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Abstract 
Purpose: This paper examines corporate insolvency in the Gulf Cooperation Council 

(GCC) region for the period 2004-2011. 

Design/methodology/approach: Financial ratio data on 56 matched pairs of insolvent 

and solvent firms are analysed using logistic regression with best-subset selection 

criteria to identify significant ratios, and prediction accuracy is tested on an ex-ante 

sample. The main dimensions of ratios, and the weights that firms attach to them, are 

examined using 3-way Multidimensional Scaling (MDS).  

Findings: A parsimonious Logit model comprising one profitability, one leverage and 

two cash flow ratios has accuracy levels of 84.4% overall, 95.6% type I and 73.9% type 

II. Four financial-ratio dimensions are extracted from the MDS: (i) ‘Non-strategic sales 

activities', (ii) 'Profitability and financial stability balance’, (iii) ‘Sales activities against 

capital conversion’; and (iv) ‘Market value against cash generation’. Insolvent firms 

appear very specific and attach most salience to the ‘Non-strategic sales activities’ 

dimension; unlike solvent firms which attach more salience to the other three 

dimensions.  

Practical Implications: Results indicate profitability ratios should be included in GCC 

insolvency classification models. It is suggested that firms’ managers should focus less 

on non-strategic sales activities to reduce susceptibility to insolvency. 

Originality/value: The study provides empirical evidence on insolvency in the GCC 

and introduces the application of 3-way MDS to insolvency research in the region. 

Keywords: Gulf Cooperation Council, Corporate insolvency, Multidimensional Scaling, 

Cluster analysis, Logit, Probit, Financial ratio  
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1 Introduction 
The stock exchange markets of the Gulf Cooperation Council (GCC) region (Bahrain, 

Saudi Arabia, Oman, Qatar and the United Arab Emirates) are important to the Middle 

East and North Africa (MENA). They constitute half of MENA’s listed companies and 

three-quarters of the MENA region’s market capitalisation (Rocha and Farazi, 2011). 

Beyond MENA, GCC economies contribute significantly to the global economy by 

investing their oil incomes abroad (Peeters, 2011); yet it was not until the 1980s that 

GCC countries began to regulate their stock markets (Al-Ajmi and Kim, 2012). GCC 

countries were only able to limit the negative effects of the 2008 global financial crisis 

by employing financial-sector support and countercyclical measures using the financial 

reserves they had accumulated during the oil price boom period of 2003-2008 (Khamis 

and Senhadji, 2010). The 2008 crisis revealed many vulnerabilities in the GCC region 

(Khamis and Senhadji, 2010). GCC financial markets are particularly vulnerable to firm 

insolvency (Uttamchandani et al., 2009); this is an international problem with high 

economic, financial and social cost (Warner, 1977, Altman, 2006, Lensberg et al., 2006, 

Brigham and Ehrhardt, 2010). It can impact on the investors or owners; creditors, 

employees and other stakeholders (Deakin, 1972, White, 1996, Morris, 1997, Moyer et 

al., 2008). Hence there is a need for research that can cast light on the susceptibility of 

GCC firms to insolvency. Such insight can aid investment decisions as well as offer a 

strategic guide to firms’ managers. 

 There are important differences between the GCC and other major trading blocs, 

such as the European Union (EU) and the North American Free Trade Agreement 

(NAFTA). GCC economies remain highly dependent on oil, and are less diversified 

(Fasano and Zubair, 2003). GCC stock markets are less mature and, despite recent 

liberalisation measures, continue to be less liberal and not efficient in the weak form 

(Arouri et al., 2011, Al-Ajmi and Kim, 2012). The GCC financial and regulatory 

frameworks are less harmonised (Hussain et al., 2002), and the GCC is also culturally 

distant (House et al., 2004). Insolvency research evidence based on other regions may 

thus be misleading when applied directly to GCC firms: GCC context-specific research 
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is required to examine both the commonalities and differences between GCC 

insolvency and other regions.  

Compared to other regions, insolvency research in the GCC is relatively nascent, 

dating back to the 1990s, not the 1960s as in other regions. With the exception of 

Basheikh (2012) who applied logistic regression, the few studies that have been 

conducted have relied on Altman’s (1968) Discriminant Analysis (MDA) technique, 

despite its restrictive assumptions. Second, although GCC studies have used a number 

of financial ratios to study insolvency (e.g. profitability, liquidity, leverage and activity 

ratios), they have not yet examined the valuable information generated by the operating 

cash flow, which, as shown by research in other contexts, is useful for predicting 

financial distress. There are thus three areas of weakness in GCC insolvency research: 

the volume of research is small; the scope of methodologies applied is narrow; and 

unlike other contexts, the predictive value of operating cash flow has not been 

examined. Focusing on firms listed on GCC stock markets between 2004 and 2011, this 

study hopes to contribute to the literature in these three areas. As well as logistic 

regression, we introduce the application of the multidimensional scaling (MDS) 

technique to insolvency research in the GCC context. MDS enables the visualisation of 

key differences between insolvent and solvent firms, increasing the depth of insight 

acquired (Neophytou and Molinero, 2004b). We also examine the predictive capacity of 

operating cash flow information in the GCC context.  

The rest of this paper is structured as follows. In section two, we review the 

literature on financial failure in the GCC context as well as literature on financial 

failure prediction techniques, and we state our research questions based on this review. 

In section three, we describe the methods and the data used to answer the research 

question. In section four, we present the results. In section five, we discuss the 

implications of the results for investors and managers, before concluding the study.  

2 Literature review and research questions 
To predict insolvency, it is necessary to understand what causes it. Charan et al. (2002) 

argue that firms fail because they are poorly managed. Altman (1983) states that the 

overwhelming cause of an individual firm’s failure is some type of managerial 
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incompetence. Goudie and Meeks (1991) examine the extent to which macro-economic 

factors can be held responsible for the failure of large companies in turbulent exchange 

regimes. They conclude that factors that are beyond the control of the management, 

such as external macro-economic factors, often play a substantial role in failure and 

give results that offer a corrective to the wide spread notion that the prime cause of 

failure is bad management. 

It is clear that environmental factors can instigate failure. For example, despite 

governments and their central banks infusing liquidity into the financial system via 

repurchase agreements and offering direct liquidity injections through long-term deposit 

schemes, the GCC region experienced many corporate failures following the financial 

crisis in 2008 (Khamis and Senhadji, 2010). The drop in oil prices in late 2009 was 

another shock. It resulted in the ‘Dubai debt crisis’, further weakening GCC capital 

markets (Khamis and Senhadji, 2010, Onour, 2010). Similarly, efficient markets reward 

or punish firms based on performance: Many studies conducted within the region have 

concluded that not all the GCC markets are efficient (Al-Khazali et al., 2007, Bley, 

2011, Al-Ajmi and Kim, 2012). Failing, poorly managed firms can thus continue to 

operate without market censure until it is too late. 

 Environments being equal, however, weaker, less well-managed firms will 

exhibit poorer health. Financial ratios are important here: evidence shows that both the 

level (Chen and Shimerda, 1981) and trend over time (Neophytou and Molinero, 2005) 

of financial ratios can reveal the state of health of a firm. However, the relative 

importance of the ratios is not clear; studies differ in which ratios they consider 

significant (Chen and Shimerda, 1981, Barnes, 1987). This is true generally as well as, 

more specifically, in the GCC context. For example, in the GCC context, Hasabo (1987) 

suggested that total asset to ownership equity, shareholders equity to paid capital and 

profit from other operations to total profit are important; whereas Basheikh (2012) 

found return on investment, retained earnings to total assets, fixed assets to ownership 

equity, asset turnover and ownership equity turnover important.  

Of the different types of ratios, the level of importance of cash flow ratios is 

perhaps the most unclear. Cash flow statements indicate a firm’s cash receipts and 
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payments from operational activities (CFA institute, 2009). The importance of the cash 

flow information as a predictive tool derives from the power of cash to enable a firm to 

meet its obligations and continue to operate (Gilbert et al., 1990). A number of studies 

have tested this hypothesis. As early as 1966, Beaver’s research suggested that cash 

flow from operations to total debt ratio was very accurate at predicting failure a year 

before it occurred; and a number of studies since (Blum, 1974, Smith and Liou, 1979, 

Mensah, 1984, Aziz et al., 1988, Aziz and Lawson, 1989, Gilbert et al., 1990, Charitou 

et al., 2004) have concluded that cash flow ratios add explanatory power. Ward (1994) 

posited that cash flow information was more useful in some industries (mining, oil and 

gas) than others. Gombola and Ketz (1983), in one of the earliest studies to incorporate 

incremental operating cash flow, suggested that operating cash flow provides more 

information than that which exists in most other ratios. Similarly, Gentry et al. (1987) 

found that cash flow-based ratios can improve the scope and accuracy of prediction 

models; and Gilbert et al. (1990) who suggested that cash flow information can provide 

a more reliable means for assessing the financial health. Not all evidence is in 

agreement, however: Casey and Bartczak (1985) found that operating cash flow ratios 

have no incremental predictive power over accrual-based ratios. We were not able to 

find publications in the GCC context on the importance of cash flow ratios.  

To summarise, then, studies in the GCC context are not only unclear on which 

ratios are important but have also yet to test the importance of cash flow information. 

Motivated by this gap, our first research question was thus:  

RQ1: What are the significant predictors of insolvency in the GCC region; and do 

they include cash flow-based ratios? 

A number of techniques for predicting insolvency with financial ratios have 

been developed over the last 50 years. The first was Beaver’s (1966) single predictor, 

univariate model. Altman (1968) demonstrated the insufficiency of Beaver’s single 

predictor model and proposed instead the multiple-predictor, Multiple Discriminant 

Analysis (MDA) technique. Regarded as seminal, Altman’s (1968) MDA technique has 

been widely applied and further developed by a number of researchers (Deakin, 1972, 

Edmister, 1972, Wilcox, 1973, Blum, 1974, Libby, 1975). Despite its popularity, MDA 
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has been criticised for a number of assumptions it makes (Edmister, 1972, Zavgren, 

1983, Karels and Prakash, 1987). It has two key restrictive statistical assumptions 

(Balcaen and Ooghe, 2006): multivariate normality of financial ratios and equal 

variance-covariance matrices across groups - but research shows that both assumptions 

are often violated (Richardson and Davidson, 1983, Ezzamel et al., 1987, Laitinen and 

Kankaanpaa, 1999). The predictive accuracy of MDA can also be significantly reduced 

when optimal conditions for its application are not met by neglecting the prior 

probabilities of failure and not defining an accurate cut-off score (Edmister, 1972, Joy 

and Tollefson, 1975, Ohlson, 1980, Balcaen and Ooghe, 2006). To avoid some of the 

limitations of MDA, Ohlson (1980) introduced logistic regression: it does not require 

multivariate normality, or equality of variance-covariance matrices, and no assumptions 

are made about prior probabilities of failure (Ohlson, 1980, Zavgren, 1983).  

There have been further methodological developments since since Ohlson (1980) 

including decision trees (Friedman, 1977); neural networks (Salchenberger et al., 1992, 

Coats and Fant, 1993); genetic algorithms (Varetto, 1998, Shin and Lee, 2002) and 

survival analysis (Lane et al., 1986, Luoma and Laitinen, 1991). Despite these advances, 

Altman’s (1968) model has dominated GCC insolvency research (Aldeehani, 1995, 

AlShebani, 2006). Some studies have applied Altman’s model in its original form 

(Aldeehani, 1995, AlShebani, 2006); others with minor modifications in terms of 

predictors (Abudelrahman, 2004, Basheikh, 2012). The exception is Basheikh’s (2012) 

logistic regression application. We can argue thus that GCC insolvency research has 

been dominated by a very limited number of techniques.  

The current study aims to contribute towards filling this gap by applying 

multidimensional scaling (MDS), a new approach and philosophy in GCC insolvency 

research. MDS is a multivariate visualisation technique that attempts to find a solution 

by locating objects in a spatial configuration or graphical representation (Kruskal and 

Wish, 1978, Schiffman et al., 1981). Although traditionally a social sciences approach, 

MDS has been applied in the accounting, finance and banking disciplines as an 

alternative to the more traditional statistical techniques when the data do not satisfy 

parametric assumptions (Moriarity and Barron, 1976, Emery et al., 1982). Mar 
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Molinero and Ezzamel (1991) extended MDS to insolvency research in the UK. It has 

been shown that the visualisation of the patterns in financial ratios that MDS offers can 

help identify the reasons behind firms’ poor (or good) financial health (Mar-Molinero 

and Serrano-Cinca, 2001, Neophytou and Molinero, 2004b). It is this visualisation 

capability that makes MDS particularly useful in studying insolvency as it can provide 

insight on the level of similarity (or dissimilarity) between firms by visualising the 

distances between insolvent and solvent firms; or the level of similarity (or dissimilarity) 

between financial ratios. Applied in the latter regard, the key dimensions of financial 

ratios can be extracted and, subsequently, reasons behind a firm’s financial health can 

be revealed by studying the relative salience that solvent and insolvent firms attach to 

the extracted financial ratio dimensions. Thus, based on these arguments, our second 

and third research questions were: 

RQ2: What are the key financial ratio dimensions in the GCC? 

RQ3: Relatively, what are the differences between solvent and insolvent firms in the 

salience they attach to financial ratio dimensions? 

3 Methods 

3.1 Sampling and data collection 

Data on solvent and insolvent firms were gathered from DataStreamTM, financial 

statements and company websites. Categorising firm failure is crucial in all insolvency 

studies. Altman and Narayanan (1997) suggest the definition of failure in the literature 

varies ‘depending on the inclination of the researcher or on the local conditions’. In this 

study, we adopted the legal definition of corporate failure in the GCC region. Under the 

law, in most GCC countries, firms are considered ‘failed’ if accumulated losses reach or 

exceed 75% of capital (Saudi Commerce Ministry, 1966, United Arab Emirate Ministry 

of Economy, 1984, Sultanate of Oman Ministry of Commerce and Industry, 1986, 

Ministry of Industry and Commerce Kingdom of Bahrain, 2002, State of Qatar Ministry 

of Economy and Commerce, 2002). The exception is the Kuwaiti system where the law 

mandates that a company increases its capital accordingly in order to continue trading if 

accumulated losses reach 25% of capital (Kuwait stock exchange, 2010).  
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As discussed above, external factors can trigger or exacerbate failure. So to 

examine the managerial (internal) causes of failure, it is now accepted practice to 

control for external influences by matching each sampled insolvent firm with an 

equivalent solvent firm, as shown in Appendix I. We matched firms using the most 

popular criteria in the literature (Mar Molinero and Ezzamel, 1991); (i) region, (ii) 

industry sector, (iii) comparable asset size, and (iv) financial year. Using data between 

2004 and 2011, we found 56 matching pairs or 112 firms. For each insolvent firm (and 

matching solvent firm), financial data were collected for the year before failure. Table 1 

shows the number of firms sampled in each sector by country. Also shown in brackets 

are the average asset values in US dollars (World Bank mid-year conversion rate) of the 

firms sampled in each sector and country. Our sample covers eight sectors: concurring 

with previous studies (Gilbert et al., 1990) banks, financial investment, insurance and 

real estate firms were excluded from the sample because of the different and unique 

nature of the financial reports in these sectors. In some sectors, there were a limited 

number of companies in the same country, so we matched firms by sector regardless of 

home country.  

Table 1 Sample of insolvent/solvent firms by sector and country 
Sample of Insolvent Firms: Sector by Country  

Sector Country 
 Bahrain Kuwait Oman Qatar Saudi 

Arabia 
UAE Total 

Agriculture 0 1 8 0 3 2 14 
Construction 0 4 2 0 0 1 7 
Hotel and Tourism 1 3 1 0 0 0 5 
Industrial Investment 0 0 2 0 6 1 9 
Petrochemical Industries 0 3 0 0 0 0 3 
Retail and Services 0 6 3 1 1 0 11 
Telecommunications 0 0 0 0 1 0 1 
Transportation 0 3 0 0 3 0 6 
Total 1 20 16 1 14 4 56 

Sample of Solvent Firms: Sector by Country  
Sector Country 
 Bahrain Kuwait Oman Qatar Saudi 

Arabia 
UAE Total 

Agriculture 0 1 8 0 2 3 14 
Construction 0 4 2 0 0 1 7 
Hotel and Tourism 1 3 1 0 0 0 5 
Industrial Investment 0 5 2 0 1 1 9 
Petrochemical Industries 0 3 0 0 0 0 3 
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We selected 28 financial ratios according to Beaver’s (1966) selection criterion, 

i.e. ratios most commonly and successfully used in prior studies (Beaver, 1966, Altman, 

1968, Deakin, 1972, Elam, 1975, Gombola and Ketz, 1983, Mensah, 1983, Dambolena 

and Khoury, 2012). The financial ratios, shown in table 2, cover six major categories: 

profitability, leverage, liquidity, activity, operating cash flow and markets. As discussed 

earlier, we included cash flow ratios in order, for the first time, to examine their 

predictive significance in the GCC context. We did not include the ratio EBITTA 

(Earnings to total assets) because the calculation of this ratio closes resembles the rule 

used to classify firms as solvent or insolvent.  

Table 2 Definition of Financial ratios and summary statistics by failure category 
Description Descriptive Statistics By (Firm) Failure Category 
Ratio 
Variable Short Description Formula Ratio Mean Standard Deviation Coefficient of 

variation 
Type of Firm (S = Solvent; INS = Insolvent) S INS S INS S INS 

EBITSEQ Profitability - Return On 
Equity 

Earnings Before Interest And 
Taxes/Shareholders’ Equity 7.9 -0.5 57.6 2.8 727.7 -606.3 

EBITCE Profitability - Return On 
Capital Employed 

Earnings Before Interest And 
Taxes/Capital Employed 5.9 -0.3 43.2 0.3 732.3 -104.7 

EBITS Profitability - EBIT 
Margin 

Earnings Before Interest And 
Taxes/Sales 2.5 -6.1 17.7 38.5 697.5 -627.8 

EBITTL Profitability - Earing To 
Total Liabilities 

Earnings Before Interest And 
Taxes/Total Liabilities 6 -0.4 42.9 0.6 714.4 -132.8 

GPM Profitability - Gross 
Profit Margin Gross Profit/Sales 25.5 -23.5 19.2 230.3 75.5 -979.2 

RETA 
Leverage - Retained 
Earnings To Total 
Assets 

Retained Earnings/Total 
Assets 0 -0.3 0.4 0.8 1572.2 -253.4 

SETA Leverage - Equity To 
Total Assets 

Shareholders’ Equity/Total 
Assets 53.6 39 26.4 37.6 49.3 96.3 

SETL Leverage - Equity To 
Total Liabilities 

Shareholders’ Equity/Total 
Liabilities 2.6 2 3.2 4.1 122.2 209.6 

TLTA 
Leverage - Total 
Liabilities To Total 
Assets 

Total Liabilities/Total Assets 1.1 3.3 1.7 9.2 156.5 275.3 

TLNW Leverage - Total 
Liabilities To Net Worth Total Liabilities/Net Worth[1] 4 4.5 4.9 13 122.7 286.7 

SETD Leverage - Equity To 
Debt 

Shareholders’ Equity/Total 
Debt 0.4 0.6 0.3 0.4 58.2 62.5 

CR Liquidity - Current 
Ratio 

Current Assets/Current 
Liabilities 2.2 1.8 2.4 2.2 110.4 123 

QR Liquidity - Quick Ratio (Current Assets - Stocks) / 
Current Liabilities 1.4 1.3 1.7 1.7 114.3 137.3 

WCTA Liquidity - Working 
Capital To Total Assets Working Capital/Total Assets -0.5 0 4.8 0.4 -928.6 -3538.9 

IT Activity - Inventory 
Turnover Cost Of Sales/Inventory 8.9 14 13.3 47.7 148.7 340.4 

TDS Activity - Debt Ratio Total Debt[2]/Sales 1.6 13 4.4 84 273.7 644.7 

Retail and Services 0 6 3 1 1 0 11 
Telecommunications 0 0 0 0 1 0 1 
Transportation 0 5 0 0 1 0 6 
Total 1 27 16 1 6 5 56 
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AT Activity - Total Asset 
Turnover Sales/Total Assets 0.6 0.6 0.5 0.7 83.4 111.5 

SCA Activity - Sales To 
Current Assets Sales/Current Assets 1.6 1.5 1.1 1.2 72.3 79.4 

SFA Activity - Fixed Asset 
Turnover Sales/Fixed Assets 1.9 2.6 2.9 6.8 153.5 261.6 

SWC Activity - Working 
Capital Turnover Sales/Working Capital[3] 0.4 -6.5 15.2 75 3500.2 -1153 

CFFOTA Cash Flow - Cash Flow 
On Assets 

Cash Flow From 
Operations/Total Assets 0.2 0 0.8 0.1 400.1 -336.5 

CFFOS Cash Flow - Cash flow 
on Sales 

Cash Flow From 
Operations/Sales 12417.5 -328.2 92753.9 1651.4 747 -503.2 

CFFOCL Cash Flow - Cash Flow 
on Current Liabilities 

Cash Flow From 
Operations/Current Liabilities 1.2 0.1 5.7 0.7 462.3 1184.3 

CFFOTL Cash Flow - Cash Flow 
on Total Liabilities 

Cash Flow From 
Operations/Total Liabilities 0.7 0 3 0.4 425.6 1563 

CFFONW Cash Flow - Cash Flow 
on Net Worth 

Cash Flow From 
Operations/Net Worth 0.2 -0.2 0.3 1 148.4 -520.7 

TDCFFO Cash Flow - Total Debt 
To Cash Flow Ratio 

Total Debt/Cash Flow From 
Operations 3.2 81.1 5.2 512.9 161.8 632.8 

MVOETD Market - Market Value 
To Debt 

Market Value Of Equity/Total 
Debt 7.8 6.6 12.9 17.6 165.3 267.3 

MVOESE Market - Market Value 
To Equity 

Market Value Of 
Equity/Shareholders’ Equity 1.9 1.7 1.4 5.3 76.9 312.7 

[1] Net Worth= total Assets-total Liability 
[2] Total Debt=long-term Debt + short-term Debt + current portion of long-term Debt  
[3] Working Capital =Current Asset – Current Liabilities 

3.2 Data Analysis 

Logistic Regression 

We used Logistic regression or Logit model to address RQ1. We chose the Logit 

model because it satisfies a number of important criteria. First, it does not have 

restrictive distributional assumptions. This is important because, beyond predictive 

capacity, we are interested in the statistical significance of ratios: P-values may be 

incorrect when distributional assumptions are violated. Tests showed that all 28 

financial ratio variables are non-normal, with the p-value of the Shapiro-Wilk 

statistic less than 0.001 in all cases. The Mardia Skewness, Mardia Kurtosis and 

Henze-Zirkler statistics also had p-values less than 0.001, confirming lack of 

multivariate normality. Group homogeneity tests also indicated (chi-square = 3018, 

d.f. = 406, p <.0001) that the covariance matrices of the insolvent and solvent firms 

cannot be considered equivalent. These results confirm that these financial ratio data 

are not suitable for MDA. 

 The second criterion is prediction accuracy: to be confident that the set of 

ratios found significant does contribute to ‘good’ predictions of GCC corporate 
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insolvency, the prediction model must be ‘good’ overall. The performance of 

insolvency models is, typically, assessed by classification accuracy (Altman and 

Narayanan, 1997). Comparative studies suggest that Logit can perform at least as 

well as most other popular techniques: Whereas Charitou et al. (2004) ranked Logit 

second to neural networks (NN) and above MDA, Gloubos and Grammatikos (1988) 

found its overall accuracy on out-sample predictions higher than MDA, LPM (Linear 

probability model) and Probit. Laitinen and Kankaanpaa (1999) found Logit more 

accurate than five other popular techniques (including NN, recursive partitioning and 

MDA) in ex-ante predictions one year before failure occurred. Logit compares well 

even to more recent machine learning techniques such as Support Vector Machine 

(SVM) and Least Square Support Vector Machine (LSSVM); in personal credit 

classification comparisons, Zhu et al. (2013, p. 264)) ranked LSSVM first, logistic 

third and SVM fourth with their first test data. With their second test data, they 

ranked logistic first LSSVM fourth and SVM fifth.  

The final criterion is interpretability: to address a lack in the literature, we 

wish to examine the significance of the effect of profitability ratios on insolvency in 

the GCC. Logit is highly interpretable (Steyerberg et al., 2001, Fedenczuk, 2003) as 

the estimated coefficients of the ratios can be translated directly into the effect of 

each ratio on the odds of insolvency. In contrast, a number of the techniques, namely 

NN, SVM and LSSVM, that sometimes perform better than Logit, are black box in 

nature and not interpretable (Doumpos et al., 2007, Han et al., 2013, Zhu et al., 

2013). Classification trees are intuitive and interpretable but there is no evidence that 

they are more accurate than Logit: in Laitinen and Kankaanpaa (1999), overall, Logit 

outperformed Classification trees for all ex-ante predictions. 

We ran the Logit model in SAS 9.2 setting the firm failure category as 

dependent (event = ‘insolvent’) and the 28 financial ratios as predictors. We 

partitioned the data into a training set covering the period 2004-2009 (33 pairs or 66 

cases) and a test set covering 2010-2011 (23 pairs or 46 cases). To avoid overfitting, 

it is generally accepted that a Logit model should have at least 10 cases per predictor 

(Peduzzi et al., 1996). Thus, with 66 cases in our training data set, we should fit a 
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model with no more than six predictors. We examined the literature for guidance on 

how to choose the optimal set of six predictors. We found seven corporate 

insolvency studies that have applied the Logit model using a data set of similar size. 

As shown in table 3, except for Basheikh (2012), all seven studies apply explicit 

selection criteria. Some (Gentry et al., 1985, Peel et al., 1986, Ward, 1994) choose 

the ratios discretionarily based on prior evidence or theory; others choose the ratios 

empirically using algorithmic stopping rules (Keasey and McGuinness, 1990, 

Charitou et al., 2004) or based on the results of prior analysis with other statistical 

techniques such as principal components analysis (PCA) (Canbas et al., 2005). As 

we stated earlier, we chose the 28 ratios under consideration based on evidence from 

the literature. So we could not re-apply this strategy to further narrow down the set 

of candidate ratios. Equally, we could not use PCA because, once combined into 

components, it is impossible to isolate the effect of individual ratios; we would have 

been unable to assert whether cash flow ratios are important in the GCC and thus 

address RQ1 fully. Subsequently, we adopted the algorithmic approach; but unlike 

Charitou et al. (2004), and Keasey and McGuinness (1990), we did not use the 

stepwise, backward or forward criteria which have been shown to have a number of 

limitations (Steyerberg et al., 2001). Instead, we applied the best subset selection 

criterion using the SCORE option in SAS 9.2.  

Table 3 Ratio selection strategies in logistic insolvency studies 

Study Details Estimation Data 
(Insolvent/Solvent) 

Ratio Selection Criteria 

Charitou et al. 
(2004) 

25/25 Algorithmic: backward and forward 
criteria 

Gentry et al. 
(1985) 

33/33 Predetermined based on theory 

Ward (1994) 14/37 Predetermined based on literature 
Basheikh (2012) 18/38 No explicit criteria 
Keasey and 
McGuinness (1990) 

43/43 Algorithmic: stepwise criterion 

Peel et al. (1986) 34/44 Predetermined based on literature 
Canbas et al. 
(2005) 

18/22 Step 1: ANOVA to select 12 ‘early 
warning ratios’ 
Step 2: PCA of selected ratios  
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Based on Furnival and Wilson’s (1974) branch-and-bound algorithm, the 

SCORE method estimates a specified number of models for each given number of 

predictors. It is not a fool proof approach: the selected subsets are unstable, particularly 

with small data sets. To enable the selection of the most robust subset, we conducted 

the selection process by borrowing some elements from Breiman’s (1996) ‘bagging’ 

procedure. First, as we have explained, our model should have no more than six 

predictors; so we investigated only subsets with six predictors. Second, taking random 

samples with replacement, we created 1000 bootstrap replicates of the training data set, 

each being of equal size to the original sample. For each replicate, we then ran logistic 

regression entering all 28 financial ratios as predictors and specified that a single model 

(i.e. best fitting model with the highest likelihood score statistic) using six predictors 

should be estimated. Third, we tested the predictive performance of the most frequent (> 

1%) subsets of the 1000 using the original training data set. We then evaluated the 

predictive performance of the most frequent subsets using the weighted value of the 

area under the curve (AUC) of the receiver operating characteristic curve (ROC), using 

each subset’s frequency as the weight. Likened to the Gini coefficient (Thomas et al., 

2002) and the Mann–Whitney–Wilcoxon test (Hanley and McNeil, 1982), the AUC is 

an important index for evaluating a model’s ability to correctly forecast a dichotomous 

dependent with values ranging from 0.5 for a random classifier to 1 for a perfect 

classifier. Rather than as an absolute value measure, the AUC is most useful as a single 

number metric for comparing classification models as employed in this study. 

Finally, using the subset with highest weighted AUC, we estimated the logistic 

regression model for the training data set. To validate the logistic model, we then used 

the estimated parameters of the significant ratios to score the test data set. As such we 

adopted a forecast validation test or out-of-sample, ex-ante test since our test data set is 

from a later period. According to Jones (1987), a forecast validation tests not only for 

overfitting which is likely to occur with in-sample validation but also the stationarity 

assumption, i.e. that  relationship between ratios and failure holds over time. To further 

validate the results, we then re-ran the final model and validation test but this time 

using probit instead of logistic regression.  
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3-Way Multidimensional scaling with Hierarchical Cluster Analysis 

To address the second and third research questions, we employed 3-way MDS (Kruskal 

and Wish, 1978) to extract the key dimensions of the 28 financial ratios because (i) 

MDS does not carry restrictive distributional assumptions such as normality, equal 

variance-covariance structures or independence of ratios, and (ii) we can measure the 

relative importance solvent and insolvent firms attach to the extracted financial ratio 

dimensions using 3-way MDS enabling us to examine differences between them. Using 

IBM SPSS 20, we conducted the 3-way MDS in four stages. First, we calculated 

Euclidean distance-based proximities among the 28 ratios. Second, to decide the 

number of dimensions to retain in the final solution, we adopted a strategy followed by 

similar studies (Neophytou and Molinero, 2004b, Chipulu et al., 2013) of independently 

establishing the dimensionality of the data a priori of the final three-way MDS. We 

iteratively submitted the proximity matrix for all sampled firms (solvent and insolvent) 

to MDS analysis using the Proxscal algorithm, each time extracting a different number 

of dimensions. We then used a scree plot of the normalised stress (a ‘badness-of-fit” 

measure) for successive numbers of dimensions to judge optimal dimensionality. Third, 

we extracted the individual proximity matrices of the 28 financial ratios for solvent and 

insolvent firms; and entered them as inputs into three-way MDS model using the 

Prefscal algorithm (Busing et al., 2005), specifying that the number of dimensions 

decided in the second stage of the analysis be retained. The Prefscal algorithm began by 

extracting a common (to both types of firms) multidimensional space. Individual spaces 

for each type of firm were then extracted by rescaling (shrinking or extending) the 

common space along the dimensions based on the weight that each type of firm places 

on that dimension. We then used the re-scaling weights to examine the relative 

importance each type of firm (i.e. solvent or insolvent) attaches to each dimension. 

Finally, to support the interpretation of the MDS dimensions, we supplemented the 

MDS results by clusters of ratios obtained from an independently conducted 

hierarchical cluster analysis (HCA) (Gupta and Huefner, 1972, Neophytou and 

Molinero, 2004b). Based on Euclidean distance proximities among them, we clustered 

the 28 ratios using Ward’s method, which we judged the most appropriate for this 
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purpose because it leads to compact clusters by minimising cluster variance (Punj and 

Stewart, 1983) 

The rationale behind our choice of 3-way MDS is that it reveals, as much as 

possible, the hidden structure in the data based on similarities among the financial ratios. 

This addresses RQ2 and so other data reduction techniques such as PCA could have 

been applied instead. Recent examples of the application of PCA with financial ratios 

can be found in Min and Lee (2005) and Canbas et al. (2005). We chose 3-way MDS 

over other techniques for two reasons. First, by examining the weights that solvent and 

insolvent firms attach to the dimensions, we are able to address the third research 

question directly. This would have not been possible with a technique such as PCA 

without secondary analysis of the results. Second, it is thought that the dimensions 

arising from 3-way MDS are easier to interpret (than, say, PCA components) because 

the re-scaling of the common space using individual weights is strictly dimensional 

(Arabie et al., 1987).  

4 Results 

Logit Model Insolvency Prediction 

Table 4 Training data predictive performance of most frequent best-six ratio sets 

Set Best-Six Ratios Set N % AUC Weighted AUC 

1 EBITCE, EBITTL, TLTA, CFFOTA, CFFOCL, TDCFFO 69 6.9 0.989 68.2 

2 EBITCE, EBITS, EBITTL, SETL, TLTA, TDCFFO 23 2.3 0.9651 22.2 

3 EBITCE, EBITTL, TLTA, CFFOTA, CFFOCL, CFFOTL 23 2.3 0.9981 23 

4 EBITTL, TLNW, WCTA, CFFOTA, CFFOCL, CFFOTL 21 2.1 0.9917 20.8 

5 EBITCE, EBITS, SETA, TLTA, TDCFFO, MVOETD 19 1.9 0.9871 18.8 

6 EBITCE, EBITTL, TLTA, CFFOTA, CFFOTL, TDCFFO 17 1.7 0.9761 16.6 

7 EBITTL, TLTA, TLNW, CR, CFFOTA, CFFOTL 13 1.3 0.9752 12.7 

8 EBITTL, TLTA, TLNW, CFFOTA, CFFOTL, TDCFFO 12 1.2 0.9752 11.7 

The 1000 bootstrap replicates produced 497 unique sets of best-six predictors, 

indicating the uncertainty surrounding the predictive ability of the 28 ratios. Although 

most sets appeared only once, there were eight sets exceeding 1% frequency. As shown 

in table 4, the eight sets comprised 14 different ratios. Set 1 containing EBITCE, 
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EBITTL, TLTA, CFFOTA, CFFOCL and TDCFFO was the most frequent, appearing 

thrice as much as the next most frequent set; and it performed best on frequency-

weighted AUC of the ROC curve for the training data set. Inspection of table 4 suggests 

that beyond set 1, EBITCE, EBITTL, TLTA, CFFOTA, CFFOCL and TDCFFO also 

frequently appear in other best-six sets. Each of the six ratios is present in at least four 

of the other seven most frequent sets. There is hence a common pattern across the eight 

sets: except for sets 5 and 7, which respectively contain a liquidity and market ratio, the 

eight sets comprise ratios from the profitability, leverage and cash flow categories; 

however, there is no activity ratio in any of the eight sets. Thus, while the exact 

combination of best-six ratios is uncertain, it is likely profitability, leverage and cash 

flow ratios will offer more predictive value than liquidity, market, and, in particular, 

activity ratios. 

The final training model fit statistics with EBITCE, EBITTL, TLTA, CFFOTA, 

CFFOCL and TDCFFO as predictors were good [Likelihood Ratio Chi-squared = 74.4, 

p-value < 0.0001; Pseudo R-square value (Nagelkerke) = 0.90], indicating that these six 

variables provide some explanation for firm insolvency. Table 5 shows the parameter 

estimates. Except for EBITCE and TDCFFO, the estimated coefficients of the ratios are 

significant at the .05 p-value level. The results suggest that higher levels of TLTA and 

CFFOCL will increase the likelihood of insolvency, whereas EBITTL, CFFOTA and 

TDCFFO will reduce it. Of these, CFFOTA, with the largest coefficient, is likely to 

have the greatest effect. 

Table 5 Parameter estimates of predictors for insolvency 

Parameter Description of Ratio Estimate Standard 
Error 

Wald 
Chi-

Square 

Pr > Chi
Sq 

Intercept  -2.5 1.5 2.8 0.096 
EBITCE Profitability - Return On Capital Employed -9.6 5 3.7 0.054 
EBITTL Profitability - Earing To Total Liabilities -8 3.4 5.6 0.018 
TLTA Leverage - Total Liabilities To Total Assets 1.8 0.9 4.2 0.041 

CFFOTA Cash flow - Cash Flow On Assets -78.2 35.6 4.8 0.028 
CFFOCL Cash flow - Cash Flow on Current Liabilities 11.5 5.3 4.7 0.03 
TDCFFO Cash flow - Total Debt To Cash Flow Ratio -0.2 0.1 1.7 0.187 
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To validate the model, we then re-estimated the logistic regression with the four 

significant ratios, namely EBITTL, TLTA, CFFOTA and CFFOCL - as predictors and 

used the estimated parameters of the four predictors to score the test data set. The full 

results of this predictive logistic model are shown in Appendix II. The AUC of the 

ROC curve based on scoring the test data set was 0.97. This AUC value is very close to 

1 (= perfect classification) and substantially greater than 0.5 (= random classifier). Thus, 

we can conclude that these four ratios can be used to predict insolvency of GCC firms 

before it occurs and that the cash flow ratios CFFOTA and CFFOCL may be useful 

predictors of insolvency in the GCC. The ex-ante, validation test shows that the model 

has 84.8%, 95.6% and 73.9% overall, type I and II classification levels of respectively.  

The Probit model results are shown in Appendix III. They closely replicate the 

Logit results: the estimated parameters of the four predictors are very similar, and the 

two models have identical classification levels on the test data. 

MDS Dimensionality  

Figure 1 shows the scree plot from the Proxscal MDS models. There is no clear ‘elbow’ 

to indicate optimal dimensionality; however, this is not unusual in MDS. Experience 

shows that higher dimensions are increasingly harder to interpret as they account for 

more residual than common variance; and, typically, researchers trade-off the higher 

variance accounted for which comes with higher dimensionality in favour of lower 

dimensionality and higher interpretability (Neophytou and Molinero, 2004a, Chipulu et 

al., 2013). According to Kruskal and Wish (1978), an MDS configuration represents a 

‘good’ fit when stress is 0.05 and is ‘very good’ at 0.01. 
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Fig.1 MDS Proxscal Models’ Goodness-of-fit  

In figure 1, model fit clearly improves between one and four dimensions when 

stress drops to 0.05 (a ‘good’ fit). After four, incremental improvements diminish and 

stress does not reach 0.01 even at 11 dimensions. This implies that at least 11 

dimensions are required to obtain a ‘very-good’: yet each additional dimension after 

four improves fit only marginally. Therefore we decided to extract four dimensions as 

this represents the lowest dimension (and so highest interpretability) configuration that 

reaches a ‘good’ fit. 

MDS Model Fit and Coordinates of Ratios 

The final 3-way MDS model, retaining four dimensions, was a good fit for the data with 

a normalised stress value of 0.03, and accounted for 87% of the variance. Degenerate 

indices (DeSarbo's inter-mixedness = 0.22; Shepard's rough non-degeneracy = 0.76) 

were such that we can conclude the model is unlikely to be degenerate. Table 6 shows 

the dimensional coordinates of the financial ratios. The absolute value of a ratio’s 

coordinate on each dimension is indicative of its level of association with that 

dimension. Ratios with very high absolute values can be used to interpret each 
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dimension as they are the most representative of that dimension (Chipulu et al., 2013). 

In table 6, we have highlighted the ratios with large (absolute) value coordinates that we 

have used for this purpose.  

Table 6 MDS dimensional coordinates of financial ratios 

Financial 
Ratio 

Description Dim_1 Dim_2 Dim_3 Dim_4 

CFFOS Cash Flow - Cash flow on Sales .750 -.268 1.049 .076 

TDCFFO Cash Flow - Total Debt To Cash Flow Ratio .706 -1.171 .618 -.057 

GPM Profitability - Gross Profit Margin .671 -.450 1.044 .212 

TDS Activity - Debt Ratio .602 -1.058 -1.020 .144 

SWC Activity - Working Capital Turnover .550 -.680 .595 .489 

IT Activity - Inventory Turnover .344 -.722 .530 1.164 

SETA Leverage - Equity To Total Assets .158 .427 .686 .536 

EBITS Profitability - EBIT Margin .080 .086 -.089 2.213 

MVOETD Market - Market Value To Debt -.462 -.577 .160 1.835 

SETD Leverage - Equity To Debt -.676 -.824 -.327 1.899 

TLNW Leverage - Total Liabilities To Net Worth -.740 -1.000 -1.156 .934 

SFA Activity - Fixed Asset Turnover -.776 -.832 -.794 1.619 

SETL Leverage - Equity To Total Liabilities -.973 -1.044 -1.126 .647 

MVOESE Market - Market Value To Equity -1.002 -1.055 -1.261 .374 

EBITSEQ Profitability - Return On Equity -1.051 .883 .392 -.096 

SCA Activity - Sales To Current Assets -1.146 -1.183 -1.299 -.465 

CFFONW Cash Flow - Cash Flow on Net Worth -1.187 -1.209 -1.336 -.903 

CR Liquidity - Current Ratio -1.203 -1.182 -1.276 -.425 

QR Liquidity - Quick Ratio -1.238 -1.222 -1.304 -.700 

TLTA Leverage - Total Liabilities To Total Assets -1.246 -1.219 -1.339 -.909 

AT Activity - Total Asset Turnover -1.251 -1.216 -1.351 -.857 

RETA Leverage - Retained Earnings To Total 
Assets -1.260 -1.202 -1.303 -.917 

EBITTL Profitability - Earning To Total Liabilities -1.262 1.265 .006 -.334 

EBITCE Profitability - Return On Capital Employed -1.267 1.232 .069 -.281 

WCTA Liquidity - Working Capital To Total Assets -1.276 -1.205 -1.323 -.942 

CFFOCL Cash Flow - Cash Flow on Current Liabilities -1.276 -1.230 -1.327 -.924 

CFFOTL Cash Flow - Cash Flow on Total Liabilities -1.291 -1.225 -1.334 -.969 

CFFOTA Cash Flow - Cash Flow On Assets -1.294 -1.207 -1.315 -.982 
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HCA Clusters of Ratios 

It is not possible to visualise the positions of the ratios in a four-dimensional (4D) space, 

so we created two-dimensional (2D) projections of the MDS configuration. However, 

as the true configuration is four-dimensional, distances between ratios in the 2D space 

can be misleading: two proximate ratios that therefore seem similar in, for example, 

dimensions 1 and 2, could actually be far apart in dimensions 3 or 4, and not as similar 

as they appear. It is important then to indicate on the 2D maps overall distances among 

ratios. One approach to this problem is to superimpose the 2D maps with a layer of the 

clusters obtained from HCA (Neophytou and Molinero, 2004b).  

Table 7 HCA Cluster Membership 

Cluster 1  Cluster 2  
SFA Activity - Fixed Asset Turnover EBITTL Profitability - Earning To Total Liabilities 
SCA Activity - Sales To Current Assets EBITS Profitability - EBIT Margin 
AT Activity - Total Asset Turnover EBITCE Profitability - Return On Capital Employed 
CFFOTA Cash flow - Cash Flow On Assets EBITSEQ Profitability - Return On Equity 
CFFOCL Cash flow - Cash Flow on Current Liabilities   
CFFONW Cash flow - Cash Flow on Net Worth Cluster 3  
CFFOTL Cash flow - Cash Flow on Total Liabilities TDS Activity - Debt Ratio 
SETD Leverage - Equity To Debt IT Activity - Inventory Turnover 
SETL Leverage - Equity To Total Liabilities SWC Activity - Working Capital Turnover 
RETA Leverage - Retained Earnings To Total 

Assets 
SETA Leverage - Equity To Total Assets 

TLNW Leverage - Total Liabilities To Net Worth Cluster 4  
TLTA Leverage - Total Liabilities To Total Assets GPM Profitability - Gross Profit Margin 
CR Liquidity - Current Ratio Cluster 5  
QR Liquidity - Quick Ratio TDCFFO Cash flow - Total Debt To Cash Flow Ratio 
WCTA Liquidity - Working Capital To Total Assets Cluster 6  
MVOETD Market - Market Value To Debt CFFOS Cash flow - Cash flow on Sales 
MVOESE Market - Market Value To Equity   

There were five stages in the HCA agglomeration schedule. There was a six-

cluster solution at stage one comprising three multiple-ratio clusters; and three 

unattached ratios: GPM, TDCFFO and CFFOS. There were four clusters at stage two: 

the three multiple-ratio clusters merged into one large cluster; while GPM, TDCFFO 

and CFFOS remained unattached. GPM joined the large cluster at stage three, 

TDCFFO at stage four and CFFOS at stage five. Stage one thus represents the greatest 

cluster separation and so we decided to extract the six clusters at this level. Cluster 

membership is summarised in table 7. The schedule suggests the three larger clusters 
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have more similarities among them than with GPM, TDCFFO or CFFOS. GPM, 

TDCFFO and CFFOS, particularly, are dissimilar to the other 25 ratios. They could be 

key indicators in that they carry unique information not shared by other ratios. We 

interpreted the three larger clusters as follows: 

Cluster 1, the largest with 17 ratios, contains all the liquidity ratios, all but one 

of the leverage ratios and both market ratios; but none of the profitability ratios. This 

combination of ratios led us to interpret cluster 1 as an indicator of non-profitability-

based market valuation of financial stability; and that the cash flow and activity 

ratios that are also in cluster 1 are closely related to market valuation of financial 

stability.  

Cluster 2 contains only profitability ratios, which can be used to determine a 

company’s ability to produce a return on investment. We believe this cluster represents 

profitability.  

All except one of the ratios in cluster 3 are indicative of sales activity (IT, SWC, 

TDS). We believe this cluster represents sales activities, which is related to SETA 

(equity to total assets), the fourth ratio in the cluster.  

Interpretation of ratio dimensions 

Using the relative positions of the six clusters on the 2D MDS maps and the signs and 

sizes of dimensional coordinates of the ratios (table 6), we interpreted the four 

dimensions as follows 

Dimension 1: ‘Non-strategic sales activities’  

Figure 2 shows the projection of the MDS structure in dimensions 1 and 2. MDS 

dimensions are extracted hierarchically based on variance accounted for, with the first 

dimension accounting for the most and the amount decreasing with each additional 

dimension. As such, dimensions 1 and 2 should capture a substantial amount of the 

pattern of similarities among ratios, closely mirroring the cluster patterns. It can be seen 

in figure 2 that this is the case. All six clusters occupy clear and distinct positions on the 

map. Cluster 3, an indicator of sales activities, is entirely on the right-hand side of 
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dimension 1; as are the three unattached ratios CFFOS, GPM and TDCFFO, which - 

along with TDS - have the highest positive-valued coordinates on dimension 1. CFFOS 

measures cash generated from sales; GPM measures sales over costs. This suggests a 

need to maintain high sales activities to generate cash to cover financial obligations, 

where these obligations are reflected by the proximity of TDCFFO and TDS. In this 

case, however, the focus on sales activities is at the expense of profitability and 

financial stability as inspection of the left-hand side shows. The entire market valuation 

of financial stability cluster and most of the profitability cluster are on the negative side 

of dimension 1, indicating decreasing levels of both the markets’ valuation of financial 

stability and profitability. This suggests a lack of long-term, strategic planning which is 

needed to ensure that sales activities not only generate profits but are conducted within 

a stable financial environment, engendering market value. Thus, we interpreted 

dimension 1 as an indicator of operational, non-strategic focus on sales activities.  

 

Fig. 2 MDS Dimensions 1 versus 2 and HCA Cluster 
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Dimension 2: ‘Profitability and financial stability balance’ 

Clusters 1 and 2 occupy different halves of dimension 2; whereas cluster 3 overlaps the 

two halves. The three ratios (EBITTL, EBITCE and EBITSEQ) with the highest positive 

valued coordinates on dimension 2 are all in cluster 2 (profitability). In contrast, cash 

flow over liabilities ratios (CFFOCL, CFFOTL) and the quick ratio (liquidity) and 

TLTA (leverage) have high negative coordinates on dimension 2. Together, these ratios 

indicate a firm’s ability to handle both its short- and long-term liabilities, i.e. financial 

stability. We interpreted dimension 2 to represent a balance between profitability and 

financial stability.  

Dimension 3: ‘Sales activities against capital conversion’ 

Fig. 3 MDS Dimensions 3 versus 4 and HCA Clusters 

Figure 3 shows the projection of the MDS structure in dimensions 3 and 4. Unlike the 

dimensions 1 and 2 space, in this projection the clusters are not as compact and they 
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overlap each other, i.e. they do not occupy clear and distinct areas of the map. These 

cluster transformations offer additional support for extracting a four-dimensional 

structure; they indicate that dimensions 3 and 4 offer extra insight (to 1 and 2) 

analogous to how regions in a country that are very similar in most aspects (for example 

geographical location, weather, population, etc.) may appear quite different when 

viewed in terms of urbanity and social deprivation. 

On first inspection, based on the relative positions of the variables, dimension 3 

appears very similar to dimension 1. Like 1, the ratios with high positive valued 

coordinates on dimension 3 - namely CFFOS, GPM, DCFFO - and most of the ratios in 

cluster 3 appear to indicate higher sales activities. Closer inspection, however, suggests 

noticeable differences. Whereas all the profitability ratios have large negative 

coordinate values on dimension 1, on 3 all profitability ratios have very small values, 

near zero. Dimension 3 does not appear to be strongly related to profitability. Similarly, 

it does not appear to be as strongly related to the market value and leverage ratios. 

Overall, unlike 1, the ratios on the negative side of dimension 3 do not give a clear 

indication of decreasing profitability and financial stability and, consequently, market-

value. Rather, the two ratios with the highest negative valued coordinates, namely AT 

(total asset turnover) and TLTA (total liabilities to total assets); are, respectively, 

indicative of the efficiency in using own assets to generate sales and the effectiveness 

of using creditors’ funds to acquire assets  (Bragg, 2002, Megginson and Smart, 2005). 

This suggests the negative side of dimension 3 could be a reflection of return on capital. 

Thus, we interpreted dimension 3 as a balance between sales activities against capital 

conversion. 

Dimension 4: ‘Market value against cash generation’ effectiveness 

Dimension 4 transforms clusters 1 and 2 so that EBITS, a profitability measure from 

cluster 2, has a high positive-valued coordinate; and is located near cluster 1 ratios: 

MVOETD (market value to debt), SETD (equity to total debt), and SFA (fixed asset 

turnover). This combination of ratios indicates increasing efficiency in converting 

assets and debts into earnings and market value. In contrast, the ratios with the highest 
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negative-valued coordinates are from the cash flow group (CFFOCL, CFFOTL, 

CFFOTA), indicating difficulties in generating cash from operations or inefficiencies in 

credit and cash collection. Therefore, we interpreted dimension 4 to indicate a balance 

between creating market value against cash generation.  

Relative Importance of Ratio Dimensions 

Table 8 shows the importance that ‘solvent’ or ‘insolvent’ firms ascribe to the four the 

four dimensions, how specific they are in attaching importance, and the importance 

(relative to other dimensions) of each dimension based on the amount of variance it 

accounts for. For each firm category, the dimensional weights can be used to compare 

the importance that firm category places on that dimension relative to the other three 

dimensions. For each dimension, dimension weights can be used to compare the 

importance that ‘insolvent’ firms attach to it relative to ‘solvent’ firms. The ‘specificity’ 

indicates the extent to which a source attaches weight to a specific dimension while 

overlooking others: values can range from zero for a source which regards all 

dimensions as equally important to one for a source which regards only one of the 

dimensions as important. An intuitive interpretation of specificity is that it captures the 

trade-off a source makes between focus on one, some or all of the dimensions: as 

emphasis on one or a few dimensions increases, lack of emphasis on the others may 

ensue. It can be seen thus that insolvent firms are very specific. They place a very large 

amount of weight on dimension 1; little or no weight on dimensions 2 and 3, and some 

weight on dimension four. In contrast, solvent firms are only moderately specific: 

instead of dimension 1 which appears unimportant to them, they place the most weight 

on dimension 2; and less, but still comparatively, much higher weights than insolvent 

firms on both dimensions 3 and 4. The importance values indicate that dimension 1 

represents 40% of the overall variance extracted by the MDS structure. Since solvent 

firms appear to disregard this dimension, dimension 1 almost exclusively captures all 

the structural variations in ratios among insolvent firms, whereas the other three 

dimensions are more representative of solvent firms.  

Table 8 Dimensional salience by firm failure category 
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5 Discussion  

Above, after reviewing the literature, we concluded that, overall, no set of financial 

ratios is found to consistently predict firm failure. Rather, the set of ratios found 

significant varies by study (Altman and Narayanan, 1997). The results we have 

obtained from logistic regression modelling aimed at addressing our first research 

question (RQ1) - What are the significant predictors of insolvency in the GCC region; 

and do they include cash flow-based ratios? - mirror this synopsis of the literature. In 

our examination of six predictor subsets using 1000 bootstrap replications of the 

original training data set, we found that the ‘best sets’ varied considerably. Based on the 

premise that sets that appear with higher frequency are likely to be more robust, we 

examined the most frequent 'best sets'. We found that the sets were only marginally 

different in predictive performance, i.e. no set was unequivocally dominant. Given this 

uncertainty and lack of discriminability among sets, it is difficult to claim that one 

single set of ratios will consistently achieve high prediction performance, data changes 

notwithstanding. What our logistic regression appears to have uncovered is a general 

pattern: in the GCC context, ratios from the profitability, leverage and cash-flow groups 

are likely to contain insolvency predictive information.  

Of the six predictors in the final Logit model, four, namely EBITTL, TLTA, 

CFFOTA, and CFFOCL, were significant. When we re-ran the prediction model using 

Probit regression, we were able to replicate the Logit results, confirming that the 

predictive capacity of these four ratios is not a mere artefact of the logistic model. 

Rather, it appears be a characteristic of the four ratios, which is independent of the 

predictive technique used. To assess how unique the significance of these four ratios is, 

we took a sample of 28 failure prediction studies for comparison. The 28 studies were 

selected to ensure representation of research over time (Beaver, 1966 to the present 

day), across locations and by classification techniques. Details of the 28 studies, 

Type of the Firm 
Dimension 

Specificity Dim_1 Dim_2 Dim_3 Dim_4 
Insolvent Firms 540.1 .0 8.2 104.9 .831 
Solvent Firms .1 444.6 350.6 204.5 .524 
Importance .4 .3 .2 .1  
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including the significanc of the 28 ratios under consideration, are shown in Appendix 

IV. A count of number of occurrences of each ratio in the 28 studies suggests that the 

type of ratio most frequently reported significant is liquidity, having appeared first in 

the seminal studies of Beaver (1966) and Altman (1968). Our not finding any liquidity 

ratio to be significant is thus a contrast. This finding is not unusual, though: previous 

studies in the GCC such as Aldeehani (1995) and Basheikh (2012) did not find any 

liquidity ratio to be significant either. Perhaps liquidity ratios have lower predictive 

capacity in the GCC than elsewhere. We also did not find any activity or market ratio to 

be significant; but unlike liquidity, this type of ratio is rarely reported as significant in 

the literature, indicating low predictive capacity generally.  

Based on theory (Gilbert et al., 1990) and empirical results elsewhere (e.g. Blum, 

1974, Smith and Liou, 1979, Mensah, 1984, Aziz et al., 1988, Aziz and Lawson, 1989, 

Gilbert et al., 1990, Charitou et al., 2004) we posited that cash flow ratios should be of 

predictive value in the GCC context. The significance of CFFOTA and CFFOCL 

provides support for this postulate. Furthermore, CFFOTA, which has been reported 

significant in several other studies in different contexts (Shumway, 2001, Bose, 2006, 

Ravisankar et al., 2010) had by far the largest estimated effect.  CFFOCL, also reported 

significant by Gilbert et al. (1990), had the second largest effect. These large cash flow 

ratio effects tend to support the argument that cash flow-based ratios may contain more 

predictive information than most other ratios (Gombola and Ketz, 1983). Consequently, 

the disregard of cash flow ratios seems to us a clear weakness in previous GCC 

insolvency research: cash flow-based ratios should be included when insolvency 

prediction models are constructed in the GCC.  

The significance of EBITTL suggests that profitability is as good a predictor of 

insolvency in the GCC as it is in other contexts: EBITTL was also reported significant 

by Charitou et al. (2004) in the UK and Gloubos and Grammatikos (1988) in Greece. In 

the GCC, Basheikh (2012) found EBITSEQ, another profitability ratio, to be significant. 

Similarly, though it has the smallest estimated effect in our Logit model, TLTA is very 

often reported significant in the literature (e.g. Ohlson, 1980, Altman and Lavallee, 

1981, Zmijewski, 1984, Zavgren, 1985, Gloubos and Grammatikos, 1988, Shumway, 
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2001, Charitou et al., 2004). We can hence conclude that leverage is as good a predictor 

of insolvency in the GCC as it is elsewhere. 

The Logit model performed very well in the forecast validation test. As shown 

in table 9, the model accuracy levels are impressive even when compared to in-sample 

or ex-post validation results: It is well known that in-sample validation tends to over-

estimate model performance (e.g. Hawkins, 2004); and it has been suggested that 

impressive ex-post classification rates can drop by 10% or more on ex-ante tests (Platt 

and Platt, 1990). Type I errors are considered much more costly than type II (e.g. 

Altman et al., 1977). It is good then that, like those of Altman (1968) and Charitou et al. 

(2004), the Logit model is better at classifying insolvency than solvency. We should 

also note that we partitioned the data such that the training data were for the period 

before and up to the onset of the 2008 financial crisis (2004-2009), whereas the test set 

data were post-crisis (2010-2011). The 2008 crisis is thought to have  significantly 

affected the GCC economies including triggering the Dubai debt crisis (Khamis and 

Senhadji, 2010, Onour, 2010). Thus, the level of accuracy of the logistic model in 

correctly classifying firms after the 2008 financial crisis is notable given the potential 

confounding influence of the crisis. 

Table 9 Comparative accuracy of a sample of insolvency studies 

Study Details Location of Study Accuracy (%) 
Overall  Type I  Type II  

Current Study*** GCC 84.8 95.6 73.9 
Peel et al. (1986)*** United Kingdom 91.7 83.4 100 
Charitou et al. (2004)*** United Kingdom 80.95 85.71 76.19 
Gloubos and Grammatikos 
(1988)*** 

Greece 77.1 66.7 87.5 

Ta and Seah (1988)** Singapore 86.2 75 90.5 
Keasey and McGuinness (1990)*** United Kingdom 63 56 70 
Altman (1968)** United States 85.5 96 79 
Zavgren (1985)* United States 82 89 76 
Basheikh (2012)* Saudi Arabia 83.8 83.3 84.2 
*** out-sample, ex-ante  
** out-sample, ex-post 
* in-sample 
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Our second and third research questions were, respectively, What are the key 

financial ratio dimensions in the GCC? and Relatively, what are the differences 

between solvent and insolvent firms in the salience they attach to financial ratio 

dimensions? Rather than prediction, these two questions were aimed at generating 

insight as to why some firms might be more susceptible to insolvency than others. 

Using 3-way MDS supplemented by hierarchical cluster analysis, we found that, based 

on proximities, the 28 financial ratios under study can be reduced to four main 

dimensions. In order of decreasing importance (measured by the amount of the variance 

each dimension accounts for), the four dimensions were (i) ‘Non-strategic sales 

activities', (ii) 'Profitability and financial stability balance’, (iii) ‘Sales activities against 

capital conversion’, and (iv) ‘Market value against cash generation’. By examining the 

amount of weight each group puts on these four dimensions, we uncovered marked 

differences between solvent and insolvent firms. Insolvent firms place most weight on 

dimension 1 (‘Non-strategic sales activities') and very little on the other three. Solvent 

firms appear, by contrast, to disregard dimension 1 and place much more weight not 

only on dimension 2 ('Profitability and financial stability balance’) but also on 

dimensions 3 (‘Sales activities against capital conversion’) and 4 (‘Market value against 

cash generation’). This suggests that insolvent firms have a one-dimensional focus on 

‘non-strategic sales activities’ (dimension 1), encapsulated in their high specificity 

value. Based on the relative positions of ratios in our MDS maps, we believe that the 

near-singular focus on ‘non-strategic sales activities’ by insolvent firms is likely a 

reactive, pragmatic stance dictated by a need to meet financial obligations. This 

inference is supported by the Logit results, which indicate that the level of cash relative 

to liabilities (CFFOCL) can significantly affect susceptibility to insolvency. Taking the 

multidimensional focus of solvent firms as exemplar, the MDS results imply, however, 

that focusing so exclusively on 'non-strategic sales activities'; while paying little regard 

to other dimensions, increases the risk of insolvency: it could harm profitability, put 

stability at risk and reduce market value. In other words, the implication for managers 

of firms in financial distress is to shift focus away from ‘non-strategic sales activities’ 

and much more on to 'profitability and financial stability balance’ and ‘sales activities 
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against capital conversion’, as solvent firms do. Likewise, managers of healthy firms 

should periodically evaluate strategy and, whenever signs of over-valuing ‘non-

strategic sales activities’ are spotted, refocus on 'profitability and financial stability 

balance’ and ‘sales activities against capital conversion’. 

Overall, we believe our results indicate some parallels as well as differences 

between insolvency in the GCC and in other regions. The Logit results confirm that 

financial ratios in general and cash flow ratios in particular can be used to detect firm’s 

distress in the GCC as effectively as elsewhere. On the other hand, contrary to previous 

studies, the Logit results also indicate that liquidity ratios are not very good predictors 

of insolvency in the GCC. We note also that, in our MDS model, market value ratios 

are most strongly associated with the fourth dimension, which, based on amount of 

variance accounted for, is the least important of the four dimensions extracted. This 

may be a result of inefficiency in GCC markets (Arouri et al., 2011, Al-Ajmi and Kim, 

2012); one of the key differences between the GCC and other major trading blocs such 

as NAFTA that we mentioned earlier. The implication for stakeholders, particularly 

investors, is that market values of GCC firms may not be as strongly associated with the 

financial health of the firms as they are in more efficient markets. 

6 Conclusion 

This study makes several contributions to the literature on corporate insolvency. To 

date, there has been relatively little research on insolvency in the GCC; and many of the 

existing studies have relied on Altman’s model. This study breaks new ground by 

examining insolvency across the whole GCC, using multiple methodologies: a Logit 

model with a Probit model for extra validation, and a 3-way MDS model supplemented 

by Cluster Analysis. Thus, it extends the geographical coverage and methodological 

scope of corporate insolvency studies in the GCC. Beyond the GCC, as one of only a 

few studies to have conducted ex-ante validation, this study extends the pool of 

countries where validated insolvency classification models have been found. This is a 

worthwhile contribution in itself because we now have documented evidence of which 

ratios are likely to be good predictors of insolvency in, for example, the UAE. Arguably, 
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however, the greatest contribution of this study is that, using MDS, it reveals the 

characteristic differences between solvent and insolvent firms, which we believe can 

aid managers of both types of firms take action to reduce susceptibility to insolvency. 

 We envisage a number of ways in which this research can be improved. Like 

other ‘developing’ (i.e. middle- and lower-income) regions, not only is the number of 

publicly listed companies in the GCC small but there is also very little data on insolvent 

firms because the stock markets are relatively nascent. Therefore, it will be valuable to 

re-model insolvency in the GCC as more data on insolvent firms emerge. Second, the 

GCC context has unique characteristics. This begs the question: to what extent are the 

structural differences between insolvent and solvent firms indicated by our MDS results 

idiosyncratic to the region? To examine this question, our forthcoming study will 

investigate whether or not the differences we have uncovered are generalisable, i.e. do 

similar structural differences exist between solvent and insolvent firms in other contexts 

such as the United Kingdom?  
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Appendix I: Sample of Insolvent and Solvent Firms 

Insolvent firms Solvent Firms 

Companies size of Assets year of 
failure Companies Size of Assets 

Middle East Specialized Cables Co 367,808 2011 Al hassan Ghazi Ibrahim 323,171 
Ethihad  Atheeb 563,439 2011 Etihad etisalat 10,000,180 
Anaam 65,314 2006 Herfy Food Services 72,647 
Saudi Fisheries Co 43,213 2005 Al Sharqiyah 38,049 
Aseer Trading 882,461 2008 National co 130,075 
Saudi Transeport Mobarad 47,065 2011 United international 267,459 
Banader Hotels 26,624 2009 Bahrain Family 11,889 
Medicare group 132,779 2006 Gulf international 589,687 
Mushrif Trading Contracting 368,493 2008 Combined group 465,433 
National Ind 466,163 2008 Mabanee co 854,885 
Portland Cement 200,478 2008 United projects 159,474 
National Ranges 476,852 2008 Kuwait cement co KSC 886,607 
Human Soft Holding 44,510 2006 Safwan trading 47,797 
Gulf franchising 40,776 2009 Hayat communi Holding 66,176 
Nafais Holding 480,972 2009 Advanced technology 273,283 
Sultan center food 1,085,362 2010 Gulf cable 1,143,807 
Kuwait Cable Vision 21,041 2010 Automated systems co 37,162 
Educational Holding 208,431 2010 Alsafat tec holding 211,376 
Livestock transport and trading co 168,800 2011 Danah Al safat 183,004 
Shuaiba Ind 62,469 2006 National metal 116,991 
Heavy Eng and Ship Building 205,348 2006 Arabian pipes co 336,815 
Equipment Holding 130,710 2009 Saudi steel pipe 261,634 
Kuwait Founding 181,721 2011 Takween 215,259 
Kuwait Pipe Ind and Oil Ser 824,718 2011 Saudi arabian mining 11,619,660 
Mubarrad transport 101,403 2009 KGL logistics co 205,000 
Jazeera airways 254,269 2009 Alafco Aviation 1,345,621 
Refrigeration 79,103 2009 Saudi Public 484,156 
City group 111,664 2011 National shipping 2,832,856 
Kuwait Gulf Link Transport 694,379 2011 Agility Public 4,835,941 
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Ikarus Petroleum Ind 412,833 2008 Aref Energy 431,933 
Gulf Petro Invest 198,903 2009 Al safat En. Holding 284,355 
Independent Petro 1,516,646 2011 Boubyan Pet 1,535,243 
IFA Hotels and Resorts 1,382,245 2010 Kuwait national 240,845 
Kuwait Hotels 51,624 2010 Future Kid entertain 81,631 
Mashaer Holding 255,200 2010 Kuwait resorts co 203,741 
Oman Filters Ind 5,795 2006 Oman Chromite 6,032 
National Aluminium pro 52,271 2008 Majan Glass 40,882 
A Saffa foods 39,829 2005 Areej Vegtable Oils and Deriv 46,039 
Oman National Dairy 13,287 2007 Omani Euro foods internaties 15,232 
Sohar poultry 24,337 2007 Oman Refreshment 49,287 
Dhofar Beverages and Food stuff 8,987 2008 Sweets of Oman 9,634 
National beverages 20,624 2008 National Biscuit ind 20,534 
National mineral water 31,976 2010 Oman Fisheries 43,974 
Dhofar Fisheries 17,976 2011 Salalah Flour Mills 128,126 
Oman Agriculture 15,521 2011 Oman Foods Ind 11,347 
National Detergent 26,539 2005 Al Anwar ceramic 29,071 
Cement and Gypsum Pro 5,289 2007 Al oula company saog 5,939 
Al Jazeira services 61,742 2008 Oman investment 83,316 
Oman international 5,976 2009 Computer stationery 12,384 
National Hospitality 1,918 2010 Muscat Thread mills 6,468 
Dhorar Tourism 213,497 2010 Gulf Hotels oman 86,771 
United Foods 59,266 2008 Dubai Refreshments 97,729 
Jeema mireral water 24,602 2010 Gulfa Mineral water and industrual prod 14,769 
United Kaiparpa Dairies 48,977 2011 Food Products Co 58,773 
National central cooling 2,101,698 2009 Arabtec Holding 2,482,415 
Damas 1,101,044 2010 Arab heavy ind 62,881 
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Appendix II : Logit Prediction Model Results 
 
 

 
Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 
Likelihood Ratio 65.2891 4 <.0001 
Score 40.8480 4 <.0001 
Wald 13.5829 4 0.0088 
 

 
 

 
 
 

 
 
 
 
 

 

R-Square 0.6281 Max-rescaled R-Square 0.8375 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 
Standard 

Error 
Wald 

Chi-Square Pr > ChiSq 
Intercept 1 -0.7652 0.6856 1.2459 0.2643 
EBITTL 1 -7.3046 2.1068 12.0208 0.0005 
TLTA 1 0.7776 0.3726 4.3545 0.0369 
CFFOTA 1 -55.5799 17.3161 10.3023 0.0013 
CFFOCL 1 8.0985 2.5743 9.8969 0.0017 

Classification Matrix 
 Observed Frequencies Total number 

Solvent Insolvent 
Predicted 
Frequencies 

Solvent 17 1 18 
Insolvent 6 22 28 

Total number 23 23 46 
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Appendix III: Probit Prediction Model Results  
R-Square 0.6264 Max-rescaled R-Square 0.8352 
 

Testing Global Null Hypothesis: BETA=0 
Test Chi-Square DF Pr > ChiSq 
Likelihood Ratio 64.9763 4 <.0001 
Score 40.8480 4 <.0001 
Wald 16.6675 4 0.0022 
 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 
Standard 

Error 
Wald 

Chi-Square Pr > ChiSq 
Intercept 1 -0.4884 0.3607 1.8327 0.1758 
EBITTL 1 -3.9123 1.0173 14.7909 0.0001 
TLTA 1 0.4518 0.1913 5.5763 0.0182 
CFFOTA 1 -31.3039 8.7092 12.9194 0.0003 
CFFOCL 1 4.5717 1.2904 12.5510 0.0004 
 

 
 
 
 
 
 
 
 

 

 
 

 

 

 

 

Classification Matrix 
 Observed Frequencies Total number 

Solvent Insolvent 
Predicted 
Frequencies 

Solvent 17 1 18 
Insolvent 6 22 28 

Total number 23 23 46 
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Appendix IV: Significance of Financial Ratios Across Insolvency Studies  

Details of 
Studies 

Data 
Location Method 

Profitability Leverage Liquidity Activity Cash Flow Market 

EB
ITSEQ

: R
eturn O

n Equity 

EB
ITC

E: R
eturn O

n C
apital Em

ployed 

EB
ITS: EB

IT M
argin 

EB
ITTL: Earing To Total Liabilities 

G
PM

: G
ross Profit M

argin 

R
ETA

: R
etained Earnings To Total A

ssets 

SETA
: Equity To Total A

ssets 

SETL: Equity To Total Liabilities 

TLTA
: Total Liabilities To Total A

ssets 

TLN
W

: Total Liabilities To N
et W

orth 

SETD
: Equity To D

ebt 

C
R

: C
urrent R

atio 

Q
R

: Q
uick R

atio 

W
C

TA
: W

orking C
apital To Total A

ssets 

IT: Inventory Turnover 

TD
S: D

ebt R
atio 

A
T: Total A

sset Turnover 

SC
A

: Sales To Current A
ssets 

SFA
: Fixed A

sset Turnover 

SW
C

: W
orking C

apital Turnover 

C
FFO

TA
: C

ash Flow
 O

n A
ssets 

C
FFO

S: C
ash flow

 on Sales 

C
FFO

C
L: C

ash Flow
 on Current Liabilities 

C
FFO

TL: C
ash Flow

 on Total Liabilities 

C
FFO

N
W

: C
ash Flow

 on N
et W

orth 

TD
C

FFO
: Total D

ebt To C
ash Flow

 R
atio 

M
V

O
ETD

: M
arket V

alue To D
ebt 

M
V

O
ESE: M

arket V
alue To Equity 

Current 
Study GCC Logit    X     X            X  X      

Basheikh 
(2012) 

Saudi 
Arabia 

Univariate
, MDA, 
Logit 

X                X            

Ong et al. 
(2005) Malaysia Logistic            X     X X           

Ravisanka
r et al. 
(2010) 

Internation
al: Dot-
Com 
Firms 

Neural 
Networks      X               X X       

Sori and 
Hasbullah 
(2009) 

Singapore 
Discrimin
ant 
Analysis                      X       

Bose 
(2006) 

Internation
al: Dot-
Com 
Firms 

Rough 
Sets      X               X        

Andreev Spain Neural   X           X               
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(2006) Networks 
Charitou 
et al. 
(2004) 

United 
Kingdom 

Neural 
Networks, 
Logit    X     X               X     

Jones and 
Hensher 
(2004) 

Australia 
Logit, 
Multinomi
al Logit              X               

Shumway 
(2001) 

United 
States Hazard         X   X                 

Sung et al. 
(1999) Korea MDA                     X   X     

Serrano-
Cinca 
(1996) 

Internation
al 
(Moody's 
Manual) 

Neural 
Networks, 
Discrimin
ant 
Analysis 

     X        X               

Back et al. 
(1996) Finland 

LDA, 
Logit, 
Genetic 
Algorithm
s 

           X X                

Aldeehani 
(1995) Kuwait MDA                 X          X  
Ward 
(1994) 

United 
States Logit                    X         

Keasey 
and 
McGuinne
ss (1990) 

United 
Kingdom Logit   X                          

Gilbert et 
al. (1990) 

United 
States Logit      X    X             X X     

Gloubos 
and 
Grammati
kos (1988) 

Greece 

Logit, 
Probit, 
LPM, 
MDA 

 X  X     X   X  X               

Ta and 
Seah 
(1988) 

Singapore MDA X    X   X                     

Peel et al. 
(1986) 

United 
Kingdom Logit              X  X        X     
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Zavgren 
(1985) 

United 
States Logit         X    X                

Zmijewski 
(1984) 

United 
States Probit         X                    

Ko (1982) Japan MDA   X                        X  
Altman 
and 
Lavallee 
(1981) 

Canada MDA         X   X     X            

Ohlson 
(1980) 

United 
States Logit         X     X               

Taffler 
(1982) 

United 
Kingdom MDA               X              

Deakin 
(1972) 

United 
States 

Univarite, 
MDA      X      X X X               

Altman 
(1968) 

United 
States MDA      X        X   X          X  

Beaver 
(1966) 

United 
States Univariate              X               

Total Number of Occurrences of 
Ratios 2 1 3 3 1 6 0 1 8 1 0 6 3 9 1 1 5 1 0 1 4 2 2 4 0 0 3 0 
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