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Abstract

Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct
biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the
functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main
murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that
express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188) or wild type
controls (fswt) were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and
VEGF120-producing cells (fs164 and fs120 respectively) were less typically mesenchymal, lacked ruffles but formed
abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted
rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal
characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors
accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower
levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/
phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by
defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21
cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not
active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform
expression through complex interactions that are independent of tyrosine kinase receptor activation. VEGF isoforms are
emerging as potential biomarkers for anti-VEGF therapies. Our results reveal novel roles of individual isoforms associated
with cancer growth and metastasis and highlight the importance of understanding their diverse actions.
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Introduction

Vascular endothelial growth factor-A (VEGF) plays a funda-

mental role in tumour growth, vascularisation and metastasis and

exists as multiple isoforms derived by alternative splicing of the

VEGF gene [1]. Mouse and human proteins of 120/121, 164/165

and 188/189 amino acids respectively, represent major VEGF

splice variants with distinct properties and expression patterns.

These isoforms differ in terms of binding affinities to the

extracellular matrix and receptor activation. Tumours display

highly variable levels of relative isoform expression, with VEGF-

164/165 and VEGF120/121 generally being the most predom-

inant and VEGF-188/189 relatively less abundant [2]. VEGF

signals through tyrosine kinase receptors VEGFR1/flt-1,

VEGFR2/flk-1 and VEGF3/flt-4 [3]. VEGF also binds neuropilin

co-receptors (NRP-1 and NRP-2), which lack tyrosine kinase

activity but regulate the function of VEGF receptors as well as

other receptor tyrosine kinases (RTKs) [3]. The different affinities

to matrix, displayed by the various VEGF splice variants generate

gradients in vivo and result in different signalling responses, which

are important for angiogenesis [4,5]. VEGF also has complex

functions in angiogenesis-independent aspects of tumour growth

and tumour cells have been shown to express functional VEGF

receptors [6,7,8] but the role of individual VEGF isoforms in these

processes remains poorly understood.

VEGF and its receptors are now major targets of several cancer

therapies. Anti-VEGF agents such as the humanised neutralising

anti-VEGF antibody bevacizumab as well as several VEGF

receptor kinase inhibitors are being used to treat many types of
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cancer. However, not all patients respond to anti-VEGF therapy

and therefore biomarkers that can predict clinical response are

being actively pursued [9]. Indeed, several recent retrospective

clinical studies have identified the short soluble isoforms of VEGF

(VEGF120 and 110) as promising potential biomarkers for

predicting responsiveness to bevacizumab [10,11,12]. Pancreatic,

breast and gastric cancer patients with higher circulating levels of

short VEGF121 and VEGF110 isoforms were shown to have a

shorter median overall survival but were more likely to benefit

from treatment with bevacizumab. Importantly, the short VEGF

isoforms were identified out of a comprehensive range of potential

biomarker candidates that were examined in these studies [8,9,10].

These studies highlight the importance of understanding of the

complexities associated with the functions of individual VEGF

isoforms in cancer.

Immortalization and transformation of mouse embryonic

fibroblasts results in cell lines with tumorigenic potential. Such

cells derived from genetically modified animals are useful for

studying the role of specific genes in cancer progression [13].

Using this approach we developed VEGF isoform-specific

fibrosarcomas [14] by H-rasV12 transformation of embryonic

fibroblasts derived from transgenic animals expressing single

VEGF isoforms and wild type controls [15,16]. These cells

produced tumours in vivo that displayed distinct vascular patterns,

similar to those seen in corresponding transgenic animals during

development. Furthermore, the tumours displayed differences in

response to treatment with vascular targeting agents highlighting

the importance of VEGF isoform expression in treatment outcome

[14,17]. When grown in vitro, the fibrosarcoma cells exhibited

major differences in growth rates, with VEGF164 and VEGF120

expressing cells (fs164 and fs120 respectively) proliferating

significantly faster than VEGF188 (fs188) and wild type control

cells (fswt) [14] suggesting that VEGF isoform expression also

controls tumour cell growth characteristics. Initial growth rates

were also faster for fs164 and fs120 tumours in vivo, which are

consistent with the highly proliferative phenotype of the cells [14].

Proliferation and survival of cancer cells is maintained by

constitutive activation of multiple complex signalling pathways

that ordinarily maintain tight control in normal cells [18].

Mutated proto-oncogenes such as Ras can cause aberrant

signalling through the Raf/MEK/ERK1/2 and PI3K/AKT

signalling cascades that regulate tumour cell growth and survival.

Multiple signalling mechanisms also converge to co-ordinate

tumour cell invasiveness and migration. In particular, assembly of

the actin cytoskeleton, under the control of the Rho family of

GTPases, is required so that protrusions and contractile forces can

be generated to propagate cell movement [19]. Cancer cells move

either individually or collectively as multicellular clusters and

maintain the capacity to switch from one mode of movement to

another. Individual cell migration is classified as either ‘‘mesen-

chymal’’ or ‘‘amoeboid’’ and each mode has different require-

ments for contractility, attachment to matrix and proteolysis [20].

VEGF is known to contribute to intracrine and autocrine

tumour cell growth, survival, migration and invasion [7,8]. We

hypothesise that individual isoforms of VEGF might influence

various aspects of tumour cell behaviour in a distinct manner.

Using the fibrosarcoma cells we developed, which express single

VEGF isoforms and, in parallel, wild type control fibrosarcoma

cells capable of expressing all isoforms, we investigate here the

consequences of endogenous isoform expression on tumour cell

morphology, proliferation, survival and migration. Using this

system, in which VEGF expression is maintained under the

control of its endogenous physiological promoter, we have

discovered that individual isoforms are associated with distinct

roles in terms of tumour cell behaviour and gained insight into

signalling pathways that are linked with these effects.

Materials and Methods

Ethics statement
Animal experiments were conducted according to United

Kingdom Animals (Scientific Procedures) Act 1986 (UK Home

Office Project Licence PPL40/3110) and with local University of

Sheffield ethical approval.

Reagents
Blebbistatin, UO126, Y27632 and pyridone 6 (P6) were

purchased from Calbiochem. SU11248 (sunitinib) was purchased

from LC laboratories. Antibodies to integrin b1, ILK, pAKT

(ser473), p70S6 (thr389), pGSK-3 (ser21/9), pFOXO-1 (ser256),

p-Stat3 (tyr705), VEGFR2, pVEGFR2 (tyr996), pVEGFR2

(tyr1175) and GAPDH were from Cell Signalling. Anti- actin,

pERK, tERK and b-tubulin antibodies were from Sigma. N-

cadherin, p21 and p27 antibodies were from BD Biosciences and

LIF antibody was from R&D Systems. VEGFR1 (ab32152 and

ab2350) and pVEGFR1 (tyr1333) antibodies were from Abcam.

Recombinant VEGF164, VEGF165 and VEGF120 proteins were

purchased from Peprotech. Recombinant VEGF188 protein was

purchased from Reliatech GmbH.

Cell culture
Fibrosarcoma cell lines (fs188, fs164, fs120 and fswt) were

developed as we described before [14], from fibroblasts derived

from transgenic mouse embryos expressing single VEGF isoforms

VEGF188, VEGF164, VEGF120 and wild type controls respec-

tively [15,16]. Cells were maintained in Dulbecco’s modified

Eagle’s medium (DMEM), 10% FCS, 600 mg/ml G418 and 2 mg/

ml puromycin (Invitrogen, UK). The mouse endothelial H5V cell

line was a gift from Dr Annunciata Vecchi [21]. H5V cells were

maintained in DMEM containing 10% FCS. Human umbilical

vein endothelial cells (HUVEC) from pooled donors were

purchased from PromoCell and were maintained in endothelial

cell growth medium (PromoCell).

Preparation of conditioned media
Cells were grown to 50% confluence and then switched to

serum-free DMEM for 48 h. Conditioned media were concen-

trated 30-fold with Microcon concentrators (Merck Millipore) and

normalised to cell numbers before they were analysed by

immunoblotting.

Preparation of collagen, fibronectin and laminin matrices
A thin coating of monomeric collagen was prepared by

incubating culture plates for 2 h with 50 mg/ml rat tail collagen

type I (BD Biosciences) diluted in 0.02 N acetic acid. Bovine

fibronectin (Invitrogen, UK) or laminin-1 (Sigma) were diluted to

5 mg/ml in PBS and used to coat dishes for 2 h. To prepare a thick

layer of fibrillar matrix, ice-cold rat-tail type I collagen was diluted

to 1.5 mg/ml with 10XDMEM and sterile dH2O. The solution

was neutralised with NaOH and allowed to polymerise at 37uC
before plating the cells on top.

Adhesion and cell spreading assays
Adhesion assays were performed in 96-well plates pre-coated

with fibronectin, laminin or collagen and blocked in 0.1% BSA.

Cells (36104) suspended in serum-free DMEM/0.1% BSA were

plated in each well, and plates were immediately incubated at
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37uC for 45 min. Adherent cells were fixed, stained with 0.5%

crystal violet and lysed in 2% SDS. Absorbance was measured at

570 nm using a BMG FLUORStar Galaxy microplate reader. For

monitoring spreading, cells were re-suspended in DMEM/0.1%

BSA and plated in Lab-Tek 4-well permanox chamber slides

(Nalge-Nunc) (16105 per well) pre-coated with collagen, laminin

or fibronectin. The slides were incubated at 37uC for 30 min to

3 h and then cells were stained as described below.

Analysis of cell morphology and cytoskeletal F-actin
staining

Live cells were stained with 2.5 mg/ml CellMask plasma

membrane stain (Invitrogen, UK) for 5 min, fixed in 3.7%

formalin and mounted in Vectashield (Vector Laboratories).

Analysis of F-actin was performed as we described previously

[22]. Fluorescence images were taken with a Leica DMI4000B

fluorescence microscope and using LASAF control and analysis

software.

Growth curves and doubling times
Cells were plated in 6-well plates (46104 per well). Viable cells

were counted daily for 4–6 days using a Vi-Cell automated cell

viability analyzer (Beckman Coulter). Media were replenished

every other day. Doubling times were established by plotting a

graph of log 2 (N/N0) (N0 = initial cell numbers and N = end-

point average cell numbers) against time followed by calculating

the inverse slope of the linear part of the curve.

Colony formation in soft agar
Cells were suspended in medium containing 0.33% agarose and

plated over a 0.5% agarose underlay in 6-well plates (26103 cells/

well). Three weeks later, colonies were stained with 0.005% crystal

violet and counted in 10 random fields using a 46 objective.

Analysis of apoptosis
Apoptotic cell death was measured by flow cytometry using the

ApoAlert MitoSensor Kit (Clontec) which detects alterations in

mitochondrial membrane potential. Apoptosis was also quantified

using the Cell Death Detection ELISAPLUS kit (Roche Diagno-

sitics), which measures cytoplasmic DNA-histone nucleosome

complexes. For both assays cells were plated at a density of 104

cells/cm2 and apoptosis was determined 48 h later. Apoptosis in

tumour sections was detected by TUNEL assay using the ApoTag

Plus Peroxidase In Situ Apoptosis Detection kit (Chemicon

International). Apoptotic cells were scored using a 406 objective

in 6–9 random fields of view per tumour section avoiding areas of

necrosis. Data are expressed as mean number of TUNEL positive

apoptotic cells per mm2.

Migration assay
Migration was measured using Ibidi cell culture inserts. Cells

(3.56104) in 70 ml medium were plated into each insert

compartment and grown for 48 h. The inserts were removed to

create a gap/wound of 500 mm into which the cells migrated. The

cells were imaged immediately and at intervals for up to 24 h with

a Nikon Eclipse phase contrast microscope equipped with a Digital

Slight DS camera and NIS-Elements software. Wound closure was

quantified with an automatic image analysis algorithm [23] using

the CAIMAN image analysis website (http://www.caiman.org.

uk/).

Subcutaneous tumour generation
Fibrosarcoma cells (16106 in 50 ml serum-free DMEM) were

injected subcutaneously into the rear dorsum of female 8–12 week-

old SCID mice. Tumours were excised when they reached a mean

diameter of 6–8 mm (usually 10–14 days post-implantation) and

were either embedded in paraffin and sectioned for analysis of

apoptosis, or were frozen for protein extraction.

Immunoblotting
Proteins from cells and tumours were extracted with NP40 Lysis

Buffer (Biosource, Invitrogen) supplemented with phosphatase and

protease inhibitors. Equal amounts of protein (10–50 mg/lane)

were separated on NuPAGE Novex gels (Invitrogen), transferred

to nitrocellulose or PVDF membranes and immunoreactive bands

were visualized using ECL reagents (GE Healthcare).

Statistical analysis
Data were analysed by using a one-way analysis of variance

(ANOVA), followed by the Tukey-Kramer post-test test for

multiple comparisons using GraphPad Prism software for Mac

OS X. A 2-way ANOVA followed by a Bonferroni post-test was

used for analyzing multiple groups with more than one variable

(treatment and cell type). In all cases, differences between groups

were described as significant if the probability was ,0.05.

Results

Fibrosarcoma cells expressing individual VEGF isoforms
differ in morphology and adhesion properties

Fs188 as well as fswt cells, which express all isoforms including

VEGF188, display typical mesenchymal features (Figure 1a,b).

The cells are elongated and spindle-shaped, have extended

processes and ruffles and do not form extensive cell-cell

associations. In contrast, fs164 do not display a typical mesenchy-

mal morphology. These cells grow in very close association with

each other and closely align longitudinally forming long multicel-

lular chains. Fs120 cells also grow in close association with each

other, although less so than fs164 cells, and also have fewer

extended processes than fs188 and fswt cells. On fibrillar collagen,

fswt and fs188 cells retained their mesenchymal features while

fs164 cells were rounded/amoeboid and fs120 cells displayed a

mix of rounded and elongated features (Figure 2a). All fibrosar-

coma cells stained diffusely for F-actin (Figure 2b), a characteristic

feature of Ras transformation, which elevates ERK MAPK

signalling and uncouples Rho-GTP signalling from stress fibre

formation [24,25]. Inhibition of ERK activator MEK with U0126

reversed the effects of transformation on F-actin, and re-

established stress fibers in all the cell lines (Figure 2c). In addition,

fs120 cells assumed a more mesenchymal morphology and

displayed more extended processes. Fs164 cells expressed stress

fibres upon MEK inhibition although their distinct close cell-cell

alignment was still evident, suggesting that this feature was not

MEK-dependent.

Fswt and fs188 cells adhered better to uncoated plastic and

collagen than fs164 and fs120 cells (Figure 3a). On the other hand,

fs164 and fs120 cells adhered better to laminin than fswt and fs188

cells. All four cell lines adhered to and also spread avidly and

rapidly on fibronectin (Figure 3a, b). All cells also spread on

laminin but fs164 and fs120 cells failed to spread on collagen, even

after 3 h and in the presence of serum (Figure 3b). All the

fibrosarcoma cells expressed integrin b1 and integrin-linked kinase

(ILK) (Figure 3c), an adaptor protein that is recruited to integrin

b1 cytoplasmic domains and associates with actin at focal

adhesions [26]. ILK expression levels were higher in fswt and
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fs188 compared to fs164 and fs120 cells. All fibrosarcomas also

expressed N-cadherin (Figure 3c), a classic mesenchymal marker

[27]. Levels of N-cadherin were up-regulated in fs164 and fs120

cells, which also formed more cell-cell contacts (also see Figure 1).

Fibrosarcoma cells expressing individual VEGF isoforms
proliferate at different rates and display differences in
levels of spontaneous apoptosis

We previously showed that fs164 and fs120 cells proliferated on

plastic at significantly faster rates than fswt and fs188 cells [14].

Integrin-matrix interactions play an important role in controlling

cell proliferation. However, neither collagen nor fibronectin had

any significant effect on growth, and the differences in prolifer-

Figure 1. Morphology of fibrosarcoma cells expressing single VEGF isoforms. a): Phase contrast images of cells grown on uncoated tissue
culture plastic. b): Cells grown on plastic and stained live with CellMask Orange. Scale bars, 50 mm.
doi:10.1371/journal.pone.0104015.g001

Figure 2. Morphology of fibrosarcoma cells on thick fibrillar collagen and after inhibition of MEK. a): Cells on a thick layer of type I
collagen; b): cells grown on uncoated plastic and stained for F-actin. c): Cells treated with MEK inhibitor U0126 (10 mM) for 18 h and stained for F-
actin. Scale bars, 50 mm.
doi:10.1371/journal.pone.0104015.g002
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ation between the cell lines persisted (Table I). Growth in soft

agar, an indication of tumourigenic capacity, was also significantly

different between the cell lines; fs164 and fs120 cells producing

significantly more colonies than fswt and fs188 cells (Table II and

also see Figure S1). Apoptosis was significantly more pronounced

in fswt and fs188 cells than in fs164 and fs120 cells (Figure 4a,b).

Similarly, in vivo, there were significantly more apoptotic cells

within viable regions of fs188 solid tumours compared to tumours

generated by fs164 and fs120 cells (Figure 4c,d).

Fibrosarcoma cells expressing individual VEGF isoforms
migrate at different rates on 2D surfaces

Fswt and fs188 cells migrated significantly faster than fs164 and

fs120 cells on 2D uncoated plastic (Figure 5). The faster migration

of VEGF188-expressing cells was consistent with their mesenchy-

mal morphology and presence of ruffles (see Figure 2b), an

indication of intense migratory activity [28]. Migration rates on

thin collagen were similar to migration rates on uncoated plastic

(data not shown).

Migration of fs164 and fs120 cells is actinomyosin
contractility-dependent

Cell morphology and migration are dependent on the

cytoskeleton and actinomyosin contractility, to provide traction

force in mesenchymal movement, and cortical contraction for

rounded amoeboid movement [19,29]. Cells were treated with

pharmacological inhibitors of contractility, including ROCK

inhibitor Y27632, myosin II ATPase inhibitor blebbistatin and

JAK inhibitor P6. The latter was shown to inhibit actinomyosin

contractility in melanoma cells [30]. Figure 6a shows that all three

inhibitors caused fs164 and fs120 cells to switch to a mesenchymal

morphology (compare Figure 6a with Figure 1) and accelerated

their migration but not that of fswt and fs188 cells (Figure 6b). P6

inhibited MLC phosphorylation in all the fibrosarcoma cells

(Figure 6c) as previously shown for melanoma cells [30] but

interestingly also induced a marked up-regulation of integrin b1

(Figure 6c).

Figure 3. Fibrosarcoma cell adhesion and spreading. a): Cell adhesion to uncoated plastic or plastic coated with collagen I, fibronectin or
laminin-1 at 45 min. * and ** represent significant differences, (*p,0.05 and **p,0.01) by two way ANOVA followed by Bonferroni post-test. b): Cell
spreading on fibronectin and laminin at 30 min, on a thin layer of collagen at 3 h or on collagen for 3 h in the presence of 2% FCS (collagen+S). Cells
were stained live with with CellMask orange. Scale bars, 50 mm. c): Immunoblot analysis for b1 integrin (b-Itg) ILK and N-cadherin. Blots were
normalised to actin. Results are representative of at least 3 independent experiments.
doi:10.1371/journal.pone.0104015.g003

VEGF Isoforms and Tumour Growth and Motility

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e104015



Fibrosarcoma cells expressing individual VEGF isoforms
exhibit differences in growth and survival-associated
signalling

We next investigated signalling mechanisms that could poten-

tially account for the observed differences in cell growth, survival

and migration. Signalling via AKT promotes growth through

activation of the mTOR1 complex and downstream targets such

as p70S6 kinase involved in cell growth and G1 cell cycle

progression [18]. AKT and p70S6 were more highly phosphor-

ylated in fswt and fs188 cells, compared to fs164 and fs120 cells

(Figure 7a) and this was independent of cell density (data no

shown). Overnight exposure to PI3K inhibitor LY29004 reduced

constitutive phospho-AKT and p70S6 levels (Figure 7a). AKT

also signals through FOXO and glycogen synthase kinase-3 (GSK-

3) to regulate survival, metabolism and growth [31]. GSK-3 is

active when unstimulated and becomes switched off upon

phosphorylation by AKT. FOXO1 is also phosphorylated and

inactivated by AKT and this action blocks its transcriptional

activity on genes that promote apoptosis and regulate metabolism.

Paradoxically, levels of pGSK-3 and pFOXO1 did not parallel

AKT and p70S6 phosphorylation (Figure 7b). Higher levels of

phosphorylated FOXO1 were detected in fs164 and fs120 cells in

which basal pAKT was low, suggesting that AKT signalling was

uncoupled from this downstream branch of the pathway.

Similarly, pGSK-3 was not upregulated as might be expected in

VEGF188-expressing cells. Both FOXO1 and GSK-3 mediate cell

cycle arrest by regulating expression and stability of cyclin-

dependent kinase inhibitors (CDKIs) [32,33]. In fs188 cells, CDKI

p27 was significantly upregulated, while in fswt cells expression of

CDKI p21 was higher than in the other lines (Figure 7b).

Increased phosphorylation of p44 and p42 ERKs was also seen

in fswt//fs188 versus fs164/fs120 cells (Figure 7c). Constitutive

activation of JAK/Stat3 is a feature of cancer cells where its major

function is to promote proliferation and survival [34]. Phospho-

Stat3 levels were consistently higher in fswt and fs188 cells,

compared to fs164 and fs120 cells; pan-JAK inhibitor P6 blocked

Stat3 phosphorylation in all cell lines (Figure 7d). A similar pattern

of pStat3 was evident in sub-confluent as in post-confluent cultures

(data not shown), which demonstrated that unlike other systems its

expression was not density-dependent [35]. Stat3 phosphorylation

was also up-regulated in fs188 tumours in vivo (Figure 7e).

Although Stat3 signalling is primarily associated with proliferation

and survival, previous studies have shown that sustained activation

of Ras/Raf/ERK led to the production of leukemia inhibitory

factor (LIF), which then signaled through JAK/Stat3 in an

autocrine or paracrine manner to mediate cell cycle arrest [36].

Figure 7f shows that fs164 and fs120 cultures produced signifi-

cantly more secreted LIF than fswt and fs188 cells. It is therefore

unlikely that signalling through LIF was responsible for the

differences in levels of active JAK/Stat3 that were seen between

the cell lines.

Fibrosarcoma cells express tyrosine kinase VEGF
receptors, which cannot be activated by VEGF

We next explored the possibility that the observed differences in

growth and survival-associated signalling were due to VEGF

isoform-dependent autocrine actions. All fibrosarcoma cells

expressed similar levels of VEGF receptor 2 (VEGFR2/flk-1)

(Figure 8a) which could potentially mediate autocrine signalling.

However, VEGFR2 was not constitutively phosphorylated/acti-

vated in any of the cells (not shown), and furthermore, exogenously

added recombinant murine VEGF164 failed to activate its

phosphorylation either at tyrosine 996 (Figure 8a) or at tyrosine

1175 (Figure 8b). Downstream ERK1/2, AKT and Stat3 were

also not further activated/phosphorylated beyond basal levels by

recombinant VEGF, results that were consistent with the failure of

VEGF to activate its receptor(s) (Figure 8c). In parallel, VEGF

induced robust VEGFR2 and ERK1/2 phosphorylation in

HUVEC and H5V mouse endothelial cells (Figure 8a,b). In

addition to VEGF164, other recombinant VEGF isoforms

(VEGF120, VEGF188 and VEGF165) were tested over a range

of concentrations (1, 10 and 100 ng/ml) but in all cases induction

of VEGFR2 and/or ERK1/2 phosphorylation was not detected

(data not shown). The VEGF receptor tyrosine kinase inhibitor

SU11248 [37] blocked both basal and VEGF-induced VEGFR2

and pERK phosphorylation in H5V cells (Figure 8a) and HUVEC

(data not shown) but interestingly had no effect on basal levels of

pERK1/2 in the fibrosarcomas (Figure 8d). These results suggest

Table 1. Population doubling times (hours) of fibrosarcoma cells grown on 2D surfaces.

fswt fs188 fs164 fs120

Plastic 18.3660.29 (n = 6) 17.8960.336 (n = 6) ***13.8960.57 (n = 6) ***13.6760.26 (n = 6)

Collagen 16.9860.92 (n = 6) 17.1760.24 (n = 3) **13.1560.09 (n = 3) *14.4960.46 (n = 3)

Fibronectin 19.4161.175 (n = 6) 18.8761.55 (n = 3) ***13.5560.24 (n = 3) ***14.5960.69 (n = 3)

Population doubling times (hours) of cells grown on plastic, collagen or fibronectin are means of 3–6 independent experiments 6 SEM.
*p,0.05,
**p,0.01,
***p,0.001 values represent differences between fswt/fs188 cells versus fs164/fs120 cells (two way ANOVA followed by Bonferroni post-test).
doi:10.1371/journal.pone.0104015.t001

Table 2. Colonies formed by fibrosarcoma cells grown in soft agar.

fswt fs188 fs164 fs120

Soft Agar 23.462.85 (n = 3) 24.9864.4 (n = 3) *33.863.7 (n = 3) *35.864.2 (n = 3)

Number of colonies in agar are means of three independent experiments 6 SEM.
*p,0.05 represents significantly more colonies formed by fs164 or fs120cells compared to fswt or fs188 cells (ANOVA followed by Tukey-Kramer post-test).
doi:10.1371/journal.pone.0104015.t002
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Figure 5. Migration of fibrosarcoma cells expressing single VEGF isoforms. a): Wound closure was measured at intervals up to 24 h. Each
point represents data obtained from 2–5 independent experiments 6 SEM; b): representative culture images of the four fibrosarcoma cell lines
showing wound closure at 18 h.
doi:10.1371/journal.pone.0104015.g005

Figure 4. Spontaneous apoptosis in fibrosarcoma cells and solid tumours. a): Nucleosome generation in cells measured by ELISA at 48 h.
OD values are averages of 5 independent experiments 6 SEM. b): Changes in cell mitochondrial potential at 48 h. Values are averages 6 SEM, from 4
independent experiments. *p,0.05, **p,0.01 represent significance using repeated measures ANOVA followed by Tukey-Kramer post-test. c):
Apoptosis in tumour sections determined by TUNEL assay. Arrows indicate typical apoptotic cell nuclei. Bars, 50 mm. d): Mean number of TUNEL
positive apoptotic cells 6 SEM per mm2 tumour section (viable regions only); n = 5–10 tumours per group. *p,0.05, **p,0.01 and ****p,0.0001
represent significance using repeated measures ANOVA followed by Tukey-Kramer post-test.
doi:10.1371/journal.pone.0104015.g004
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that although the fibrosarcoma cells express VEGFR2, this

nevertheless remains inactive/inactivatable. Furthermore, these

data strongly indicate that the markedly higher levels of

constitutively active pERK1/2, which were evident in fswt/fs188

compared to fs164/fs120 cells were unlikely to have arisen

through VEGF-dependent autocrine activity through tyrosine

kinase VEGF receptors. However, SU11248 caused a significant

reduction in constitutive levels of AKT and Stat3 phosphorylation

of in all the fibrosarcoma cells (Figure 8d); after overnight

incubation with SU11248, the phosphorylation levels of both

AKT and Stat3 returned back to their original basal levels (data

not shown).

The fibrosarcoma cells also expressed full length VEGFR1/flt1

as well as a truncated variant most likely consisting of the

intracellular domain of the receptor (see supplementary data,

Figure S2) previously described in endothelial and breast cancer

cells [38]. The truncated variant was constitutively phosphorylated

at tyr1333 in the fibrosarcomas cells but this phosphorylation

could not be downregulated by SU11248. Phosphorylated

VEGFR1 was also evident in H5V cells; in these cells SU11248

caused a small reduction in VEGFR1 phosphorylation (see Figure

S2).

Discussion

In this study, we demonstrate that endogenous single VEGF

isoform expression is linked to distinct growth, survival and

migratory characteristics in Ras transformed fibrosarcoma cells.

Our model system allowed us to investigate three individual

isoforms of murine VEGF (VEGF188, VEGF164 and VEGF120),

when expressed under the control of the gene’s physiological

promoter, and hence has a distinct advantage compared to over-

expression systems that may alter normal endogenous signalling

interactions. We show that VEGF188 expression is linked to a

slower rate of tumour cell proliferation and decreased survival.

Furthermore, VEGF188 expression was associated with strong

cell-matrix matrix interactions and a mesenchymal morphology

and mode of cell motility in vitro. In contrast, VEGF164 and

VEGF120 endogenous expression was associated with more rapid

cell proliferation, increased survival and a rounded amoeboid

morphology and mode of motility in vitro (summarised in

Figure 9). Differences between the various cell phenotypes are

Figure 6. Analysis of morphology and migration of fibrosarcoma cells exposed to contractility inhibitors. a): Cells were treated with P6
(5 mM), blebbistatin (5 mM) or Y27632 (10 mM) for 18 h. Representative images of P6 treated cells by phase contrast microscopy; blebbistatin-treated
cells stained for F-actin; Y27632 treated cells stained with CellMask Orange. Scale bars, 50 mm. b): Migration was quantified by measuring wound
closure. Images were collected at 12 h for the fswt and fs188 cells, at 18 h for the fs120 cells and at 24 h for the fs164 cells to correlate with 40–60%
wound closure in untreated conditions. Contractility inhibitors were added at the same concentrations used in (a) 18 h before the start of the assay
and replaced in fresh media at assay start. Each point represents data obtained from 3 independent experiments 6 SEM, each conducted with 2–4
replicates. *p,0.05, ***p,0.001 values represent significance over untreated cultures (ANOVA followed by Tukey-Kramer post-test). c): Cells were
incubated overnight with P6 (5 mM). Equal amounts of proteins (30 mg) were analysed for integrin b1 (b-Itg) and pMLC. A representative immunoblot
is shown.
doi:10.1371/journal.pone.0104015.g006
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very unlikely to have arisen by clonal selection during the

generation of the cell lines, as several individual clones isolated

after transformation maintained identical properties to their

corresponding parental lines (data not shown).

The cells we developed are of mesenchymal origin and

accordingly they all constitutively expressed classic mesenchymal

markers such as N-cadherin (Figure 3c), alpha smooth muscle

actin and vimentin (unpublished data). However, despite not

displaying typical mesenchymal features, in terms of their

morphology and migratory characteristics, the fs164 and fs120

cells express higher levels of N-cadherin compared to the more

typically mesenchymal fswt and fs188 cells. We postulate that the

higher levels of N-cadherin protein facilitate and sustain the

distinct cell-cell contacts that fs164 and fs120 cells form in 2D

culture. Indeed, previously it was shown that upregulated N-

cadherin expression mediated cell-cell adhesion by localising to

cell-cell contacts in invasive epithelial MDCK cells after under-

going epithelial-to-mesenchymal transition (EMT) [39].

Differences in adhesion to various matrix proteins are also

suggestive of differences in integrin expression and/or status of

activation. These differences are likely to involve both alpha and

beta integrin subunits. While all fibrosarcomas expressed integrin

b1, fs188 cells expressed higher levels of ILK. ILK stabilises b1

adhesions, is associated with integrin engagement/activation and

was found to be over-expressed in mesenchymal cancer cells

[40,41]. Therefore, upregulated ILK expression could potentially

contribute to a more adhesive mesenchymal fs188 phenotype.

Amoeboid morphology, which is less dependent on integrin-

matrix interactions, is more readily seen in culture when cells are

grown on fibrillar collagen matrices. Indeed, fs164 and to a large

extent fs120 cells were rounded on collagen (Figure 2a). Interest-

ingly, fs164 and fs120 cells have rounded cell morphologies when

grown as subcutaneous tumours in vivo and fs188 tumours retain

an elongated mesenchymal cellular morphology (see Figure 4c).

The extent of anchorage independent growth in agar was

consistent with growth on solid surfaces. Growth in agar reflects

tumorigenic potential and results in vitro correlate with our

previous findings in vivo, where expression of VEGF164 and

VEGF120 was associated with a more rapid initiation of tumour

growth [14].

Although VEGF is a pro-survival factor, there are suggestions

that VEGF188 may elicit pro-apoptotic signals as shown in

Figure 4. Chondrocytes from homozygous VEGF188/188 mice

apoptosed at high rates during development, and could be rescued

by exogenous VEGF164 [42]. In addition, over-expression of

VEGF189 in breast cancer cells induced apoptosis via NRP-1

[43]. Interestingly, the fswt and fs188 cells markedly over-express

NRP1 compared to the other two cell lines (see Figure S2d). It is

therefore possible that NRP-1 may regulate pro-apoptotic

processes associated with VEGF188 expression in the fibrosarco-

mas. Our results are therefore in agreement with the above studies

and suggest that increased pro-apoptotic signalling is an intrinsic

property of VEGF188 expression. It was, however, intriguing that

the pro-survival and pro-proliferative signalling proteins AKT,

ERK1/2 and Stat3, were more highly activated in VEGF188-

expressing cells. A potential explanation for this discrepancy came

from the analysis of downstream PI3K/AKT effectors. While

AKT target p70S6 was phosphorylated, unexpectedly, FOXO1,

Figure 7. Signalling pathway analysis in fibrosarcomas expressing single VEGF isoforms. a–d): Where indicated cells were incubated
overnight with JAK inhibitor P6 (5 mM), or PI3K inhibitor LY20990 (10 mM). Equal amounts of proteins (10–30 mg) were analysed for a): phospho-AKT
(p-AKT) and p70S6; b): pGSK3, pFOXO1, p27 and p21; c): phospho-ERKs1/2 (p-ERK) and total ERK (t-ERK); d): phospho-Stat3 (p-Stat3). e): Proteins
extracted from solid tumours (50 mg/lane) and analysed for pStat3. All blots were normalized with actin or GAPDH and are representative of at least
three independent experiments. f): Concentrated conditioned media normalised against cell numbers, analysed for LIF expression.
doi:10.1371/journal.pone.0104015.g007
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another key target of AKT and regulator of cell cycle and pro-

survival signalling [44], was more highly phosphorylated in fs164

and fs120 cells (Figure 7b). Inactive/phosphorylated FOXO1

correlated with lower levels of p21 and p27 in fs164 and fs120

cells. In contrast, in fs188 cells, p27 was markedly upregulated and

in wild type cells, p21 was more highly expressed, thus correlating

with their slower proliferation rates. The mechanism(s) through

which active AKT signalling couples to p70S6 but not FOXO and

GSK-3 in fs188 remains unclear. PP2A phosphatase regulates the

activity of FOXO1 and GSK-3 [45,46]. It is possible that high

phosphatase activity dephosphorylates FOXO and GSK3 in fs188

cells. Several studies have suggested that the pro-survival function

of AKT can be overridden [47]. Chronic AKT activation can

contribute to apoptosis induction, while many stress-inducing

agents and chemotherapeutic drugs activate AKT. Indeed, pro-

apoptotic agents often activate survival signals, including Stat3 and

ERKs in addition to AKT, as part of a protective response [48].

The fact that Stat3 was highly active in both fs188 cells and solid

tumours in vivo suggest that high levels of Stat3 activity represent

an intrinsic property consequent to VEGF188 expression.

High levels of constitutively phosphorylated AKT and presence

of lamellipodia suggests a link between the PI3K/AKT pathway

and the mesenchymal mode of migration of fswt and fs188 cells.

Our results are in agreement with studies showing that mesen-

chymal cell lines exhibit high levels of AKT phosphorylation

[41,49]. PI3K/AKT signalling is also a critical component of the

epithelial-mesenchymal transition [50,51]. Ras-mediated activa-

tion of ERKs promotes activation of Rac and lamellipodia

formation to drive tumour cell motility [52]. Our results are

therefore in line with these studies and suggest that the features of

cells expressing VEGF-188 are linked with activated Ras/PI3K

and Ras/ERK.

Differential requirement for integrin engagement and matrix

adhesion as well as actinomyosin contractility are major features

that distinguish amoeboid from mesenchymal migration

[20,53,54]. In mesenchymal cells, Rho/ROCK driven contractil-

ity supports the formation of focal adhesions and contractile stress

fibers that can generate traction force for forward movement,

while Rac and Cd42 are required for the extension of protrusions

at the cell’s leading front [28,55]. Mesenchymal movement is also

dependent on integrin-matrix interactions. On the other hand, in

rounded amoeboid cells integrin-matrix adhesive interactions are

weak, while cortical myosin II generated contraction is essential for

migration in 3D matrices [53]. Several studies have shown that

loss of contractility switches cells over to a mesenchymal mode of

movement [30,54,55]. Inhibitors of Rho/ROCK or contractility

impaired amoeboid movement but had minimal effects on

migration in mesenchymal tumour cells thus illustrating that

Rho/ROCK signalling/contractility are essential in amoeboid but

dispensable in mesenchymal motility [30,54,55]. When exposed to

contractility inhibitors, the fs164 and fs120 cells acquired

mesenchymal characteristics (they spread more and formed more

protrusions) and were able to migrate faster on 2D surfaces. Our

results are in agreement with the studies described above in that

inhibitors of contractility had no significant effect on fswt or fs188

cells but altered the morphology and motility of fs164 and fs120

cells. In our study, all the fibrosarcomas expressed similar levels of

phosphorylated MLC, a read-out of actinomyosin contractility

Figure 8. Analysis of VEGFR2 expression/activation in fibrosarcoma cells. a,b,c): Fibrosarcoma cells, HUVEC or H5V endothelial cells were
stimulated with 100 ng/ml recombinant VEGF164 for 10 min. Equal amounts of proteins (10–30 mg) were analysed for a): Phospho-VEGFR2 (tyr996),
total VEGFR2 and pERK1/2. SU11248 (10 mM) was added 5 min prior to VEGF; b): phospho-VEGFR2 (tyr1175) and total VEGFR2610 mM SU11248; c): p-
ERK1/2, pAKT and pStat3. d): Cells were incubated with SU11248 (10 mM) for 1 h before proteins were extracted and analysed for pERK1/2, pAKT and
p-Stat3 (p-Stat3). All blots were normalized with an antibody to b-tubulin and are representative of at least three independent experiments.
doi:10.1371/journal.pone.0104015.g008
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(Figure 6c), suggesting that contractility alone is not sufficient to

dictate morphology and migration. Inhibition of Jak/Stat3

signalling abrogated the phosphorylation of MLC as described

previously for melanoma cells [30] thus establishing this pathway

as a major driver of contractility also in fibrosarcomas. However,

while in melanoma cells, pStat3 correlated with amoeboid mode of

movement, in our system pStat3 expression correlated with a

mesenchymal morphology that was independent of contractility

for migration. Others have shown that mesenchymal hepatocel-

lular cancer cells expressed higher levels of pStat3 compared to

their epithelial counterparts [41]. Interestingly, inhibition of JAK

signalling resulted in a marked upregulation of integrin b1

expression, which correlated with a switch to a more mesenchymal

morphology, particularly in fs164 and fs120 cells.

We hypothesised that the observed differences in the signalling

characteristics of the fibrosarcoma cells could have arisen through

isoform-dependent autocrine activity, mediated by tyrosine kinase

VEGF receptors. However, although the fibrosarcoma cells

expressed RTK VEGF receptors, these could not be activated/

phosphorylated by recombinant VEGF isoforms. Exogenously

added VEGF also failed to activate downstream signalling to

pERK1/2, pAKT and pStat3 in the fibrosarcoma cells, in marked

contrast to its robust activation of VEGF signalling in endothelial

cells. Furthermore, adding back different recombinant VEGF

isoforms had no effect on fibrosarcoma cell proliferation (supple-

mentary Figure S3) and had no influence on cell morphology (data

not shown). Sunitinib (SU11248) a potent RTK inhibitor with

VEGFR selectivity [37] had no effect on basal pERK1/2 levels

further confirming that the intrinsic pERK1/2 levels were

VEGFR-independent. Sunitinib did inhibit pAKT and pStat3

but this is most likely due to inhibition of other RTK targets of

sunitinib, such as PDGFRb. Previously it was shown that VEGF

produced by renal carcinoma cells promoted tumour cell growth

through activating NRP-1 receptors and downstream Ras [7].

While our results cannot exclude an involvement of NRP-1 in

autocrine signalling, the fact that various recombinant VEGF

isoforms failed to activate pERK, pAKT or pStat3 signalling or

alter the proliferation of the fibrosarcoma cells does not support

such an involvement.

Taken together our data suggest that the inherent differences in

signalling, proliferation, survival and migration between our

different cell lines are a result of complex interactions governed

Figure 9. Schematic of proposed signalling interactions and morphological and motility characteristics of fibrosarcomas
expressing single VEGF isoforms. Differences in PI3K/AKT, Ras/Raf/MEK/ERK and JAK/Stat3 signalling between fswt/fs188 and fs164/fs120 cells
are shown. Upregulation/downregulation of activities or levels of expression of individual proteins are indicated by up or down arrows. VEGF188
expression is associated with reduced proliferation rates, increased apoptosis and typical integrin-dependent mesenchymal morphology and
migration mode. VEGF164/VEGF120 expression is associated with faster proliferation rates, increased survival and rounded/amoeboid integrin-
independent morphology and mode of motility. Migration of fs164/fs120 but not fswt/fs188 cells is contractility-dependent.
doi:10.1371/journal.pone.0104015.g009
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by endogenous VEGF isoform expression, that are independent of

simple ligand-receptor activation. VEGF 189 has been shown to

localise to the nucleus [56,57], which could be significant here.

Although the function of VEGF in the nucleus has not been

established, nuclear localised VEGFD was found associated with c-

myc and RNA polymerase II and regulated c-myc-dependent gene

transcription in fibroblasts in a VEGF receptor-independent

manner [58]. It is therefore possible that VEGFA isoforms also

have intracrine activity that is not dependent on classic receptor

activation.

In summary, we present, for the first time, evidence that

VEGF188 expressed by tumour cells is associated with mesen-

chymal motility, slower proliferation, and increased apoptosis,

while VEGF164 and VEGF120 are associated with a more

rounded/amoeboid morphology and increased proliferation and

survival. Both amoeboid and mesenchymal modes of movement

are important in metastasis and different targeting approaches

may be needed to attack different invasive strategies. In this

respect, it is of interest that VEGF189 isoform over-expression was

shown to correlate with metastasis and poor prognosis in colon

and lung cancer [59,60]. Deciphering the various processes by

which individual VEGF isoforms contribute to tumour growth is

important for the design of cancer therapies. Until now, such

therapies focused on targeting VEGF signalling with an aim to

impair angiogenesis. The demonstration that other non-angiogen-

esis dependent aspects of tumour growth are reliant on VEGF

isoform expression adds to the complexity of VEGF signalling

within the tumour microenvironment and necessitates a better

understanding of the molecular mechanisms involved.

Supporting Information

Figure S1 Growth of fibrosarcoma cells in soft agar.
Colonies formed by fibrosarcoma cells grown in soft agar and

imaged using a 106 objective.

(TIF)

Figure S2 VEGFR1 and NRP-1 expression by fibrosar-
coma cells. a) Schematic diagram showing VEGFR1 domains

recognised by two different commercial VEGFR1 antibodies

(Abcam). Antibody ab32152 was raised against a synthetic peptide

corresponding to residues in the N-terminal extracellular domain

of VEGFR1 and antibody ab2350 was raised against a synthetic

peptide to C-terminal residues, within the tyrosine kinase domain

of the receptor; b) ab32152 recognized the full length receptor

(180 kDa) in fibrosarcoma cells while antibody ab2350 recognised

the full-length receptor as well as a truncated variant (120 kDa)

most likely corresponding to the receptor intracellular domain.

The truncated variant was also present in endothelial cells. c) The

truncated variant was constitutively phosphorylated at tyr1333 in

both fibrosarcoma and H5V cells but its phosphorylation could

not be blocked by SU11284. d) NRP-1 expression in the

fibrosarcomas.

(TIF)

Figure S3 Fibrosarcoma cell proliferation in the pres-
ence of recombinant VEGF isoforms. Cells were plated in 6-

well plates at a density of 26104 cells per well for and treated with

the indicated amounts of recombinant VEGF isoforms. a) fs164

cells were treated with rVEGF164 or rVEGF188; b) fs120 cells

were treated with rVEGF120 or rVEGF188; a,b) Cells were

counted after 5 days in culture. Results (cell counts 6SD) are from

one of two repeat experiments.

(TIF)
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