.571 1.412 0.064 0.434 1.969 0.004

LHDs 9.234 0.797 13.056 0.902 2.047 1.124 2.029 2.897 0.004

FedX 0.000 0.872 0.472 0.901 0.000 0.942 0.845 1.334 0.005

1
2

.9
3

6

1
.9

0
8

0
.6

9
7

13.571

1
.4

1
2

0
.0

6
4

0
.4

3
4

1
.9

6
9

0
.0

0
4

9
.2

3
4

0
.7

9
7

1
3

.0
5

6

0
.9

0
2 2

.0
4

7

1
.1

2
4

2
.0

2
9 2
.8

9
7

0
.0

0
4

N
A

0
.8

7
2

0
.4

7
2

0
.9

0
1

N
A

0
.9

4
2

0
.8

4
5

1
.3

3
4

0
.0

0
5

0

2

4

6

8

10

12

14

16

R
AT

E
(M

B
/S

)

LHDd-TRANSMISSION RATE

Figure 8.4: Average transmission rate of LHD-d

for BGPs (together with the dynamic optimisation approach) effectively reduce the time

required for processing co-reference of queries.

8.2.1 Experiment Settings

This experiment continues to use the same settings as the previous one (i.e. 70 mil-

lion triples distributed among 20 SPARQL endpoints) with 0.18 million additional co-

reference statements (0.25% of 70 million triples). These co-reference statements are

generated following the method described in section 4.2, based on the proportion and

distribution of co-reference in the real world. In addition, all LIMIT modifiers are

removed from the query set to show the extra results brought by co-reference.

The baseline approach with which LHD-d is compared first generates the Cartesian

product of all co-referent URIs (including the original URIs) in a given query. For each

entry of the Cartesian product a new query is created by replacing the concrete URIs

in the query having co-reference of the entry. Finally every new query is executed using

LHD-d without Virtual Graph turned on. The union of the results of all co-referent

Chapter 8. Evaluating LHD-d 92

queries is regarded as the result of the baseline approach. In other words, the baseline

approach only differs from LHD-d on the usage of Virtual Graph.

8.2.2 Results and Analysis

In the remainder of this section we use LHD-d∗ to represent the evaluation results of

LHD-d obtained with the presence of co-reference, and LHD-d to represent the results

without co-reference taken into account.

We show in table 8.1 that both LHD-d and the baseline approach produce the same sizes

of results having co-reference taken into account. This confirms the ability of Virtual

Graph to fully retrieve additional results due to co-reference. Meanwhile, the result

sizes are raised many times (even orders of magnitude on specific queries) by the small

proportion of additional co-reference statements. The result sizes of Q5 and Q11 remain

the same for different reasons. Q5 selects for products that share the same feature with

a given product. There are 14499 distinct products in our dataset, all of which are

already contained in the result of Q5 without co-reference. By turning on co-reference

support in LHD-d, many more intermediate results are generated (demonstrated by the

network traffic of Q5 in figure 8.6), but the final result does not change. The reason for

Q11 is straightforward. Q11 does not have concrete subjects or objects, so its result size

remains the same.

Three reasons are relevant to the significant amount of additional results. First, a single

vocabulary is shared by all endpoints. Second, in our datasets co-reference exists between

instances of all classes (e.g. Products, Product Features). Consequently, Cartesian

product of a large size is probably produced by the co-reference of the concrete subjects

and objects in a query. Third, instances of the same class have similar relationships

with instances of other classes. Therefore, each co-referent URI may well lead to a valid

result.

In the real world, domains, in where datasets have a similar structure as the dataset in

our experiment, are likely to gain the same boost of results by supporting co-reference in

distributed SPARQL engines. In domains having only part of the above three conditions,

Chapter 8. Evaluating LHD-d 93

it is unknown whether the same amount of extra result will be produced by taking co-

reference into account. Investigating the structure of datasets which are connected by

co-reference of different domains is in our future plan.

Table 8.1: Comparison of result sizes with or without co-reference. The first columns
represent result sizes with the presence of co-reference returned by LHD-d∗ and the
naive approach while the last column represents result sizes without the presence of co-
reference returned by LHD-d. It is clear that co-reference significantly increase result

sizes.

Query LHD-d∗ Naive LHD-d

Q1 7397 7397 53

Q2 103 103 29

Q3 23 23 8

Q4 65510 NA 29

Q5 14499 NA 14499

Q7 1579 NA 63

Q8 101 101 21

Q10 32 32 12

Q11 10 10 10

We present the QPS, the incoming and outgoing traffic, and the transmission rate of

LHD-d∗, LHD-d, and the baseline approach respectively in figure 8.5, 8.6, 8.7 and 8.8.

“0” and “NA” stand for failures of execution.

It is shown in figure 8.5 that the efficiency of query processing is decreased multifold

after introducing co-reference. Especially, the QPS of the baseline approach is orders

of magnitude lower than that of LHD-d (without co-reference). Moreover, the base-

line approach fails on several queries (Q4, Q5 and Q7) that have a large result size.

Although LHD-d∗ still has low QPS on a few queries, it substantially increases the ef-

ficiency of co-reference query processing.On Q10 LHD-d∗ has an even higher QPS than

LHD-d, indicating a good QEP that overcomes the negative effect of co-reference, is

generated. Q11 has no co-reference, and the three approaches show close QPS. This in-

dicates that the impact on QPS solely comes from introducing co-reference rather than

the modification of query engines. Recalling that the usage of Virtual Graph is the only

difference between LHD-d∗ and the baseline approach, we conclude that processing all

Chapter 8. Evaluating LHD-d 94

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 0.0120 1.2048 0.4322 0.0014 0.0045 0.2262 0.5230 0.7748 0.1257

Native 0.0011 0.9607 0.0261 0 0 0 0.5369 0.0702 0.1291

LHDd 0.4163 4.6033 2.2427 0.8486 0.0042 0.8105 1.7078 0.6088 0.1175

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Q
P
S

LHDd*-QPS

Figure 8.5: QPS of LHD-d having co-reference (LHD-d∗)

co-referent URIs together improves query efficiency. Later we will provide evidence that

this improvement is because the Virtual Graph enables LHD-d∗ not only to process more

co-referent queries at a time, but also to produce the optimal QEPs w.r.t all co-referent

URIs. On the contrary, although the baseline approach produces optimal plans for each

co-referent query, the total query time is not necessarily minimised.

From the network traffic of both LHD-d∗ and the baseline approach (figure 8.6 and 8.7)

it is shown that co-reference increase the sizes of intermediate results to a large extent.

In the meantime, LHD-d∗ shows much less amount of network traffic compared to the

baseline approach. It confirms that Virtual Graph enables LHD-d∗ to find better QEPs

that lead to lower network traffic. Otherwise, if the same QEPs were followed by both

LHD-d∗ and the baseline approach, higher transmission rate may occur since the Virtual

Graph enables more co-referent queries to be processed at the same time. However, the

amount of network traffic would not change much.

LHD-d∗ and the baseline approach have the same amount of traffic on Q11, which is

slightly larger than that of LHD-d. Along with the same transmission rate of LHD-

d∗ and the baseline approach on Q11 (figure 8.8), it can be confirmed that both cases

Chapter 8. Evaluating LHD-d 95

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 416.01 3.73 117.37 347.77 7837.59 19.90 10.30 4.16 0.32

Native 66644.63 577.25 5109.97 0 0 0 36.20 205.67 0.31

LHDd 298.56 1.65 1.29 58.32 825.81 0.24 0.77 27.95 0.18

0

10000

20000

30000

40000

50000

60000

70000

TR
A

FF
IC

 (
M

B
)

LHDd*-INCOMING TRAFFIC

Figure 8.6: Incoming traffic of LHD-d having co-reference (LHD-d∗)

have the same behaviour. The extra traffic and transmission rate over LHD-d is due to

searching for co-reference of Q11 (although no co-referent URIs are found).

The transmission rate of LHD-d∗ is not always higher than that of LHD-d and the

baseline approach on different queries. This further confirms that Virtual Graph enables

LHD-d∗ to generate QEPs especially tailored w.r.t all co-referent queries. It is because

at any step during query execution more traffic is generated by LHD-d∗ since all co-

referent URIs are processed together. If the same QEPs were generated in LHD-d∗,

the transmission rate of LHD-d∗ would always be no less than LHD-d and the baseline

approach.

Chapter 8. Evaluating LHD-d 96

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 1241.14 9.04 71.78 1302.67 15959.15 63.47 27.70 11.24 0.24

Native 4128.88 26.47 138.85 0 0 0 41.37 110.45 0.24

LHDd 12.22 2.50 1.81 101.61 2527.53 0.56 1.78 4.39 0.14

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
TR

A
FF

IC
 (

M
B

)

LHDd*-OUTGOING TRAFFIC

Figure 8.7: Outgoing traffic of LHD-d having co-reference (LHD-d∗)

8.3 Evaluation Summary

In this chapter we evaluate a combination of optimisation techniques for environments

with co-reference. These techniques include a Virtual Graph model to address co-

reference, a MST-based algorithm to dynamically optimises queries using runtime statis-

tics, and the Ψ algorithm that potentially identifies more parallel sub-queries using run-

time statistics. The evaluation clearly demonstrates the effectiveness of Virtual Graph

on improving query performance having co-reference taken into account. The perfor-

mance gain is due to two factors: 1) Virtual Graph reduces the number of requests

required for addressing co-referent URIs; 2) Virtual Graph enables the optimiser to find

the optimal QEP w.r.t all co-referent queries of a given query. In the meantime, the

evaluation further demonstrates the advantage of dynamic optimisation in environments

where accurate statistics are not available.

Chapter 8. Evaluating LHD-d 97

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 1.992 1.539 8.176 0.233 10.676 1.886 1.987 1.193 0.007

Native 7.769 57.999 13.696 0.000 0.000 0.000 4.165 2.220 0.007

LHDd 12.936 1.908 0.697 13.571 1.412 0.064 0.434 1.969 0.004

0

10

20

30

40

50

60

70

R
AT

E
(M

B
/S

)

LHDd*-TRANSMISSION RATE

Figure 8.8: Average transmission rate of LHD-d having co-reference (LHD-d∗)

Chapter 9

Conclusions and Future Work

The uprising Web of Data leads to a new era of data consuming, in which

web applications are able to understand information and cooperate with

humans on complex tasks. Modern web applications have already shown

the trend of rich data interaction, which relies on low latency queries.

The Semantic Web technologies potentially raise the interaction between applications

and data to a Web scale. Tasks involving federation of multiple datasets, such as the

example described in chapter 1, will no longer limited by individual or organisation

boundaries. Lucy will be able to find the most appropriate doctor for her mother on

this planet (if by that time remote medical treatment will no more be a problem). The

loss of data boundaries will in turn stimulate more sophisticated applications that are

capable for tasks more complex than looking for doctors. There is a strong demand for

approaches that can efficiently query the Web of Data.

Querying the Web of Data, or distributed SPARQL query processing, can benefit from

the developments in distributed DBMS. However, most distributed DBMS derive their

efficiency from reliable connections among datasets, predictable data structure and con-

trolled statistics, neither of which can be expected from LD due to its large scale and

distributed nature. Besides, co-reference, the phenomenon of the same resource referred

to by multiple URIs, puts forward unique challenges to querying LD.

Motivated by the above demands, we investigated schemes that jointly use novel tech-

niques that are tailored for distributed SPARQL queries, as well as distributed DBMS

99

Chapter 9. Conclusions and Future Work 100

techniques. We propose two sets of optimisation techniques, implemented in two dis-

tributed SPARQL engines, LHD-s and LHD-d, for typical scenarios on the Web of Data.

In addition, we propose DSEF, a scalable and flexible evaluation framework for dis-

tributed SPARQL queries. Using DSEF we compared the LHD schemes with other

approved approaches. Based on the results we established the open issues of existing

query processing techniques and propose promising alternatives.

In the following we firstly summarise DSEF and the two LHD schemes, followed by

conclusions regarding distributed SPARQL query processing. In addition we describe

our future plans based on the open issues revealed by our evaluation.

9.1 Summary of DSEF

DSEF is a benchmark tailored for evaluating distributed SPARQL engines in networks of

arbitrary scales. The flexibility and scalability of DSEF derive from a VM-based network

architecture and the use of artificial data. Moreover, DSEF uniquely introduces the

ability of simulating co-reference in a given RDF network, based on real-world proportion

and distribution of co-reference.

The aforementioned features are backed by a set of scalable and efficient tools, which

provide convenient functionalities including:

• Generating RDF data of arbitrary sizes, with optional co-reference statements (i.e.

owl:sameAs triples).

• Dividing RDF data into smaller pieces according to a given distribution.

• Producing detailed VoID files for given RDF data.

• Simultaneously uploading data to remote datasets, with the ability to resume

interrupted transmission.

• Automatically testing given engines and generating reports as “csv” files.

These tools enable quick setting up of required experimental environments, and gathering

statistics of tested engines.

Chapter 9. Conclusions and Future Work 101

DSEF adopts widely accepted BSBM data and queries to establish soundness. The

assessment queries are carefully adjusted in a way that better explores inner mechanism

of tested engines in distributed settings, while retaining the queries’ original semantics.

DSEF includes three primary metrics:

• Query per second (QPS), represents the average number of queries executed per

second.

• Network traffic, represents the total amount of network traffic (both incoming and

outgoing) produced due to executing queries.

• Transmission rate, represents the average speed of network communication. It is

calculated as the network traffic divided by the query execution time.

In particular DSEF further includes two secondary metrics to monitor system resource

consumptions:

• CPU usage, presents the average percentage of CPU used to execute a certain

query.

• Memory usages, presents the average amount of memory used to execute a certain

query.

9.2 Summary of LHD-s

LHD-s is a distributed SPARQL engine developed based on a scheme of techniques that

are tailored for RDF networks with detailed VoID statistics.

The VoID statistics contain the number of triples, distinct subjects and objects per

predicate, and are used by a selectivity-based responding time cost model. In the cost

model we use a new method to estimate cardinality of joined triple patterns, which

is the basis of cost estimation. We demonstrate that on queries that have two triple

patterns and no concrete subjects or objects, the proposed method outperforms existing

approaches on the DSEF environment. The effectiveness of our cost model over more

complex queries is unknown, due to the significant complexity of performing experiments

with all possible queries.

Chapter 9. Conclusions and Future Work 102

LHD-s follows a static optimisation approach. A dynamic-programming-based optimi-

sation algorithm is used to select the QEP having the minimum responding time. While

dynamic programming guarantees to find the optimal plans per cost model, it has a high

growth of order of complexity. To further improve its efficiency, we take advantage of

certain join operators and introduce heuristics to reduce complexity without decreasing

QEP quality (details are mentioned in section 5.6.1). Furthermore, the optimisation of

LHD-s is able to produce QEPs for parallel execution using cost models that are not

parallelism aware. This is achieved by transforming the QEP, generated in the aforemen-

tioned step, to its parallel form. This parallel transformation only reduces the executing

time of the original QEP, without increasing other costs unchanged.

Parallelism is intensively used through both query optimisation and execution of LHD-s.

We introduce the side-effect-free parallelism, which increases the degree of parallelism

without increasing network traffic. More specifically, we propose an efficient (in terms of

time complexity) algorithm called Ψ (parallel sub-query identification, algorithm 1), to

identify sub-queries that can be optimised and executed independently from each other,

by analysing the invariance of cardinality of variables (i.e. fixed-cardinality nodes).

It is worth mentioning that the Ψ algorithm is applied to queries, while the parallel

transformation in optimisation is applied to QEPs. In terms of occurrence time, the

former takes place at the beginning of the whole query processing, while the latter

happens after a QEP is produced. In LHD-s, parallelism is resolved by both Ψ and

parallel QEPs.

LHD-s provides a parallel query execution system that is able to maximise the trans-

mission rate for given QEPs. It decouples the logical execution of QEPs and physical

communication with RDF datasets. The former is regulated by a plan executor that

starts execution of a triple pattern as soon as its depending bindings are ready. The

execution does not directly contact remote endpoints, but submits execution tasks to a

communication manager, which controls physical communications with RDF datasets.

The number of concurrent connections to each dataset is individually maintained, w.r.t

the available bandwidth to and the computing power of the dataset. Thus LHD-s is

able to exploit transmission rate to the uttermost. Once a triple pattern is executed,

its bindings are delivered back to the plan executor and pushes forward execution of

remaining triple patterns.

Chapter 9. Conclusions and Future Work 103

9.3 Summary of LHD-d

In contrast to LHD-s, LHD-d is developed based on a scheme of techniques that are

designed for RDF networks having co-reference, and less accurate statistics.

Co-reference is taken into account in LHD-d using a model called Virtual Graph. Virtual

Graph considers a concrete URI having co-reference as a variable with pre-existing values

which include the original URI and its co-reference. By applying the Virtual Graph, a

query and its co-reference are evaluated collectively as a regular single query with pre-

existing bindings. We provide evidence that Virtual Graph not only saves the effort of

evaluating each co-reference query individually, but also enables query optimisation to

take all co-reference into account simultaneously.

The presence of co-reference alters data statistics in a nondeterministic fashion. Instead

of obtaining statistics of RDF datasets from VoID files, LHD-d primarily relies on statis-

tics that become available at runtime. After a triple pattern is executed, its accurate

result size is known, which is used to estimate costs of remaining triple patterns. This

method prevents propagation of estimation errors of early stages, and minimises the

possibility of bad choices.

Due to the usage of runtime statistics, LHD-d follows a dynamic optimisation approach,

in which query optimisation and execution are interleaved. Since the result sizes keep

updating in each optimisation-execution cycle (OE cycle), LHD-d adopts a MST-based

algorithm to select the minimum remaining triple pattern (in terms of estimated result

size). The MST-based optimisation focuses on reducing network traffic (since it is dif-

ficult to resolve parallelism within an OE cycle), and leaves decisions of parallelism to

Ψ.

The Ψ algorithm is exploited even further in LHD-d. First, Ψ is applied at the beginning

of each OE cycle, and fully determines the parallelism of LHD-d. Second, benefiting from

runtime statistics, two heuristics for determining fixed-cardinality variables are added.

As more fixed-cardinality variables are likely to be found, the chance of having a higher

degree of parallelism is increased.

LHD-d adopts the same parallel execution system as in LHD-s. The only difference is

that LHD-d uses normal Hash Joins in the places where Double-pipelined Hash Joins

Chapter 9. Conclusions and Future Work 104

(DHJs) are used. This is because LHD-d requires the size of all results of a triple pattern,

which is not available from DHJs.

9.4 Conclusions

The main conclusion following the evaluation results is that either or both VoID statistics

and existing selectivity-based cost models are not sufficiently accurate. It is drawn from

two observations: 1) LHD-s optimises queries for minimum responding time, however,

it is slower than LHD-d; and 2) SPLENDID, whose optimisation objective is minimum

network traffic, produces more traffic than FedX, whose optimisation is based on heuris-

tics. Recalling that both LHD-s and SPLENDID adopt dynamic programming, VoID

statistics and cost models are the only remaining sources leading to sub-optimal plans.

In this thesis we tested our approaches in an environment having up to 20 endpoints.

In the LD cloud this number could be larger and it would be more difficult to maintain

accurate statistics. Based on the previous conclusion and the encouraging results of

LHD-d, we in addition conclude that using runtime statistics and dynamic optimisation

is promising for LD queries in general. Furthermore, the effectiveness of Ψ algorithm

is better exploited with dynamic optimisation, which better balances transmission rate

and traffic.

Informatively, we notice that some types of queries significantly benefit from query

optimisation while others are difficult to optimise. For example, Q5 generates a large

amount of intermediate results regardless of the optimisation techniques. We call such

queries inefficient queries. For such queries more efficient execution techniques will

play an important part to reduce query response time and optimisation will probably

increase query response time. Furthermore, although it can be difficult to investigate

general rules to identify inefficient queries before execution (until accurate statistics and

cost models are developed), it is possible to provide guidelines to SPARQL users to avoid

such queries, by studying the structure and composition of queries. A trivial example

will be the query {?s ?p ?o}, which will return everything from a dataset. A more subtle

case is that star shaped queries with variables at the centre are more likely to generate

a large amount of intermediate result than chain shaped queries. Graph theory is likely

to provide insight on this subject.

Chapter 9. Conclusions and Future Work 105

9.5 Future Work

Despite the encouraging results we described in this thesis, there is still a variety of

work required for both further improving the performance of LHD-s and LHD-d, and

exploring open issues of distributed SPARQL processing in general. Following these two

lines, this section breaks our future plans into two segments.

9.5.1 Short-term Plans on Improving the Proposed Methods

The most urgent enhancement for LHD-s is to improve the accuracy of cost estimation.

However, since it is related to statistics-based engines in general, we leave it to the

section in which general issues are discussed.

In the near future, both LHD-s and LHD-d will be evaluated in the real world. Such

experiment will provide more comprehensive understanding of adopted techniques and

clues for further enhancements. Especially, for specific domains, it is possible to take

advantage of knowledge that is not widely available, and to adopt specific optimisation.

A promising direction could be extending the work described in Akar et al. [2012], to

filter out groups of triple patterns that will not produce any result. Moreover, due to the

limitation of our evaluation with co-reference, it is unknown in which domains a small

portion of co-reference will lead to a large number of additional results. The correlation

between the structure of co-reference and the effectiveness of Virtual Graph is also

unknown. Real-world evaluation will be complementary to the lab based benchmarking

presented in this thesis and provide more comprehensive insight of distributed SPARQL

optimisation. Further studies will need to be conducted to take both evaluation into

account.

In the LHD schemes we focus on techniques of query optimisation and parallelism.

To become fully practical distributed engines, assistant techniques such as caching are

necessary. In addition, since the aggregation of BGPs in Jena constrains the usage of

parallelism, it is worth implementing the aggregation in a parallelism compatible way.

9.5.2 Long-term Plans on Open Issues of Distributed SPARQL

The main open issue exposed by this thesis is the lack of effective and concise statistics

of RDF datasets, or accurate cost models. In section 6.1 we described experiments to

analyse the characteristics of cardinality of complex joins. This is the first step of inves-

tigating the aforementioned open issue. There are two possible directions depending on

the results. The first direction is looking for cost models that do not necessarily produce

accurate estimations, but correctly compare two arbitrary joins based on existing VoID

statistics. However, recalling the vast number of sophisticated indices in distributed

DBMS, this direction could be impossible due to the inherent limitations of VoID. To

this end, the second direction is to identify the most essential statistics required for

comparing arbitrary joins, and extend VoID with the ability to include those statistics.

Those statistics have to be concise to be widely available on the Web of Data.

In the meantime, as shown by the evaluation, a promising direction for future distributed

SPARQL processing is to exploit runtime statistics with dynamic optimisation. Since in

dynamic optimisation only the initial choice is made from pre-existing statistics (even

the initial choice can be made purely using heuristics, just like FedX), the responsibility

of providing detailed statistics is relieved from data providers. The primary future work

on exploiting runtime statistics is to explore sampling techniques that retrieve statistics

without waiting for finishing a triple pattern, which consequently enables engines to

use pipelined parallelism (e.g. Double-pipelined Hash Join). Besides, to develop more

sophisticated algorithms for dynamic optimisation is also an important part of our future

work.

The use of pipelined parallelism not only elevates the efficiency of LD queries, but

also increases adaptivity of query processing. Adaptive query processing has been well

developed in distributed DBMS, however, limited work has been done for distributed

SPARQL (as far as we know, ANAPSID [Acosta et al., 2011] is the only work on adaptive

SPARQL evaluation). The Web of Data contains RDF datasets of various kinds, and

adaptivity is no less important than efficiency.

Appendix A

Experiment Queries

Table A.1: Assessment queries of the evaluation framework

Query 1

SELECT DISTINCT ?product ?label

WHERE {

?product rdfs:label ?label .

?product a %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature2% .

?product bsbm:productPropertyNumeric1 ?value1 .

}

ORDER BY ?label

LIMIT 10

Continued on next page

107

Table A.1 – continued from previous page

Query 2

SELECT ?label ?comment ?producer ?productFeature

?propertyTextual1 ?propertyTextual2 ?propertyTextual3

?propertyNumeric1 ?propertyNumeric2 ?propertyTextual4

?propertyTextual5 ?propertyNumeric4

WHERE {

%ProductXYZ% rdfs:label ?label .

%ProductXYZ% rdfs:comment ?comment .

%ProductXYZ% bsbm:producer ?p .

?p rdfs:label ?producer .

%ProductXYZ% dc:publisher ?p .

%ProductXYZ% bsbm:productFeature ?f .

?f rdfs:label ?productFeature .

%ProductXYZ% bsbm:productPropertyTextual1 ?propertyTextual1 .

%ProductXYZ% bsbm:productPropertyTextual2 ?propertyTextual2 .

%ProductXYZ% bsbm:productPropertyTextual3 ?propertyTextual3 .

%ProductXYZ% bsbm:productPropertyNumeric1 ?propertyNumeric1 .

%ProductXYZ% bsbm:productPropertyNumeric2 ?propertyNumeric2 .

}

Continued on next page

Table A.1 – continued from previous page

Query 3

SELECT ?product ?label

WHERE {

?product rdfs:label ?label .

?product a %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productPropertyNumeric1 ?p1 .

?product bsbm:productPropertyNumeric3 ?p3 .

?product bsbm:productFeature %ProductFeature2% .

?product rdfs:label ?testVar .

}

ORDER BY ?label

LIMIT 10

Continued on next page

Table A.1 – continued from previous page

Query 4

SELECT DISTINCT ?product ?label ?propertyTextual

WHERE {

{

?product rdfs:label ?label .

?product rdf:type %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature2% .

?product bsbm:productPropertyTextual1 ?propertyTextual .

?product bsbm:productPropertyNumeric1 ?p1 .

} UNION {

?product rdfs:label ?label .

?product rdf:type %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature3% .

?product bsbm:productPropertyTextual1 ?propertyTextual .

?product bsbm:productPropertyNumeric2 ?p2 .

}

}

ORDER BY ?label

OFFSET 5

LIMIT 10

Continued on next page

Table A.1 – continued from previous page

Query 5

SELECT DISTINCT ?product ?productLabel

WHERE {

?product rdfs:label ?productLabel .

%ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .

?product bsbm:productPropertyNumeric1 ?simProperty1 .

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .

?product bsbm:productPropertyNumeric2 ?simProperty2 .

}

ORDER BY ?productLabel

LIMIT 5

Continued on next page

Table A.1 – continued from previous page

Query 7

SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle

?review ?revTitle ?reviewer ?revName ?rating1 ?rating2

WHERE {

%ProductXYZ% rdfs:label ?productLabel .

?offer bsbm:product %ProductXYZ% .

?offer bsbm:price ?price .

?offer bsbm:vendor ?vendor .

?vendor rdfs:label ?vendorTitle .

?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE> .

?offer dc:publisher ?vendor .

?offer bsbm:validTo ?date .

?review bsbm:reviewFor %ProductXYZ% .

?review rev:reviewer ?reviewer .

?reviewer foaf:name ?revName .

?review dc:title ?revTitle .

}

Continued on next page

Table A.1 – continued from previous page

Query 8

SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName

?rating1 ?rating2 ?rating3 ?rating4

WHERE {

?review bsbm:reviewFor %ProductXYZ% .

?review dc:title ?title .

?review rev:text ?text .

?review bsbm:reviewDate ?reviewDate .

?review rev:reviewer ?reviewer .

?reviewer foaf:name ?reviewerName .

?review bsbm:rating1 ?rating1 .

?review bsbm:rating2 ?rating2 .

?review bsbm:rating3 ?rating3 .

?review bsbm:rating4 ?rating4 .

}

ORDER BY DESC(?reviewDate)

LIMIT 20

Continued on next page

Table A.1 – continued from previous page

Query 10

SELECT DISTINCT ?offer ?price

WHERE {

?offer bsbm:product %ProductXYZ% .

?offer bsbm:vendor ?vendor .

?offer dc:publisher ?vendor .

?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> .

?offer bsbm:deliveryDays ?deliveryDays .

?offer bsbm:price ?price .

?offer bsbm:validTo ?date .

}

ORDER BY xsd:double(str(?price))

LIMIT 10

Query 11

SELECT ?property ?hasValue ?isValueOf

WHERE {

{ %OfferXYZ% ?property ?hasValue }

UNION

{ ?isValueOf ?property %OfferXYZ% }

}

Table A.2: SS joins of distinct predicates

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

bsbm:productPropertyNumeric1> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

a ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyNumeric1> ?o1 ;

a ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productPropertyNumeric1> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s a ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

bsbm:producer> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

bsbm:productPropertyTextual1> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

rdfs:comment> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

bsbm:productPropertyTextual2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

bsbm:productPropertyTextual3> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

bsbm:productPropertyTextual1> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

rdfs:comment> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

bsbm:productPropertyNumeric1> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

bsbm:productPropertyTextual2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

bsbm:productPropertyTextual3> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

rdfs:label> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:producer> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

rdfs:comment> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

bsbm:productPropertyNumeric1> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

bsbm:productPropertyTextual2> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

bsbm:productPropertyTextual3> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s rdfs:comment> ?o1 ;

bsbm:productPropertyNumeric1> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:comment> ?o1 ;

bsbm:productPropertyTextual2> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:comment> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:comment> ?o1 ;

bsbm:productPropertyTextual3> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s rdfs:comment> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:comment> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyNumeric1> ?o1 ;

bsbm:productPropertyTextual2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyNumeric1> ?o1 ;

dc:publisher> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productPropertyNumeric1> ?o1 ;

bsbm:productPropertyTextual3> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyNumeric1> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual2> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual2> ?o1 ;

bsbm:productPropertyTextual3> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual2> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual2> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s dc:publisher> ?o1 ;

bsbm:productPropertyTextual3> ?o2 .

}

SELECT *

WHERE

{ ?s dc:publisher> ?o1 ;

rdfs:label> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s dc:publisher> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual3> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual3> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:label> ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productFeature> ?o1 ;

bsbm:productPropertyNumeric3> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:productPropertyNumeric1> ?o1 ;

bsbm:productPropertyNumeric3> ?o2 .

}

SELECT *

WHERE

{ ?s a ?o1 ;

bsbm:productPropertyNumeric3> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:label> ?o1 ;

bsbm:productPropertyNumeric3> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:productPropertyTextual1> ?o1 ;

a ?o2 .

}

SELECT *

WHERE

{ ?s a ?o1 ;

bsbm:productPropertyNumeric2> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

bsbm:country> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

bsbm:vendor> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

bsbm:price> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

bsbm:reviewFor> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

bsbm:validTo> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

dc:publisher> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

bsbm:product> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

dc:title> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

rev:reviewer> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

bsbm:vendor> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

bsbm:price> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

bsbm:reviewFor> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

bsbm:validTo> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

bsbm:product> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

dc:title> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:country> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

bsbm:price> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

bsbm:reviewFor> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

bsbm:validTo> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

bsbm:product> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

dc:title> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:vendor> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:price> ?o1 ;

bsbm:reviewFor> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:price> ?o1 ;

bsbm:validTo> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:price> ?o1 ;

dc:publisher> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:price> ?o1 ;

bsbm:product> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:price> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:price> ?o1 ;

dc:title> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:price> ?o1 ;

rev:reviewer> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

bsbm:validTo> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

bsbm:product> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

rdfs:label> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

dc:title> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:validTo> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:validTo> ?o1 ;

bsbm:product> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:validTo> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:validTo> ?o1 ;

dc:title> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:validTo> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s dc:publisher> ?o1 ;

bsbm:product> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s dc:publisher> ?o1 ;

dc:title> ?o2 .

}

SELECT *

WHERE

{ ?s dc:publisher> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:product> ?o1 ;

rdfs:label> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:product> ?o1 ;

dc:title> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:product> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:label> ?o1 ;

dc:title> ?o2 .

}

SELECT *

WHERE

{ ?s rdfs:label> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s dc:title> ?o1 ;

rev:reviewer> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

bsbm:reviewDate> ?o2 .

}

SELECT *

WHERE

{ ?s foaf:name> ?o1 ;

rev:text> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

bsbm:reviewDate> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewFor> ?o1 ;

rev:text> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:reviewDate> ?o1 ;

rev:text> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewDate> ?o1 ;

dc:title> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:reviewDate> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s rev:text> ?o1 ;

dc:title> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s rev:text> ?o1 ;

rev:reviewer> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:deliveryDays> ?o1 ;

bsbm:country> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:deliveryDays> ?o1 ;

bsbm:price> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:deliveryDays> ?o1 ;

bsbm:vendor> ?o2 .

}

Continued on next page

Table A.2 – continued from previous page

SELECT *

WHERE

{ ?s bsbm:deliveryDays> ?o1 ;

bsbm:validTo> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:deliveryDays> ?o1 ;

dc:publisher> ?o2 .

}

SELECT *

WHERE

{ ?s bsbm:deliveryDays> ?o1 ;

bsbm:product> ?o2 .

}

Bibliography

M Acosta, ME Vidal, and T Lampo. ANAPSID: An adaptive query processing en-

gine for SPARQL endpoints. In proceedings of the International Semantic Web Con-

ference (ISWC), pages 18–34, 2011. URL http://www.springerlink.com/index/

56475624X7744457.pdf.

Ziya Akar, Tayfun Gökmen Halaç, and Erdem Eser Ekinci. Querying the web of

interlinked datasets using VoID descriptions. In proceedings of the Linked Data

on the Web Workshop (LDOW) , at the International World Wide Web Confer-

ence (WWW), 2012. URL http://events.linkeddata.org/ldow2012/papers/

ldow2012-paper-06.pdf.

Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing

linked datasets on the design and usage of VoID , the “Vocabulary of Interlinked

Datasets”. In proceedings of the Linked Data on the Web Workshop (LDOW) , at the

International World Wide Web Conference (WWW), 2009.

Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In proceedings

of the International Semantic Web Conference (ISWC), pages 114–129, 2008. URL

http://www.springerlink.com/index/7lv586v1j2j43156.pdf.

S Bail, B Parsia, and U Sattler. JustBench: A framework for OWL benchmarking.

In proceedings of the International Semantic Web Conference (ISWC), pages 32–47,

2010. URL http://link.springer.com/chapter/10.1007/978-3-642-17746-0_3.

T Berners-Lee. Linked data-design issues, 2006. URL http://www.w3.org/

DesignIssues/LinkedData.html.

147

http://www.springerlink.com/index/56475624X7744457.pdf
http://www.springerlink.com/index/56475624X7744457.pdf
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-06.pdf
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-06.pdf
http://www.springerlink.com/index/7lv586v1j2j43156.pdf
http://link.springer.com/chapter/10.1007/978-3-642-17746-0_3
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

T Berners-Lee, J Hendler, and O Lassila. The Semantic Web: A new form of Web

content that is meaningful to computers will unleash a revolution of new possibilities.

Scientific American, 2001.

Abraham Bernstein, Christoph Kiefer, and Markus Stocker. OptARQ : a SPARQL

optimization approach based on triple pattern selectivity estimation. Technical report,

Technical Report ifi-2007.03, Department of Informatics, University of Zurich, 2007.

Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve, and

James B. Rothnie. Query processing in a system for distributed databases (SDD-

1). ACM Transactions on Database Systems, 6(4):602–625, December 1981. ISSN

03625915. doi: 10.1145/319628.319650. URL http://dl.acm.org/citation.cfm?

id=319628.319650.

Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark. International

Journal On Semantic Web and Information Systems (IJSWIS) - Special Issue on

Scalability and Performance of Semantic Web Systems, 5(2):1–24, 2009.

Christoph Böhm, Johannes Lorey, and Felix Naumann. Creating voiD descriptions for

Web-scale data. Web Semantics: Science, Services and Agents on the World Wide

Web, 9(3):339–345, 2011. ISSN 1570-8268. URL http://www.sciencedirect.com/

science/article/pii/S1570826811000370.

Peter Boncz, Minh-Duc Pham, Orri Erling, Ivan Mikhailov, and Yrjana Rankka. Social

Network Intelligence BenchMark. URL http://www.w3.org/wiki/Social_Network_

Intelligence_BenchMark.

Jeremy Carroll, Ivan Herman, and Peter F. Patel-Schneider. OWL 2 Web Ontology

Language RDF-Based Semantics (Second Edition), 2012. URL http://www.w3.org/

TR/2012/REC-owl2-rdf-based-semantics-20121211/.

Gong Cheng and Yuzhong Qu. Searching linked objects with Falcons: approach,

implementation and evaluation. International Journal on Semantic Web and

Information Systems, 5(3):49–70, 2009. ISSN 15526283. doi: 10.4018/jswis.

2009081903. URL http://services.igi-global.com/resolvedoi/resolve.aspx?

doi=10.4018/jswis.2009081903.

S. Christodoulakis. Implications of certain assumptions in database performance evau-

ation. ACM Transactions on Database Systems, 9(2):163–186, May 1984. ISSN

http://dl.acm.org/citation.cfm?id=319628.319650
http://dl.acm.org/citation.cfm?id=319628.319650
http://www.sciencedirect.com/science/article/pii/S1570826811000370
http://www.sciencedirect.com/science/article/pii/S1570826811000370
http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jswis.2009081903
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jswis.2009081903

03625915. doi: 10.1145/329.318578. URL http://dl.acm.org/citation.cfm?id=

329.318578.

Mathieu D’Aquin, Claudio Baldassarre, Laurian Gridinoc, Sofia Angeletou, Marta

Sabou, and Enrico Motta. Characterizing knowledge on the semantic web with Wat-

son. In proceedings of the Evaluation of Ontologies and Ontology-Based Tools Work-

shop (EON), in conjuction with the International Semantic Web Conference (ISWC),

volume 329, pages 1–10, 2007. URL http://oro.open.ac.uk/23555/.

David DeWitt and Jim Gray. Parallel database systems: the future of high perfor-

mance database systems. Communications of the ACM, 35(6):85–98, June 1992. ISSN

00010782. doi: 10.1145/129888.129894. URL http://dl.acm.org/citation.cfm?

id=129888.129894.

Li Ding, Joshua Shinavier, Zhenning Shangguan, and Deborah McGuinness. SameAs

networks and beyond: Analyzing deployment status and implications of owl: sameAs

in linked data. In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika,

Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors, proceedings of the

International Semantic Web Conference (ISWC), volume 6496 of Lecture Notes in

Computer Science, pages 145–160, Berlin, Heidelberg, 2010. ISBN 978-3-642-17745-

3. doi: 10.1007/978-3-642-17746-0. URL http://www.springerlink.com/index/

Q1359571L25472PK.pdf.

S Duan and A Kementsietsidis. Apples and oranges: a comparison of RDF benchmarks

and real RDF datasets. In proceedings of the ACM SIGMOD International Conference

on Management of data (SIGMOD), 2011. URL http://dl.acm.org/citation.cfm?

id=1989340.

G.H.L. Fletcher and P.W. Beck. Scalable indexing of RDF graphs for efficient join

processing. In proceeding of the 18th ACM conference on Information and knowledge

management, pages 1513–1516, 2009. URL http://portal.acm.org/citation.cfm?

id=1646159.

Hugh Glaser, Tim Lewy, Ian Millard, and Ben Dowling. On coreference and the Semantic

Web. In proceedings of the European Semantic Web Conference (ESWC), 2007.

Hugh Glaser, Afraz Jaffri, and Ian Millard. Managing Co-reference on the Semantic web.

In proceedings of the Linked Data on the Web Workshop (LDOW) , at the International

http://dl.acm.org/citation.cfm?id=329.318578
http://dl.acm.org/citation.cfm?id=329.318578
http://oro.open.ac.uk/23555/
http://dl.acm.org/citation.cfm?id=129888.129894
http://dl.acm.org/citation.cfm?id=129888.129894
http://www.springerlink.com/index/Q1359571L25472PK.pdf
http://www.springerlink.com/index/Q1359571L25472PK.pdf
http://dl.acm.org/citation.cfm?id=1989340
http://dl.acm.org/citation.cfm?id=1989340
http://portal.acm.org/citation.cfm?id=1646159
http://portal.acm.org/citation.cfm?id=1646159

World Wide Web Conference (WWW), 2009. URL http://eprints.soton.ac.uk/

267587/.

Olaf Görlitz and Steffen Staab. SPLENDID: SPARQL Endpoint Federation Exploiting

VOID Descriptions. In proceedings of the Consuming Linked Data Workshop(COLD),

2011.

Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Sur-

veys, 25(2):73–169, June 1993. ISSN 03600300. doi: 10.1145/152610.152611. URL

http://portal.acm.org/citation.cfm?id=152610.152611.

Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems.

Web Semantics: Science, Services and Agents on the World Wide Web, 3(2-3):158–

182, 2005. ISSN 1570-8268. URL http://linkinghub.elsevier.com/retrieve/

pii/S1570826805000132.

Claudio Gutierrez. Foundations of RDF databases. Reasoning Web. Semantic Tech-

nologies for Information Systems, 5689:158–204, 2008. URL http://videolectures.

net/site/normal_dl/tag=25799/eswc08_gutierrez_frdf_01.pdf.

L.M. Haas, D. Kossmann, E.L. Wimmers, and J. Yang. Optimizing queries across

diverse data sources. In proceedings of the International Conference on Very Large

Data Bases, pages 276–285, 1997. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.12.7606&rep=rep1&type=pdf.

H Halpin and PJ Hayes. When owl: sameAs isn’t the same: An analysis of identity

links on the semantic web. proceedings of the Linked Data on the Web Workshop

(LDOW) , at the International World Wide Web Conference (WWW), 2010. URL

http://events.linkeddata.org/ldow2010/papers/ldow2010_paper09.pdf.

Andreas Harth and S. Decker. Optimized index structures for querying rdf from the

web. In proceedings of the Third Latin American Web Congress (LA-WEB), page 10,

2006. ISBN 0769524710. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1592360.

Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, K.U. Sattler, and Jürgen

Umbrich. Data summaries for on-demand queries over linked data. In Proceedings

of the 19th international conference on World wide web, pages 411–420, New York,

http://eprints.soton.ac.uk/267587/
http://eprints.soton.ac.uk/267587/
http://portal.acm.org/citation.cfm?id=152610.152611
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000132
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000132
http://videolectures.net/site/normal_dl/tag=25799/eswc08_gutierrez_frdf_01.pdf
http://videolectures.net/site/normal_dl/tag=25799/eswc08_gutierrez_frdf_01.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7606&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7606&rep=rep1&type=pdf
http://events.linkeddata.org/ldow2010/papers/ldow2010_paper09.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592360
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592360

New York, USA, 2010. ISBN 9781605587998. doi: 10.1145/1772690.1772733. URL

http://portal.acm.org/citation.cfm?id=1772733.

Olaf Hartig. Zero-Knowledge query planning for an iterator implementation of link

traversal based query execution. In Grigoris Antoniou, Marko Grobelnik, Elena

Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Pan, ed-

itors, proceedings of the European Semantic Web Conference (ESWC), volume 6643

of ESWC’11, pages 154–169, 2011. ISBN 9783642210334. URL http://dx.doi.org/

10.1007/978-3-642-21034-1_11.

Olaf Hartig and Christian Bizer. Executing SPARQL Queries over the Web of Linked

Data. The Semantic Web-ISWC 2009, 5823:293–309, 2009. URL http://www.

springerlink.com/index/Q37381173G66W7N2.pdf.

Patrick Hayes and Brian McBride. RDF semantics, 2004. URL http://www.w3.org/

TR/rdf-mt/.

Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a global data

space. Synthesis Lectures on the Semantic Web: Theory and Technology, 1(1):1–136,

February 2011. ISSN 2160-4711. doi: 10.2200/S00334ED1V01Y201102WBE001. URL

http://www.citeulike.org/user/mikel_egana/article/10524056.

Aidan Hogan, Andreas Harth, and S Decker. Performing object consolidation on the

semantic web data graph. In proceedings of 1st I3: Identity, Identifiers, Identification

Workshop, 2007. URL http://aran.library.nuigalway.ie/xmlui/handle/10379/

493.

Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel Polleres, and

Stefan Decker. Searching and browsing Linked Data with SWSE: the Semantic

Web search engine. Semantic Search over the Web, pages 361–414, 2012. ISSN

15708268. doi: 10.1016/j.websem.2011.06.004. URL http://linkinghub.elsevier.

com/retrieve/pii/S1570826811000473.

W. Hong and M. Stonebraker. Optimization of parallel query execution plans in XPRS.

Distributed and Parallel Databases, (1):9–32, 1993. doi: 10.1109/PDIS.1991.183106.

Wei Hu, Jianfeng Chen, and Yuzhong Qu. A self-training approach for resolving object

coreference on the semantic web. In proceedings of the International Conference on

http://portal.acm.org/citation.cfm?id=1772733
http://dx.doi.org/10.1007/978-3-642-21034-1_11
http://dx.doi.org/10.1007/978-3-642-21034-1_11
http://www.springerlink.com/index/Q37381173G66W7N2.pdf
http://www.springerlink.com/index/Q37381173G66W7N2.pdf
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.citeulike.org/user/mikel_egana/article/10524056
http://aran.library.nuigalway.ie/xmlui/handle/10379/493
http://aran.library.nuigalway.ie/xmlui/handle/10379/493
http://linkinghub.elsevier.com/retrieve/pii/S1570826811000473
http://linkinghub.elsevier.com/retrieve/pii/S1570826811000473

World Wide Web (WWW), page 87, March 2011a. ISBN 9781450306324. doi: 10.1145/

1963405.1963421. URL http://dl.acm.org/citation.cfm?id=1963405.1963421.

Wei Hu, Jianfeng Chen, Hang Zhang, and Yuzhong Qu. How matchable are four

thousand ontologies on the semantic Web. The Semantic Web: Research and Ap-

plications, 6643:290–304, 2011b. doi: 10.1007/978-3-642-21034-1. URL http:

//www.springerlink.com/index/259681U010372545.pdf.

Bernadette Hyland, Boris Villazón-Terrazas, and Ghislain Atemezing. Best practices

for publishing Linked Data (W3C editor’s draft 13 March 2013), 2013. URL https:

//dvcs.w3.org/hg/gld/raw-file/default/bp/index.html.

Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S. Weld.

An adaptive query execution system for data integration. ACM SIGMOD Record, 28

(2):299–310, June 1999. ISSN 01635808. doi: 10.1145/304181.304209. URL http:

//dl.acm.org/citation.cfm?id=304181.304209.

Afraz Jaffri, Hugh Glaser, and Ian Millard. Uri disambiguation in the context of linked

data. In proceedings of the Linked Data on the Web Workshop (LDOW) , at the Inter-

national World Wide Web Conference (WWW), 2008. URL http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.142.9313&rep=rep1&type=pdf.

G. Klyne, J.J. Carroll, and B. McBride. Resource description framework (RDF): Con-

cepts and abstract syntax, 2004. URL http://www.w3.org/TR/rdf-concepts/.

Donald Kossmann. The state of the art in distributed query processing. ACM Computing

Surveys (CSUR), 32(4):422–469, 2000. ISSN 0360-0300. URL http://portal.acm.

org/citation.cfm?id=371598&dl=.

Donald Kossmann and Konrad Stocker. Iterative dynamic programming: a new class of

query optimization algorithms. ACM Transactions on Database Systems, 25(1):43–82,

March 2000. ISSN 03625915. doi: 10.1145/352958.352982. URL http://doi.acm.

org/10.1145/352958.352982.

G. Ladwig and Thanh Tran. Linked Data Query Processing Strategies. The Semantic

Web-ISWC 2010, pages 453–469, 2010. URL http://www.springerlink.com/index/

Q6385N8J0071156U.pdf.

http://dl.acm.org/citation.cfm?id=1963405.1963421
http://www.springerlink.com/index/259681U010372545.pdf
http://www.springerlink.com/index/259681U010372545.pdf
https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html
https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html
http://dl.acm.org/citation.cfm?id=304181.304209
http://dl.acm.org/citation.cfm?id=304181.304209
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.9313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.9313&rep=rep1&type=pdf
http://www.w3.org/TR/rdf-concepts/
http://portal.acm.org/citation.cfm?id=371598&dl=
http://portal.acm.org/citation.cfm?id=371598&dl=
http://doi.acm.org/10.1145/352958.352982
http://doi.acm.org/10.1145/352958.352982
http://www.springerlink.com/index/Q6385N8J0071156U.pdf
http://www.springerlink.com/index/Q6385N8J0071156U.pdf

Günter Ladwig and Thanh Tran. SIHJoin: Querying remote and local Linked

Data. The Semantic Web: Research and Applications, 6643:139–153, 2011.

doi: 10.1007/978-3-642-21034-1. URL http://www.springerlink.com/content/

d7v4716326776w7l/.

Andreas Langegger and Wolfram Woss. RDFStats - An extensible RDF statistics gen-

erator and library. In proceedings of the International Workshop on Database and

Expert Systems Application, pages 79–83, August 2009. ISBN 978-0-7695-3763-4. doi:

10.1109/DEXA.2009.25. URL http://www.computer.org/portal/web/csdl/doi/

10.1109/DEXA.2009.25.

Andreas Langegger, Wolfram Wöß, and Martin Blöchl. A Semantic Web middleware for

virtual data integration on the Web. The Semantic Web Research and Applications,

5021:493–507, 2008. ISSN 03029743. doi: 10.1007/978-3-540-68234-9_37. URL

http://www.springerlink.com/index/1804822517684043.pdf.

Guy M. Lohman. Grammar-like functional rules for representing query optimization

alternatives. ACM SIGMOD Record, 17(3):18–27, June 1988. ISSN 01635808. doi:

10.1145/971701.50204. URL http://dl.acm.org/citation.cfm?id=971701.50204.

L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete OWL ontology

benchmark. The Semantic Web: Research and Applications, 4011:125–139, 2006. URL

http://www.springerlink.com/index/l0wu543x26350462.pdf.

LF Mackert. R* optimizer validation and performance evaluation for dis-

tributed queries. Proceedings of the 1986 ACM SIGMOD international

conference on Management of data (SIGMOD ’86), pages 149–159, Au-

gust 1988. URL http://dl.acm.org/citation.cfm?id=645913.671480http:

//books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=

R*+optimizer+validation+and+performance+evaluation+for+distributed+

queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU.

Priti Mishra and Margaret H. M.H. Eich. Join processing in relational databases.

ACM Computing Surveys (CSUR), 24(1):63–113, January 1992. ISSN 0360-0300.

doi: 10.1001/archoto.2007.12. URL http://portal.acm.org/citation.cfm?id=

128764&dl=http://dl.acm.org/citation.cfm?id=128762.128764.

http://www.springerlink.com/content/d7v4716326776w7l/
http://www.springerlink.com/content/d7v4716326776w7l/
http://www.computer.org/portal/web/csdl/doi/10.1109/DEXA.2009.25
http://www.computer.org/portal/web/csdl/doi/10.1109/DEXA.2009.25
http://www.springerlink.com/index/1804822517684043.pdf
http://dl.acm.org/citation.cfm?id=971701.50204
http://www.springerlink.com/index/l0wu543x26350462.pdf
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://dl.acm.org/citation.cfm?id=645913.671480 http://books.google.com/books?hl=en&lr=&id=7a48qSMuVcUC&oi=fnd&pg=PA175&dq=R*+optimizer+validation+and+performance+evaluation+for+distributed+queries&ots=t9pg6zRm4f&sig=vDISxHaqMECEkY67QlkcGgZm7ZU
http://portal.acm.org/citation.cfm?id=128764&dl= http://dl.acm.org/citation.cfm?id=128762.128764
http://portal.acm.org/citation.cfm?id=128764&dl= http://dl.acm.org/citation.cfm?id=128762.128764

M Morsey, J Lehmann, S Auer, and ACN Ngomo. DBpedia SPARQL benchmark-

performance assessment with real queries on real data. The Semantic Web-ISWC 2011,

2011. URL http://link.springer.com/chapter/10.1007/978-3-642-25073-6_

29.

Thomas Neumann. RDF-3X: a RISC-style engine for RDF. proceedings of the VLDB

Endowment, pages 647–659, 2008. URL http://portal.acm.org/citation.cfm?

id=1453856.1453927.

Eyal Oren, R Delbru, M Catasta, R Cyganiak, H. Stenzhorn, and G. Tummarello.

Sindice. com: A document-oriented lookup index for open linked data. International

Journal of Metadata, Semantics and Ontologies, 3(1):37–52, 2008. URL http://

inderscience.metapress.com/index/3518208222365647.pdf.

MT Özsu and P. Valduriez. Principles of distributed database systems. 1999. ISBN

8177581775. URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=

intitle:Principles+of+distributed+database+systems#0.

J Pérez and Marcelo Arenas. Semantics and Complexity of SPARQL. ACM Transactions

on Database Systems (TODS), 2009. URL http://portal.acm.org/citation.cfm?

id=1567274.1567278.

MD Pham, P Boncz, and O Erling. S3G2: a scalable structure-correlated so-

cial graph generator. Selected Topics in Performance Evaluation and Benchmark-

ing, 7755:156–172, 2013. URL http://link.springer.com/chapter/10.1007/

978-3-642-36727-4_11.

Viswanath Poosala and Yannis E. Ioannidis. Selectivity Estimation Without the At-

tribute Value Independence Assumption. In proceedings of the 23rd International

Conference on Very Large Data Bases (VLDB), pages 486–495, August 1997. ISBN

1-55860-470-7. URL http://dl.acm.org/citation.cfm?id=645923.673638.

R.C. Prim. Shortest connection networks and some generalizations. Bell system techni-

cal journal, 36(6):1389–1401, 1957. URL http://orion.research.bell-labs.com/

BSTJ/images/Vol36/bstj36-6-1389.pdf.

Eric Prud’hommeaux and C Buil-Aranda. SPARQL 1.1 federated query, 2013. URL

http://www.w3.org/TR/sparql11-federated-query/.

http://link.springer.com/chapter/10.1007/978-3-642-25073-6_29
http://link.springer.com/chapter/10.1007/978-3-642-25073-6_29
http://portal.acm.org/citation.cfm?id=1453856.1453927
http://portal.acm.org/citation.cfm?id=1453856.1453927
http://inderscience.metapress.com/index/3518208222365647.pdf
http://inderscience.metapress.com/index/3518208222365647.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Principles+of+distributed+database+systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Principles+of+distributed+database+systems#0
http://portal.acm.org/citation.cfm?id=1567274.1567278
http://portal.acm.org/citation.cfm?id=1567274.1567278
http://link.springer.com/chapter/10.1007/978-3-642-36727-4_11
http://link.springer.com/chapter/10.1007/978-3-642-36727-4_11
http://dl.acm.org/citation.cfm?id=645923.673638
http://orion.research.bell-labs.com/BSTJ/images/Vol36/bstj36-6-1389.pdf
http://orion.research.bell-labs.com/BSTJ/images/Vol36/bstj36-6-1389.pdf
http://www.w3.org/TR/sparql11-federated-query/

Eric Prud’Hommeaux and Andy Seaborne. SPARQL query language for RDF, 2008.

URL http://www.w3.org/TR/rdf-sparql-query/.

M Przyjaciel-Zablocki, A Schätzle, T Hornung, and I Taxidou. Towards a SPARQL

1.1 Feature Benchmark on Real-World Social Network Data. In proceedings of the 1st

International Workhop on Benchmarking RDF Systems, 2013. URL http://ceur-ws.

org/Vol-981/BeRSys2013paper1.pdf.

Bastian Quilitz. Querying distributed RDF data sources with SPARQL. The Se-

mantic Web: Research and Applications, pages 524–538, 2008. URL http://www.

springerlink.com/index/hm1v15q75371640p.pdf.

Louiqa Raschid and Stanley Y. W. Su. A parallel processing strategy for evaluating

recursive queries. In proceedings of the 12th International Conference on Very Large

Data Bases (VLDB), pages 412–419, August 1986. ISBN 0-934613-18-4. URL http:

//dl.acm.org/citation.cfm?id=645913.671471.

Simon Schenk and S. Staab. Networked graphs: a declarative mechanism for SPARQL

rules, SPARQL views and RDF data integration on the web. In proceeding of the

International Conference on World Wide Web (WWW), pages 585–594, 2008. URL

http://portal.acm.org/citation.cfm?id=1367497.1367577.

Simon Schenk, Carsten Saathoff, and Steffen Staab. SemaPlorer-Interactive semantic

exploration of data and media based on a federated cloud infrastructure. Web Seman-

tics: Science, Services and Agents on the World Wide Web, 7(4):298–304, 2009.

M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench:

A benchmark suite for federated semantic data query processing. ISWC 2011,

2011. URL http://www.informatik.uni-freiburg.de/~mschmidt/docs/iswc11_

fedbench.pdf.

Michael Schmidt, Thomas Hornung, Georg Lausen, and C. Pinkel. SP2Bench: A

SPARQL performance benchmark. In proceedings of the International Conference

on Data Engineering, pages 222–233, 2009. URL http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=4812405.

A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization

Techniques for Federated Query Processing on Linked Data. In proceedings of the

http://www.w3.org/TR/rdf-sparql-query/
http://ceur-ws.org/Vol-981/BeRSys2013paper1.pdf
http://ceur-ws.org/Vol-981/BeRSys2013paper1.pdf
http://www.springerlink.com/index/hm1v15q75371640p.pdf
http://www.springerlink.com/index/hm1v15q75371640p.pdf
http://dl.acm.org/citation.cfm?id=645913.671471
http://dl.acm.org/citation.cfm?id=645913.671471
http://portal.acm.org/citation.cfm?id=1367497.1367577
http://www.informatik.uni-freiburg.de/~mschmidt/docs/iswc11_fedbench.pdf
http://www.informatik.uni-freiburg.de/~mschmidt/docs/iswc11_fedbench.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812405
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812405

International Semantic Web Conference (ISWC), 2011. URL http://iswc2011.

semanticweb.org/fileadmin/iswc/Papers/Research_Paper/05/70310592.pdf.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In proceedings of

the ACM SIGMOD International Conference on Management of Data (SIGMOD),

page 23, New York, New York, USA, May 1979. ISBN 089791001X. doi: 10.1145/

582095.582099. URL http://portal.acm.org/citation.cfm?id=582095.582099.

Steffen Staab. Federated data management and query optimization for Linked

Open Data. New Directions in Web Data Management 1, 331:109–137, 2011.

doi: 10.1007/978-3-642-17551-0_5. URL http://www.springerlink.com/index/

B2470QJ11563Q242.pdf.

Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and randomized

optimization for the join ordering problem. The International Journal on Very Large

Data Bases, 6(3):191–208, August 1997. ISSN 1066-8888. doi: 10.1007/s007780050040.

URL http://portal.acm.org/citation.cfm?id=765554.765556.

Markus Stocker, Andy Seaborne, Abraham Bernstein, C. Kiefer, and D. Reynolds.

SPARQL basic graph pattern optimization using selectivity estimation. In proceeding

of the International Conference on World Wide Web (WWW), pages 595–604, 2008.

URL http://portal.acm.org/citation.cfm?id=1367497.1367578.

Heiner Stuckenschmidt, Richard Vdovjak, G.J. Houben, and J. Broekstra. Index struc-

tures and algorithms for querying distributed RDF repositories. In proceedings of the

International Conference on World Wide Web (WWW), pages 631–639, 2004. URL

http://portal.acm.org/citation.cfm?id=988758.

J Umbrich, A Hogan, A Polleres, and S Decker. Improving the Recall of Live Linked

Data Querying through Reasoning. Web Reasoning and Rule Systems, 7497:188–204,

2012. doi: 10.1007/978-3-642-33203-6. URL http://www.springerlink.com/index/

10.1007/978-3-642-33203-6.

T Urhan and MJ Franklin. XJoin: Getting fast answers from slow and bursty networks.

University of Maryland Technical Report CS-TR-3994 (Feb.), 1999.

Ben P. Vandervalk, E. Luke McCarthy, and Mark D. Wilkinson. Optimization of

Distributed SPARQL Queries Using Edmonds’ Algorithm and Prim’s Algorithm.

http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Research_Paper/05/70310592.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Research_Paper/05/70310592.pdf
http://portal.acm.org/citation.cfm?id=582095.582099
http://www.springerlink.com/index/B2470QJ11563Q242.pdf
http://www.springerlink.com/index/B2470QJ11563Q242.pdf
http://portal.acm.org/citation.cfm?id=765554.765556
http://portal.acm.org/citation.cfm?id=1367497.1367578
http://portal.acm.org/citation.cfm?id=988758
http://www.springerlink.com/index/10.1007/978-3-642-33203-6
http://www.springerlink.com/index/10.1007/978-3-642-33203-6

In proceedings of the International Conference on Computational Science and En-

gineering, volume 1, pages 330–337, 2009. doi: 10.1109/CSE.2009.144. URL

http://www.computer.org/portal/web/csdl/doi/10.1109/CSE.2009.144.

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis. Evaluating graph traversal al-

gorithms for distributed SPARQL query optimization. In proceedings of the Joint

International Semantic Technology Conference (JIST), 2011.

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis. LHD: Optimising Linked Data

query processing using parallelisation. In proceedings of the Linked Data on the Web

Workshop (LDOW) , at the International World Wide Web Conference (WWW), 2013.

Gregory Todd Williams and Rensselaer Polytechnic Institute. SPARQL 1.1 Service

Description. W3C Working Draft (12 May 2011), 2011.

AN Wilschut and PMG Apers. Dataflow query execution in a parallel main-

memory environment. In proceedings of the International Conference on Parallel

and Distributed Information Systems, pages 68–77, December 1993. ISBN 0-8186-

2295-4. URL http://dl.acm.org/citation.cfm?id=382009.383658http://www.

springerlink.com/index/R2274PH377725185.pdf.

DH Wolpert and WG Macready. No free lunch theorems for search. Technical report,

Technical Report SFI-TR-95-02-010 (Santa Fe Institute), 1995. URL http://delta.

cs.cinvestav.mx/~ccoello/compevol/nfl.pdf.

DH Wolpert and WG Macready. No free lunch theorems for optimization. IEEE Trans-

actions on Evolutionary Computation, 1(1):67–82, 1997. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=585893.

http://www.computer.org/portal/web/csdl/doi/10.1109/CSE.2009.144
http://dl.acm.org/citation.cfm?id=382009.383658 http://www.springerlink.com/index/R2274PH377725185.pdf
http://dl.acm.org/citation.cfm?id=382009.383658 http://www.springerlink.com/index/R2274PH377725185.pdf
http://delta.cs.cinvestav.mx/~ccoello/compevol/nfl.pdf
http://delta.cs.cinvestav.mx/~ccoello/compevol/nfl.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=585893
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=585893

