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Abstract—For an AUV to perform a long-range mission with
its maximum endurance, its energy consumption during transit
must be kept to a minimum. This paper presents an improved cost
function for a grid-based genetic algorithm (GA) path planning in
2D static environments. The proposed function consists of energy
consumption terms that are estimated according to dynamics of
a hover-capable AUV - notably Delphin2 AUV. It seeks for a
path that requires least effort for the vehicle to move along. A
simulation was written in Matlab and the outcomes of the GA
with the improved cost function are compared with the ones of a
GA with an optimal distance approach as well as an A* approach.
It is found that outcomes of an improved cost function require
less energy compared with the other techniques.

Keywords—Autonomous Underwater Vehicle, AUV, Delphin2,
Genetic Algorithm, Path Planning.

I. INTRODUCTION

Path planning is one of the most important pieces of software
that is integrated in autonomous systems. It plays a role in
finding a best valid path from a start location to a desired
destination. There have been a number of path planning
techniques proposed in the past decades, however, none of
them are perfect. Each technique has been developed to suit a
particular form of environment representation, hence, having
their own strengths and limitations. Thus, the development of
path planning is still an active area in robotic navigation.

Artificial Potential Field (APF) is a well known technique
that adopt a concept of magnetic poles [1]. This causes a
mechanism that the robot is pulled towards the goal and
repelled from obstacles. A valid path is found by following
a vector-sum of these forces. This technique can easily be
extended to a higher dimension space with a little increase in
computational effort. The main concern is it may fail to find
even one solution as it is very sensitive to local minimum traps
caused by concave-shaped obstacles or stagnation points [2].
Many attempts have been made to propose a local-minimum
free APF [3], [4], [5], [6], however, the local minimum issue
still remains.

A* [7] and its variants [8], [9], [10], [11], [12] is one of the
simple but practical pathfinders. A heuristic approach is used
to make the exploration focus towards the goal compared to
other graph search techniques such as Dijkstra’s algorithm

[13]. This technique is very reliable as it guarantees a solution
(if the solution does exist). A shortcoming is that it may only
yield a sub-optimal solution as the path is constrained with
8-connectivity links [10].

The genetic algorithm (GA) is a stochastic search technique
that was inspired from Dawins theory of evolution based
on the principle of survival of the fittest [14], [15]. It
has successfully been used in solving many optimization
problems, including a path planning. This technique appears
to produce a much smoother path compared with a classical
search algorithm such as A*. In addition, GA is a global
optimizer which is very unlikely to get trapped in a local
minimum.

In this paper, a GA pathfinder with an improved fitness
function for an overactuated AUVs is presented. The vehicle
is assumed to travel at a constant depth and constant forward
speed in a 2D static known environment. It is a fact that there
is a finite energy stored on-board. To maximise the endurance
of the AUV, it is required the most energy efficient path
for the vehicle to move along. As such, the proposed cost
function comprises of three terms: hotel load, propulsion load
and manoeuvring load. With this, a solution of GA will be
a best compromise between a shortest path which consumes
least hotel and propulsion energy and a smoothest path which
consumes least manoeuvring energy at the possible expense
of a greater distance travelled.

This paper is structured as follows. Section II is related works.
A brief introduction of Delphin2 AUV is provided in section
III. Section IV explains the construction of a 2D grid map.
Overview of the GA procedure is presented in section V.
Parameters of path and improved cost function are discussed
in section VI and VII. An experiment setup and results of
the proposed algorithm are provided in section VIII and IX.
Section X is a conclusion and future work.

II. RELATED WORKS

A GA path planner with a grid-based environment was first
introduced in [16]. A fix-length binary chromosome was
used. This constrains a path to x-, or y-monotone. Later, the
orderly numbered grids technique was used to represent a
working space [17], [18], [19]. This leads to the use of a
variable-length chromosome coding scheme that significantly



improves a performance and adaptivity of GA technique.
Improved GA operators that suit the new chromosome
coding scheme were presented in [17]. A variable-length
chromosome representation that uses real (x, y) coordinate
was found in [20]. Despite all these improvements, most
approaches evaluate a fitness of path based on a travelling
distance.

There has been previous attempts made to improve the cost
function of GA based path planners. Difficulties of navigating
in hazardous zones were studied by [21], [22], [23]. For
example, transiting through hazardous cells would require
more effort than a normal zone. Each cell is classified and a
cost of transit through hazards is assigned accordingly. Fitness
functions that minimize the energy cost for a vehicle operating
in ocean currents were proposed in [24] and [25]. The idea
is to have the AUV heading align with the flow direction.
Even through the AUV may travel a longer distance, it will
cut down the required propulsive power. A multi objective
cost function was presented in [20]. In this study, path
smoothness is modelled as a function of a heading change
between two line segments while a clearance is modelled as
a function of the smallest distance between line segments to
the nearest obstacle. Then, a path distance, smoothness and
clearance are combined into a single objective function and
effect of each are balanced by using a relative weight rather
than a representation of the physical energy consumption as
proposed here.

III. DELPHIN2 AUV

Delphin2 is an over-actuated AUV [26]. It is equipped
with a propeller, four independent control surfaces and four
through-body tunnel thrusters (figure 1). With a combination
of these actuators, the AUV is over-actuated and is capable of
performing both flight-style missions and hovering missions.
Extensive studies on the Delphin2 AUV are presented in [27],
[28], [29], [30], [31].

Manoeuvres in the horizontal plane can be performed utilizing
the rudders, thrusters or a combination of both. It has been
shown that using thrusters gives more manoeuvrability at
zero or slow forward speeds, i.e. a smaller turning diameter
[27]. However, as vehicle speed increases the ambient flow
interacts with the thruster jet, decreasing the effective thrust
delivered [32], and thus impacting on manoeuvrability. The
effect of thruster degradation is included in the simulation
and is explained in section VII-C.

In this study, the AUV is assumed to operate at a constant
speed and constant depth, i.e. on a horizontal plane. As such,
only surge, sway and yaw motion are of interest. In addition,
the control surfaces will not be used during transit as for the
simplicity. Hence, there are two actuators left to be concerned
with. These are the propeller and horizontal thrusters which
corresponding to the surge and yaw motion respectively.

Fig. 1: Delphin2 AUV [26].

IV. ENVIRONMENT REPRESENTATION

Grid mapping is a technique that decomposes an entire map
into a number of non-overlapping cells. Each of these cells
holds a binary value corresponding to an occupancy status of
occupied or free.

To construct a map, it is required a top-view image of a
working space. This can be any kind of picture, including
the one that is captured from Google map. Boundaries of
the configuration space and obstacles as well as a cell size
are needed to be prescribed manually by the user. It is
recommended to specify a cell size as a proportion of a
vehicle length. Then, the input image is meshed and the
occupancy status of each cell is determined accordingly (see
figure 2).

(a) An original map (b) Grid map

Fig. 2: Results of map building and path planning.

V. GA PATH PLANNING

The proposed GA technique adopts a non-binary variable-
length chromosome coding scheme. This is similar to [20].
The difference is that a corresponding grid index (i, j) is
used to represent a chromosome instead of a real (x, y)
coordinate. For example, a chromosome of a path in figure
3 is {(1, 4); (3, 4); (3, 3); (4, 2); (4, 1)}. An initial generation
is generated by random walk strategy (see figure 4). Then a
path refinement - notably node repair and line repair [17] -
are applied to guarantee all paths in this first generation are
feasible.



Fig. 3: Example of a valid path.

(a) random move (b) scaling

(c) rotating (d) translating

Fig. 4: Four steps of random walk strategy.

A loop of evolutionary process starts by taking in a set of
individuals which is referred to as the current generation.
Individuals in this generation are then evaluated with a fitness
function. The proposed function gives a bias to paths that con-
sume less energy rather than less transit time. This follows by
a selection step in which a number of individuals are randomly
taken (in bias to its fitness) from the current generation and put
into a new set of population called temporary generation. Next,
individuals in the temporary generation are transformed by
the mean of GA operators, resulting in a next generation. The
loop is then repeated until the convergence criteria is achieved
(figure 5). In this case, the search will stop once it has reached
a maximum number of iterations. The result of this is a set
of solutions that contains not only an optimal path but also a
number of near-optimal paths that can be used as an alternative
path in a case that the environment has changed.

Fig. 5: A diagram presents a loop of Genetic Algorithm.

VI. KEY PARAMETERS OF PATHS

Assuming that the vehicle is travelling from a waypoint pk−1

towards waypoint pk. The terms current segment refers to a
line segment that connects waypoint pk−1 with pk. Similarly,
the line segment that joins waypoint pk with pk+1 is referred
as next segment. An extreme length of current segment is
denoted as d. A manoeuvring distance dm is a distance that the
AUV starts to manoeuvre itself to align with the next segment.
A remaining distance on the current segment is denoted as
propulsion distance dp, in which the vehicle aims to move
along. The vehicle is assumed to move at a constant forward
speed u. With this, estimated amount of time tp and tm spent
on dp and dm respectively are calculated as follows;

tp = dp/u, tm = dm/u (1)

A relative angle that the next segment makes to the current
segment is denoted as ∆ψactual. Assuming that the AUV is
constrained by a saturated yaw rate ψ̇sat, which is a maximum
yaw rate that the vehicle can physically perform. This means,
there also is a limitation in ∆ψ that the vehicle can compensate
while moving forward. This saturation in heading error is
calculated as;

∆ψsat = ψ̇sat/tm (2)

If the actual heading error ∆ψactual exceeds this limit, only
the ∆ψsat will be compensated while the vehicle is moving
along a manoeuvring zone dm. The AUV is expected to stop
moving forward once it reaches a waypoint pk to compensate
a residual heading error;

∆ψres = ∆ψactual −∆ψsat (3)



The time spent on manoeuvring with a zero-forward speed is;

tm,u0 = ∆ψres/ψ̇sat (4)

All these relevant parameters are illustrated in figure 6. They
are key parameters when evaluating a fitness of the paths in a
following section.

Fig. 6: Path parameters.

VII. FITNESS FUNCTION

For an AUV to perform long-range missions, endurance is
generally the main concern. The cost function presented here
is specially derived to minimise an energy consumption based-
on the physics of over-actuated AUV, notably Delphin2 AUV.
Total energy (Etotal) required by the AUV during a transition
can be decomposed into four main components as;

Etotal = Eh + Ep + Em + penalty (5)

or,

∫ T

0

Ptotal dt =

∫ T

0

Ph dt+

∫ T

0

Pp dt+

∫ T

0

Pm dt+ penalty

(6)

where subscriptions h, p and m refer to hotel, propulsion
and manoeuvring respectively. The penalty term is included
to differentiate the feasible paths from unfeasible ones.

A. Hotel Load:

This term represents a total energy consumed by onboard
electronics during transit. It is calculated as follows;

Eh =

∫ T

0

Ph dt ≈ Ph

nnode−1∑
i=1

(t[i]p + t[i]m + t
[i]
m,u0) (7)

where Ph is a rate of hotel power consumption (assumed a
constant), t[i]p and t

[i]
m is a time spent on propulsion zone dp

and manoeuvring zone dm of ith path segment, and t
[i]
m,u0 is

time spent on manoeuvring with zero-forward speed.

B. Propulsion Load:

A propulsive energy consumption rate (Pp) for the AUV to
move at a forward speed u is;

Pp =
1

η
Rtotal u (8)

Rtotal is a total resistance in correspondence with a surge
speed u and η denotes an efficiency of power transmission.
The total resistance is determined as follows;

Rtotal =
1

2
ρ cd,5 52/3 u2 (9)

where ρ is water density, cd,∆ is a volumatic drag coefficient,
5 is a volume of the vehicle. With this, equation 8 can be
rewritten as;

Pp =
1

2η
ρ cd,5 52/3 u3 (10)

This term becomes zero when the vehicle is not moving. In
other words, there will be a propulsive power consumption
presented only when the AUV is travelling along dp and dm.
As a consequence, the total propulsive energy is;

Ep =

∫ T

0

Pp dt ≈ 1

2η
ρ cd,5 52/3 u3

nnode−1∑
i=1

(t[i]p + t[i]m)

(11)

C. Manoeuvring Load:

The term manoeuvring load denotes an amount of energy
spent by the actuators of the Delphin2 to make itself align
with next segment. It is assumed that the yaw motion is
performed by utilizing only two horizontal thrusters that are
fitted in a front and rear part of the vehicle. Generally, a
manoeuvring power Pm comsumed by thrusters is varying
according to two parameters; thruster setpoint SPthruster and
yaw rate ψ̇.

The AUV is subjected to a constraint of manoeuvring
distance dm and a maximum yaw rate ψ̇sat that the vehicle
can perform. These two limitations imply that there is a
maximum amount of heading error (∆ψsat) that the AUV
can compensate while moving forward (refer to e.q. 2). If
the actual heading error ∆ψactual exceeds this limit, the
AUV is expected to stop moving and make itself align with
the path first. Once finished, it then continues moving forward.

A yaw rate ψ̇ required for the vehicle to manoeuvre in a case
of that ∆ψactual ≤ ∆ψsat is;



ψ̇ =
∆ψactual

tm

= ∆ψactual
u

dm

(12)

However, if the ∆ψactual goes beyond a limit of ∆ψsat, a
yaw rate ψ̇ will be saturated and held at ψ̇sat. A required yaw
rate conditioned to an actual heading error is expressed as a
piecewise function as follows;

ψ̇ =

{
ψ̇sat ;if ∆ψactual > ∆ψsat

∆ψactual
u

dm
;otherwise (13)

Fig. 7: A relationship between SPthruster and ψ̇ is denoted
by a blue dash line whereas a relationship between SPthruster

and Pm is denoted by a green solid line.

By means of experiment, one can find a relationship between
yaw rate ψ̇, thruster setpoint SPthruster and a power con-
sumption due to manoeuvring Pm at a fixed speed u. This will
look somewhat like what shown in figure 7. With a required
yaw rate ψ̇, a corresponding thruster setpoint SPthruster

is determined, and, in turn, a rate of manoeuvring power
consumption Pm(ψ̇, u) is obtained. The manoeuvring energy
for the whole path is determined as;

Em =

∫ T

0

Pm( ˙ψ, u) dt ≈
nnode−1∑

i=1

Pm( ˙ψ[i], u) (t[i]m + t
[i]
m,u0)

(14)

It is pointed out in [32] that there will be a drop in thruster
performance which happens when the vehicle is undergoing
forward motion. This is because the effect of a jet emitted from
the thruster exit is dominated by the ambient flow (surge speed
in this case). As such, it is common to express the thruster
degradation as a function of a speed ratio which is a ratio of
a surge speed (u) to a thruster jet-speed (uj), see figure 8. It
is possible that thrusting force will drop to below 20% of the
force in a static condition. In future, experiments will be used
to establish a realistic relationship between thruster power,

Fig. 8: A variation in effective thrusting force with a speed
ratio [32].

forward speed and yaw rate. At this time, thruster degradation
has been modelled by assuming that the propulsion power to
achieve a specific yaw rate at a forward speed of 0.6 m/s is
5 times greater than of at the zero forward speed.

D. Penalty:

Role of this term is to differentiate unfeasible paths from the
feasible ones by adding an enormous amount of extra energy
consumption to the path if a collision is detected. To make
this penalty term adaptive to arbitrary cases, it is defined as a
proportion of the energy consumption when the AUV transits
on a direct path from start point to goal with a constant forward
speed u. As this virtual path is a straight line, there will be
no manoeuvring energy term presented. The penalty term is
as follows;

penalty = σ N (Ph + Pp) T0 (15)

where Ph and Pp are determined as explained earlier, N is
a number of times that the path collides with obstacles, and
σ is a parameter to adjust the relative weight of the penalty
term. T0 is a time the vehicle spent on the virtual path. This is
calculated using a direct distance from start point to goal D0

as;

T0 =
D0

u
(16)

E. Fitness:

By substituting equation 7, 11, 14 and 15 into equation 5, one
can evaluate a fitness of the path. The path that has smallest
Etotal is the best path. However, GA technique requires to
have the highest score corresponds to the best path. As a
consequence, fitness of path must be redefined as;

fitness =
1

Etotal
(17)



VIII. SIMULATION SETUP

There were three test cases corresponding to three types of
maps. First case was a simple and realistic environment of
a Heronry South Lake with an actual map size of 544x581
metres. Second case was a labyrinth like structure that
contains a number of concave-shaped obstacles. Third case
was a split-ellipse map that has a shortest path pass through
the middle. Map size of both second and third case were
equivalent to 550x550 metres. These maps were meshed with
a square grid with its width is twice as big as the AUV length.

In the simulation, a surge speed u = 0.6m/s and a maximum
yaw rate ψ̇sat = 0.3rad/s were used. These values were
estimated according to actual dynamics of the Delphin2
AUV. A manoeuvring distance dm was also specified as
a proportion of the vehicle length, and in this case it was
two times the length. A scale for the penalty term is σ = 1000.

GA parameters used in the simulation were population size
= 200, number of generation = 80, crossover rate = 0.8 and
mutation rate = 0.3.

IX. RESULTS AND DISCUSSION

Path planning simulation was written in MatLab. In each test
case, GA with an improved cost function was employed to
search for an optimal energy path, while a conventional GA
and A* technique were employed to search for an optimal
distance path. Results from the conventional GA and A*
approach were post-processed further to determine an amount
of energy required to navigate along those paths. The solutions
of A* were used as a benchmark to justify a performance of
both versions of GA.

It is noted that, all these results were non-dimensionalized by
a virtual straight line path leading from start to goal location.
For example, a path distance (d) of each test case was divided
by a distance of a direct path leading from same start to same
goal location. This results in a non-dimensionalized distance
d′. For the same purpose, all energy terms were divided by a
hotel load of when the vehicle is travelling on the direct path.
A non-dimensional term of hotel, propulsion, manoeuvring
and total energy are denoted as E′h, E′p, E′m and E′total
respectively. Beside, a %change presented in the tables is a
change in outcomes of GA approaches relative to the ones of
the A*. The results of three test cases are presented below.

The results from three cases clearly show that a conventional
GA (aimed at optimal distance paths) yields slightly shorter
paths which have a substantial reduction in a number of turns
compared with ones of A* approach. A result of this is a
decrease in total energy consumption. It is because the GA is
not constrained by 8-connectivity links, hence, avoid making
unnecessary turns in which wasting energy.

Comparing two versions of GA, in case 1 and 2, outcomes of
both versions are almost identical and again slightly shorter
and much smoother compared with A* (see figure 9 and

10). What interesting is in case 3 in which their results
are entirely different (see figure 11). The conventional GA
suggests to use an inner path which is a best strategy in terms
of travelling distance. In contrast, the improved GA suggests
an outer path which is 10% longer in distance compared with
A*. However, this come up with a further reduction in a
total energy consumption as much less manoeuvring effort is
required.

(a) A* (b) GA

Fig. 9: Case 1 - Heronry souhth lake.

(a) A* (b) GA

Fig. 10: Case 2 - Labyrinth.

(a) A* (b) GA

Fig. 11: Case 3 - Split ellipse.



Even though GA approaches yield shorter and smoother
outcomes than A*, they take a substantial more amount of
computing time to find a solution. In the experiment, A* takes
less than a second while both versions of GA approaches take
almost 10 seconds. Furthermore, GA is a stochastic search
that is sensitive to a parameter tuning issue. For example, if a
number of generation is reduced, it may not have enough time
to converge to a global solution. A* which is a deterministic
search does not have this parameter tuning problem. With
these drawbacks, GA techniques may only be suitable for
off-line path planning problem that the path is planned in
advance and can be approved by the operator.

A* GAdis % change GAener % change
d′ 1.104 1.045 -5.323 1.045 -5.353
E′

h 1.351 1.055 -21.909 1.056 -21.784
E′

p 1.598 1.513 -5.323 1.512 -5.353
E′

m 4.663 0.368 -92.106 0.295 -93.674
E′

total 7.612 2.936 -61.433 2.864 -62.377
time (sec) 0.513 8.021 - 8.227 -

TABLE I: Case 1 - Heronry souhth lake.

A* GAdis % change GAener % change
d′ 1.438 1.393 -3.082 1.396 -2.931
E′

h 1.561 1.448 -7.224 1.443 -7.594
E′

p 2.081 2.017 -3.082 2.020 -2.931
E′

m 2.335 1.046 -55.209 0.897 -61.578
E′

total 5.977 4.511 -24.527 4.360 -27.059
time (sec) 0.820 9.063 - 9.796 -

TABLE II: Case 2 - Labyrinth.

A* GAdis % change GAener % change
d′ 1.068 1.045 -2.172 1.182 10.695
E′

h 1.213 1.068 -12.002 1.182 -2.574
E′

p 1.546 1.512 -2.172 1.711 10.695
E′

m 2.753 0.623 -77.380 0.233 -91.527
E′

total 5.512 3.202 -41.897 3.126 -43.279
time (sec) 0.489 8.046 - 8.176 -

TABLE III: Case 3 - Split ellipse.

X. CONCLUSION AND FUTURE WORK

In this paper an improved cost function for grid-based genetic
algorithm (GA) path planning was presented. This function
consists of relevant indicators that are turned into a common
unit of energy so they are comparable. Precisely, a travelling
distance is turned to a hotel and propulsion load while a
smoothness is turned to a manoeuvring load. Then, it seeks
for a good compromise between a travelling distance and a
smoothness. A simulation of this was implemented in MatLab.
The results were compared with other approaches, notably
conventional GA and A*, that seek an optimal distance
path. The outcomes clearly show that optimal solutions from
improved GA consume less energy than the ones obtained
from other two approaches. More importantly, the solution
of both versions of GA contain less number of sharp turns
than A* as there is no movement constrained applied. So, the
path looks more realistic and requires less manoeuvring effort.

A major drawback of GA techniques is that they are sensitive
to a parameter tuning issue. If the algorithm was not tuned
properly, it may output a sub-optimal solution. This is
opposite to the A* approach which is a deterministic search
that guarantees an optimal solution if the solution does exist.
Beside, a time to convergence increases substantially. Due to
this, the proposed GA technique may not yet suitable for an
on-line path planning.

A future work would be focusing on how to reduce a con-
vergence time and increase a reliability of the GA approach.
This could make GA compatible with an on-line path planning
problem. Beside, in this work, a thruster degradation with for-
ward speed is assumed a constant which is not physically valid.
This must be altered by a proper model of thruster in which
a degradation is varying with a thruster setpoint and vehicle
speed. In later work, variable forward speed will be used and
the effect of the use of control surfaces on manoeuvrability will
be included. Experiment will be proposed and validate with the
simulation result. In addition, map making process would be
made automatically, e.g. using an image processing technique
to specify a boundary of working space and obstacles.
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