

Ti:Sapphire Channel Waveguide Lasers Produced by Femtosecond and Picosecond Laser Writing

C. Grivas¹, C. Corbari², G. Brambilla², P. Lagoudakis¹

1. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

2. Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, United Kingdom

Ultra-short pulse laser writing is a widely adopted method for rapid prototyping of channel waveguide lasers and amplifiers in the bulk of different types of transparent glasses, crystals and ceramic materials [1, 2]. The writing process in laser crystals relies on engineering either depressed-cladding structures or two parallel tracks to confine the mode in the spacing in-between, by stress-induced increases in the refractive index. Ti:sapphire ($\alpha\text{-Al}_2\text{O}_3\text{:Ti}^{3+}$) with its broad emission bandwidth (650–1100 nm) is a benchmark solid-state gain medium for ultrashort laser pulse generation and broadly tuneable lasers. Here, we report on the continuous wave (cw) laser operation of Ti:sapphire channel waveguides fabricated by fs- and picosecond (ps) laser writing.

Waveguides were produced using mode-locked regenerative amplified Yb:KGW lasers operating at 1030 nm, at two different pulse duration/repetition rate regimes, 180 fs / 1 kHz and 320 fs / 200 kHz, and a Nd:YVO₄ (1064 nm, 8 ps, 200 kHz). Laser pulses with polarization parallel to the writing direction were focused \sim 150 μm below the surface of a Ti:sapphire crystal, uniformly doped with 0.12 wt.% Ti₂O₃, by a microscope objective lens with a NA of 0.65. By scanning the crystal transversally to the incident pulses in the same direction, pairs of parallel tracks were formed in its bulk with spacings from 15 to 24 μm . The scanning speed v_{sc} , and pulse energy E_p , for each of the lasers used were as follows: (i) $v_{\text{sc}} = 15 \mu\text{m}\cdot\text{s}^{-1}$, $E_p = 1.5 \mu\text{J}$, (180 fs, 1 kHz, 1030 nm), (ii) $v_{\text{sc}} = 2 \text{ mm}\cdot\text{s}^{-1}$, $E_p = 0.065 \mu\text{J}$ (320 fs, 200 kHz, 1030 nm), and (iii) $v_{\text{sc}} = 0.5 \text{ mm}\cdot\text{s}^{-1}$, $E_p = 0.3 \mu\text{J}$ (8 ps, 200 kHz, 1064 nm). In Fig. 1 the profiles of two waveguides written with 320-fs and 8-ps laser pulses are shown indicating that the tracks produced in the ps-regime were broader and had a depth that was larger by a factor of \sim 2.5.

Waveguides were optically pumped with a diode-pumped solid-state laser emitting at 532 nm. The laser cavity was formed by attaching a high-reflective (HR) incoupling mirror ($R = 99.5\%$), and outcoupling mirrors with a transmission, T , of 0.5%, 2%, 10%, and 35% at the signal wavelength, in different combinations at the endfaces of the 4-mm-long waveguides. The fluorescence spectra obtained from the waveguides were similar to that of the unprocessed crystal, indicating the absence of any fluorescence quenching of the Ti³⁺ ions by irradiation-induced stress. The lasing spectra exhibited emission peaks at 798.25 nm, and the laser output was π polarized regardless of the polarization state of the pump beam. For a cavity formed by two HR mirrors a laser threshold of $P_{\text{th}} = 84 \text{ mW}$ of absorbed pump power, which is reduced by a factor of >3 in comparison to their counterparts produced by other methods [3, 4]. The maximum output power, 143 mW for about 1 W of absorbed pump power and highest slope efficiency, $\eta = 23.5\%$ were obtained with 35% outcoupling (Fig. 2) from a waveguide defined by two fs-laser-machined (180 fs, 1 kHz, 1030 nm) tracks at a spacing of 24- μm . Waveguides with the same spacing characteristics produced by fs-laser pulse trains at higher repletion rates (200 kHz) consistently exhibited \sim 20% lower output powers for the same outcoupling level.

The lasing threshold for waveguides defined by a pair of 24- μm spaced, ps-laser-written tracks was 189 mW. The output powers (45 mW) and slopes efficiencies (7.1%) obtained were considerably lower for this writing regime (Fig. 4), due to the stronger interaction of the modal field with the tracks. An upper loss of 0.6 and 2 dB cm⁻¹ was estimated from the η values obtained for the fs- and ps-laser written waveguides, respectively.

Fig. 1 Microscope images of tracks written by (a) 320-fs and (b) 8-ps pulses.

Fig. 2. Power characteristics for a channel waveguide laser inscribed by fs-laser pulses.

Fig. 3. Laser power dependence on absorbed power for a ps-laser-written waveguide.

References

- [1] M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, M. J. Withford “Ultrafast laser written active devices,” *Laser Photon. Rev.* **3**, 535 (2009).
- [2] C. Grivas “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” *Prog. Quantum Electron.* **35**, 159 (2011).
- [3] C. Grivas, D. P. Shepherd, T.C. May-Smith, R.W. Eason, M. Pollnau, “Single transverse mode Ti:sapphire rib waveguide laser,” *Opt. Express* **13**, 210 (2005).
- [4] C. Grivas, L. Laversenne, C. N. Borca, P. Moretti, D. P. Shepherd, R. W. Eason, M. Pollnau: “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” *Opt. Lett.* **31**, 3450 (2006).