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Rayleigh Bénard convection is a canonical example of spontaneous pattern formation in a non-
equilibrium system. It has been the subject of considerable theoretical and experimental study,
primarily for systems with constant (temperature or heat flux) boundary conditions. In this investi-
gation, we have explored the behaviour of a convecting fluid system with negative feedback boundary
conditions. At the upper and lower system boundaries, the inward heat flux is defined such that
it is a decreasing function of the boundary temperature. Thus the system’s heat transport is not
constrained in the same manner that it is in the constant temperature or constant flux cases. It has
been suggested that the entropy production rate (which has a characteristic peak at intermediate
heat flux values) might apply as a selection rule for such a system. In this work, we demonstrate
with Lattice Boltzmann simulations that entropy production maximisation does not dictate the
steady-state of this system, despite its success in other, somewhat similar scenarios. Instead we will
show that the same scaling law of dimensionless variables found for constant boundary conditions
also applies to this system.

PACS numbers:

I. INTRODUCTION

Natural convection (NC) enjoys a prestigious position
as an exemplar of pattern formation in a non-equilibrium
system. It is remarkable that such a simple system as a
differentially heated layer of fluid can exhibit such an
array of coherent and beautiful fluid structures. The
phenomenon of buoyancy-induced heat transfer has been
the subject of intense experimental and theoretical study
since the pioneering days of Lord Rayleigh and Henri
Bénard, after which the most well-known type of NC is
named. The bifurcation of a heated fluid from the diffu-
sive state into a sustained pattern of convection rolls has
long been recognised as a manifestation of the system’s
attempts to return itself to equilibrium. In fact, some of
the most well known, early analytical work on the prob-
lem suggested that convecting fluids adjust their flows so
as to maximise the rate of heat flux [1–3].

One of the interesting characteristics of NC is that it
has a highly non-linear force-flux response and an ongo-
ing subject of research is to establish the nature of the
scaling between the dimensionless forcing parameter, the
Rayleigh number Ra and the ratio of total to diffusive
heat flux, the Nusselt number Nu (see Eqs. 5 and 6 for
definitions).

A range of analyses have suggested values for the
scaling exponent of the Ra-Nu relationship but recent
high resolution numerical studies appear to be converg-
ing towards a consensus for certain values of the Prandtl
number [4, 5]. The majority of NC investigations ap-
plied fixed temperature (perfectly conducting) bound-
aries. This boundary condition (BC) has analytic and ex-
perimental utility (although real materials can of course

never be perfectly conducting), and has long been used
as a benchmark experimental setup. Researchers have
also investigated other BCs such as constant boundary
heat flux [5–7].

With fixed temperature boundaries, if all parameters
are held constant, the system has a single macroscopic de-
gree of freedom: the average heat flux. Since the bound-
ary temperatures are fixed, higher heat fluxes correspond
to higher rates of entropy production and vice versa.

With fixed flux boundaries, when all parameters are
held constant, the average temperature difference across
the system becomes the single free variable. Since en-
tropy production is proportional to the difference of in-
verse temperatures, it increases monotonically with tem-
perature difference (although not linearly).

As well as looking at state selection at constant pa-
rameter values, one can also adjust the properties of the
fluid to assess changes in steady-state variables. It is
well known that there is a monotonic increase in Nus-
selt number as the Rayleigh number is increased (as the
convective resistance of the fluid is decreased). Decreas-
ing the convective resistance can be achieved in several
ways including increasing the system size, decreasing the
viscosity, decreasing the thermal diffusivity or any com-
bination of parameter changes which increases Ra.

For fixed temperature systems, if the thermal diffusiv-
ity is held constant, then any decrease in the convective
resistance will produce an increase in the system’s aver-
age heat flux (and an increase in entropy production).

With fixed heat flux, there is also a monotonic increase
in Nusselt number as the convective resistance decreases.
If the thermal diffusivity is held constant in this case,
any decrease in convective resistance leads to a decrease
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in steady-state boundary temperature difference (and a
decrease in entropy production).

So fixed BCs constrain the system to adjust either its
heat flux or temperature differential. However there are
alternative BCs, which prescribe neither the heat flux
nor the temperature difference. Inspired by work on the
theory of Maximum Entropy Production (MEP) [8, 9],
we have simulated NC under such conditions, so-called
negative feedback BCs [10].

Each boundary receives a constant inward heat flux
but emits heat at a rate that is proportional to the in-
stantaneous boundary temperature. There are thus sev-
eral avenues through which the system can channel the
thermal forcing that it receives. With a very small flux
through the fluid, the system would experience a large
net temperature difference. Conversely if the system was
to transport a relatively large quantity of heat, the tem-
perature difference would become small. In either case
the balance of heat release between the two boundaries
changes markedly as does the entropy produced as a re-
sult of the heat transfer.

A system with constant temperature BCs only pro-
duces more entropy as its heat flux increases. In contrast,
a constant flux system shows a lower entropy production
as its mean temperature difference falls. However with
negative feedback BCs, rather than monotonic changes,
there is a peak in entropy production at intermediate
heat flux values. At the macroscopic level (and ignoring
internal dynamics), such a system is essentially identi-
cal to the original box models used to approximate at-
mospheric heat transport when the theory of MEP was
first proposed [11]. Those original analyses have inspired
a plethora of investigations into the relevance, applica-
bility and theoretical underpinnings of MEP [8, 12–15].
Many researchers have observed what appears to be MEP
in a variety of systems, however, a universally accepted
derivation of MEP is still lacking. Hence it currently can-
not be regarded as a unifying principle of non-equilibrium
thermodynamics [16].

A convecting fluid system with negative feedback BCs
represents an ideal test case for this theory, since it clearly
has the ability to exhibit states of MEP. As well as a test
of MEP, elucidating the temperature and flux response
of a system with such flexible BCs is also highly desir-
able since one can then compare the scaling of the di-
mensionless groups Ra and Nu, with those of fixed tem-
perature and fixed flux systems. We have used a Lat-
tice Boltzmann based algorithm to numerically resolve
the hydrodynamic and thermodynamic characteristics of
such a system for a range of fluid properties. In this
paper we report the results of those simulations.

The paper is arranged as follows. In the following sec-
tion we define our model system, paying close attention
to the details of the BCs and steady-state transport prop-
erties. We will see that when the energy balance equa-
tions are de-dimensionalised, the system has only a sin-
gle macroscopic degree of freedom. We then outline how
it was simulated using the Lattice Boltzmann Method

(LBM). The next section summarises the results of our
numerical investigations. They lead us to conclude that
MEP does not represent a steady-state attractor for NC
systems with negative feedback BCs. Finally, we discuss
our findings with regard to the relevance and applicabil-
ity of MEP for fluid heat transfer and suggest directions
for future research.

II. MODEL SYSTEM

Before defining the system to be modelled, it is in-
structive to take a brief look at the equations of motion
for an incompressible thermal fluid. It is assumed to be
Boussinesq in character. This means that its physical
properties remain constant and variations in density are
assumed to have a negligible effect on the flow except
with regard to the buoyancy-induced gravitational body
force. Incompressibility leads to a simple form for the
continuity equation,

∇ · v′ = 0 (1)

where v′ = u′î + w′k̂ is the dimensional fluid velocity.
Applying Newton’s second law to a fluid parcel yields
the momentum equation,

∂v′

∂t
+ v′ · ∇̂v′ + 1

ρ
∇̂P ′ = ν∇̂2v′ +Bg0(T ′ − T ′0)k̂ (2)

where P ′ is the pressure, B is the coefficient of thermal
expansion, g0 is the strength of gravitational acceleration
and T ′ is the temperature. Defining a set of characteristic
scales allows us to de-dimensionalise this equation. We
can choose a characteristic length δ, time δ2/χ and tem-
perature ∆T (temperature difference across the system).
We thus find,

∂v

∂t
+ v · ∇v +∇P =

ν

χ
∇2v +

ν

χ

Bg0∆Tδ3

νχ
T ∗k̂ (3)

with dimensionless variables v, T ∗ and P . We see that
the flow characteristics are defined by two dimensionless
groups,

Pr =
ν

χ
(4)

and

Ra =
Bg0∆Tδ3

νχ
. (5)

The Prandtl number is simply the ratio of momentum
to thermal diffusivity and the Rayleigh number defines
the dimensionless driving force (in this work any refer-
ence to convective resistance simply means the inverse of
Rayleigh number). Any two flows with equal Ra and Pr,
will be fluid dynamically equivalent.

Note that for a system with fixed temperature BCs, Ra
is fixed by the BCs. For a fixed flux system, Ra becomes
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a variable which depends on the steady-state transport
properties. Similarly, negative feedback BCs do not fix
∆T and thus Ra is a variable rather than a parameter
for such systems.

Finally, let us define the ratio of total to diffusive heat
flux, the Nusselt number:

Nu =
Jab

χ∆T/δ
(6)

where Jab is the heat flux. The free variable for fixed
temperature systems is the heat flux Jab. For fixed flux
systems Jab is defined by the BCs and thus ∆T becomes
the free variable. For negative feedback BCs neither Jab
nor ∆T are fixed. However, we will see below that these
systems also have only a single macroscopic degree of
freedom.

Let us now define all the details of the negative feed-
back system. We assume we are dealing with a two-
dimensional fluid system enclosed between two solid
boundaries. In the horizontal direction the system’s
boundaries are periodic and the aspect ratio is 2. The
upper and lower boundaries receive inward heat fluxes
Jin,b and Jin,a respectively, and are also able to radiate
heat away. The outward fluxes have the form Jout,i = βTi
where i ∈ {a, b} and β is a parameter. Fig. 1 shows a
schematic of the system. Heat flows through it by a com-
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FIG. 1: Model system diagram showing the various heat
fluxes, which comprise the boundary energy balances. The
solid walls enforce the no-slip velocity condition.

bination of diffusion and convection. As mentioned previ-
ously, simple box models with similar BCs have been used
to approximate atmospheric heat transport [13, 17] and
have been explored analytically [see, e.g., 8]. If we ignore
the internal details of the system and regard it as a black
box that has reached a state of dynamic equilibrium, we

can write the energy balance at the two boundaries,

Jin,a − Jab − βTa = 0 (7)

Jin,b + Jab − βTb = 0. (8)

Adding these two equations yields

Jin,a + Jin,b − β(Ta + Tb) = 0 (9)

If we write the two temperatures in the form Ta = T0 +
∆T/2, Tb = T0 − ∆T/2, we can use Eq. 9 to find an
expression for the system’s average temperature:

T0 =
Jin,a + Jin,b

2β
. (10)

To find an expression in terms of ∆T we can subtract
Eq. 8 from Eq. 7

Jin,a − Jin,b − 2Jab = β∆T. (11)

We see here that if the temperature difference is known,
then the heat flux is determined since the other terms
are boundary parameters. So in fact this system, like
those with fixed BCs, has only one macroscopic degree
of freedom.

At this point it is useful to de-dimensionalise Equa-
tion 11 to uncover the dependance of the system’s steady-
state upon the various parameters. Let us define the
dimensionless flux parameter β = δ

χβ and flux differ-

ence parameter, RJ = Bg0δ
4

νχ2 [Jin,a − Jin,b]. If we now

re-arrange Equation 11 and perform several stages of al-
gebraic manipulation, we find

Jab =
1

2

χ∆T

δ

(
RJ
Ra
− β

)
(12)

and thus,

Nu =
1

2

(
RJ
Ra
− β

)
. (13)

We see that when the fluid and boundary parameters are
fixed, the Nusselt number depends only upon the steady-
state temperature difference (the single degree of freedom
of the system). Note also that both fluid and boundary
parameters influence the Nusselt number.

Let us now turn to the entropy production rate σ. Not-
ing the dimensions of β, the dimensionless entropy pro-
duction can be defined as σ = σ/β. We must also define

a dimensionless mean temperature, T0 = Bg0T0δ
3

νχ . Once

more some algebraic manipulation yields an expression
for the dimensionless entropy production,

σ =
Jab
β

(
1

Tb
− 1

Ta

)
(14)

=
1

2β

(
Jin,a − Jin,b

∆T
− β

)
4∆T 2

4T 2
0 −∆T 2

(15)

=
1

2β

(
RJ
Ra
− β

)
4Ra2

4T0
2 −Ra2

(16)
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We see again that when reduced to a dimensionless form,
the steady-state of the system is a function of a sin-
gle variable (the temperature difference ∆T , within Ra).
Furthermore, the dimensionless entropy production de-
pends only upon boundary parameters and ∆T , as shown
in Equation 15.

In this investigation we used a single set of bound-
ary parameters, (Jin,a = 0.1, Jin,b = 0.01, β = 0.1) and
only varied the physical properties of the fluid. The state
selection MEP principle would suggest that for a given
set of boundary and fluid parameters, the steady-state of
the system should adjust to one in which σ is maximised
with respect to ∆T . In Figure 2, the boundary temper-
atures and dimensionless entropy production are plotted
as a function of the normalised heat flux. Temperature
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FIG. 2: (Color online) Macroscopic, steady-state properties of
the model system. Boundary temperatures Ta (red dot-dash
line) and Tb (blue dashed line), and dimensionless entropy
production (solid black line) are plotted as a function of the
normalised heat flux.

values are normalised using the maximum temperature
difference ∆Tmax = (Jin,a − Jin,b)/β (this occurs when
the heat flux Jab = 0). Heat flux values are normalised by
the relevant maximum: Jabmax = (Jin,a − Jin,b)/2 (this
occurs when the temperature difference ∆T = 0).

Figure 2 shows that σ has a single peak at intermedi-
ate values of heat flux. This contrasts with the case of
fixed BCs, in which changes in the single free variable
cause only monotonic increases or decreases in entropy
production. Thus a negative feedback system permits an
ideal test of the state selection MEP principle for NC
heat transfer.

Note however that σ is not a function of any fluid
parameters (see Equation 15). Thus for MEP to be a
steady-state attractor, different fluids would all have to
adhere to the same value of Jab in steady-state.

As mentioned in the introduction, in recent years there
has been a great deal of discussion concerning MEP

since it has shown considerable utility for predicting the
steady-state behaviour of certain non-equilibrium sys-
tems including crystal growth [18, 19], electrical cur-
rent flow [20], ecosystems [21] [also see articles within
22] and plant functional optimisation [23]. Inspired by
these successes, it was hoped that MEP may in fact be
a unifying principle of non-equilibrium thermodynamics.
Its application to models of heat and momentum trans-
port through simple flow systems have shown reasonable
quantitative agreement with experimental results.

In particular, the work of Ozawa et al. [17] predicted
a scaling law of Nu ∼ Ra1/3. However the dependance
of Nu on Ra for NC systems is still not fully understood.
It is known to vary with Pr and a more recent numerical
study found that Nu ∼ Ra0.285 for turbulent convection
with Pr = 1 [5]. Clearly the MEP prediction does not
tell the entire story. However it has enjoyed success in a
related area: the analysis of atmospheric heat transport
[11–13]. Ozawa et al. [13] found that certain transport
properties of the atmospheric circulation of several plan-
etary bodies including Earth can be reliably predicted
using a simple application of the principle of MEP. Klei-
don [8] also suggested that in a simple convective fluid
system, the characteristic peak seen in Fig. 2 will define
the steady-state heat flux of the system.

This was part of the motivation for this investigation,
as a test of MEP for a simple non-equilibrium system. As
noted above, the entropy production peak occurs without
any incorporation of the particular physical properties
of the fluid. It comes purely from an analysis of the
steady-state energy balance. Surely a more viscous fluid
would adopt a different steady-state heat flux than one
that was less viscous, for example. In Sec. IV we show
exactly how our system responds in this respect. First
we briefly describe the numerical implementation of the
above model. Those not interested in the details of the
simulation technique can skip straight to Sec. IV.

III. IMPLEMENTATION WITH THE LATTICE
BOLTZMANN METHOD

The numerical model used in this investigation is
the two-dimensional D2Q9 (2 dimensions and 9 discrete
particle velocities) Thermal Lattice Boltzmann model
(TLBM) of Peng et al. [24], which is a simplified version
of the model of He et al. [25]. This is essentially a kinetic-
based mesoscopic technique which numerically solves a
discretised form of the Boltzmann equation, making use
of the BGK collision operator [26] to simplify the collision
term. The method stands in stark contrast to traditional
computational fluid dynamics (CFD) techniques, which
typically begin with continuum equations of motion for
fluid variables (the Navier-Stokes equations) and seek so-
lutions using numerical techniques.

The LBM, however, begins from a kinetic description
of the fluid, and the fluid equations of motion actually
emerge at macroscopic length scales from the microscopic
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dynamics using a suitable Chapman-Enskog expansion
[see 27, for a review]. While most LBMs are isothermal,
the version we have made use of simulates the internal
energy field of the fluid as an additional set of distribu-
tion functions on the same discrete lattice as the fluid
mass. Heat is thus modelled as a passive scalar being
advected by the fluid and not interacting with it except
in the form of a buoyancy-driven body force caused by
temperature-induced density variations in the presence
of a gravitational field. Note that viscous dissipation is
not included in this version and the fluid is assumed to
be Boussinesq in character.

This form of TLBM has been repeatedly shown to be
capable of reproducing experimental results for NC of
a single-phase fluid. For details of those results and a
complete description of the model, please see Peng et al.
[24], He et al. [25], Dixit and Babu [28].

Here we describe the unique BCs employed for this
study. For the velocity distribution functions, we used
the halfway wall bounce-back method. We found that us-
ing more complicated BCs made no significant difference
to the results. For the internal energy distributions there
are two alternatives for applying the relevant boundary
heat fluxes at each integration step. The first method,
which we will refer to as the vari method involves a sim-
ple point-by-point application of the BC. For the bound-
ary grid nodes, after the bounce-back stage of the algo-
rithm and before the collision step, the three inward-
pointing internal energy distribution functions under-
went the following forcing step:

g′j,k = gj,k +
6ωj
W

(Jini
− βTi,k) (17)

where j indexes the distribution function (for a lower
boundary, j ∈ {2, 5, 6} and for an upper boundary, j ∈
{4, 7, 8}), i ∈ {a, b} denotes the upper or lower boundary,
k denotes the grid node (Ti,k is the temperature of node k
on the boundary i calculated after streaming and bounce-
back), ωj is the distribution function weight and W is the
number of grid nodes in the horizontal direction. Note
that 1/(ω4 +ω7 +ω8) = 1/(ω2 +ω5 +ω6) = 6. With this
form of BC the temperature profiles on the boundaries
are not horizontally uniform.

The second BC, which we denote the uni method, as-
sumes that the boundaries of the system have perfect
thermal conductivity in the horizontal direction such that
they always exhibit a horizontally uniform temperature
profile. The first stage is to calculate the mean boundary
temperature Ti after streaming and bounce-back. The
total heat flux into the boundary can then be calculated:

Jtoti = Jini − βTi (18)

We will require the expression for the total internal en-
ergy at grid node k,

ρkεk =

8∑
j=0

gj,k (19)

where ρk and εk are the mass and internal energy densi-
ties of grid node k. Summing this over the entire length of
the boundary gives an expression for the total boundary
internal energy:

E =

W−1∑
k=0

ρkεk (20)

We can now calculate the new boundary internal energy
after the heat flux step:

E′ = E + Jtoti (21)

= Jini − βTi +

W−1∑
k=0

ρkεk (22)

It only remains to calculate the new boundary internal
energy density ε′ resulting from this inward flux of heat.
Remember that we wish to distribute the incoming en-
ergy such that every boundary grid node will have this
new temperature (ε′ does not depend on the node index
k). We make use of Eq. 20,

W−1∑
k=0

ρkε
′ = E′ = Jini

− βTi +
W−1∑
k=0

ρkεk (23)

ε′
W−1∑
k=0

ρk = Jini
− βTi +

W−1∑
k=0

ρkεk (24)

ε′ =
Jini
− βTi +

∑W−1
k=0 ρkεk∑W−1

k=0 ρk
(25)

The inward-pointing internal energy distributions can
then be modified before the collision step according to:

g′j,k = gj,k + 6ωjρk (ε′ − εk) (26)

Other than the above BC modifications, our model was
identical to that described in Peng et al. [24]. All simu-
lations were initialised in a state of zero fluid velocity at
the mean temperature (Eq. 10), with a uniform internal
energy distribution and a small degree of random noise.
Runs were concluded when the system’s key variables
(boundary temperatures, Rayleigh and Nusselt numbers)
showed no further variation with time. In the more tur-
bulent cases (Ra > 106), in which the variables showed
no sign of becoming stationary, but instead showed oscil-
latory behaviour, a long time average was taken.

Table I shows the various grid sizes and relaxation pa-
rameters used in this investigation. Note that the inter-
nal energy relaxation parameter can be calculated from
the fluid relaxation parameter due to the Pr = 1 condi-
tion.

IV. RESULTS

We now summarise the findings of our numerical ex-
periments. For the sake of comparison we also simulated
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TABLE I: Lattice Boltzmann Model parameters

Ra τν W
5.4 × 102 0.76 128
1.1 × 103 0.70 128
2.1 × 103 0.81 256
4.0 × 103 0.72 256
1.1 × 104 0.72 400
2.0 × 104 0.67 400
4.6 × 104 0.62 400
1.3 × 105 0.60 512
4.3 × 105 0.56 512
2.0 × 106 0.92 6144
9.0 × 106 0.72 6144
3.8 × 107 0.62 6144
1.0 × 108 0.58 6144

the same system with fixed temperature and fixed flux
BCs. The scaling of the two key dimensionless groups,
Ra and Nu for the fixed BC systems is shown in Fig.
3(a).

This figure shows essentially identical behaviour to the
analogous graph in the work of Johnston and Doering [5],
implying that our TLBM can simulate NC systems up
to Ra = 108 with reasonable accuracy. To simulate even
more turbulent systems would have required considerable
computing power and time or the use of non-uniform grid
meshes. In this work however, we restricted ourselves to
Ra ≤ 108.

We now move on to simulations with negative feedback
BCs, illustrated in Fig. 3(b). The scaling of Ra and Nu
appears to be identical to the fixed temperature and fixed
flux data, and adheres to the same scaling law proposed
by Johnston and Doering [5] when Ra ≥ 107. Notice also
that at lower Ra the simulations which permitted a non-
uniform boundary temperature profile (vari) were able
to achieve an augmented Nusselt number compared to
those with uniform boundary temperatures (uni). This
is similar to the slight differences between fixed flux and
fixed temperature systems over the same range of Ra
values. The fixed flux BCs also allowed a slightly higher
Nu since the convection rolls penetrated into the region
which would normally be occupied by boundary layers in
the fixed temperature systems.

Having seen that in terms of conventional dimension-
less measures, negative feedback systems behave identi-
cally to those with fixed BCs, we can now consider en-
tropy production. In Fig. 4, the steady-state boundary
temperature differences ∆T are plotted as a function of
the heat flux Jab, normalised by their relevant maxima.

Two conclusions can be drawn immediately: 1) The
heat flux values are all significantly larger than the flux
value corresponding to MEP and 2) There is considerable
spread in the heat flux values, caused by the variation in
fluid properties between the different simulations. So for
an individual system with fixed parameters, the MEP
state does not appear to be any kind of attractor. Fur-
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FIG. 3: (Color online) Ratio of total to diffusive heat flux Nu
as a function of dimensionless thermal driving force Ra for NC
systems with a) fixed temperature and fixed heat flux BCs and
b) negative feedback BCs. Red asterisks correspond to fixed
temperature BCs, blue circles to fixed flux BCs, red circles to
negative feedback systems with uniform boundary tempera-
ture profiles and blue triangles to negative feedback systems
with a variable boundary temperature profile. The solid black
line shows the empirical scaling law Nu ≈ 0.138Ra0.285 due
to Johnston and Doering [5].

thermore when the fluid parameters are varied, there is
a concomitant variation in the steady-state properties.

Note that the points also include simulations below the
critical Rayleigh number, in which the diffusive state is
the most stable and there is no convective heat transport.
Even such low heat fluxes as these are still much greater
than the MEP value.

Finally, Fig. 5 displays the temperature field of a neg-
ative feedback simulation. Streamlines are plotted to il-
lustrate the structure of the thermally-induced flow.
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FIG. 4: (Color online) steady-state temperature difference
as a function of total heat flux for TLBM simulations with
negative feedback BCs. Red circles and blue triangles show
results from the uni and vari simulations respectively. The
black dotted line shows the heat flux value corresponding to a
state of maximum entropy production and the black asterisk
shows the corresponding value of the temperature difference.

FIG. 5: (Color online) Temperature field of a natural convec-
tion fluid system with negative feedback BCs. This example
is a uni system with Ra ≈ 108. Streamlines show the two
principal convection rolls.

V. CONCLUSIONS

The numerical results of this work compel us to think
critically about the basis and applicability of the princi-
ple of MEP, specifically its use for predicting the trans-
port properties of non-equilibrium fluid systems. First
we should consider the fact that in terms of dimensionless
variables, NC flows behave identically no matter whether
the BCs are fixed or allow some degree of feedback. The
results re-enforce the natural intuition that in steady-
state, a fluid system should be indifferent to the manner
in which the BCs are prescribed.

There doesn’t seem to be any reason why the sys-
tem should be sensitive to entropy production, or why
the MEP state should be attractive. The steady-state

condition implies constant boundary temperatures and
heat flux, and whether that heat flux is provided as a
constraint or whether it emerges in response to a fixed
temperature difference or a more complicated set of con-
ditions, should have little impact on the internal flow
configuration.

As we have seen there are some subtle differences at
low Ra between fixed flux and fixed temperature systems,
and between negative feedback systems with uniform and
variable boundary temperature profiles. However such
differences disappear when the boundaries are allowed to
be perfectly conducting in the horizontal direction.

The principle of MEP has enjoyed considerable success
when applied to simple models of atmospheric circulation
as well as other non-equilibrium systems. However, there
has also been criticism of the principle since it has no
rigorous theoretical basis. In fact some early proponents
of MEP have since changed position on the philosophical
role of the principle (e.g. compare the work of 29 to 30).
Furthermore, when it comes to fluid dynamical systems,
entropy minimisation, as well as maximisation, has been
observed [31, 32]. Which extremum emerges seems to
depend in a non-trivial way upon the BCs and particular
flow being studied.

Note that there are several different forms that entropy
maximisation can take. In the case of negative feedback
BCs, it refers to the selection of a state corresponding to
MEP (the peak in Figure 2), under conditions of fixed
fluid and boundary parameters. There is nothing to stop
a given system settling into a state of MEP, and yet in
our numerical investigation, such behaviour was never
observed.

For fixed BCs, MEP takes on a slightly different form.
Since the boundary temperature difference or heat flux
is fixed, the range of possible steady-states does not ex-
hibit an entropy production peak such as that of neg-
ative feedback BCs. Instead the entropy production ei-
ther increases or decreases monotonically as a function of
the single free variable (either heat flux or temperature
difference). Since there is no clear MEP state, in this
context, MEP is often framed as a selection mechanism
between the two modes of heat transfer: pure diffusion
and diffusion plus convection [33].

When the Rayleigh number is greater than that of the
bifurcation point Ra > Rac ≈ 1706, the system adopts
a convective state of fluid motion instead of the static,
purely diffusive state. It is frequently assumed that there
is some connection to the fact that the convective state
has the higher entropy production [33]. However, in a
system with fixed flux BCs, at Ra > Rac, the convec-
tive state actually has a lower entropy production. This
results from the lower temperature differences exhibited
at higher Ra (a fluid with lower convective resistance
requires a smaller driving gradient to achieve the same
heat flux). So entropy production also has no bearing on
systems with fixed BCs.

The final point to discuss is the fact that all of our data
points exhibited heat flux values far greater than that of
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MEP. It should be possible to observe the entire range of
Jab and ∆T values simply making the relevant parameter
adjustments. This could have been accomplished if we
had relaxed our assumption of constant Prandtl number.
We could have altered our fluid such that its viscosity
was very high, and its thermal diffusivity was very low.
This would have begun to effectively block off the heat
transport channel of the fluid. At both boundaries, the
majority of the incoming heat would have immediately
been re-emitted.

An alternative way for exploring the entire range of
normalised heat flux values would be to adjust the bound-
ary parameter β. Increasing β causes a proportionate
decrease in steady-state ∆T values but does not affect
Jabmax

. Therefore the entropy production peak occurs at
the same value of Jab for all values of β. Increasing this
parameter is likely to have the effect of funnelling heat
flux away from the fluid system (reducing Jab). Instead
much of the energy entering the system will be immedi-
ately re-emitted at the boundaries, having never entered
the fluid region. We are currently performing these sim-
ulations with different β values and the results of that
work will be published in the near future.

In conclusion, we do not believe that MEP is a univer-

sal law of nature. Its successes and relationship to other
entropy extremum principles are yet to be fully eluci-
dated. A fruitful and very useful further study would be
to make a comprehensive assessment of all the applica-
tions of MEP and try to uncover underlying universal-
ities and connections between large systems and small
systems, physical systems and chemical or biological sys-
tems.

As well as an assessment of the principle of MEP, we
have also built upon the work of Johnston and Doer-
ing [5], who established that at high Rayleigh numbers,
NC flows show the same dimensionless behaviour whether
fixed temperature or fixed flux BCs are applied. We have
shown that even when neither the boundary fluxes nor
temperatures are fixed, the same Ra-Nu scaling emerges.
More complicated BCs are unlikely to yield any devia-
tions from this general behaviour.
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