
Modelling the Incidence of Plasmodium vivax and
Plasmodium falciparum Malaria in Afghanistan 2006–
2009
Victor A. Alegana1,2*, Jim A. Wright2, Sami M. Nahzat3, Waqar Butt4, Amad W. Sediqi3, Naeem Habib4,

Robert W. Snow1,5, Peter M. Atkinson2, Abdisalan M. Noor1,5*

1 Spatial Health Metrics Group, Department of Public Health, KEMRI-Wellcome Trust, Nairobi, Kenya, 2 Centre for Geographical Health Research, Geography and

Environment, University of Southampton, Highfield Southampton, United Kingdom, 3 National Malaria and Leishmaniasis Control Programme, Ministry of Public Health,

Kabul, Afghanistan, 4 Malaria and Leishmaniasis, WHO Office, Kabul, Afghanistan, 5 Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of

Oxford, Oxford, United Kingdom

Abstract

Background: Identifying areas that support high malaria risks and where populations lack access to health care is central to
reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum
using routine data to help focus malaria interventions.

Methods: To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from
the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics
to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian
spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and
temporal variation of incidence.

Findings: From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest
public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl
3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax
peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where
annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P.
falciparum case incidence was at least 1 per 1000.

Conclusion: This study showed how routine data can be combined with household survey data to model malaria incidence.
The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the
lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine
levels of imported risks may be useful for the elimination ambitions in Afghanistan.

Citation: Alegana VA, Wright JA, Nahzat SM, Butt W, Sediqi AW, et al. (2014) Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in
Afghanistan 2006–2009. PLoS ONE 9(7): e102304. doi:10.1371/journal.pone.0102304

Editor: Luzia H. Carvalho, Centro de Pesquisa Rene Rachou/Fundação Oswaldo Cruz (Fiocruz-Minas), Brazil

Received March 31, 2014; Accepted June 16, 2014; Published July 17, 2014

Copyright: � 2014 Alegana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. The malaria case data
used in this study were obtained from Afghanistan Health Management Information System (HMIS) through the National Malaria and Leishmaniasis Control
Programme (NMLCP). The database is summarised in the supplementary information. The summary includes a time series plot of cases in relation to
environmental covariate. However, raw data can be made available through a request to the Afghanistan NMCP via Dr. Mohamed Sami Nahzat (address provided
on the manuscript). Ancilliary data (e.g. Precipitation) can be obtained from online web sources (links provided in the manuscript and supporting information).

Funding: VAA is supported by a Commonwealth fellowship (KECS-2012-601). AMN is supported by the Wellcome Trust as an Intermediate Research Fellow
(#095127). RWS is supported by the Wellcome Trust as Principal Research Fellow (#079080). This work was partly funded by a Wellcome Trust Major Overseas
Programme grant to the KEMRI/Wellcome Trust Research Programme (#092654). The funders played no role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors would like to confirm that one of the co-authors, Dr. Abdisalan M. Noor, is a PLOS ONE Editorial Board member. This does not
alter the authors’ adherence to PLOS ONE Editorial policies and criteria.

* Email: valegana@kemri-wellcome.org (VAA); anoor@kemri-wellcome.org (AMN)

Background

Since the Soviet invasion in 1979, Afghanistan has experienced

prolonged periods of insecurity and political instability. Conse-

quently it has some of the poorest socio-economic and health

status indicators globally. The country is ranked the thirteen lowest

on the human development index [1] and has a child mortality

rate of 97 deaths before the age of five years for every 1000

children born [2,3]. In Afghanistan, malaria is an important

disease with approximately half the population at risk [4,5,6].

Malaria transmission in the country is constrained by altitude,

the rugged topography, patchy rainfall and extreme aridity [7].

There is no active malaria transmission in areas greater than 2000

metres above mean sea level [8], while transmission is unstable in
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areas with limited annual rainfall. There are at least six malaria

vectors in Afghanistan namely: the Anopheles superpictus, An.
culicifacies, An. hycranus, An. Pulcherimus, An. fluviatilis, and
An. stephensi. The latter two are mainly found in the eastern

provinces [4,9]. Malaria infections are predominantly due to the

Plasmodium vivax parasite although Plasmodium falciparum
infections exist [8].

Afghanistan has a long history of malaria control dating back to

the formation of the Directorate General of Preventive Medicine

and Primary Health Care in 1948 [7]. Earlier vector control efforts

focused on spraying using dichlorodiphenyltrichloroethane (DDT)

and by 1970 the An. superpictus was almost eradicated [7,10,11].

After the Soviet invasion, the national program gradually

weakened and had almost ceased to function [7,12]. Chloroquine

resistance and population movement, mainly from returning

refugees, contributed to an increase in malaria burden in

Afghanistan [12,13,14]. Since 2000, however, substantial resourc-

es have been invested in malaria control in Afghanistan with

support from the Global Fund to fight AIDS, Tuberculosis and

Malaria, the United States Agency for International Development

(USAID) as well as other agencies [15]. Despite the insecurity and

infrastructure challenges, progress has been made in reducing the

burden [5]. A recent malaria indicator survey (MIS) conducted in

2011 showed an average prevalence of less than 1% for both P.
vivax and P. falciparum nationally while 76% of household

clusters had no residents infected.

In the national malaria strategy of 2008–2013, Afghanistan

aimed to reduce, by 60%, the malaria morbidity by 2013 and

reduce P. falciparum cases to near zero with the aim of eventually

interrupting its transmission [15]. The main interventions were

coverage with vector control, parasitological diagnosis and

treatment with effective antimalarials. In addition, a cross-border

initiative was launched with Tajikistan to reduce the risk of

imported infections to Tajikistan and to eliminate P. falciparum
malaria in three border districts.

To track progress towards the national targets, the National

Malaria and Leishmaniasis Control Programme (NMLCP) and

partners established a routine information system to report

monthly malaria cases by health facility [16]. The system,

however, captured passively detected case data from only the

public health system and contained both clinically diagnosed and

parasitologically confirmed P. vivax and P. falciparum cases.

Passive case detection, usually from HMIS, is hindered by the

challenges of the low parasite confirmation rates which inflate

reported malaria caseloads. In addition, low reporting rates tend to

underestimate disease burdens because of the spatially and

temporally incomplete data [17]. To provide more reliable

estimates of disease burden, techniques are required that can

adjust for these deficiencies by smoothing crude incidence rates;

filling in gaps where no health reports have been assembled; and

adjusting for the rate of facility utilisation since only a proportion

of actual cases present at a facility [18].

In this study, a formal spatial and temporal approach, that

incorporates a variety of data sources to estimate malaria

incidence by district from 2006–2009 in Afghanistan, was

developed. First, nationally representative household survey data

from the 2011 MIS were used to characterize the utilisation of

public health facilities and subsequently develop the denominator

(catchment population) weighted by probability of health facility

use for fever treatment. Secondly, malaria cases reported at the

health facilities were used to model incidence of P. vivax and P.
falciparum spatially and temporally using a Bayesian approach

[19]. The clinically reported cases were adjusted using species-

specific slide positivity rates observed at the facility and combined

with parasite species confirmed cases to calculate the numerator.

Slide positivity is the ratio of the number of positive malaria cases

to the total number of people examined usually expressed as a

percentage (rate). The combination of the adjusted cases and

catchment populations were then used to compute the incidence of

both P. vivax and P. falciparum.

Methods

Health management information structure in
Afghanistan

Afghanistan is divided into 34 administrative provinces.

Healthcare is delivered mainly through the Basic Package for

Health Services (BPHS) and the Essential Package for Hospital

Services (EPHS) constituted in 2002 by the Ministry of Public

Health (MoPH) [20,21,22]. In a bid to increase coverage, the

BPHS was expanded through the contracting out of services to

NGOs and MoPH partners [21,23]. The BHC constitutes clinics,

health posts and Maternal Child Health (MCH) centres and

Comprehensive Health Centres (CHC). This is linked to EPHS

made up of the District Hospitals (DH) (first referral level) and

regional or provincial (tertiary) hospitals. At village level commu-

nity health workers manage the health posts and treat mild

conditions and, in some cases, Mobile Health Teams (MHTs) are

used [20,24]. In terms of data reports, tally sheets are filled at these

lower-tier facilities and aggregated at the next tier facilities (CHC)

which are then forwarded to regional directorates [16]. Thus, the

health posts serve as a support network for the health centres and

sometimes malaria cases are reported at the health centre rather

than the individual health unit. The basic health centres link the

basic service providers at the community level with the next service

tier (the CHC) that are, in turn, linked to district hospitals and

regional referral hospitals. Thus, where no regional or tertiary

facility exists, district hospitals are the main referral centres. HMIS

reports are also compiled the regional level and distributed to the

national management level. Inpatient facilities are provided

mainly at the tertiary level [20]. Parasitological diagnosis is

conducted at higher tier facilities (Hospitals) where laboratory

facilities exist while clinical diagnosis is predominantly used at

health posts. The 2010 national malaria treatment guidelines

outline the scale up of diagnostics at all health facilities to ensure

diagnosis prior to treatment.

Data
The malaria case data were obtained from HMIS through the

Afghanistan National Malaria and Leishmaniasis Control Pro-

gramme (NMLCP). This consisted of records from 1,629 public

health facilities for a 48-month period from 2006 to 2009. Data

represented aggregate monthly cases of P. falciparum and P.
vivax. Of the 1,629 health facilities, 1,587 had reported malaria

cases based on both clinical and parasitology examination.

Parasitological diagnosis (microscopy or RDTs) was conducted

at higher-tier facilities (hospitals and health centres) where

laboratory facilities exist while clinical diagnosis was predomi-

nantly used at lower-level facilities such as health posts (File S1).

No cases were examined or reported for 228 facilities which were

treated as missing data while data for mobile units (n = 93) were

omitted from the final analysis since they serve as outreach centres

from major facilities. The missing spatial and temporal structures

of data were imputed as ‘NAs’ and predictions made at missing

locations. The spatial coordinates of health facilities were obtained

from the Afghan Management Information Systems (AMIS)

(http://www.aims.org.af/), which was formerly managed by the

United Nations Office for the Coordination of Humanitarian
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Affairs (UNOCHA) and the United Nations Development

Programme (UNDP) in the early 2000s, but became a national

independent Non-Governmental Organisation (NGO) in 2008.

These facilities were either mapped using non-differential hand-

held global positioning systems (GPS) receivers during the

assessment surveys or in some cases the longitude and latitude

were established using a village or settlement database. For

analysis, the facilities were classified into three broad categories

that combined: basic facilities made up of health posts (HPs),

clinics and maternal health centres (MCH); health centres; and

hospitals.

Data for modelling health care utilisation for treatment of fever

was obtained from the national MIS carried out between

September and October 2011 (n = 15,442 individuals)[25]. The

MIS was conducted in 21 provinces, across the diverse malaria

strata (medium to high risks; low risk; and very low or potentially

malaria free areas) in Afghanistan, but excluded the southern

regions for security reasons. A multi-stage probability sampling

design was adopted in line with other MIS surveys conducted in

sub-Saharan countries [26]. At the first stage clusters or villages

were selected randomly in a district via probability sampling while

at the second stage, households within the selected clusters were

sampled randomly [25]. Self-reported treatment seeking behav-

iour, disaggregated by healthcare sector, was recorded for all

household members that reported an episode of fever two weeks

prior to the survey. A gridded population surface for Afghanistan

was obtained from Asiapop at 100 m x 100 m spatial resolution

(http://www.worldpop.org.uk/)[27].

Analysis

Analysis of public sector utilisation and defining the
denominator for modelling incidence

A combination of land cover, elevation, road and river data

layers was used to generate a gridded cost surface of travel time

between patient origins (households) and destinations (public

health facilities) as described elsewhere [28] and in File S1. Travel

times were extracted for each MIS cluster and used to predict the

probability of health facility attendance based on reported fever

treatment. A probability of attendance was modelled spatially at

1 km by 1 km resolution and combined with population density to

generate a population-weighted surface for fever treatment. The

population-weighted counts, used in modelling incidence, were

extracted based on a 2-hour cut off based on the modelled distance

decay curves (SI). The catchment population was adjusted for

reporting rates at the facilities calculated as a ratio of received

reports to the expected number over the four-year period.

Modelling incidence of P. falciparum and P. vivax in
Afghanistan

To model the incidence of malaria, HMIS data were compiled

from cases aggregated at each facility for each month. A number

of environmental covariates such temperature suitability index

(TSI), precipitation and enhanced vegetation index (EVI) that are

known to affect malaria transmission were assembled (SI). The

selection of covariates was based on previous studies [19] as well as

aiming for a minimum set to achieve parsimony based on bestglm
package in R [29]. These covariates were extracted and matched

to each data point in space and time. Environmental covariates

were used in a Bayesian zero-inflated conditional autoregressive

(CAR) model to predict incidence at the district level. Since 60%

of data were zeros, a zero – inflated Poisson distribution was used,

generalized as [30,31];

f (y,Q,m)*
Qiz(1{Qi) e{l

(1{Qi) Po(y, m)

(
yi~0

yiw0
ð1Þ

for the ith space-time observation and 0vQiv1. The probability is

defined via a two-component mixed model such that the

probability is Qi with ‘structural’ zero or defaulting to a general

Poisson model (Pr (X~k)~lke{l=k!). In general mi can depend

on a set of covariates such that:

f y,p,mð Þ~ 1{pij

� �
Po y,0ð ÞzpijPo y, exp azbT Xij

� �� �
ð2Þ

with a (equation 2) forming the intercept modified by a q | 1
vector of Xijcovariates with unknown coefficients b. Further,

log (mi)~
Pk
j~1

xijbj while log it(pij)~ log½pij=(1{pij)�. Thus, the

zero-inflated probability increases the chance of predicting

‘structural’ zero [32,33]. Random effects were introduced at three

levels of the health facility, district and province in the Bayesian

framework. A spatial effect prior Qs(i)*N(0,t2
strQ

{1) was intro-

duced at the district level to account for spatial heterogeneity.

Model specification was completed by assigning priors to the

remaining hyper-parameters (the unstructured random effects).

Inverse Gamma priors IG(a,b) were assigned to precision

hyperparameters for these unstructured effects components

hunstr*N(0,t2). The time interaction was modelled as a first-

order auto-regressive process, rY (si,ti{1) with the first term

coming from a stationary distribution N(0,s2
w

P
) that depends on

past values for 0wrv1 [34]. Full details of implementation can be

found in File S1.

Posterior predictions were made at the district level along with

associated standard errors. Four spatio-temporal models were

compared to assess the effect of the introduced random effects at

province and facility level as well as the inclusion of the covariates.

The first two models (referred to as M1 and M2) did not include

any covariates with random effects excluded for the first model

(M1). The other two models (M3 and M4) included environmental

covariates, with M3 excluding random effects at facility and

province level. Comparisons were made using the deviance

information criterion (DIC) [35]. This approach simplifies model

selection to a single value, which can be easily tabulated for

comparison with proper Bayesian interpretation. A subset

comprising 10% of the data selected randomly was used

independently to compare posterior prediction against the crude

incidence. Additionally, model checking was implemented by

assessing the variance and the standard error of the predictive

distribution [36].

Results

Data characteristics and public sector utilisation in
Afghanistan

In modelling healthcare utilisation, a list of the universe of

public health facilities was used (n = 1,581) from the 34 provinces.

There were more health posts (n = 754) compared to health

centres (n = 698) and hospital (n = 129). The majority were run by

NGOs that work in partnership with the Ministry of Public Health

(MOPH). The malaria case reporting rate was low for basic health

facilities (an average of 33% for the four years) compared to

hospitals and health centres where the reporting rate was .70%.

Of the estimated population (32.3 million) in 2011, 27.8 million

(85.8%) were estimated to be within 2 hours’ of travel of a public

Malaria Incidence in Afghanistan 2006-2009

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e102304

http://www.worldpop.org.uk/


health facility; 17.9 million (64.4%) were within 30 minutes.

Approximately 13.1 million (47.4%) were within distances where

the probability of attendance was $60% (SI).

Posterior predictions of incidence of P. falciparum and P.
vivax

Table 1 lists the four Bayesian spatio-temporal models

implemented along with associated model parameters for both

P. vivax and P. falciparum. According to the DIC, the fourth

model (M4) provided the best trade-off between model fit and

parsimony compared to the other three models, although with

more effective parameters PD. For both P. vivax and P.
falciparum, the standard error in M4 of the predictive distribution

was also lower. This model was subsequently selected for analysis

of incidence of P. vivax and P. falciparum. Overall mean error of

the crude incidence and the predicted incidence per 1000

population per year, based on a 10% validation set was 20.30

and 20.44 for P. vivax and P. falciparum respectively showing an

overall tendency to under-predict by less than 0.5 incident cases

per 1000 population. The Pearson correlation based on the

validation set was 0.63 for P. vivax and 0.62 for P. falciparum.

Table 2 lists the posterior summaries of the parameters

representing the fixed effects, the unstructured components, and

the temporal and spatial parameters for both the P. vivax and P.
falciparum models. None of the covariate parameters were

significant at 95% Bayesian credible interval (Crl) based on the

P. falciparum model but temperature suitability (0.123, 95% Crl

0.046–0.202) was significant based on the P. vivax model. All

other model parameters were significant at 95% Crl.

Figure 1 shows the monthly variation of incidence for P. vivax
and P. falciparum for the four-year period. The incidence of P.
vivax peaked in August (7.611 95% Crl 4.849–11.721) compared

to P. falciparum which peaked in November (mean incidence per

1,000 population was 2.403 95% Crl 0.929–5.276). P. falciparum
was lowest in May (0.830 95% Crl 0.303–1.783). Figure 2 and

Figure 3 shows maps of monthly incidence of P. vivax and P.
falciparum, respectively, at district level. The incidence of P.
falciparum was generally very low compared to P. vivax.

Nangahar, Kabul and Kunar had highest estimated clinical

burden of P. vivax and P. falciparum while lowest estimated

burden was in districts bordering Iran in Nimroz and Farah and in

northern Afghanistan. The predicted mean incidence in the most

recent data year (2009) for P. vivax was 5.4 (95% Crl 3.2–9.2)

cases per 1,000 population and 1.2 (95% Crl 0.4–2.9) cases per

1,000 population for P. falciparum. Comparison between the

baseline in 2006 and in 2009 showed small change in incidence

(4.9, 95% Crl 3.0–7.8 and 5.1, 95% Crl 3.2–8.1 respectively for P.
vivax; 1.1, 95% Crl 0.3–2.4 and 1.1, 95% Crl 0.3–2.5 respectively

for P. falciparum) (Figure 4). However, there was a slight increase

in malaria incidence in 2008 for both P. vivax and P. falciparum
as predicted by the model, but, subsequently dropped to the 2006

level in 2009. The mean percentage change in incidence in the 34

provinces between the baseline year and 2009 for P. vivax was 3.0

and 5.9 for P. falciparum (Table 3). P. vivax reduced in 17 of the

34 provinces in Afghanistan while P. falciparum reduced in 13

provinces.

Table 3 provides summaries of population at risk by region. Of

the 30.6 million people in 2009, the estimated burden of P. vivax
in 2009 was 165,712 compared to 36,077 for P. falciparum.

Approximately 32% of the population lived in regions where P.
vivax was greater than 1 case per 1000 population compared to

23.7% for P. falciparum. About 1.3% of the population were

estimated to live in districts with ,1 case per 1,000 population and

the majority (66.7%) in districts of 1 to,5 P. vivax cases per 1,000
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Table 2. Parameters of the selected Bayesian models (M4) for both P. falciparum and P. vivax (sequentially as intercept b0, EVI, TSI,
Precipitation, random effects at (facility, district and province), temporal parameter and spatial CAR prior effect Q, SD is the
Standard Deviation).

Parameter Mean SD 5% 50% 95%

P. falciparum Intercept (b0) 23.630 0.387 24.244 23.633 23.008

EVI (b1) 20.031 0.079 20.162 20.031 0.099

TSI (b2) 0.164 0.127 20.042 0.163 0.334

Precipitation (b3) 0.008 0.051 20.077 0.008 0.091

Facility random effect (t1) 1.940 1.903 0.192 1.380 5.534

District random effect (t2) 2.484 0.829 1.355 2.369 4.010

Province random effect (t3) 3.668 1.164 2.040 3.521 5.838

Rho for the month (r) 0.849 0.117 0.617 0.881 0.969

Spatial effect (Q) 5.492 4.535 0.698 2.376 20.970

P. vivax Intercept (b0) 22.065 0.240 22.451 22.069 21.662

EVI (b1) 20.026 0.019 20.058 20.026 0.005

TSI (b2) 0.124 0.048 0.046 0.124 0.202

Precipitation (b3) 0.013 0.011 20.005 0.013 0.031

Facility random effect (t1) 8.383 1.778 6.095 8.057 11.750

District random effect (t2) 2.081 1.976 0.181 1.500 5.888

Province random effect (t3) 7.972 3.953 3.897 6.922 15.530

Rho for the month (r) 0.728 0.098 0.551 0.737 0.872

Spatial effect (Q) 3.141 0.983 1.759 3.024 4.933

The betas represent the fixed effects of the covariates.
doi:10.1371/journal.pone.0102304.t002

Figure 1. Time series of two malaria parasites. Plots showing the predicted monthly (n = 48 months) incidence for (2006–2009) for P. vivax
(mean as top dash-dot line) and for P. falciparum (mean as green dash line) with error bars for each moth showing 95% Bayesian credible interval
(Crl). P. vivax formed the most burden in Afghanistan and its incidence peaked in July and August compared to P. falciparum that peaked later in the
year in November.
doi:10.1371/journal.pone.0102304.g001
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population. Of the remaining population, only 23.3% were in

districts with 5 to,10 cases per 1,000 population, 8.4% in 10 to,

20 cases per 1,000 population and 0.3% of the population. The

latter comprised of populations in eastern Afghanistan in Kunar

and Nangarhar provinces. For P. falciparum case incidence,

76.3% of the population lived in districts where annual incidence

was ,1 per 1,000 population, while 20.9% lived in areas were

incidence of P. falciparum was 1 to,5 cases per 1,000 population.

A minority (2.8%) of the population lived in districts with an

estimated annual incidence of 5 to,10 P. falciparum cases per

1,000 population.

Discussion

In this study we have developed a modelling approach that

combines household and routine HMIS data within a Bayesian

hierarchical spatial-temporal model, to compute the annual

incidence of P. vivax and P. falciparum malaria across 398

districts in Afghanistan. The findings demonstrate a strong

geographic co-distribution of P. vivax and P. falciparum malaria

morbidity in Afghanistan (Figure 2 and Figure 3). There was no

significant change in the mean annual incidence between 2006

and 2009. The incidence of P. vivax and P. falciparum in 2009

were estimated to be 5.4 and 1.2 per 1000 population respectively.

The incidence (for both parasites) was higher in the south-eastern

and eastern parts of Afghanistan bordering Pakistan and lowest in

northern districts. In addition, the analysis showed that malaria in

Afghanistan exhibits a strong seasonal peak between July and

November. P. vivax tended to peak in August (mean incidence of

7.611 95% Crl 4.849–11.721) compared to P. falciparum which

peaked in November (mean incidence 2.403 95% Crl 0.929–

5.276). However, incidence was low in the winter months between

January and May for both parasites. Slightly more than 76% of

districts in Afghanistan had predicted incidence of,1 per 1000

population for P. falciparum which is a threshold for pre-

elimination.

Using the 2006 data as baseline estimates, 17 and 13 provinces

had already reduced P. vivax and P. falciparum incidence

respectively by 2009. No reduction in incidence was predicted for

Nangahar, Balkh, Sari Pul, Khost and Hirat Nangahar and Khost

provinces in south-eastern regions of Afghanistan were amongst

those with highest predicted incidence for both parasites. A range

of malaria control strategies are implemented at a national level in

Afghanistan. LLIN, for example, is targeted in the high to medium

risk districts in Badakhshan, Badghes, Baghlan, Balkh, Faryab,

Herat, Helmand, Kandahar, Khost, Kunar, Kunduz, Laghman,

Nangarhar and Takhar. From the MIS undertaken in 2008,

Nangahar had an estimated long lasting insecticidal nets (LLINs)

coverage of 19% while no LLINs use was observed in Hirat [37].

Sari Pul region, for example, had some of lowest rates of long

lasting insecticidal nets (LLINs) coverage and access to treatment

of care. In the districts where indoor residual spraying (IRS) is used

as the main vector control approach or to complement LLINs, the

targeting of this intervention should be informed by the lag in the

Figure 2. Monthly maps of P. vivax. Maps showing the predicted posterior mean monthly incidence of P. vivax per 1000 population for
Afghanistan in 2009 using a Bayesian CAR model with environmental covariates (rainfall, TSI and EVI). Cases comprised of parasitologically confirmed
and clinical cases corrected for slide positivity rates at the facility for a four-year period (2006–2009). Random unstructured effects were included at
the facility level to account for regional heterogeneity. The highest burden of P. vivax (exceeding 15 cases per 1000 population) was in southeastern
and the eastern regions bordering Pakistan.
doi:10.1371/journal.pone.0102304.g002
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peak season of the two main malaria parasites. P. vivax peaks in

August while P. falciparum peaks in November. IRS campaigns

should therefore be planned in such away the insecticide are

efficacious through the two peak seasons.

Of the 34 provinces of Afghanistan, five (Bamyan, Ghazni,

Ghor, Panjsheer and Nuristan) were considered to be malaria free

based on altitude thresholds [38]. These provinces, however,

accounted for 9.7% of all estimated cases in 2009 indicating a

Figure 3. Monthly maps of P. falciparum. Maps showing the predicted monthly incidence of P. falciparum per 1000 population for Afghanistan in
2009 using a Bayesian CAR model with environmental covariates (rainfall, TSI and EVI). Malaria cases comprised of parasitologically confirmed and
clinical cases corrected for slide positivity rates at the facility. Random unstructured effects were included at the facility level to account for regional
heterogeneity. P. falciparum constitutes less than 10% of the malaria burden in Afghanistan and experienced a late peak in the year (November).
doi:10.1371/journal.pone.0102304.g003

Figure 4. Incidence change plot at district level. Plot showing the differences in malaria incidence per 1000 population (y-axis) between the
baseline year (2006) plotted as blue triangles and incidence for 2009 (hollow red circles). The x-axis represents districts (n = 398). The positive change
denoting increase in plotted vertically upwards from the baseline year while negative denoting a reduction in incidence is vertically downwards from
the baseline with the length indicating magnitude of change. Overall percentage change for P. vivax was 3.0 and 5.9 for P. falciparum.
doi:10.1371/journal.pone.0102304.g004
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potential problem of importation of malaria cases due to human

population movement in Afghanistan or foci transmission in

valleys where climatic conditions are favourable. The available

data, however, do not provide malaria case definitions and it is

impossible to distinguish between imported and local cases. In the

malaria free provinces, suspected imported infections should be

documented and algorithms, based mainly on travel history, could

be used as the basis for case definitions [39]. In addition, health

advice and chemoprophylaxis for travellers from the malaria free

to endemic provinces should be initiated as an additional package

for malaria prevention. An incidence of less than 1 P. falciparum
case per 1000 individuals is considered to be the threshold for pre-

elimination by the WHO [40]. By 2009, 21 provinces in

Afghanistan had already achieved such a threshold. However,

the biggest challenge is likely to be operational and a compre-

hensive analysis of overall feasibility of P. falciparum elimination

[41].

The results of our analysis also have important applications to

the design and allocation of resources for malaria case manage-

ment. Mixed infections especially with P. vivax and P. falciparum
present a challenge for treatment [42]. P. vivax infections relapse

from dormant liver-stage hypnozoites months after primary

infections and are often difficult to diagnose and treat and define

as true incident infections [43]. Chloroquine is used as first line

treatment of P. vivax in Afghanistan as recommended for

countries where it remains efficacious and where parasites can

be isolated [44], while Artesunate + Sulfadoxine-Pyrimethamine

(AS+SP) is used for P. falciparum [15]. The incidence maps

developed in our study can be used to quantify the need for the

number of treatment dosages required for both parasites in

Afghanistan. The prevalence of Glucose-6-Phosphate Dehydroge-

nase (G6PD) deficiency is estimated to be 8% in Afghanistan [45]

which complicates the use of the reccomended 14 day regiment of

primaquine (PQ) for P.vivax [46]. The use of PQ in patients with

G6PD deficiency can cause severe haemolysis [47]. To improve

the existing information on the prevalence of G6PD deficiency

these maps can be used to provide P. vivax incidence information

that would be useful for the design of G6PD surveys. Where both

species are endemic, the use of ACTs has been proposed [48,49]

and other clinical studies have shown a faster parasite clearance

rate when ACTs were used [50]. Figure 2 and Figure 3 indicates

Kunar, Khost, Laghman, Nangarhar, Takhar and some districts

in Kandahar could benefit from such a case management

approach.

Although HMIS data used in this analysis represent individuals

presenting with fever (symptomatic cases) and with a greater

chance of detecting an infection, diagnosis was mainly based on

either microscopy or Rapid Diagnostic Test (RDT), both of which

have varying sensitivities [51]. In low transmission setting, the rate

of false positivity rates, when using RDTs, may be higher and the

quality of microscopy in routine HMIS data with varying

laboratory conditions may also vary [52]. In addition, it was not

possible to identify which diagnosis was used at each facility to

adjust the sensitivities. A combination of factors might have limited

the effect of environmental covariates especially for P. falciparum.

This relates to assumptions of linearity during modelling even

though rainfall was lagged by four months (SI) and given the short

time-series of the data (four years). We used an autoregressive

time-varying factor in the model assuming that present state

evolves from previous values, but modified by the set of spatial and

spatio-temporal covariates[34]. Future studies should relax the

linearity assumptions of the fixed effects. Another limitation of the

data presented here is that the effects of migration or travel

between various regions were not incorporated into the modelling
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framework. A study in south-eastern Afghanistan showed higher

asymptomatic infections in the migrant population [53]. Model-

ling migration patterns at national level was beyond the scope of

this study. It was assumed that individuals would seek treatment at

the nearest facility or at least within a district or one of its

neighbours. In this study we have modelled malaria morbidity at

the facility level and explicitly modelled healthcare attendance at

individual facilities as part of our methodology. Security or conflict

remains an important factor affecting utilisation of healthcare

facilities. This was not modelled in the study due to lack of data,

but future studies should consider accounting for this effect on

reported health events. Given the additional spatial precision

resulting from the facility-level analysis representing febrile

individuals within facility catchments, maps of both malaria

species are useful for concerted planning.

Conclusion

This study demonstrates how HMIS and household survey data

can be assembled, integrated and interpolated to identify districts

with high malaria burden spatially and temporally. Maps were

produced at the level of decision-making units, which are

potentially useful to the malaria control programme in assessing

the changing burden of disease in Afghanistan, targeting malaria

interventions at the population most at risk, and planning health

resources. The districts identified with high burden should be the

focus for targeting vector control. Districts with both P. vivax and

P. falciparum and high rates of mixed infections should be

investigated and careful case management strategies adopted.

Improved case definition to determine levels of imported risks in

malaria free areas is necessary for the elimination ambitions in

Afghanistan.

Supporting Information

File S1 The analysis of public healthcare utilisation for treatment
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