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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCE AND ENGINEERING
Electronics and Computer Science

Doctor of Philosophy

TRUST-BASED ALGORITHMS FOR FUSING CROWDSOURCED ESTIMATES
OF CONTINUOUS QUANTITIES

by Matteo Venanzi

Crowdsourcing has provided a viable way of gathering information at unprecedented
volumes and speed by engaging individuals to perform simple micro–tasks. In particu-
lar, the crowdsourcing paradigm has been successfully applied to participatory sensing,
in which the users perform sensing tasks and provide data using their mobile devices.
In this way, people can help solve complex environmental sensing tasks, such as weather
monitoring, nuclear radiation monitoring and cell tower mapping, in a highly decen-
tralised and parallelised fashion. Traditionally, crowdsourcing technologies were primar-
ily used for gathering data for classifications and image labelling tasks. In contrast, such
crowd–based participatory sensing poses new challenges that relate to (i) dealing with
human–reported sensor data that are available in the form of continuous estimates of
an observed quantity such as a location, a temperature or a sound reading, (ii) dealing
with possible spatial and temporal correlations within the data and (ii) issues of data
trustworthiness due to the unknown capabilities and incentives of the participants and
their devices. Solutions to these challenges need to be able to combine the data provided
by multiple users to ensure the accuracy and the validity of the aggregated results.

With this in mind, our goal is to provide methods to better aid the aggregation process
of crowd–reported sensor estimates of continuous quantities when data are provided by
individuals of varying trustworthiness. To achieve this, we develop a trust–based in-
formation fusion framework that incorporates latent trustworthiness traits of the users
within the data fusion process. Through this framework, we develop a set of four novel
algorithms (MaxTrust, BACE, TrustGP and TrustLGCP) to compute reliable aggrega-
tions of the users’ reports in both the settings of observing a stationary quantity (Max-
Trust and BACE) and a spatially distributed phenomenon (TrustGP and TrustLGCP).
The key feature of all these algorithm is the ability of (i) learning the trustworthiness of
each individual who provide the data and (ii) exploit this latent user’s trustworthiness
information to compute a more accurate fused estimate. In particular, this is achieved
by using a probabilistic framework that allows our methods to simultaneously learn the
fused estimate and the users’ trustworthiness from the crowd reports.
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We validate our algorithms in four key application areas (cell tower mapping, WiFi net-
work mapping, nuclear radiation monitoring and disaster response) that demonstrate
the practical impact of our framework to achieve substantially more accurate and infor-
mative predictions compared to the existing fusion methods. We expect that results of
this thesis will allow to build more reliable data fusion algorithms for the broad class of
human–centred information systems (recommendation systems, peer reviewing systems,
student grading tools, etc.) that are based on making decisions upon subjective opinions
provided by their users.
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ŷ True value of f

x



NOMENCLATURE xi

σ2 Variance parameter
θ Precision parameter
t Trust parameter
µ Mean parameter
e

(s)
cons Consensus estimate computed by RM at the s–th iteration
e Gaussian estimate with mean and precision parameter
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êCU Fused estimate of Covariance Union
Σ̂CU Fused precision matrix of Covariance Union
β Threshold parameter of the Reece method (RM)
µcons Mean of the consensus estimate computed by RM
θcons Precision of the consensus estimate computed by RM
tcons Trustworthiness of the consensus estimate computed by RM
acc Accuracy threshold parameter of RM
epochs Number of training epochs of RM
Fs Fisher ratio
E(·) Expected value of a random variable
Cov(·, ·) Covariance of a pair of random variables
K(·, ·) Covariance function of the Gaussian process
m(·) Mean function of the Gaussian process
λ(·) Intensity function of the Poisson distribution
z(·) Logarithmic function of λ



Acknowledgements

First and foremost, I owe sincere gratitude to my supervisors Nick Jennings and Alex
Rogers. Nick has given me the invaluable opportunity to undertake this research in
an internationally acclaimed research group under his guidance. He has always been
supportive and has created the best work environment around me to pursue my research.
Alex has provided me with precious insights, he encouraged me all the way and he has
always been there when I needed him. Thanks both for helping me make the most out
of my PhD.

I am also grateful to my mentors at the Microsoft Research Cambridge Lab: John Guiver,
Gabriella Kazai, Pushmeet Kohli and Milad Shokouhi, for their kindness and patience in
walking me through the beauty of machine learning and information retrieval. Thanks
goes to Emine Yilmaz, Katja Hofmann and Di Wu and all the members of the Infer.NET
team, for offering their invaluable professional and emotional support in the last mile
towards the completion of this thesis.

I also thank my co-authors and all my past and present colleagues and friends of the
Agents, Interactions and Complexity group of the University of Southampton, particu-
larly Long Tran–Thanh,Victor Naroditskiy, Gopal Ramchurn, Lampros Stavrogiannis,
Muddaser Allam, Ramachandra Kota, Ruben Stranders, Sam Miller, Oliver Parsons, Se-
bastian Stain, Maria Polukarov and Luke Teacy for taking part to insightful discussions
around my work and all the fun time spent together.

I wish to thank my former mentors: Daniele Nardi, Michael Wooldridge, Rino Falcone
and Cristiano Castelfranchi, with whom I had excellent and enjoyable work experiences
prior to my PhD that helped me become better at what I do.

Thanks to Dafni Anna Boula and her family for taking care of me with their encourage-
ments and smiles during the ups and downs of my PhD journey.

Finally, I would like to thank my parents Anna and Vincenzo and my sisters Marta and
Cecilia for their continued support and love that allowed me to do what I have made so
far. To them I dedicate this thesis.

This thesis work was funded by the UK Research Council through the ORCHID project,
grant EP/I011587/1 and the Electronic and Computer Science PhD fellowship pro-
gramme of the University of Southampton.

xii



Declaration of Authorship

I, Matteo Venanzi, declare that the thesis entitled Trust-Based Algorithms for Fusing
Crowdsourced Estimates of Continuous Quantities and the work presented in the thesis
are both my own, and have been generated by me as the result of my own original
research. I confirm that:

• this work was done wholly while in candidature for a research degree at this Uni-
versity;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: (Venanzi et al., 2013b) and (Venanzi
et al., 2013a).

Signed:.......................................................................................................................

Date:..........................................................................................................................

1



Chapter 1

Introduction

Over the last decade, crowdsourcing has emerged as a revolutionary way to provide data
at unprecedented volumes and speed by harvesting the power of human computation
taken into the loops of computer systems (Law and Ahn, 2011). First introduced by
Jeff Howe (2006), crowdsourcing is the outsourcing of micro-tasks through an open
call to the undefined network of the 2.4 billion internet users1 (34.3% of the global
population). These tasks are typically jobs that are still hard to solve for computers,
yet, they are simple and easy to perform even for untrained human users. These jobs
include activities such as classifying images, rating objects, or sensing the environment.
Following this principle, crowdsourcing has become a viable way to provide fast and
inexpensive information gathering services where, collectively, such crowd generated data
can facilitate large–scale and highly decentralised information gathering more efficiently
and at less cost than can typically be achieved by a single individual or organisation.

In general, the crowdsourcing model is based on a web-based interaction between two
types of agents. The first, task requestor, agent is a company, an organisation or a
single individual who wishes to outsource a number of tasks to the public. The second,
task executor, agent is a user who responds to these tasks and provides the requested
outputs. This information exchange typically occurs either on a monetary basis, i.e.,
a contracted reward is paid by the task requestor to the users for each response, or
a voluntary basis, i.e., the task executors perform tasks motivated by an intrinsic or
social reward. To support access of the task requestors to crowdsourcing marketplaces,
there are now a number of web platforms, such as Amazon Mechanical Turk (www.mturk.

com), Crowdflower (www.crowdflower.com) and oDesk (www.odesk.com) that allow task
requestors to automatically post tasks, collect the answers and pay task executors.

The success of crowdsourcing has followed the growth of the internet population and the
time that people dedicate to internet activities2. Following this trend, many companies
1Source: Internet World Stats www.internetworldstats.com (2014)
2A recent survey stated that U.S people spent an average of 11.6 hours per week online (October 2013).
Source: www.businessinsider.com
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and corporations are increasingly crowdsourcing parts of their everyday business opera-
tions to profit from low cost crowd labour and parallelised crowd–powered information
services. Examples of successful crowdsourcing applications range from web information
retrieval (see the Bing vs. Google crowdsourcing search relevance judgments campaign,
www.bingiton.com) to fashion design (see www.threadless.com) and general problem
solving (see www.innocentive.com).

In particular, an important application area of the crowdsourcing paradigm is participa-
tory sensing, which is centred on the use of crowdsourced data to solve highly distributed
environmental monitoring tasks (Burke et al., 2006). In participatory sensing, task ex-
ecutors perform sensing tasks, by providing environmental data using readily available
sensors such as microphones, cameras and Global Positioning Systems (GPS), that are
embedded in their smartphones. Technologically, this paradigm is particularly driven
by the reality of the 2.1 billion people (29.5% of the global population, 72.4% of the
internet’s users)3 that currently have access to the internet through mobile devices. By
using their smartphones as an on-board sensor platform, people participate in a ubiqui-
tous sensor network that is able to provide valuable data from remote areas quickly and
cost effectively. Importantly, participatory sensing moves crowdsourcing towards the
new perspective of using the crowd to collect not only simple piece of information, such
as discrete image labels or numeric object ratings, as in the traditional view of crowd-
sourcing tasks (Whitehill et al., 2009; Welinder et al., 2010; Tran-Thanh et al., 2013).
Rather, crowds can now also provide complex data consisting of sensor estimates that
represent continuous quantities, such as location estimates, signal strength readings or
nuclear radiation estimates (Pino and Pezoa, 2012; Yasuhiko, 2011). Collectively, such
crowd generated sensor data can help task requestors solve challenging tasks such as
globally estimating complex continuous quantities represented by signal coverage maps,
disaster maps and nuclear radioactivity maps, over large geographical areas and time
periods.

Successful participatory sensing applications focusing on the sensing of continuous quan-
tities have started to emerge. Firstly, a number of companies, including Google, Microsoft–
Nokia and OpenSignal, are involved in building signal coverage maps and cell-tower
maps from signal strength readings provided by the crowd of mobile devices connected
to the network (Figure 1.1a). Using this technology, it has been possible to produce
cell-phone signal coverage maps, cell tower maps and WiFi hotspots maps for over 200
countries with the participation so far of more than 2 million users contributing data4.
Secondly, a key application area of participatory sensing is disaster response, where
crowdsourcing technologies are becoming an important way to gather live emergency
information from local responders. Some example of crowdsourcing and participatory
sensing applications are illustrated in Figure 1.1. In particular, a notable example is
3Source: The MobiThinking www.mobithinking.com (June 2013)
4Source: OpenSignal www.opensignal.com
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(a) Cell-tower, WIFI hotspots and

(c) Fukushima radiation monitoring (2011)

(b) Haiti emergency mapping (2010)

mobile signal coverage mapping

Figure 1.1: Some examples of crowdsourcing and participatory sensing applica-
tions.
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the Haiti-Ushahidi crowdsourced disaster mapping that took place after the devastat-
ing earthquake in Haiti, 2011. An open-source crisis mapping platform was set up by
the Ushahidi team (www.ushahidi.com) to allow people to fill a map with reports of
the estimated locations of disaster events around their area, such as trapped persons or
damaged buildings. This created a live disaster map with more than 600, 000 emergency
reports that became a key resource for the first responders to coordinate their rescue
operations (Figure 1.1b). In a similar scenario, during the nuclear emergency in Japan
subsequent to the 2011 Fukushima disaster, 557 Geiger counters were deployed by pri-
vate individuals to collect live radiation sensor readings to help monitor the spread of
the nuclear cloud (Figure 1.1c). Many of these sensors were based on open-hardware
boards such as Arduino (www.arduino.cc) or low cost computers such as Raspberry pi
(www.raspberrypi.com). This entirely crowdsourced sensor network came to life in less
than two weeks after the disaster and became a key resource for the public to gather
live nuclear radiation data from the contaminated areas (Teraguchi et al., 2011).

A number of key aspects emerging from these scenarios, and from many other besides, are
important for the scope of our work. The first aspect is that, when crowdsourcing sensor
estimates, we are facing a new scenario in which the crowd reports sensor estimates of
continuous quantities as opposed to discrete data. This means that each report contains
information about the uncertainty of the user surrounding the reported value. We can
then say that, in participatory sensing settings, the reports include both a reported value
and the precision of such a value, i.e., the reported uncertainty of the user (Quinonero-
Candela et al., 2006). For example, it is common for users to report the precision of
each observation as a confidence value estimated through self-appraisal, as the precision
of the measuring tool or as the variance of a series of repeated measurements as part of
their reports. In particular, when reporting GPS data, the precision of the location is
automatically provided by the GPS device itself estimated on the basis of the number
and configuration of satellites providing the fix (Brown, 1994).

The second key aspect is the fact that crowdsourcing and participatory sensing paradigms
are indistinguishably used for estimating values of both stationary and non-stationary
quantities. More precisely, for the purposes of this work, the concept of stationarity is
referred to the value of the item5 being crowdsourced. That is, stationary quantities are
items whose value remains constant, are uncorrelated to any extra dimensions (such as
space and time) and are uniquely defined within a specific range. For example, in crowd-
sourcing applications, stationary quantities are typically location and fix point targets,
such as cell-tower locations, the WiFi hotspot locations. By contrast, non-stationary
quantities have non–constant values that may vary across one or several dimensions. As
a result, the crowd reports related to such quantities are correlated to these dimensions.
For example, non-stationary quantities estimated through crowdsourced estimates are
5We will use the terms quantity and item interchangeably.
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continuous spatial-temporal functions, i.e., functions varying across spatial and tempo-
ral dimensions, where the observation values reported by each user depend on a specific
location and timestamp. Understanding the different types of the data generated by
observing stationary or non-stationary quantities is important for a task requestor to
make sense and effective use of such crowdsourced information.

A third challenging aspect of participatory sensing is the fact that the ground truth
of the crowdsourced items is typically unknown by the task requestor. Indeed, the
main purpose of crowdsourcing processes is usually to allow task requestors to retrieve
information about such an unknown item’s value by outsourcing the information retrieval
to the largest community of potential sources. This is particularly true for all the above
mentioned scenarios where, for example, the true positions of the cell-towers are unknown
to the crowdsourcing companies, since they do not have access to the official cellular
network data that is owned by the network infrastructure providers. Similarly, people
involved in tracking radiation levels in Japan did not have knowledge of the true radiation
levels over the contaminated areas that they were trying to monitor. Inevitably, the lack
of ground truth of the value of such quantities generates a great deal of uncertainty in
the crowdsourcing process when the goal of the task requestor is to estimate such true
values. To cope with this uncertainty, it is common within crowdsourcing models to
introduce one basic assumption, conventionally referred to as the majority assumption
(Karger et al., 2011; Tran-Thanh et al., 2013; Kamar et al., 2012). This assumption
states that, on average, the majority of the crowd reports is somehow related to the
ground truth. That is, most of the reports are informative for the correct estimation
of the true item’s value. In a way, this assumption reflects the task requestor’s belief
that the crowdsourcing process is overall useful, and not misleading, to learn correct
knowledge about the crowdsourced quantities. However, even after introducing this
assumption, there is still uncertainty related to how to identify such a majority of good
reports within the crowdsourced dataset.

Generally speaking, these aspects highlight a trade–off between the benefits of crowd-
sourcing in providing large amounts of information produced by the mobilisation of
people to report data, and the uncertainty surrounding such information generated by
missing ground truth and the individual uncertainty of the reported estimates. In fact,
while crowdsourced information can be a key contribution to successfully track station-
ary and non-stationary targets, the inefficient management of its uncertainty can result
in counterproductive outcomes that can potentially invalidate the utility of these tools
(see the case of the Boston marathon bombing where crowdsourcing reports of suspects
led to identifying the wrong people (Bodden, 2014)) To help address this challenging
problem, we identify a key question of interest to task requestors in participatory sens-
ing applications related to how to fuse multiple crowdsourced sensor estimates to accu-
rately estimate a generic (i.e. stationary or non-stationary) quantity, without knowing
its ground truth. At first glance, this question could be thought of as an instance of a
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standard data fusion problem in sensor networks, where the problem of fusing multiple
sensor estimates to learn a single output is prominent. In more detail, the sensor fusion
problem relates to fusing multiple readings provided by hard sensors under the uncer-
tainty of the possible inaccuracies, e.g., biases, gains and offsets, of individual sensors.
To address this problem, many approaches try to model sensor’s faults and biases to re-
cover the unbiased readings (Brooks and Iyengar, 1998). However, in our crowdsourcing
setting, we are dealing with human-generated sensor readings that may have gain and
offset errors that may be correctly calibrated but exhibit greater noise than reported
due to the over-confidence of the human user (Hall and Jordan, 2010). They may even
have position and timestamp errors with all the above features again, and they may
also be subject to malicious reporting. Therefore, as this thesis will show, a potential
drawback of the traditional sensor fusion techniques employed in crowdsourcing settings
is the difficulty of learning accurate sensor models for a heterogeneous and arbitrarily
large system of crowdsourced sensors given the sparse data typically available. Since
this issue can have a detrimental effect on the quality of the fusion results, we seek
alternative fusion methods that can be more effective for crowdsourcing scenarios by
abstracting from specific sensor models. To do so, we shall first discuss the key aspects
related to data trustworthiness in crowdsourcing contexts which lie at the foundations
of the problems that we address and the solutions that we will present in this thesis.

1.1 Trust Issues with Crowdsourced Information

The openness of crowd systems inevitably exposes the data produced by such systems to
issues of uncertain trustworthiness of the single crowd report. This issue relates to the
unknown capabilities and individual reliabilities of the task executors and their mobile
devices. Collectively, this uncertainty does not allow task requestors to easily identify
the reliable content among the set of crowd responses. For example, data trustworthiness
issues were reported by the Ushahidi team during the Haiti disaster mapping (Figure
1.1c) where many people maliciously misreported the true needs, category and priority
of their emergency. Similarly, in both the signal coverage mapping (Figure 1.1b) and
the radiation monitoring scenario (Figure 1.1d), the reliability of the reports varies
depending on the user’s behaviour as a reporter, as well as the noise and the sensitivity
of the device used for taking measurements. Therefore, when drawing conclusions from
such data by fusing the crowd reports together in a single output, it is necessary to take
these data trustworthiness issues into account to ensure the accuracy and validity of the
final results (Hall and Jordan, 2010).

To assist the task requestor in this challenging task of fusing crowdsourced reports, we
advocate the role of a third, software, agent, which we call theoutput mediator agent,
within crowd-based information systems. As defined byWooldridge and Jennings (1999),
an intelligent software agent is a computer system that is capable of autonomous action
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Figure 1.2: The architecture of a crowd–based information system including an
output mediator software agent.

within an environment. In particular, an agent is capable of (i) reactive behaviour (i.e.
respond to changes in the environment), (ii) proactive behaviour (i.e. take initiatives
and goal-driven actions when appropriate) and (iii) social behaviours (i.e. interact with
other software and human agents) within this environment. In the context of crowd-
based information systems, the primary goal of an output mediation agent is to compute
estimates of the item’s value by aggregating the set of crowd responses as accurately as
possible. Its reactive behaviour relates to the capability of responding to the evolving
structure of the information produced by the crowd. Its social behaviour relates to the
interaction with the reports produced by other task executor agents while facing the un-
certainty about their individual trustworthiness6. Figure 1.2 illustrates the architecture
of such a system with the output mediator agent bridging the information outputs be-
tween the crowdsourcing platform and the task requestor. In particular, the agent must
feed back to the task requestor information about (i) the aggregated output and (ii) the
user’s trustworthiness. In particular, the learning of a user’s trustworthiness is required
to yield the fusion process to the correct estimation of the item’s true value. Further-
more, it is important for task requestors to have knowledge of user’s trustworthiness to
be able to design and allocate tasks to the best users and so maximise the throughput
of their crowdsourcing tasks. To summarise, our output mediator agent must be able to
operate in the following setting.
6We do not identify any strong proactive behavioural attitude in our output mediator agent.
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(i) The crowd responses are given in the form of crowdsourced sensor estimates,
i.e. each report contains a reported value and the precision of such a value.

(ii) The true value of the crowdsourced quantity is unknown.

(iii) The trustworthiness of each task executor is unknown.

In this setting, it is important to observe that, due to the lack of ground truth for both
the user’s trustworthiness and the items’ value, the set of crowd responses is the only
resource for the output mediator agent to recover the most likely aggregated result and
the trustworthiness of each user. Given this, the aim of our research is to provide a new
set of trust-based fusion algorithms that address the challenging task of aggregating
crowdsourced estimates combined with the assessment of the user’s trustworthiness. In
summary, the key research question that we address in this thesis can be stated as
follows:

How to reason about fused outputs and the trustworthiness of individuals in
crowdsourcing estimates of stationary and non-stationary continuous quan-
tities?

To address this question, we shall now describe the key requirements for a fusion method
suitable to be employed in the design of an output mediator agent.

1.2 Output Mediator Agent Requirements

From our discussion so far concerning the problem of fusing untrustworthy estimates in
participatory sensing domains, we outlined the architecture of a crowd-based information
system. In this system, we described the role of an output mediator agent which is
dedicated to solve the data fusion task (Figure 1.2). Now, such an output mediator agent
must be able to merge crowdsourced estimates in the various settings that relate to the
variety crowdsourcing settings described in our examples (Section 1). In particular, the
agent should be able to perform data fusion tasks equally well for both stationary and
non-stationary items. Given this, we identify the following requirements for the design
of such an output mediator agent:

Req. 1: Probabilistic Fusion of Crowdsourced Estimate of Stationary
Continuous Quantities.
The first requirement is to be able fuse crowdsourced estimates for stationary
items. This requirement is relevant to the problem of estimating the location
of a WiFi hotspot from crowdsourced observations in mobile sensing, or the
location of a trapped person from crowdsourced reports in disaster response.
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However, we discussed earlier the issue of dealing with uncertainty about the
data trustworthiness which makes this requirement particularly challenging to
meet. To efficiently deal with this issue, the agent should make use of notions
from probability theory as a standard mathematical tool to model uncertainty
in data fusion processes. In particular, when computing the fused estimate, a
prerequisite for the agent is to provide full information about the uncertainty
around the fused value, i.e., it should provide the predictive uncertainty of such
a value. In fact, having information about the predictive uncertainty is relevant
to many decision making tasks where task requestors take actions based on the
confidence in the fused value (Quinonero-Candela et al., 2006). For example,
in emergency response, a rescue operator (i.e., a task requestor) who is aware
of the risk of inefficiently allocating the limited rescue forces, would prefer a
prediction saying: “there is 40% probability that a person is trapped in this
building" rather than the much less informative statement: “it is likely that
there is a person trapped in this building". In these terms, it is important to
compute a fused estimate with low uncertainty in order to provide the highest
informative contribution to the task requestor’s decision making.

Req. 2: User’s Trust Learning.
The second requirement for the agent is to be able to estimate the trustwor-
thiness of the individual users from the set of crowd responses. We identify
this requirement as traversal to both the cases of fusing estimates for station-
ary and the non-stationary items. That is, each fusion algorithm deployed in
crowdsourcing settings should be able to perform user trust learning as a pre-
requisite to produce most accurate fusions. Hereafter, we will refer to this task
of the joint learning of user’s trustworthiness and the fused output as the trust-
based fusion task. For this requirement, due to the lack of knowledge of the
ground truth of the user’s reliability (Section 1.1), the process of learning such
a user’s trustworthiness is implicitly driven by the concept of crowd consensus
(Sheshadri and Lease, 2013). Specifically, from the majority assumption stated
earlier (Section 1), the agent can assume that there exists a trustworthy crowd
consensus value given by the agreement of an unidentified majority of trust-
worthy reports. Therefore, such a crowd consensus can be used as evidence for
identifying the reliability of each reports and, in turns, assess the trustworthi-
ness of the individual users. Given this, the agent’s trust learning mechanism
can assess user’s reliabilities on the basis of how much the user’s reports agree
with the consensus of the other users. In doing so, however, a crucial point
relates to how to deal with the uncertainty about the crowd consensus value
that is also unknown to the agent.

Req. 3: Probabilistic Fusion of Crowdsourced Estimates for Non-Stationary
Continuous Quantities.
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Extending our first requirement, this requirement is for the agent to perform
probabilistic fusion of untrustworthy estimates for non-stationary items. Specif-
ically, this requirement is relevant to the applications of participatory sensing
of spatial–temporal function such as radiation sensing, temperature sensing, or
weather sensing. In these applications, the fusion of the reports must be com-
puted as an estimate of the continuous, spatial-temporal function to represent
the non-stationary quantity observed by the crowd. To achieve this, the agent
must be capable of assessing the trustworthiness of the individual user with
respect to the spatial and temporal features of its reports and of relating such
a user’s trustworthiness to the values of the aggregated function. For example,
the estimated function should be consistent with the value of the trustworthy
reports and, at the same time, ignore the value of other untrustworthy reports.
In this setting, the report’s low or high trustworthiness might be related to spe-
cific geographical areas and time ranges that are particularly easy or difficult
to observe for the user. Therefore, the capability of analysing the user’s trust-
worthiness from spatial-temporal estimates is required for the agent to perform
the trust-based data fusion for non-stationary items.

Req. 4: Probabilistic Fusion of Crowdsourced Point Estimates for
Non-Stationary Continuous Quantities.
In many cases, crowd reports are given in the form of of point estimates de-
fined as an isolated point (e.g., latitude and longitude coordinates) with an
associated precision (e.g., the uncertainty around the reported location) and a
submission timestamp. This is the case for the crowdsourced emergency reports
of the Haiti scenario (Section 1) where reports from the crowd were geo-located
tweets and text messages, with associated GPS accuracy, that people sent to
indicate the location and the time of an emergency event. In this setting, the
data fusion task for the agent is to recover the spatial-temporal distribution of
emergency events based on the intensities of the submitted reports. That is,
the fused output is produced in the form of a continuous function representing
the expected number of reports at any point in space and time. In particular,
these reports’ intensity functions are important to estimate the real distribution
of damage in the disaster areas and to allocate rescue resources more efficiently
(Goodchild and Glennon, 2010b). By knowing the expected intensity of reports
in a certain area, a task requestor could infer the location of new rescue tasks
or the boundaries of the new areas to inspect for rescue purposes. Therefore,
the output mediator agent must be able to compute aggregations of point esti-
mates in the form of a spatial-temporal intensity function (commonly referred
to as spatial-temporal point processes, Diggle 2013) in the typical crowdsourc-
ing setting where there is uncertainty about the trustworthiness of the sources
(i.e. the point reporters).



Chapter 1 Introduction 12

1.3 Research Challenges

From the requirements described in Section 1.2, our research aims to develop new so-
lutions to efficiently tackle the data fusion problem within a number of crowdsourcing
and participatory sensing applications. To do this, there are a number of challenges that
must be addressed:

1. When simultaneously estimating an item’s true value and the trustworthiness of
the individual users without having knowledge to the ground truths of such quan-
tities, a challenging aspect for the fusion algorithm is indeed the impossibility to
validate the correctness of its learning outputs. In more detail, the fusion algo-
rithm must be able to learn the correct assignments of trustworthiness among the
users, and accordingly estimate the fused output in such a way that the trust value
reflects the contribution of each user’s report to the fused estimate. However, as
discussed earlier, this learning task must be performed in an unsupervised setting
where there is no access to gold standards (i.e. the ground truth) for either the
user’s trustworthiness or the item’s value throughout the learning process.

2. When putting the previous challenge in the context of fusing crowdsourced esti-
mates for non-stationary items, another key challenge is to also take into account
extra correlations, e.g., spatial-temporal correlations, of the set of reported esti-
mates within the fusion process. In more detail, the difficulty of the algorithm is
to be aware of the dependencies of the reports from the user’ actual location and
time of submission when processing the value of different reports. In particular,
when evaluating the user’s trustworthiness, the trust values learned by the algo-
rithm must be related to the consistency of the user’s reports with the estimated
function over a specific space and time range.

3. The third challenge is to solve the trust-based fusion task with spatial-temporal
point estimates. Similarly to the previous challenge, the algorithm must be able
to simultaneously perform the user trust learning and the data fusion task with
datasets of spatial-temporal point reports. Recall, when dealing with point reports,
the fused estimate is typically computed as an intensity function that expresses the
expected number of reports at any location and time of interest (Diggle, 2013).
However, an extra difficulty of this fusion task lies in the problem of relating
user trustworthiness to the intensities of submissions of the user’s reports, rather
than the reported values themselves. This difficulty is due to the need to analyse
correlations between the intensities of reports sent by each user. In this setting,
each untrustworthy user can be regarded as a single reporter whose number of
submissions does not follow, i.e., is uncorrelated to, the main intensity pattern
drawn by the unknown portion of trustworthy users. Given this, the key question
is how to estimate the underlying intensity function spatially and temporally and,
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at the same time, learn the user’s trust values correlated to this function, without
having knowledge of either of these quantities.

From these challenges, a number of research communities from various fields, including
human computation, citizen science, machine learning and multi-agent systems, have
been trying to find solutions to various aspects of the overarching problem. In particu-
lar, reasoning about trust under uncertainty to support decision making by autonomous
agents has always been a central topic within multi-agent systems research (Castelfranchi
and Falcone, 1998). In this respect, a number of computational approaches to support
decision making by autonomous agents in situations where sources of information are
of varying degree of trustworthiness have been devised. These include trust-based argu-
mentation frameworks, (Parsons et al., 2013), cognitive trust models (Castelfranchi and
Falcone, 2010) to probabilistic methods based on the Dempster-Shafer theory (Yu and
Singh, 2002). These approaches look at ways of manipulating trust under uncertainty
within the artificial minds of intelligent agents with the goal to build reliable multi–
agent interactions. In these approaches, however, mechanisms for deriving trust from
interactions are needed which is one of the technologies that this thesis aims to provide.

Another line of work on computational models of trust in multi-agent systems focuses on
ways of learning the trustworthiness of individuals (Marsh, 1994; Ramchurn et al., 2003;
Huynh et al., 2004; Teacy et al., 2006). These models consider a rich set of variables
regarding, among others, the context, the competence and the risk of the interactions
with the trustees. However, most of this work computes trust based on data acquired
from direct observations or past interactions with the potential trustees. In our work, we
are primarily concerned with trust evaluation for a undistinguished and heterogeneous
set of information sources, where trust is computed by comparing the opinions (i.e., the
reports) of an individuals with the opinions of all the individuals. As this appears as
a new problem to most of these trust models, our work will look at extending the key
concepts of the existing trust models to crowdsourcing settings.

Closer to the sphere of crowdsourcing research, prior work has addressed the problem
of fusing crowd reports of discrete quantities, combined with the assessment of a user’s
trustworthiness, in a number of crowdsourcing applications including, image labelling
for medical diagnosis (Dawid and Skene, 1979), natural image classification (Clow and
Makriyannis, 2011) and galaxy classification (Kamar et al., 2012). The existing solutions
range from simple techniques based on majority voting or weighted majority voting
(Tran-Thanh et al., 2013), to methods that take into account factors that affect the
data reliability, such as user’s trustworthiness and task difficulty (Welinder et al., 2010).
However, since all these fusion methods are tailored to discrete data, they cannot easily
be applied to continuous data that is a core requirement of our problem (Req. 1). In the
research of fusion methods for crowdsourcing continuous data, another line of work has
dealt with the fusion of single-value reports in crowdsourcing settings related to various
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applications, including IQ testing (Bachrach et al., 2012a), quality scoring (Kazai, 2011)
and image rating (Kittur et al., 2008). However, most of the current solutions are based
on non-trust based fusion methods that treat the reports as equally trustworthy (Hurley,
2002). By doing so, these solutions fail to meet our requirement of user’s trust learning
that we identify as a crucial element to achieve accurate fusions (Req. 2). In more detail,
these non-trust based fusion methods often overcome the possible reliability issues in the
data at the extra cost of gathering more reports from the crowd in order to increase the
reports’ redundancy and possibly reduce the uncertainty in the fused output. Given
this, in this thesis, we will focus on the search of alternative fusion methods that are
able to deal with the uncertainty in data trustworthiness by putting in place a more
efficient user’s trust learning mechanism finalised at providing a more accurate fusion
with the same dataset, i.e., without forcing the task requestor to necessarily request
extra reports from the crowd (see Chapter 2 for more details).

Related to the challenge of fusing estimates of non-stationary continuous quantities,
there are a number of methods produced by the research on probabilistic regression and
random point processes for spatial-temporal data (Cressie and Wikle, 2011; Brix and
Diggle, 2001). In this area, effective data fusion methods are typically based on model-
based statistical machine learning approaches such as Kalman filters, Markov random
fields, basis function models and Gaussian processes, among others (see Cressie and
Wikle (2011) for an overview). However, since these methods are typically designed
for general purpose applications, they do not explicitly consider user trustworthiness
as a crucial requirement of their model. By doing so, their shortcoming of the fact of
explaining the inaccuracies of the data through a homoskedastic, single-variance, noise
model that captures the general noise of the crowd reporting process but ignores the
individual trustworthiness of the sources. In contrast, by modelling the concept of user
trustworthiness within such models, our approach will aim to provide solutions that
handle the noise of spatial-temporal data in crowdsourcing settings more efficiently,
with the target of improving the accuracy of the fusion.

Against this background, we now detail how we addressed the shortcoming of the current
methods and describe the contributions of our research.

1.4 Thesis Contributions

The description of our requirements identifies three different core problems related to
managing untrustworthy information in crowdsourcing processes. These problems relate
to (i) fusing reported observations of stationary items (Req. 1), (ii) fusing reported
observations of non-stationary item’s reports and (iii) fusing non-stationary point reports
(Req 4), with all these problems combined with learning users’ trustworthiness (Req
2). In this context, our work will devise a set of new trust-based fusion algorithms,
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MaxTrust BACE TrustHGP TrustLGCP
(Chapter 3) (Chapter 4) (Chapter 5) (Chapter 6)

Probabilistic Fusion of Crowdsourced
Estimate for Stationary Continuous
Quantities (Req. 1)

+ ++ - -

User’s Trust Learning (Req. 2) + ++ + +
Probabilistic Fusion of Crowdsourced
Estimates for Non-Stationary Continu-
ous Quantities (Req. 3)

- - + -

Probabilistic Fusion of Crowdsourced
Point Estimates for Non-Stationary
Continuous Quantities (Req. 4)

- - - +

Table 1.1: An overview of our contributions mapped against the requirements
of the output mediator agent for crowd–based information systems. The symbol
‘+’ (‘++’) means that the requirement is (strongly) satisfied by the algorithm.
The symbol ‘-’ means that the requirement is not satisfied by the algorithm.

each specialised on addressing one of these problems, that will provide four sets of
contributions that gradually address all our requirements.

In more detail, as a common basis for all our contributions, we develop a new user
trust model for crowd reported estimates based on uncertainty scaling techniques. We
use this model to relate the noise of the reports to the trustworthiness of each user
(see Chapter 3 for more details). Using this model, we derive our first contribution
that is the first algorithm (MaxTrust) for fusing crowd reports for stationary items
(satisfying our Req. 1) using a frequentist learning approach. This algorithm applies
a maximum likelihood approach to estimate the values of the users’ trustworthiness,
and in turn the parameters of the fused estimate (see Chapter 3). Subsequently, we
present a second algorithm (BACE) that addresses the same problem of fusing crowd
reports for stationary items while now using a Bayesian learning approach (see Chapter
4). Specifically, the use of a Bayesian learning framework within BACE allows us to
significantly improve the qualities of MaxTrust in several ways. Firstly, the use of prior
probability distributions over the random variables describing the user’s trustworthiness
and the item’s value allows us to account for the uncertainty in the estimation user
trustworthiness which improves on the accuracy of MaxTrust’s fusion. Secondly, BACE
provides a richer set of learning outputs by computing probabilistic estimates of user
trustworthiness (in contrast to the single-value estimates computed by MaxTrust), that
provide numeric information about the uncertainty around the estimated user’s trust
values. Subsequently, we present our third contribution that is the first model addressing
the problem of fusing estimates for non-stationary items (satisfying Req. 3). This
model builds upon the heteroskedastic Gaussian process regression framework (Goldberg
et al., 1997), from which, we derive a new trust-based heteroskedastic Gaussian process
(TrustHGP) designed to represent individual user’s trustworthiness in spatial-temporal
regression. Within this model, we provide an inference algorithm that is able to perform
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the trust-based fusion task with spatial-temporal crowdsourced estimates. Finally, we
address our last requirement (Req. 4) by introducing our fourth contribution consisting
of an algorithm (TrustLGCP) for merging untrustworthy point estimates again combined
with the assessment of user trustworthiness (see Chapter 6). This model is based on an
extension of the standard Log Gaussian Cox Process model (i.e., a non-homogeneous
Poisson process model with a random log-intensity function generated by a Gaussian
process, Møller et al. (1998)) where we introduce input-dependent noise terms to deal
with the individual trustworthiness of the reports. In summary, all our contributions
and their mapping against our requirements is reported in Table 1.1. Furthermore, to
demonstrate the impact and wide applicability of our work, we evaluate our algorithms
in a number of key crowdsourcing applications. These applications are inspired by the
scenarios presented earlier in this chapter (Section 1) and consider the applications of
cell-tower localisation andWiFi hotspot localisation for evaluating MaxTrust and BACE,
respectively, radiation monitoring for evaluating TrustHGP and disaster mapping for
evaluating TrustLGCP.

In what follows, we highlight the most salient features our each contribution, along with
the numerical results of our experimental evaluations.

1. A Frequentist Trust Model for Fusing Crowdsourced Continuous Data
(Chapter 3): To address the shortcomings in existing research related to fusion
of untrustworthy estimates for crowdsourced stationary items, we present a first
frequentist approach to model individual user’s trustworthiness (satisfying Req. 2)
in the probabilistic fusion of stationary data (satisfying Req. 1). In doing so, we
make the following contributions:

• We present the first approach for jointly fusing untrustworthy estimates of
stationary continuous items in crowdsourcing settings. Our approach consists
of using unobserved trustworthiness parameters to model user’s reliabilities
with respect to the the Gaussian noise of their estimates.

• We derive an efficient inference algorithm (MaxTrust) for our model that im-
plements a Jacobi numeric optimisation scheme to compute maximum like-
lihood estimates of the trustworthiness parameters, from which the fused
estimate is automatically derived.

• Using the OpenSignal (www.opensignal.org) dataset containing cell-tower
detections collected from Android mobile phones, we show that our algorithm
outperforms four existing methods in both absolute accuracy, gaining up to
22%, and predictive uncertainty, gaining up to 21%. Furthermore, we also
show through simulations that our algorithm achieve comparable accuracy
with 10% more untrustworthy users within the crowd.

2. A Bayesian Trust Model for Fusing Crowdsourced Continuous Data
(Chapter 4): To further enhance the performance MaxTrust, we present a second

www.opensignal.org
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approach to the problem fusing crowdsourced estimates for stationary continuous
items. In detail, we apply a Bayesian treatment to the same MaxTrust model
defining prior distributions over the trust parameters and the item’s true value
and deriving the posterior distributions of such random variables. In doing so, we
make the following contributions:

• We present the first Bayesian approach to model the fusion of continuous
estimates of stationary items (e.g., locations or fixed values) in crowdsourcing
settings. Extending our previous MaxTrust’s model, this new model (BACE)
is able to (i) integrate prior domain knowledge over an item’s value and the
trustworthiness of a user, (ii) naturally adapt to online learning and sequential
data and (iii), most importantly, to achieve transfer learning, whereby the
reliability of a participant’s reports about one item, can be used as evidence
about the reliability of its reports about other items.

• We derive an efficient Gibbs sampling–based algorithm to perform approx-
imate Bayesian inference within our model and compute the posterior esti-
mates of the users’ trustworthiness and the items’ value from the set of crowd
reports.

• Using a second OpenSignal dataset of WiFi hotspot detections collected from
Android mobile phones, we shows that BACE outperforms MaxTrust and
other three state-of-the-art fusion methods by up to 45%. Furthermore, we
show that BACE achieves comparable accuracy to existing methods even with
20% more untrustworthy users through experiments on simulated crowdsourc-
ing scenarios.

3. A Trust-based Heteroskedastic Gaussian Process Model for Fusing Crowd-
sourced Spatial Data (Chapter 5): To address the shortcomings of the exist-
ing research related to trust-based fusion for crowdsourcing non-stationary items,
we present the first work that models spatial and spatial-temporal data using
a heteroskedastic Gaussian process approach7. In detail, we make the following
contributions:

• We present the trust-based heteroskedastic Gaussian process: the first model
for fusing untrustworthy spatial and spatial-temporal estimates in crowd-
sourcing settings. This method is based on an integration of our user trust
model with the heteroskedastic Gaussian process. From this, we derive a
new Gaussian process method that is able to aggregate crowdsourced spatial
reports while also learning the individual user’s trustworthiness.

• We show that our method significantly improves the accuracy of the pre-
dictions of other GP and HGP methods in an application of crowdsourced

7Notice that, although in this thesis we present both the TrustHGP and TrustLGCP in the context of
spatial data, the GP framework adopted by these models allows us to easily apply them to both spatial
and spatial-temporal data by selecting the appropriate GP kernel. See Chapter 5 for more details.
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radiation monitoring using real-world data from the 2011 Fukushima nuclear
disaster. In particular, we show that our method outperforms other non-trust
based Gaussian process methods by up to 23% in terms of accuracy. We also
provide an in-depth analysis of the performance using synthetic data showing
that our method achieves performance comparable to other methods with up
to 30% more untrustworthy users.

4. A Trust-Based Log Gaussian Cox Process Model for Fusing Crowd-
sourced Point Data (Chapter 6): To address the shortcomings of existing
research related to fusing untrustworthy point estimates, we present the first work
that models report’s categorical trustworthiness in random point processes for
crowdsourced information. In more detail, we make the following contributions:

• We introduce the trust-based Log Gaussian Cox Process (TrustLGCP), the
first model for learning random spatial point processes from crowdsourced
point estimates. Our method is able to perform the trust-based learning of the
spatial intensities of the point process together estimating the trustworthiness
of sets of reports with respect to their input features (e.g., categories and
types).

• We show that our TrustLGCP model outperforms the standard, non-trust
LGCP through experiments on point process estimations using point reports
obtained from simulated crowds. We also demonstrate that our TrustLGCP
can efficiently learn intensity maps from crowdsourced emergency reports and
also learn the trustworthiness of each emergency category with an application
to the Ushahidi dataset collected during the 2010 Haiti earthquake.

A number of these contributions have been presented in refereed publications:

M. Venanzi, A. Rogers, N.R. Jennings. Trust-Based Fusion of Untrustworthy
Information in Crowdsourcing Applications In the 12th International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2013,
829-836 (See Chapter 3).

M. Venanzi, A. Rogers, N.R. Jennings. Crowdsourcing Spatial Phenomena
Using Trust-Based Gaussian Processes In the 1st International Conference
on Human Computation and Crowdsourcing (HCOMP), 2013, 182-189 (See
Chapter 5).

Additional publications inspired by this work, whose abstract is given in Appendix D
are:
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M. Venanzi, J. Guiver, G. Kazai, P. Kohli, M. Shokouhi. Community-Based
Bayesian Aggregation Models for Crowdsourcing. In the 23rd International
World Wide Web Conference (WWW), 2014. Best paper runner up. Mi-
crosoft, one of the partners of the ORCHID project (www.orchid.ac.uk),
has registered the algorithm presented in this paper under a US patent. MS
ref: 340522.01.

L. Tran-Thanh, M. Venanzi, A. Rogers, N.R. Jennings (2013) Efficient Bud-
get Allocation with Accuracy Guarantees for Crowdsourcing Classification
Tasks. In the 12th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2013, 901-908.

S. Ramchurn, T. D. Huynh, M. Venanzi, B. Shi. Collabmap: Crowdsourc-
ing Maps for Emergency Planning. In the 5th Annual ACM Web Science
Conference, 4, (2), 2013, 326-335.

A. Rutherford, M. Cebrian, I. Rahwan, S. Dsouza, J. McInerney, V. Naro-
ditskiy, M. Venanzi, N. R. Jennings, J.R. deLara, E. Wahlstedt, S. U. Miller.
Targeted Social Mobilization in a Global Manhunt. PLoS ONE, 2013, 8(9):
e74628.

H. T. Dong, M. Ebden, M. Venanzi, S. Ramchurn, S. Roberts, L. Moreau.
Interpretation of Crowdsourced Activities Using Provenance Network Analy-
sis. In the 1st International Conference on Human Computation and Crowd-
sourcing (HCOMP), 2013, 78-85.

V. Capraro, M. Venanzi, M. Polukarov, N.R. Jennings. Cooperative Equi-
libria in Iterated Social Dilemmas. In, 6th International Symposium on Al-
gorithmic Game Theory (SAGT), 2013, 146-158.

M. Venanzi, M. Piunti, R. Falcone, C. Castelfranchi. Facing Openness with
Socio Cognitive Trust and Categories. In the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI), 2011, 400-405.

R. Falcone, M. Piunti, M. Venanzi, C. Castelfranchi, From manifesta to
krypta: The relevance of categories for trusting others. ACM Transactions
on Intelligent Systems and Technology (TIST), special issue on Trust in
Multi-Agent Systems, 2011, 1-24.

With our work, we expect to provide an important set of solutions to the problem of
crowdsourced data fusion that will help make crowdsourcing tools more reliable and
robust for real–world applications.

www.orchid.ac.uk
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1.5 Thesis Outline

The remainder of this thesis is structured as follows.

In Chapter 2, we provide the background to the work of this thesis by reviewing research
related to approaches to reliable crowdsourcing, with an emphasis on data fusion and
spatial regression methods.

In Chapter 3, we introduce our MaxTrust model for the trust-based fusion of crowd-
sourced location estimates. Following this, we present an empirical evaluation of Max-
Trust using both synthetic data and real-world location data with an experiment of cell
tower localisation.

In Chapter 4, we introduce our BACE model that improves the performance of MaxTrust
through the adoption of Bayesian statistics. We show an empirical comparison of BACE
against our set of benchmarks using both synthetic data and real data for WiFi hotspot
locations.

In Chapter 5, we present our TrustGP model for the trust-based fusion of spatial data.
We also describe the steps of the Bayesian inference to jointly estimate the underlying
spatial function and the user’s trustworthiness. We then show its application to the
crowdsourced radiation monitoring problem using data from the Fukushima nuclear
disaster.

In Chapter 6, we present our TrustLGCP model for learning spatial intensity maps from
untrustworthy point reports. We show an application of this model to the Ushahidi
dataset of crowdsourced emergency reports for the Haiti disaster scenario.

In Chapter 7, we summarise the results of our research and draw our conclusions. We
also outline directions for future work to broaden the scope of this research and increase
its applicability to a wider spectrum of crowdsourcing applications.



Chapter 2

Literature Review

In this chapter, we review the key background research related to the problem of fusing
crowdsourced information outlined in Chapter 1. This background will provide the
theoretical basis for the models and the algorithms presented in the subsequent chapters.
Specifically, the chapter begins with an overview of research on the topic of trust in
information sources (Section 2.1) and computational models of trust in the context of
crowdsourcing systems (Section 2.2). Subsequently, we will review the state–of–the–art
fusion approaches to crowdsourced information that are relevant to our requirements
related to managing crowdsourced estimates of stationary items. Specifically, we will
divide the discussion by first considering the class of non-trust based fusion approaches
(Section 2.3) and then the class of trust-based approaches (Section 2.4). We consider
both the cases of discrete and continuous data for each of these. In the second part, we
survey fusion approaches related to crowdsourced information of non-stationary items,
particularly in the context of crowdsourcing spatial information. In this respect, we will
discuss some state–of–the–art approaches to spatial regression (Section 2.5) and spatial
point processes (Section 2.6) that are related to our set of problems.

2.1 Trust in Information Sources

In the previous chapter, we discussed how the problem of making crowdsourced informa-
tion more reliable is primarily concerned with issues of building and managing trust in
information sources. As this topic has been a central component of research in computer
science for several decades, we provide an overview of existing trust research that will
help us position the work of this thesis within this active research area.

Trust is a widely used concept within diverse research areas of computer science ranging
from security and semantic web to multi–agent systems and social sciences. As trust is
generally intended as an integral component of many types of interactions within humans
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and artificial agents, its definition often differs among researchers and application areas.
In this respect, several papers explore in-depth many different aspects of trust and
survey a number of definitions that emphasize its role as both a degree of belief and
acceptance that allows people to make decisions with the risk of negative consequences
(Artz and Gil, 2007; Jøsang et al., 2007; Misztal, 2013). In our work, we follow the
widely cited definition from Gambetta (1988), that captures trust as a particular level
of the subjective probability with which an agent will perform a particular action. In
our crowdsourcing context, this concept may be referred to the action of reporting
information reliably.

With this in mind, there is a wide variety of trust literature that aims to find ways
and theories to build, establish and manage trust in interactions among mixed teams
of individuals. In their survey, Artz and Gil (2007) organise this literature into four
majour areas: i) general models of trust, ii) policy–based trust, iii) trust management
and iiii) reputation–based trust. The first area comprises models of trust that describe
the factors and the conditions that play a role in making trust decisions. A number
of works on modelling trust propose ways of assessing trust based on both the abilities
and willingness of the trustee with respect to the outsourced task, and the external
context of the interaction (Marsh, 1994; Castelfranchi and Falcone, 2010). However,
many applications, including crowdsourcing, do not always follow these models due to
the difficulty of finding values for some of these variables.

In the area of policy–based trust, many works focus on the use of policies to establish
trust based on exchanging credentials with the users (Kagal et al., 2003). For example,
a policy is the process of logging into a computer system where a user must provide a
valid user name and password in order for the system to trust his/her identity. Along
this line, research of trust management addresses the problem in establishing trust by
using credentials as that may incur a loss of privacy or control for the users in revealing
information (Jøsang et al., 2007). In general, both the approaches to policy–based
trust and trust management do not deal with the problem of computing trust from
interactions with individuals in a crowdsourcing context. In fact, most of the existing
work has focused on the effective manipulation of trust beliefs that are computed in some
way. Therefore, we aim to provide new models that can solve the problem of computing
trust in a broad range of crowdsourcing applications that is currently not addressed by
most of this work.

Finally, more related to our problem is work on reputation–based trust, which looks at
ways of trusting users based on direct or indirect interactions with other agents that
happen over time. As research on reputation–based trust does address the problem of
computing trust from interactions with virtual information providers, we explore it in
more detail together with other approaches to trusting crowd users in the next section.
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2.2 Computational Approaches to Trusting Crowd Users

We now discuss a number of computational approaches to trust evaluation that we
regard as tightly connected to the context of crowdsourcing applications. In particular,
we focus our discussion on the three main trust approaches that are commonly adopted
by crowdsourcing systems. These are (i) reputation–based trust, (ii) gold data–driven
trust and (iii) consensus–based trust.

The first class of approaches to trust evaluation that we review is reputation–based trust.
These approaches are based on assessing a user’s trustworthiness by relying on historical
data about previous interactions of the trust assessor with the user (Resnick et al.,
2000). This data might include other reputation reports and opinions received from third
parties which further strengthen the evidence to support the trust formation (Ramchurn
and Jennings, 2005; Pinyol and Sabater-Mir, 2013). In general, the advantage of this
approach is that the user’s trustworthiness evaluation is supported by some empirical
evidence of how the user behaved in the past with the system, either by interacting
directly with the trust assessor or with other users. However, one difficulty in employing
reputational trust approaches in crowdsourcing stems from the openness of the crowd.
That is, participants can join and leave the crowd at any time. In fact, such openness
can facilitate whitewashing, i.e. a crowd member who anonymises or regenerates its
identity, and other forms of attack that can be a hinderance for these trust mechanisms
in building reliable user reputations (Feldman et al., 2006). In general, the fact that
multiple encounters with the same users in open crowd systems are scarce means that use
of reputational trust is not well suited to our problem (Huynh et al., 2006). Moreover,
building trust based on historical data in a crowdsourcing setting is exposed to the
threat of strategic reporting behaviours by the users who may use their reports to build
a deceptive image of their reputation in the eyes of the task requestor (Archak and
Sundararajan, 2009). Since strategic behaviour of this kind has been observed in a
number of human reports (e.g. in the “Red Balloon" challenge, Naroditskiy et al. (2012),
the Boston marathon event, Bodden (2014), and the Tag challenge, Rutherford et al.
(2013)), in this work we do not consider reputational trust approaches.

A second approach to trust evaluation is gold data–driven trust. This approach aims to
identify unreliable users using a set of data about which there is a predefined ground
truth, or gold standard (Oleson et al., 2011). In more detail, by asking the user to perform
a set of gold tasks (i.e., a set of tasks for which a gold standard answer is known),
the task requestor can estimate the user’s trustworthiness based on the discrepancy
between their answers and the correct ones. Currently, many crowdsourcing platforms
adopt gold–based mechanisms to provide assurance of data reliability to task requestors.
For example, both Amazon Mechanical Turk (www.mturk.com) and Crowdflower (www.

crowdflower.com) offer the feature of specifying gold standards when creating tasks.
Also, ReCAPTCHA, a tool that uses human answers to digitalise text, performs the

www.mturk.com
www.crowdflower.com
www.crowdflower.com
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Archive) to preserve human knowledge and to
make information more accessible to the world.
The pages are photographically scanned and the
resulting bitmap images are transformed into text
files by optical character recognition (OCR) soft-
ware. This transformation into text is useful be-
cause the books can then be indexed, searched,
and stored in a format that can be easily analyzed
and manipulated. One of the stumbling blocks in
the digitization process is that OCR is far from
perfect at deciphering the words in bitmap images
of scanned texts. As we show below, for older
prints with faded ink and yellowed pages, OCR
cannot recognize about 20% of the words. By
contrast, humans are more accurate at transcribing
such print. For example, two humans using the
“key and verify” technique, where each types the
text independently and then any discrepancies are
identified, can achievemore than 99% accuracy at
the word level (4, 5). Unfortunately, human tran-
scribers are expensive, so only documents of ex-
treme importance are manually transcribed.

Our apparatus, called “reCAPTCHA,” is used
by more than 40,000 Web sites (6) and dem-
onstrates that old print material can be tran-
scribed, word by word, by having people solve
CAPTCHAs throughout the World Wide Web.
Whereas standard CAPTCHAs display images
of random characters rendered by a computer,
reCAPTCHA displays words taken from scanned
texts. The solutions entered by humans are used to
improve the digitization process. To increase effi-
ciency and security, only thewords that automated
OCR programs cannot recognize are sent to hu-
mans. However, to meet the goal of a CAPTCHA
(differentiating between humans and computers),
the system needs to be able to verify the user’s
answer. To do this, reCAPTCHA gives the user
two words, the one for which the answer is not
known and a second “control” word for which
the answer is known. If users correctly type the
control word, the system assumes they are human
and gains confidence that they also typed the other
word correctly (Fig. 1). We describe the exact
process below.

We start with an image of a scanned page.
Two different OCR programs analyze the image;
their respective outputs are then aligned with
each other by standard string matching algo-
rithms (7) and compared to each other and to an
English dictionary. Any word that is deciphered
differently by both OCR programs or that is not
in the English dictionary ismarked as “suspicious.”
These are typically the words that the OCR pro-
grams failed to decipher correctly. According to
our analysis, about 96%of these suspicious words
are recognized incorrectly by at least one of the
OCR programs; conversely, 99.74% of the words
not marked as suspicious are deciphered correctly
by both programs. Each suspicious word is then
placed in an image along with another word for
which the answer is already known, the twowords
are distorted further to ensure that automated pro-
grams cannot decipher them, and the resulting
image is used as a CAPTCHA. Users are asked to

type both words correctly before being allowed
through. We refer to the word whose answer
is already known as the “control word” and to
the new word as the “unknown word.” Each
reCAPTCHA challenge, then, has an unknown
word and a control word, presented in random
order. To lower the probability of automated pro-
grams randomly guessing the correct answer, the
control words are normalized in frequency; for
example, the more common word “today” and
the less common word “abridged” have the same
probability of being served. The vocabulary of
control words contains more than 100,000 items,
so a program that randomly guesses a word would
only succeed 1/100,000 of the time (8). Addi-
tionally, only words that both OCR programs
failed to recognize are used as control words.
Thus, any program that can recognize these words
with nonnegligible probability would represent an
improvement over state-of-the-art OCRprograms.

To account for human error in the digitiza-
tion process, reCAPTCHA sends every suspi-
cious word to multiple users, each time with a
different random distortion. At first, it is displayed
as an unknown word. If a user enters the correct
answer to the associated control word, the user’s
other answer is recorded as a plausible guess for
the unknown word. If the first three human
guesses match each other, but differ from both
of the OCRs’ guesses, then (and only then) the
word becomes a control word in other chal-
lenges. In case of discrepancies among human
answers, reCAPTCHA sends the word to more
humans as an “unknown word” and picks the
answer with the highest number of “votes,”
where each human answer counts as one vote
and each OCR guess counts as one half of a
vote (recall that these words all have been pre-
viously processed by OCR). In practice, these
weights seem to yield the best results, though
our accuracy is not very sensitive to them (as
long as more weight is given to human guesses

than OCR guesses). A guess must obtain at least
2.5 votes before it is chosen as the correct
spelling of the word for the digitization process.
Hence, if the first two human guesses match
each other and one of the OCRs, they are con-
sidered a correct answer; if the first three guesses
match each other but do not match either of the
OCRs, they are considered a correct answer, and
the word becomes a control word. To account
for words that are unreadable, reCAPTCHA has
a button that allows users to request a new pair
of words. When six users reject a word before
any correct spelling is chosen, the word is dis-
carded as unreadable. After all suspicious words
in a text have been deciphered, we apply a post-
processing step because human users make a
variety of predictable mistakes (see supporting
online text). From analysis of our data, 67.87%
of the words required only two human responses
to be considered correct, 17.86% required three,
7.10% required four, 3.11% required five, and
only 4.06% required six or more (this includes
words discarded as unreadable).

A large-scale deployment of the system has
enabled us to collect a number of findings (see
supporting online text for more details about the
deployment). The first finding is that the process
of deciphering words with CAPTCHAs can
match the highest-quality guarantee given by
dedicated human transcription services. A ran-
dom sample of 50 scanned articles from five
different years (1860, 1865, 1908, 1935, and
1970) of the New York Times archive (http://
nytimes.com) was chosen and manually tran-
scribed by two professionals to estimate the per-
word accuracy of reCAPTCHA, including the
postprocessing corrections mentioned above.
The total number of words was 24,080. Each
word counted as a “hit” if the algorithm de-
ciphered the entire word correctly or a “miss” if
any of the letters were wrong. The error rate was
defined as the number of misses divided by the

Fig. 1. The reCAPTCHA
system displays words
from scanned texts to
humans on the World
Wide Web. In this exam-
ple, the word “morning”
was unrecognizable by
OCR. reCAPTCHA isolated
the word, distorted it
using random transfor-
mations including add-
ing a line through it,
and then presented it
as a challenge to a user.
Because the original
word (“morning”) was
not recognized by OCR,
another word for which
the answer was known
(“overlooks”) was also
presented to determine
if the user entered the
correct answer.
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Figure 2.1: Example of gold data-driven trust assessment performed by Re-
CAPTCHA. The trustworthiness of the users to type the unknown challenge
word (morning) is evaluated on the basis of their answer to the known control
word (overlooks).

control word test to decide whether an input answer of a user who types an unknown
word is trustworthy or not (Figure 2.1). Specifically, the ReCAPTCHA test consists of
presenting two words to the user. One of the these words is the actual challenge word,
that is unknown, and the other is the control word, that is known. Since the two words
are placed in a random order and the user does not know which of the two is the control
word, this test is likely to increase the chances that the challenge word will by typed
correctly.

In general, this gold–data driven trust approach is meaningful in situations where it
is relatively easy for the task requestor to acquire gold standards. The advantage of
this approach is that it allows the task requestor to form trust beliefs about the user’s
abilities based on the evidence of how it has performed on the same task in a real crowd-
sourcing environment. On the downside, there is an extra cost of training users with
gold standards which is not always supported by an absolute guarantee of substantial
gain in the quality of the data (Ipeirotis, 2010). That is, even after gaining evidence
of the individual user’s trustworthiness in performing gold tasks correctly, there is no
absolute guarantee that this will convert into a more trustworthiness final outcome. In
particular, the users might perform differently on the actual tasks, especially when these
are not well aligned to the gold tasks. For this reason, and also for the reasons stated
by Req. 2 in which we set our work in the unsupervised setting where gold standards
are not available, in this thesis we choose not to consider gold–driven trust methods as
a solution to our trust–based fusion problem.
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A third approach to trust evaluation is consensus–based trust. This involves computing
a user’s trustworthiness based on the number of other independent observations from
other users that match the one reported by the evaluated user. This is a concept for-
malised by Kamar and Horvitz (2012) under the name of consensus task. As introduced
in Section 1, this consensus–based trust approach is typically applied when the majority
assumption holds, i.e. the majority of the crowd’s opinions will eventually agree on
the ground truth. As a result, the consensus value is likely to reveal such a ground
truth value of the crowdsourced task. In general, this consensus-based trust approach
to crowdsourcing tasks is supported by the fact that it is relatively easy to create data
redundancy, and thus increase the strength of the consensus, by gathering extra reports
at low cost. For this reason, many existing models advocate the use of this approach to
trust in crowdsourcing settings (e.g., Kamar et al. (2012); Raykar et al. (2010); Whitehill
et al. (2009)). However, it is important to notice that, in practice, consensus is easy to
compute with discrete data that, for example, is generated from crowdsourced classifi-
cation tasks. In this setting, consensus can be reduced to a standard voting problem
where each reported answer can be seen as a vote on a certain outcome related to the
item being classified. Then, the consensus outcome related to the class of that item is
chosen as the most voted one. Furthermore, consensus is also fairly easy to compute
for simple continuous problems where the consensus value can be taken as the average
of the reported values. However, it is less straightforward to compute consensus with
crowdsourced sensor estimates which is the problem we address in this work (Req 1).
Indeed, the difficulty lies in the fact that the reports are given in the form of continuous
probability distributions which do not allow a straightforward averaging or majority vot-
ing analysis. Therefore, while considering consensus-based trust as a suitable approach
to meet our requirement (Req. 2), we will also look into consensus methods for crowd-
sourced continuous estimates within the field of data fusion (see Section 2.4). Before
this, however, we continue the discussion with the review of more general, non-trust
based fusion approaches for crowdsourced data.

2.3 Non-Trust Based Fusion Approaches for Crowdsourced
Data

In this section, we discuss approaches that do not attempt to embed learning a user’s
trust into their data fusion methods. As such, we refer to these as non-trust based fusion
approaches. In particular, it is important for us to look at this class of approaches in
order to understand the potential of using trust-based fusion in crowdsourcing and also
identify suitable non-trust based fusion benchmarks for the evaluation of our approach.
Specifically, we now review existing methods from the two main classes of non-trust based
fusion approaches to crowdsourcing discrete data (Section 2.3.1) and to crowdsourcing
continuous data (Section 2.3.2)
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2.3.1 Dealing with Discrete Data

Methods for fusing crowdsourcing discrete data represent the largest body of fusion
methods for crowdsourcing that are available to date (see Sheshadri and Lease (2013)
for an overview). Generally speaking, these methods are designed for situations in which
the set of observations reported by the crowd can be enumerated by a finite set of possible
values, or classes. As discussed above, in situations where the majority assumption holds,
this fusion problem reduces to the search of the consensus class based on the votes of
the crowd. In such cases, majority voting methods are simple ways (yet broadly used in
practice) to solve this fusion problem with discrete data.

In more detail, majority voting methods are a frequentist approach to estimating the
consensus class from a set of discrete votes. The consensus class is usually estimated
as the one that received the highest number of votes. In some cases, there are variants
of the standard majority voting method that are applied to more efficiently deal with
the uncertainty in the vote distribution, such as ties and situations of weak consensus.
In particular, one of these variants is based on taking a random guess between the
two (or more) most voted classes, when ties occur. We refer to this method as semi-
weighted majority voting. For example, assume that the array of the vote counts for
an item is {3, 2, 3} for the three possible classes {A,B,C}. Then, using the semi-
weighted majority voting, we will select the final class with a uniformly random draw
between A and C. More formally, x ∼ Discrete(0.5, 0, 0.5) where x is the item’s class
and Discrete is a probabilistic function with the parameters representing the probability
of the item belongong to each class. Alternatively, another majority voting method,
weighted majority voting, takes into account the full distribution (i.e., it does not ignore
the two vote for C) and draws the item’s class based on the probabilities defined by the
normalised vote counts. That is, in our previous example, this method will draw the
final class as x ∼ Discrete(0.37, 0.25, 0.37).

Despite the simplicity of the majority voting methods, there are several problems with
them when they are applied to crowdsourcing problems. Firstly, the tie breaking rule
based on random draws creates instability in the results, especially when there is a high
uncertainty due to a low consensus in the vote distribution. In such cases, the task
requestor may need to break ties by requesting more votes from the crowd. However,
in addition to incurring additional costs, such extra votes do not guarantee to reduce
the uncertainty in the vote distribution in situations where the classification task is
intrinsically hard to solve. Secondly, this approach implies that all users’ votes count
with equal weight in the vote distribution, i.e., they are all equally trustworthy. By so
doing, it does not account for the different reliabilities of some votes which are based
on different levels of trustworthiness (failing to meet our Req. 2). This might, in turn,
have a detrimental impact on predicting the final class. Thirdly, as already mentioned,
it is non–trivial to define majority voting methods for continuous estimates which are
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part of our requirements. For example, when considering the case of spatial-temporal
estimates which are part of our Req. 3, we observe that it is not possible to average the
estimates when these individually relate to different locations and timestamps.

In general, for the case of discrete data, majority voting methods are typically outper-
formed by a number of trust-based fusion approaches. That is, approaches that take
into account the user’s trustworthiness or accuracy, as extensive related work in this
area has showed (Raykar et al., 2010; Whitehill et al., 2009; Bachrach et al., 2012a;
Welinder et al., 2010; Kamar et al., 2012). In this vein, our work will help further
demonstrate the benefits of using trust-based fusion approaches for the case of contin-
uous data. To this end, a prerequisite for us is to identify a suitable majority voting
method that is applicable to datasets of continuous estimates which we discuss in the
following subsections.

2.3.2 Dealing with Continuous Data

Methods for merging crowdsoured continuous data, which are relevant to our Req. 1, can
be found in the literature concerned with data fusion in sensor networks. Specifically,
research in this domain studies how to combine estimates from multiple sources to
achieve more efficient inference in sensing problems (Thrun et al., 2001). Typically,
sensor fusion models consider information sources as physical sensors that are employed,
for example, in a target monitoring task where each sensor provides observations of the
target in its monitoring area. Then, data fusion algorithms deal with how to aggregate
the multiple sensor readings into one single estimate that predicts the target position.
In addition, since sensors are noisy, the requirement for such algorithms is to filter the
sensor’s noise in the fused estimate. Based on the approach taken by these algorithms in
modelling the sensor’s noise, we can distinguish the two main classes of approaches that
relate to non-trust based fusion methods and trust-based fusion methods, respectively.
In more detail, this distinction relates to the feature of whether or not the sensor’s noise
is represented using a trust model. To this end, we will discuss the trust-based sensor
fusion approaches later in this chapter (Section 2.4.2). For now, however, we focus on
non–trust based methods.

As introduced in Section 1.2, from the traditional data fusion perspective, the human
user is primarily considered as an interpreter of the processing result that ultimately
transforms the fused estimate into knowledge, and only rarely is input data from human
observers considered. However, crowdsourcing introduces a new perspective of having
humans acting as sensors and using their smart phones as an on-board computing plat-
form to provide observations. For this reason, a new focus is emerging in the study
of the applicability of the current sensor fusion algorithms to human information. In
this vein, Hall and Jordan (2010) point out a number of important differences between
human and sensor information that needs to be taken into account in the fusion process.
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Particularly, they highlight the different types of noise between the two data sources,
arguing that the inaccuracies of a sensor reading typically depend on the faults that
temporarily or permanently affect the functioning of the sensor, while it is unrealistic to
think that the sensor would deliberately misreport its observation as may well occur in
crowdsourcing settings. Thus, while the problem of dealing with unreliable estimates in
sensor fusion is typically a problem modelling the sensor faults, now the changing role
of humans in information fusion introduces new types of data noise features that relate
to subjectivity, expertise, bias and other inaccuracies of the human observers.

From this observation, we identify sensor fusion techniques as a suitable methodology
for devising fusion methods that are also applicable for crowdsourced data. However, as
stated by Req. 1, we need fusion methods that can effectively merge human data. To
this end, we now provide an overview of methods for fusing probabilistic estimates by
drawing from the two main areas of research that relate to problems of single-hypothesis
(i.e., estimates of static values) and the multi-hypothesis (i.e., estimates of non-static
values) data fusion. For our purposes, we focus on the two most common methods for
these two classes that are (i) covariance intersection for the single-hypothesis fusion and
(ii) covariance union for multi-hypothesis fusion.

2.3.2.1 Covariance Intersection

Covariance intersection (CI) is the standard method for fusing a set of probabilistic
Gaussian estimates within the single-hypothesis setting (Julier and Uhlmann, 2001).
Specifically, this setting assumes that the reported estimates relate to only one correct
answer for the item’s true value that we wish to estimate. Related to our examples from
Section 1.1, a typical case of single-hypothesis fusion is the crowdsourcing of stationary
items, such as cell tower mapping or search for victims in disaster response, in which
the hypothesis estimated by the fusion relates to the actual location of the tower or the
victim. In these cases, CI performs the fusion of the set of estimates in the following
manner.

Given two normally distributed estimates, e1 = (µ1,Σ1) and e2 = (µ2,Σ2), where µ
is the multivariate mean and Σ is the covariance matrix, the CI fused estimate eCI =
(µ̂CI , Σ̂CI) is computed as:

Σ̂−1
CI = Σ−1

1 + Σ−1
2 (2.1)

µ̂CI = Σ̂CI(µ1Σ−1
1 + µ2Σ−1

2 ) (2.2)

That is, the parameters of the fused Gaussian estimate are estimated through a linear
combination of the means µi weighted by the precision matrices Σ−1

i (i.e., the inverse
covariance matrices). It is easy to notice that, by fusing the estimates as weighted
by their individual precision, CI encodes the fact that the observations reported with
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higher confidence have a higher contribution to the fused estimate. By so doing, CI
takes into account the contribution of the reported uncertainties (i.e. the precision
of each report) in a proper way within the fusion, which makes it suitable for us to
satisfy our Req. 1. Furthermore, it is important to notice that, by computing Σ̂−1

CI as
the cumulative sum of these reported precisions, the CI fusion will result in a globally
higher precision. That is, the CI estimate becomes more confident about its predicted
mean value as more reports are added to the fused set. However, the potential issue of
doing this is that, without accounting for the trustworthiness of the estimates, the fusion
may estimate the true value over confidently or even converge to the wrong value. In
this aspect, CI resembles the feature of majority voting in considering all the estimates
as equally trustworthy in a continuous space. However, as per the critique raised for
majority voting, it is likely that the standard CI fusion will fail to provide the best
results in fusing crowdsourced datasets because it ignores the heterogeneous range of
data reliabilities. To rectify this, and so address our Req. 2, we need an extension of
CI that accounts for a user’s trustworthiness in the computation of the fused estimate.
This extension will be elaborated upon in Chapter 3.

2.3.2.2 Covariance Union

Covariance union (CU) is the standard method for merging a set of probabilistic Gaus-
sian estimates in the multi-hypothesis case. This case assumes that, due to the variance
in the set of reported estimates, there is more than one hypothesis which could be the
correct answer. For example, a case of the multi-hypothesis fusion is the setting in which
the crowd observes a moving target and reports estimates of its position in different time
instants. In this case, a conservative fusion approach to estimate the target position is
to merge the reports in such a way that none of the hypotheses are discarded. That
is, the fused estimate is computed as the most general output obtained by taking the
union of all the reported estimates. Specifically the CU method to unify two Gaussian
estimates is described as follows (Reece and Roberts, 2010):

Given two multivariate normally distributed estimates, e1 = (µ1,Σ1) and e2 = (µ2,Σ2),
where µ is the multivariate mean and Σ is the covariance matrix, then the CU estimate
eCU = (µ̂CU , Σ̂CU) is any Gaussian estimate defined by the following constraint:

{
Σ̂CU ≥ Σ1 + (µ̂CU − µ1)(µ̂CU − µ1)T

Σ̂CU ≥ Σ2 + (µ̂CU − µ2)(µ̂CU − µ2)T
(2.3)

In this definition of CU, the inequalities of Equation 2.3 are defined based on the obser-
vation that ifA > B, thenA−B > 0, meaning thatA−B is positive semi–defined (i.e.,
it has no negative eigenvalues) (Bochardt and Uhlmann, 2010). More specifically, these
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Figure 2.2: Merging two Gaussian estimates, represented by the two circles,
using CI (solid line) and CU (dashed line).

inequalities encode the property that if the estimate e1 is consistent, then the transla-
tion of µ1 to µ̂CU will require its covariance Σ1 to be at least as large as the squared
error µ̂CU − µ1 (Liggins II et al., 2008). The same reasoning applies if the estimate µ2

is consistent.

Then, among the family of the Gaussians in the space defined by Equation 2.3, the
one that minimises some measurement of the size of Σ̂CU , e.g., |Σ̂|, or the ratio |Σ̂|/µ̂,
is usually chosen. Specifically, the CU method performs hypothesis merging through
increasing the variance (in the univariate case) of the fusing estimate to include all
the possible hypotheses. By doing so, the CU estimate has the property of always
being consistent with all the possible hypotheses, as opposed to the CI estimate that is
potentially inconsistent with some of them. In more detail, Figure 2.2 shows an example
of two Gaussian estimates, A and B, fused through CI and CU. In this example, it
can be seen that, in contrast to CU, CI is not consistent with A and B. Therefore, CU
does not explicitly require us to know which observations are trustworthy and which are
not, since it always takes the most general Gaussian estimate as the aggregated output.
However, the drawback of doing this is that the CU estimate is not very informative due
to its high level of uncertainty. Thus, it does not satisfy part of our Req. 2. Given this,
as we seek fusion methods with a good trade–off between accuracy and low predictive
uncertainty (Req. 2), the CU method will only be considered as a conservative fusion
benchmark to be compared against our approach.

2.4 Trust-Based Fusion Approaches for Crowdsourced Data

In contrast to the non-trust based fusion methods discussed so far, we now consider
alternative approaches that involve modelling a user’s trustworthiness in the data fusion
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processes. Similarly to the previous discussion, our review covers the two classes of trust-
based fusion algorithms for discrete data (Section 2.4.1) and continuous data (Section
2.4.2).

2.4.1 Dealing with Discrete Data

Methods for fusing discrete data have emerged in several crowdsourcing domains that
involve classification of tasks (see the examples cited in Section 2.3.1). In general, a
standard approach to this problem is to use model–based machine learning to derive
the correct classification answer and some additional information about the task and
the users from crowdsourced dataets through statistical inference models. In particular,
such a machine leaning approach consists of designing a statistical model of a crowd
reporting process and then applying inference to estimate unobserved quantities based
on the data gathered from the crowd (Dawid and Skene, 1979; Whitehill et al., 2009;
Bachrach et al., 2012b). As these models are relevant to our requirements of fusing
crowdsourced data in unsupervised settings (Req. 1) combined with learning the user’s
trustworthiness (Req. 2), we review them in detail in the following sub–sections.

2.4.1.1 Classifier Combination

Classifier combination is one of the first fusion approaches that emerged from the crowd-
sourcing literature concerned with in combining discrete crowd responses. In particular,
the first classifier combination algorithm designed to intelligently combine the classifica-
tion labels from the reports of different users (i.e., the classifiers) was proposed by Dawid
and Skene in 1979 (well before the advent of crowdsourcing) to study the advantage of
using low-cost noisy classification data produced by untrained users for unsupervised
learning algorithms. In their model, each user k has an individual probability vector
of reporting the true label for each class j denoted as π(k)

j = {π(k)
j1 , . . . , π

(k)
jJ }, where J

is the maximum class. The set of these probability vectors, one for each class, gives
a J × J confusion matrix that defines the accuracy profile of the individual user. To
infer a particular user’s confusion matrix from a given set of user’s labels C containing
I labels, they define pj as the probability of any image in the set belonging to class j,
and take the data likelihood for a number of independent and identically distributed
reported labels c(k)

i ∈ C as:

p(C, τi|π(k)
j , pj) =

I∏
i=1

pτi

{
K∏
k=1

π
(k)
τic

(k)
i

}

where τi is the (unobserved) true class of image i. Then, using expectation-maximisation
(EM), i.e. a standard iterative method for approximating inference in statistical models
(Dempster et al., 1977), they are able to estimate the pj and π(k)

ij parameters for each
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i, j = 1, . . . J . In more detail, their EM-based inference is based on having an expectation
step in which the correct answer is estimated from the data based on the current user’s
confusion matrix parameters, and then a maximisation step that updates the confusion
matrix parameters to their maximum likelihood values under the updated item’s classes.
Ultimately, other algorithms were inspired by Dawid and Skene’s method (DS) and
applied to several crowdsourcing problems such as image labelling, galaxy classification
and annotation tasks (Ipeirotis et al., 2010; Snow et al., 2008; Simpson et al., 2012).
In particular, Kim and Ghahramani (2012) introduced the Bayesian version of DS, i.e.,
Bayesian classifier combination (BCC). In more detail, BCC defines prior probabilities
over the random variables and computes approximate posterior estimates of the user’s
confusion matrix and the item’s true class. In these terms, BCC is particularly useful
for incorporating some prior knowledge about the user’s trustworthiness and the item’s
classification in the fusion process. For example, we might know that some users are
more reliable than others and so chose the appropriate priors in order to achieve a more
accurate fusion; as was shown by Raykar et al. (2010) in a crowdsourcing application
of classifying cancer diagnoses in the medical domain. More generally, DS, BCC and
other models of this kind are associated with the graphical modelling technique that has
inspired the majority of work presented in this area, as it enables a clear and explicit
design of a crowdsourcing model. As these models address the requirement of performing
trust-based inference over crowdsourced data (Req. 1), we review them in the next
section.

2.4.1.2 Graphical Models

In machine learning, graphical models are tools for representing probability density
functions in the form of a graph that highlights its factorisation properties (Koller and
Friedman, 2009). Specifically, a graphical model is a directed graph with a set of ran-
dom variable represented as nodes, distinguishing between observed nodes (shaded) and
unobserved or latent nodes (unshaded). The directed links represent the probabilistic
dependencies between pairs of nodes. In these models, inference flows through the graph
based on the conditional dependencies defined by the links. In such a way, it is possible
to estimate the probability densities of the latent (unobserved) nodes based on the data
feeding the observed nodes.

A number of trust-based data models for the joint estimation of the user’s accuracy
and the item’s true value with discrete crowd responses based on graphical models have
recently been presented. Some of these are shown in Figure 2.3. In detail, Whitehill et al.
(2009) model an image labelling task considering a set of n images, each of which belongs
to one of two possible categories (e.g. face/non-face, male/female), and assuming that
the observed label Lkj reported by user k for the image j depends on the true binary
label Zj , the image difficulty βj and the expertise of the user αi (Figure 2.3a). Then,
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Figure 2.3: Examples of probabilistic graphical models proposed in previous
work for crowdsourced image labelling (a and b) and IQ testing (c)
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putting Gaussian priors on α and β, they compute maximum-a-posteriori inference of
the posterior parameters. Furthermore, Welinder et al. (2010) extend this model to
consider the accuracy of the user in a multidimensional space, with variables representing
the competence, the expertise and the bias of user, i.e. the α,w and τ parameters
respectively (Figure 2.3b). Finally, Bachrach et al. (2012b) introduced a graphical model
to analyse the responses from multiple participants to a set of questions and find the
correct answer for each question, the difficulty level of the answer and the ability of the
participants (Figure 2.3c). Importantly, all these algorithms were shown to empirically
outperform majority voting which promotes trust-based fusion approaches as a valid
solution to crowdsourcing problems.

In general, machine learning algorithms based on graphical models are the first con-
crete solution for the trust-based data fusion problem with crowdsourced information.
However, the main issue of this approach is that these models are normally designed for
a particular problem they are trying to solve (Ghahramani, 2004). Unfortunately, the
design of such models does not trivially extend to other types of crowdsourcing problems
such as, for example, our problem of modelling user’s trustworthiness in fusion processes
with crowdsourced estimates. Additionally, another issue is the complexity of perform-
ing inference on such models. In fact, while these models can be arbitrarily complicated
by adding new random variables (modes) to the graph, inference can rapidly become
analytically intractable. That is, it is impossible to derive the exact Bayesian update
expressions for the posterior distributions of these variables. This issue is partially alle-
viated by a number of techniques to approximate posterior inference on graphical models
such as expectation-propagation (Minka, 2001), variational methods (Winn et al., 2005)
and sampling methods (Gilks, 2005). However the problem of such approximation tech-
niques is that they are prone to finding sub–optimal solutions in non-convex problems
or to requiring many samples to achieve a good level of approximation.

Specifically for our problem, none of the discussed models considers observations as
continuous estimates as we require (Req. 1). By contrast, they focus only on mod-
elling single value observations (i.e. without reported precision). Therefore, using a
similar probabilistic approach, in our work we need to take a step forward in designing
new probabilistic models with computationally tractable inference for the case of fusing
crowdsourced estimates of continuous quantities in Chapters 3 and 4.

2.4.2 Dealing with Continuous Data

Methods for fusing continuous data based on a trust model of a user are closely related to
our set of problems (in particular to Reqs. 1 and 2). Along the line of our discussion in
Section 2.3.2, sensor fusion is a promising research area where methods for fusing sensor
estimates can be found. Interestingly, some of these sensor fusion methods consider
the sensor’s trustworthiness as part of the requirements of their data fusion processes.
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However, we already discussed that, due to the key differences between sensor data and
human–generated data, an open question is how these sensor fusion methods are able
to maintain their efficiency when applied to crowdsourced information. Since we are
not aware of any sensor fusion algorithm evaluated in a crowdsourcing context, we will
have to review these trust-based sensor fusion approaches, particularly discussing their
ability to solve the trust-based data fusion problem with crowdsourced information.
In this respect, we discuss two main approaches related to outlier detection approach
and other trust–based sensor fusion that can form a basis for a method to achieve this
objective.

2.4.2.1 Outlier Detection

A possible way to identify untrustworthy estimates is based on outlier detection. As
defined by Hawkins (1980): “an outlier is an observation which deviates so much from
the other observations as to arouse suspicions that it was generated by a different mech-
anism". This concept fits the view of having untrustworthy estimates which significantly
deviates from the crowd consensus. Notice that, however, Hawkins’s definition only
captures certain kinds of outliers, namely those points that outlie relative to the global
dataset. For this reason, they are referred to as “global" outliers. In contrast, Breunig
et al. (2000) provides a more general definition of a density-based outlier as “the points
that outlie with respect to their neighbouring points”. These are often referred to as
“local" outliers. Since the Breunig et al.’s definition is more appropriate for complex
data structures, we will adopt this in the discussion that follows.

Given this background, one fairly simple idea to solve our problem is to use outlier
detection to identify and remove untrustworthy estimates (satisfying Req. 2). Subse-
quently, we can compute the fusion of the remain inlier estimates (satisfying our Req.
1) using any non-trust based fusion methods, e.g., CI. To describe this methodology, we
refer to the standard density–based outlier detection method of the local outlier factor
(LOF) (Breunig et al., 2000). Such a method is based on assigning a LOF score to each
point as an indicator of its outlier level which is computed by measuring the relative
density of the point compared to its neighbours. That is, the method seeks to iden-
tify the outliers by measuring whether the density around each estimate is significantly
different from the density around its neighbours. The procedure for computing LOF
scores is detailed in Algorithm 2.1. In more detail, the algorithm first computes the
reachability distance of each report from its neighbour based on the parameter k that
defines the locality region of r, i.e., the set of its k nearest neighbours (step 2). For
this step, the distance between two probabilistic estimates can be measured using the
Kullback-Leibler divergence (KL)(Kullback and Leibler, 1951). In particular, KL is a
standard metric for measuring the distance between probability densities that, for the
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Algorithm 2.1 Local Outlier Factor
Variables :

R : report set.
kNN(r): k nearest neighbours for a report r.

Algorithm LOF(R, k, l)

1: Define k_distance(o) as the minimal distance of o from kNNs(o):
2: Compute reachability distances:

for each e ∈ R do
for each o ∈ kNN(e) do

reach_distk(e, o) = max{k_distance(o), dist(e, o)}
end for

end for

3: Compute local reachability distances (lrd):
for each e ∈ R do

lrd(e) =
(∑

o∈kNN(e)
reach_distk(e,o)

|kNN(e)|

)−1

end for

4: Compute local outlier factors (LOF):
for each e ∈ R do

LOF (e) =
(∑

o∈kNN(e)
lrd(o)
lrd(e)

|kNN(re|

)−1

end for

5: Compute 〈µ̂LOF, Σ̂LOF〉 fusing the inliers with LOF(e) < l.

6: return (µ̂LOF, Σ̂LOF,LOF(r))

case of two multivariate Gaussian densities of dimension d, is:

KL(N (µ1,Σ1)||N (µ2,Σ2)) =1
2
(
tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

− log
(
|Σ1|
|Σ2|

)
− d

)
(2.4)

Next, the algorithm computes the local reachability distance ldr(r) as the inverse of
the mean reachability distance between r and its neighbours (Step 3). The LOF(r) is
computed as the ratio of its local reachability of r and the one of its neighbours (step
4). Then, the algorithm returns the mean µ̂LOF and the covariance matrix Σ̂LOF of the
fused estimate obtained by merging the inliers’ reports, i.e., the reports with LOF lower
than the threshold l (Step 6). In this context, this means that the LOF score can be
interpreted as the trustworthiness of each report.

Using this method, we can compute the trust-based fusion of a crowdsourced dataset
by using LOF to filter the outliers that are likely to represent untrustworthy estimates.
However, in order to apply such a method, the threshold l must be appropriately chosen.
Notice that setting l to the right value is important to make the algorithm not too
selective (i.e., l is too small) or too permissive (i.e., l is too large) in selecting the outlier
set. Unfortunately, it is not trivial to make such an optimal choice of l for each dataset.
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Figure 2.4: Plot of the RM trustworthiness function varying the β parameter.

Alternatively, we seek a more flexible parameter-free method that can learn the report’s
trustworthiness without relying on any outlier thresholds. Therefore, we will consider
LOF as a benchmark in the evaluation of our approach.

2.4.2.2 Trust-Based Sensor Fusion

In the sphere of trust-based sensor fusion, there are methods that deal with the uncer-
tainty in sensor fusion through sensor trust models (Reece et al., 2009; Momani et al.,
2010; Guan et al., 2009). In particular, Reece et al. presented a algorithm (RM) for
sensor noise recovery which handles unknown sensor’s fault types by modelling the sen-
sor’s trustworthiness. In more detail, RM is based on recovering the readings from the
sensor’s noise in two stages. In the first stage, each sensor uses a pre-defined set of fault
models to identify some known fault types in the reading1. In the second stage, the
algorithm computes the trustworthiness of each sensor based on a consensus rule, which
is close to the idea of the consensus–based trust model introduced in Section 2.4. In
more detail, RM estimates the sensor’s trustworthiness based on the distance between
their estimates from the consensus estimate. Thus, RM contributes to our work in two
ways. Firstly, it provides a consensus rule for fusing estimates reported by untrustwor-
thy sensors. Secondly, it describes a distance–based method for estimating the sensor’s
trustworthiness from its reported readings. These two steps of RM are described in what
follows2.

Trust-Based Consensus Rule for Fusing Gaussian Estimates: Given two uni-
variate Gaussian estimates, e1 = 〈µ1, θ1〉 and e2 = 〈µ2, θ2〉, where µ and θ are the mean
and precision of the Gaussian distribution respectively, and given t1, t2 ∈ [0, 1] as the
1Specifically, they consider drift, spike, shock and echo faults.
2For simplicity, our description of RM assumes an univariate case.
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trustworthiness of e1 and e2 respectively, then the consensus estimate between e1 and
e2 is the Gaussian estimate econs = 〈µcons, θcons〉, with trustworthiness tcons given by:

µ̃ = (θ1µ1 + θ2µ2)/(θ1 + θ2) (2.5)

µcons = t1t1µ̃+ t1(1− t2)µi + t2(1− t1)µ̃ (2.6)

θ̃ = θ1 + θ2 (2.7)

θcons = t1t2(θ̃ − (µ̃− µcons)2) + t1(1− t2)(θ1 − (µ1 + µ2
cons))+ (2.8)

t2(1− t1)(θ2 − (µ2 + µ2
cons))

tcons = t1 + t2 − t1t2 (2.9)

Fisher ratio–Based Trust Evaluation: Given the consensus estimate econs = 〈µcons, θcons〉,
the trustworthiness of a univariate Gaussian estimate ek = 〈µk, θk〉 is defined as follows.
Let Fs be the Fisher ratio between econs and ek given by3:

Fs = (µcons − µi)2

(σi + σcons)
(2.10)

Then, the trustworthiness tk for the estimate ek is:

tk =
{

1 if Fs < β

exp(−(Fs − β)) otherwise
(2.11)

where β is the parameter which sets the point after which the sensor’s trustworthiness
decreases exponentially. In more detail, Figure 2.4 shows the plot of the trust evaluation
function used by RM (Equation 2.11) for different β values. In particular, by iterating
between these two steps, RM is able to estimate the fused estimate together with the
sensor’s trustworthiness, after appropriately tuning the β parameter. This iterative
procedure of RM are also described in Algorithm 2.2.

Against this background, RM can potentially be a solution for a crowdsourced sensor
setting which would meet our requirements. However, the parametric trust model used
by RM, which is natively designed for sensor fusion, might not be able to handle the
uncertainty of human reporters as efficiently as in the sensor setting due to the its
static trust evaluation function. Therefore, while pursuing our goal of defining a novel
trust-based data fusion framework more suitable for crowdsourced human sensors, we
will compare our approach to RM. In doing so, we contribute to the evaluation of this
trust-based fusion algorithm in a crowdsourcing scenarios.
3In the original paper by Reece et al. (2009), the expression of Equation 2.10 was erroneously called the
Mahalanobis distance.
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Algorithm 2.2 Reece Method
Variables :

R : report set.
acc : accuracy bound.
epochs : number of training epochs.

Algorithm ReeceMethod(R)

1: Start with uniform max trust values on all the reports:
t(0) =< 1, . . . , 1 >

2: while ( |t(s−1) − t(s)| < acc or s > epochs ) do

3: Fuse the observations using the consensus rule based on t(s−1):

e
(s)
cons = consensus(R, t(s−1))

4: Update trustworthiness parameters based on f (s):
for k = 1 : K do

t
(s)
k

= Fs(R, f (s))
end for

5: end while
6: return (t(s), e(s)

cons)

2.5 Crowdsourcing Spatial Data

So far, our discussion has covered the state–of–the–art approaches that relate to our
first set of requirements of fusing crowdsourced estimates of stationary items (Req. 1)
when there is uncertainty about the user’s trustworthiness (Req. 2). Now, in order
to address our second set of requirements that relate to the fusion of crowdsourced
estimates of non-stationary items (Req. 3 and 4), we extend our discussion to work
related to crowdsourcing settings in which the reported values are correlated to a number
of input features. In particular, we focus on work related to crowdsourcing spatial
functions which is an application emerging across several domains, including disaster
response, disease mapping, weather forecasting and radiation monitoring (Heinzelman
and Waters, 2010; Quinn et al., 2011; Overeem et al., 2013; Venanzi et al., 2013a). In
these applications, untrustworthy crowd reports are problematic in the sense that their
data can lead to incorrect spatial predictions in the same modalities that we discussed
for the stationary case (Section 2.4). However, the spatial correlations in the dataset
make the fusion problem more challenging, particularly in terms of learning the fused
output as a continuous spatial function. To deal with this case, we now look at the class
of learning models for spatial regression.

2.5.1 Spatial Regression Approaches

In the class of data regression approaches, a number of spatial regression models are
available, ranging from linear and polynomial regression to neural networks, latent force
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models and kernel methods. In more detail, linear regression models are simple and
computationally efficient methods to infer a spatial phenomenon through the linear re-
lationship between an environmental variable of interest (such as temperature or nuclear
radioactivity) and some explanatory variables (such as location and time) (Stranders,
2010). However, more complex spatial phenomena typically follow (strongly) non–linear
distributions that are difficult to express through linear regression. Alternatively, neural
networks, latent force models and kernel methods are more powerful models that can
deal with non–linear phenomena more efficiently. In particular, these models offer a hy-
brid approach to incorporate the physical laws of a spatial phenomenon in data–driven
processes (Alvarez et al., 2009). Their attractiveness steams from combining noisy ob-
servations of a spatial phenomenon with a physical model of the system. However, the
design of such models require a deep understanding of the system dynamics and its phys-
ical laws. Furthermore, their inference becomes easily intractable due to the complexity
of deriving close form predictive distributions under such statistical models. Generally
speaking, there is typically a trade–off between the expressiveness of these regression
models and their inference tractability (Bishop, 2006). In this space, we identify the
Gaussian process from the family of the kernel methods as a rare exception of a regres-
sion model that is analytically tractable and at the same time very flexible (Rasmussen
and Williams, 2006). In particular, Gaussian process regression have been widely used in
Geostatistics to model various spatial phenomena such as ultra fine particle concentra-
tions, sound levels, and weather–related events (Li et al., 2014). In fact, their advantage
is that they do not require any prior knowledge of the dynamics of the phenomenon
that are instead inferred from the data through a principled non–parametric framework.
Since the Gaussian process appears as a suitable basis for a solution to our problem, we
review it in detail in the next section.

2.5.2 Gaussian Process Spatial Regression

The Gaussian process (GP) is a Bayesian non–parametric model widely used for spatial
regression in many real–world applications (Rasmussen and Williams, 2006). This model
is able to deal with spatial regression problems which lie in the following setting. Given
a dataset of n geo–located observations of an unknown spatial function f(x), where
an observation normally consists of a pair with a location (latitude and longitude) and
an observed value, i.e. D = {xo ∈ R2, yo ∈ R : o = 1, . . . , N}, where N is the total
number of observations, and the objective is to determine f(x) from this dataset. The
GP approach to this problem is based on assuming that the joint distribution of any
subset of a function’s outputs is a Gaussian density and that yo is a noisy measurement,
with zero–mean Gaussian noise, of the actual function value, ỹo, at the location xo.
Formally:

yo = ỹo + ε, ỹo = f(xo), ε ∼ N (0, σ2
N ) (2.12)
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In this setting, the GP is able to perform Bayesian inference in the function space by
defining a prior distribution over f specified by a mean function m(x) = E[f(x)] and a
covariance function, or kernel K(x,x′) = cov(x,x′). That is:

f(x) ∼ GP(m(x),K(x,x′)) (2.13)

where

m(x) = E[f(x)]

K(x,x′) = Cov(f(x), f(x′))

Specifically, the mean function represents the default value of f in the regions where no
observations are available (and it is often conventionally taken to be zero for simplicity).
The covariance function models the correlation between the input points. In particular,
this covariance function may have some free parameters, called hyperparameters, to
control the smoothness and noise properties of the covariance function in modelling
correlations. For this reason, such a covariance function is a key element in a GP
predictor that needs to be appropriately chosen for a specific dataset. In particular, a
standard set of covariance functions for GPs is represented by the class of stationary
functions, where stationarity means the function’s value depends on the distance between
x and x′. Among these, we describe the squared–exponential covariance function that
is a standard kernel for modelling smoothly changing quantities:

K(x,x′) = σf exp
(
− 1

2l2 (x− x′)2
)

(2.14)

This function has two hyperparameters that are the signal variance σf and the length
scale l, respectively. The set of these hyperparameters is denoted as γ. Given this, if
we wish to predict the value of f at a new test location x∗, and let such a value be y∗,
assuming that y and y∗ are Gaussian random vectors, we can write the joint distribution
at the test location as:[

y

y∗

]
∼ N

(
m(x),

[
K(x,x) + σ2

NIN K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
(2.15)

where IN is the q×q identity matrix. Then, conditioning y∗ on y and using the marginal-
isation properties of the Gaussian distribution, we can derive the key equations of the
predictive distribution for Gaussian process regression as:

p(y∗|x, y,x∗) = N (E[y∗], σ2(y∗)) (2.16)
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where

E[y∗] = m(x) +K(x∗,x)[K(x,x) +K(x,x) + σ2
NIN ]−1y (2.17)

σ2(y∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2
NIN ]−1K(x,x∗) (2.18)

Specifically, Equations 2.17 and 2.18 denote the mean and the variance of the Gaus-
sian predictive distribution of f(x∗). In particular, the predictive variance is use-
ful for estimating the predictive uncertainty, which is useful for us to meet our Req.
2. Also, by integrating the likelihood, p(y|f,x) = N (y|f, σN ), over the GP prior,
p(f) = N (f |0,K(x,x′)), we can obtain the closed form equation of the marginal like-
lihood, i.e. the data likelihood marginalised over the latent function:

log p(y|x) =− 1
2y

T [K(x,x) + σ2
NIN ]−1y

− 1
2 ln |K(x,x) + σ2

NIN | −
N

2 ln(2π) (2.19)

Notice, that we use the logarithm of marginal likelihood which simplifies the products
as sums while still preserving the monotonicity of the function. In particular, the log
marginal likelihood is useful for model training (Rasmussen andWilliams, 2006). That is,
by maximising this function, we can find the appropriate values of the hyperparameters.

Importantly, the GP predictive distribution described above is derived under the as-
sumption of a process noise ε having a constant variance σN . This means that all the
estimates reported by the users have the same level of noise, which in statistics is re-
ferred to as homoskedastic regression (Silverman, 1985). In a crowdsourcing setting,
this assumption does not allow us to deal with situations in which users have varying
trustworthiness, as we require (Req. 2), using a standard GP. In particular, by having
users with different levels of trustworthiness, the reported data will necessarily have dif-
ferent noise variances which is a problematic case for a homoskedastic GP. To address
this shortcoming, we now introduce the heteroskedastic variant of the Gaussian process
which is based on modelling non-constant noise levels on the input set4 .

2.5.3 Heteroskedastic Gaussian Processes

In heteroskedastic regression, we deal with a situation in which the signal noise varies
across the inputs. Formally:

yo = f(xo) + εo (2.20)
4Heteroskedastic models are also referred to as heteroscedastic in the literature. In this thesis, we choose
the latter spelling that is conventionally used in econometrics papers.
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In particular, if we assume that the noise terms are independent and normally dis-
tributed, we obtain the same model studied by Goldberg et al. (1997). That is:

εo ∼ N (0, σ2(xo)) (2.21)

and defining Σx = diag{σ2(xo)}, the predictive Gaussian distribution of the model is:

E[y∗] = K(x∗,x)[K(x,x) + Σx]−1y (2.22)

σ2(y∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + Σx]−1K(x,x∗) (2.23)

In general, the heteroskedastic Gaussian process (HGP) model poses an inference chal-
lenge related to the noise function σ2 that defines input-specific noise rates that are
typically unknown and so the values must be estimated in some way. To deal with this
problem, various works advocate a hierarchical modelling approach that makes use of
a stack of GPs to model σ2 (Goldberg et al., 1997; Kersting et al., 2007). Since this
hierarchical GP makes the inference no longer tractable analytically as in the case of the
single GP, research has tended to focus on approximate inference for HPG regression,
particularly using Markov Chain Monte Carlo (MCMC) (Goldberg et al., 1997), EM–like
procedures (Kersting et al., 2007) and variational Bayes approximation (Lázaro-Gredilla
and Titsias, 2011). Still, for our problem, there are two key observations that greatly
simplify the analysis of this model. Firstly, in our setting, the noise rates are known
since they relate to the reported precision of the user’s observations (Req. 2). Secondly,
in crowdsourcing settings, it is reasonable to assume that such noise rates are reported
independently by the users. Given these assumptions, we are able to separate σ by its
individual noise terms, i.e. σ(xi) = σi and derive the predictive Gaussian distribution
as described by Equations 2.22 and 2.23. However, the limitation of the current HGP
model is that it does not consider the individual trustworthiness of the users who report
the observations, thus presenting the same issue of equally trusted reports discussed for
CI in Section 2.3.2. In the attempt to address this limitation, a GP model designed to
deal with multiple noisy estimators was presented by Groot et al. (2011) . To handle
the individual noise of each estimator, they use a standard GP with a rational quadratic
covariance function:

K(x,x′) = σf exp
(
− 1

2(x− x′)TA−1(x′ − x)
)

(2.24)

This is a kernel that has an individual length scales li for each input dimension denoted
as A = diag(l21, . . . , l2p), and σf is a signal noise parameter. Thus, their model can deal
with the individual trustworthiness of the observations coming from different estimators
by setting appropriate values of their length scales. However, a potential problem of
this model applied to our setting is that the length scale parameters grow with the
number of inputs, which yields the intractability problem of training this model over
large datasets. Therefore, in Chapter 5, we detail an alternative HGP model that learns
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trust parameters at the user level, thus still considering individual reliabilities of the
reports with a smaller and more tractable parameter set. In addition, our model will
also address the requirement of considering the precisions of the reported observations
(Req. 3) which is currently not considered in the discussed models.

2.6 Crowdsourcing Spatial Intensity Functions

To address our last set of requirements related to crowdsourcing non-stationary quanti-
ties based on reported point estimates, we now discuss work that relates to the inference
of spatial intensity functions. In particular, we discuss the state–of–the–art statistical
approaches to analyse spatial patterns that are expressed as continuous spatial intensity
functions across location data. These approaches define the theories of the models em-
ployed in real-world applications concerned with point–based spatial data. For example,
using one of these approaches, Diggle et al. (2005)’s work analyses the spatial incidence
of disease reports from people’s calls to the UK national health system reporting ser-
vice (NHS direct) for the purpose of detecting unexpected variations in gastroenteric
symptoms. In general, since these approaches emerging from this and other domains are
closely related to our requirements of computing fused outputs from human–reported
spatial point estimates (Req. 4), we review them in detail with respect to our crowd-
sourcing context.

2.6.1 Spatial Point Processes

The main challenge in dealing with spatial point reports is inferring spatial patterns in
the possibly noisy point estimates reported by the crowd. These patterns are required to
compute a fused output that predicts the distribution or points over a monitored region.
Spatial point processes are commonly used to accomplish this objective in applications
that range from monitoring seismic events, plant ecology, astronomic events, etc. To
date, the most solid basis of a spatial process model to analyse non–stationary random
points is represented by non–homogeneous Poisson processes (Cressie and Wikle, 2011)
that we discuss in the next sub–section.

2.6.2 Non–Homogeneous Poisson Processes

We start by introducing the key mathematical concepts of a non–homogeneous Poisson
process (NHPP) for analysing spatial point patterns. Specifically, we are given a set of
point estimates (or location estimates) and we assume that the spatial distribution of
such points is a random process described by a spatial intensity function λ(x), where
x is the variable representing the space of locations. In general, E[λ(X)], i.e. the
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expected number of reports within a certain region X, is considered to be realisation of
a stochastic process represented by a NHPP (Cressie and Wikle, 2011):

p(E[λ(X)]) = Poisson
( ∫

X
λ(X)

)
That is, a NHPP assumes that the number of points in X is Poisson distributed with
the intensity of such a Poisson distribution given by the integral of the λ function in
that region. In particular, the non-homogeneity of the process relates to the fact λ is
a non-constant function. Since λ is itself an unknown function, we assume that λ is
generated from an independent stochastic process. This whole doubly stochastic NHPP
is referred to as Cox process (Cox and Isham, 1980).

Based on various ways of modelling the stochastic process generating λ using parametric
or non-parametric statistics, there are different types of Cox processes that can be de-
fined. For our purposes, we focus on a standard case of Cox process named log-Gaussian
Cox process (LGCP) which is closely related to Gaussian processes and, as such, it allows
us to re-use the GP theory also for spatial point processes (Møller et al., 1998).

2.6.3 Log Gaussian Cox Processes

The LGCP is a special case of spatial Cox process where the the log of the intensity
function z(x) = log(λ(x)) is assumed to be generated by a Gaussian process. That is:

z(x) ∼ GP(m(x),K(x,x′)) (2.25)

where

m(x) = E[z(x)]

K(x,x′) = Cov(z(x), z(x′))

In particular, the GP prior allows us to model the latent intensity in a non-parametric
framework with the same properties described for GP regression (Section 2.5.2). In par-
ticular, consistently with what we described for GP regression, we use a zero-mean func-
tion m(x) = 0 and a covariance function K(x,x′) with hyperparameters θ = {σs, ls, }
modelling the mean structure and the covariance of the log-intensities between points,
respectively. In particular, the use of zero-mean function means that the process assigns
zero log-intensity in areas where no reports are available5.
5While the use of zero-mean GP prior is counterintuitive as the model would predict log-zero, i.e. one
report (z = 0) in areas where no reports has been observed, the whole model is generally easier to
analyse and this side–effect is easy to filter in practice.
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Thus, drawing the two processes together, the data likelihood for a set of N reported
point R = {xi : i = 1, . . . N} is given by:

p(R|z) = exp
(
−
∫
X

exp z
) n∏
i=1

exp(z(xi)) (2.26)

where xi is the reported location and θi is its precision. Unfortunately, we cannot get
a closed-form posterior inference in the LGCP due to the non-conjugate form of the
Gaussian prior over z with the Poisson likelihood and also due to the stochastic integral
over z involved in Equation 2.26. Therefore, a first standard approximation is made by
discretising the space into a grid of resolution ∆x, i.e. X = ∪Xi : Xi = Xi−1 + ∆x. In
particular, let Xi be a single cell of the partitioned space region. If we assume that the
intensity zi of points in Xi is approximately constant in Xi and independent from zj

with i 6= j (i.e. the Poisson process is homogeneous in Xi), the likelihood can now be
written as:

p(R|z) ≈
n∏
i=1

Poisson
(
φ(Xi)| exp(zi)

)
(2.27)

with z = {z1, . . . , zi} and φ(Xi) is the point count of Xi, i.e. number of points falling
in Xi.

Another intractability problem comes from computing the posterior distribution over
z which requires the integration of the Gaussian prior (Equation 2.25) over the ap-
proximate Poisson likelihood (Equation 2.27). To get around this problem, there are
Monte-Carlo sampling methods that can be used to approximate such a posterior den-
sity, although these methods can be computationally expensive depending on the num-
ber of samples requires to achieve a good approximation. To improve the efficiency of
computing posterior updates, we consider the Laplace approximation (Friston et al.,
2007) which is faster, although potentially less accurate, and approximates the posterior
with a normal distribution obtained by taking the second-order Taylor expansion of the
likelihood around its mode ẑ. That is:

p(z|R) ≈ N (ẑ, Σ̂−1) (2.28)

where

ẑ = arg max
z

p(z|R) (2.29)

Σ̂ = −55 log p(z|R)|z=ẑ (2.30)

are the maximum a posteriori (MAP) estimates of the parameters obtained by the
non-Gaussian posterior (see Rasmussen and Williams (2006), Section 3.4 for more de-
tails). Under such an approximation, we can compute predictive distribution of the



Chapter 2 Literature Review 47

log-intensities over the entire spatial grid by integrating the Poisson likelihood (Equa-
tion 2.27) of the test points z∗ = z(x∗) over the posterior distribution of z (Equation
2.28). This density is approximately multivariate normal with p.d.f.:

p(z∗|R, θ) ≈ N (E[z∗], σ2(z∗)) (2.31)

where

E[z∗] = K(x∗,x)K(x,x)−1ẑ (2.32)

σ2(z∗) = K(x∗,x∗)(K(x,x) + Σ̂−1)−1K(x∗,x) (2.33)

Finally, we can also derive the approximate marginal likelihood that is useful for model
training as:

log p(z|R) =− 1
2 ẑ

T (K(x,x))−1x̂+ log p(R|ẑ)

− 1
2 |IN + Σ̂

1
2K(x,x)Σ̂

1
2 | (2.34)

where Iq is a q× q identity matrix. By maximising this expression, we can estimate the
hyperparameters of the model in the same way described for the standard GP.

With this, we described the key equations for estimating the spatial intensity field of a
set of point reports using the LGCP. However, similarly to the what discussed for the
HGP, also this models has the shortcoming of not considering the trustworthiness of each
report which is a key requirement of our problem (Req. 2). Therefore, in Chapter 6, we
will show how to make the LGCP more robust against the presence of untrustworthy
reports and so introduce our new trust-based LGCP.

2.7 Summary

In this chapter we introduced the key notions within the literature for dealing with
fusing untrustworthy information in crowdsourcing applications. Specifically, we began
by discussing various approaches to trust evaluation which are currently employed within
crowdsourcing systems. Discussing the properties of these approaches with respect to
our problem, we discarded the reputational approach and the gold-data driven approach
as the former is not reliable in open crowd systems and the later is based on gold
standards which are not part of our requirements. The consensus–based trust approach
was identified as a suitable basis for a solution to work in our setting due to its property of
estimating trust based on the consensus of the crowd which does not use gold standards.
However, we discussed that one important limitation approach of the consensus–based
trust approach is the lack of a consensus method for continuous estimates which is
what we need according to our Req. 1. To rectify this, in Chapter 3 we will define a
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novel consensus method that is suitable for our continuous crowdsourcing setting (thus
satisfying this requirement).

Then, we discussed various approaches for fusing crowdsourced information. In partic-
ular, we distinguished between fusion approaches for discrete data and for continuous
data and, for each of these classes, we discussed the approaches that make use of trust–
based versus non–trust based fusion models. For the class of non-trust based methods, in
both the discrete and the continuous data case, we criticised the fact that they might be
inefficient in managing crowdsourced information due to considering reports as equally
trustworthy. For the class of trust-based fusion methods for discrete data, we highlighted
the fact that these methods are typically more efficient than non-trust based that is a
key finding emerging from various previous works. However, we discussed the problem
of extending the existing models for discrete data to continuous data which involves a
new model and inference design. Therefore, our work will contribute to define such new
models for the trust–based fusion of crowdsourced continuous estimates.

In the class of non-trust based fusion methods for continuous data, we discussed two
standard CI and CU methods for merging Gaussian estimates. In particular, CI was
identified as suitable basis for fusing estimates by taking into account the reported
precisions under the assumption of a Gaussian noise. However, CI needs to be extended
to consider the individual trustworthiness of the user to meet our Req. 2. Instead, CU
was identified as the conservative fusion method due to its property of merging estimates
by increasing the variance of the fused estimate in order to achieve the consistency of
the fused output with all the reported estimates. Therefore, CU will only be referred to
as a benchmark for our algorithms presented in Chapter 3 and Chapter 4.

In the class of trust-based fusion methods for continuous data, we first discussed the out-
lier detection approach as a possible methodology to deal with untrustworthy estimates
in crowdsourced datasets. However, one drawback of this method is the sensitivity to the
choice of the the outlier threshold and the locality parameter. Therefore, while seeking
an alternative parameter-free data fusion approach for crowdsourcing, we will consider
outlier detection as a trust-based fusion benchmark. Subsequently, we described RM
which is an algorithm specialised in fusing sensor estimates in presence of unknown
sensor faults. This algorithm was identified as a solution that could potentially meet
our requirements for the crowdsourcing stationary setting due to its ability to learn the
sensor’s trustworthiness and merge the sensor estimates accordingly. However, the fact
that its underlying parametric model natively defined for sensor fusion settings, which
requires less flexibility than a crowdsourcing setting, suggests that we can potentially
improve it by using more flexible parameters–free trust approaches. As such, we will use
RM as another benchmark in the evaluation of our approach.



Chapter 2 Literature Review 49

For the requirement of fusing crowdsourced estimates of non-stationary items, particu-
larly in the context of crowdsourcing spatial estimates, we reviewed techniques for het-
eroskedastic spatial regression. In particular, we introduced the heteroskedastic Gaus-
sian process which was identified as a a rare exception of a powerful but also tractable
regression model which is particularly suitable to satisfy our requirements. However, its
main limitation was identified in the fact that it’s constant-noise variance assumption is
unsuitable to models datasets of varying trustworthiness within the inputs. To address
this, we will study a new trust-based HGP model based on having individual user’s
trustworthiness associated with the data in Chapter 5.

For the requirement of crowdsourcing spatial intensity fields, which is a special case of
crowdsourcing non-stationary information, we introduced the key mathematical back-
ground of spatial point processes that related to the fusion of crowdsourced point esti-
mates. In particular, we discussed the Log Gaussian Cox (LGCP) process which is a
spatial point process with similar properties to Gaussian processes. In the same vein,
we highlighted the key shortcoming of the LGCP in solving our problem which is due
to ignoring the fact that reports might be of different trustworthiness. To address this
shortcoming, in Chapter 6, we will devise a new trust-based LGCP inspired by the same
theory as our trust-based HGP.



Chapter 3

A Frequentist Trust Model for
Fusing Crowdsourced Estimates
of Stationary Continuous
Quantities

As per the objectives outlined in Chapter 1, we wish to build a reliable information fusion
framework for crowdsourcing and participatory sensing applications. In this chapter,
we focus on the first challenge faced by the development of such a framework which
is the fusion of crowdsourced continuous estimates of stationary quantities (Req. 1).
To address this challenge, we rely on the trust–based fusion paradigm which entails
reasoning about the trustworthiness of individuals to improve the statistical accuracy of
the data fusion models (Req. 2).

As discussed in Chapter 2, existing approaches to merging continuous estimates pro-
duced by possibly unreliable sources are mostly inspired by the sensor network domain.
In particular, existing sensor fusion methods can be trivially adapted to crowdsourcing
scenarios by considering human users as traditional hard sensors. However, these ap-
proaches typically assume some specific noise structures within the data that are more
characteristic of sensor devices than human sources. For example, it is common for these
sensor models to represent the data noise as drifts, spikes and shocks of the reporting
sensors (Reece and Roberts, 2010). Yet, in crowdsourcing, we know that it would be
unrealistic to assume that a human sensor would produce inaccurate data in a sensor–
like manner (i.e. as an effect of a spike or a shock), or that a sensor can deliberately
misreport observations in a human–like manner (Hall and Jordan, 2010). In general,
these and the other shortcomings that we discussed in Chapter 2 (Section 2.4) relate
to the fact that current sensor fault models do not appropriately represent the range of
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human errors. Therefore, we need to investigate new fusion models for crowdsourced
information.

In Chapter 2 (Section 2.4.2), we also discussed the idea of combining sensor fusion
techniques with simple parametric trust models based on outlier detection of distance–
based trust functions. This can be regarded as the first intuitive trust–based approach
to achieve more efficient information fusion models in crowdsourcing. However, the
inconvenience of this approach is the need for their parametric trust models to find the
optimal parameters for each dataset being analysed.

Against this background, we develop a new trust–based fusion method which addresses
these shortcomings through the combination of a principled statistical model of a human
reporter’s trustworthiness for fusing crowdsourced estimates of stationary quantities.
Specifically, our approach is based on constructing a likelihood model of the fusion
process based on having a set of user trust parameters scaling the uncertainty of the
reported estimates. Then, using an efficient frequentist learning approach based on
maximum likelihood inference, we can learn the values of the trust parameters from the
reports coming from the crowd. This learning step is performed through an approximate
inference scheme implemented by the MaxTrust algorithm that we provide.

In more detail, our contributions are the following:

• We present the first trust–based crowdsourcing model for jointly fusing untrustwor-
thy estimates of stationary continuous quantities and learning the trustworthiness
of the users in participatory sensing applications.

• We derive an efficient inference algorithm (MaxTrust) for our model, which is able
to statistically estimate the user’s trustworthiness and the fused output.

• Using the OpenSignal (www.opensignal.org) dataset containing cell–tower detec-
tions collected from Android mobile phones, we show that our algorithm outper-
forms existing benchmark methods in both absolute accuracy, gaining up to 22%,
and predictive uncertainty, gaining up to 21%. Furthermore, we also show through
simulated experiments that MaxTrust can achieve comparable accuracy with 10%
more untrustworthy users within the crowd.

The remainder of this chapter is structured as follows. In Section 3.1, we describe our
model and its key components related to the user’s trust model and the information
fusion process. In Section 3.2, we provide the full details of our MaxTrust algorithm
to perform inference in our model. In Section 3.3, we test our algorithm with both
simulated and real–world experiments using the OpenSignal dataset in which we compare
its performance to five state–of–the–art methods. Finally, Section 3.4 concludes the
chapter with a summary of the results.

www.opensignal.org
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Figure 3.1: Illustration of scenario of crowdsourcing location data. The user
reports GPS–based location estimates of a stationary target represented a red
balloon (left most figure).

3.1 Model Description

In this section, we formally describe our user trust model (Section 3.1.1). Then, we
detail our fusion method which embeds such a trust model (Section 3.1.2).

3.1.1 An Uncertainty Scaling User Trust Model

In this model, a crowd ofK users reports observations of a stationary d-dimensional item
with a true, unobserved value µ ∈ Rd. Specifically, each user k reports pk estimates of
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µ and each reported estimate ek,j with j = 1, . . . , pk comprises (i) the observation
xk,j ∈ Rd and (ii) the precision of xk,j , i.e., θk,j ∈ R>0. In particular, θk,j is the
precision that user k reports about its observation, which is a key requirement of our
crowdsourcing problem (Req. 1). Notice that, in practice, it is common for users to
estimate θk,j as a self–apprised confidence about its observation, the precision of the
measuring tool, or the variance of a series of repeated measurements. However, in
situations where it is not possible to estimate the precision, this can also be set to a
default value while still preserving the properties of our model. Therefore, our report
set is R = {ek,j |k = 1, . . . ,K; j = 1 . . . pk} where each report ek,j = 〈xk,j , θk,j〉 denotes
that user k estimates µ as xk,j with precision θk,j . In more detail, Figure 3.1 illustrates
a typical scenario described by our model in which users report estimates (e.g., location
estimates) of an observed stationary item (e.g. a cell tower position) collected through
its own sensor device (e.g. the GPS of its phone). The set of reports is shown on a
map as estimates (circles) of the item’s value based on the reported observations and
the precisions.

In our model, we assume we have a Gaussian distributed uncertainty around each user’s
observation associated with the reported precision. That is, for each report ek,j , the
probability density function (p.d.f.) of its estimate is expressed by the following Gaussian
density:

p(x|rk,j) = N (x|xk,j , θk,jId)

=
(
tkθk,j

2π

)d/2
exp

(
− 1

2(x− xk,j)T θk,jId(x− xk,j)
)

(3.1)

where x is a generic point in Rd and θk,jId, with Id = d× d, is the precision (or inverse
covariance) matrix. In particular, by using a diagonal precision matrix, we assume an
uncorrelated and equally distributed noise along the d dimensions of the input space.

Next, as part of our requirements (Req. 2), we consider the uncertainty of the individual
user’s trustworthiness. To this end, we formally state the conditions that define an
untrustworthy estimate in our model. In detail, we assume that ek,j is trustworthy
w.r.t. µ if the following condition holds:

xk,j ∼ N (x|µ, θk,j), E[x] = µ

That is, a report provided by a trustworthy user is assumed to be sampled from a
Gaussian distribution N , where its expected value is the item’s true value and θk,j is
the noise of the sampling process. This assumption can also be interpreted as the fact
that xk,j is generated as a noisy observation of µ with noise correlated to θk,j . By
contrast, an untrustworthy report is assumed to be sampled from any other statistics
that are not correlated to µ. For example, reports may have gain and offset errors, they
may correctly calibrated but exhibit greater noise than what they report. In simple
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settings, each of these errors can be modelled within the data aggregation process to be
able of potentially recovering the most genuine estimates of the true item. However, in
crowdsourcing settings, representing all these factors in a parametric model is not always
feasible given the sparse data typically available. Thus, we deal with this set of known
and unknown inaccuracies in the reports using a more general uncertainty scaling trust
modelling approach.

More formally, given this, we define a set of trust parameters, t = (t1, . . . , tk)T , to repre-
sent the reliability of each user in the range of [0, 1]. Specifically, tk is the trustworthiness
of user k with tk = 1 meaning that the user is fully trustworthy and tk = 0 meaning
that it is completely untrustworthy. Then, we introduce the key feature of our trust
model which is a new Gaussian p.d.f for a report ek,j obtained by using tk as the scaling
parameter for θk,j . Thus, Equation 3.1 is updated as follows:

p(x|ek,j , tk) = N (x|xk,j , (tkθk,jId))

=
(
tkθk,j

2π

)d/2
exp

(
− 1

2(x− xk,j)T tkθk,jId(x− xk,j)
)

(3.2)

In more detail, tk regulates the uncertainty of the user’s estimates in the following way.
If a user is fully trustworthy (tk = 1), then the uncertainty in its reported estimate cor-
responds to its reported precision, θk,j . Otherwise, if a user is untrustworthy (tk � 1)
then the uncertainty in its reported estimate will increase up to having an approximately
uniform probability density over x as tk is close to 0. In this way, the model assumes
that a trustworthy user must accurately report the uncertainty of its observations. In
fact, having a user that confidently reports wrong observations is more problematic from
the fusion point of view, compared to having wrong observations reported with low con-
fidence. In this respect, by using trust parameters to scale the reported precisions, our
user trust model is close to the idea of other existing trust approaches used in different
non-crowdsourcing domains, such as service provision, web services and grid computing
(Teacy, 2006). As an example, Figure 3.2 shows the scaling effect of a trustworthiness
parameter for a one-dimensional Gaussian estimate, ek,j = 〈16, 3〉, varying trustworthi-
ness, tk = {1, 0.5, 0.2}. In particular, it can be seen that the p.d.f. flattens on the x-axis
as an effect of increasing its variance proportionally to tk.

Having now defined our user’s trust model, we discuss the integration of such a model
in our fusion framework (thus, satisfying our Req. 1) in the following sub–section.

3.1.2 A Trust-based Fusion Model

As per the objectives laid down in Chapter 1, our ultimate goal is to fuse the set of
crowdsourced reports into a single estimate that accurately predicts the item’s value,
i.e. µ. Crucially, such a fusion must be aware of the different trustworthiness levels
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Figure 3.2: Effect of the trust parameter (t) as noise scaling factor of a Gaussian
estimate.

of the users. To define such a method, we draw from the set of data fusion methods
discussed in Chapter 2. In particular, we cast our problem in a single–hypothesis fusion
setting (see Section 2.3.2). This choice is motivated by the fact that, in our setting, we
deal with reports of a stationary item, therefore the unique fusion hypothesis relates to
the true value of such an item. In this setting, we use covariance intersection (CI), that
is the standard method for single-hypothesis fusion, as a baseline technique to derive
our new trust-based fusion method, which we call trust–based CI. In more detail, the
trust–based CI fusion of the estimates included in R given t is denoted as fR(x|t) and
is expressed as follows:

fR(x|t) = N (x|xf , θf Id) (3.3)

θf =
K∑
k=1

tk

pk∑
j=1

θk,j (3.4)

xf = θ−1
f

K∑
k=1

tk

pk∑
j=1
xk,jθk,j (3.5)

That is, the trust–based CI fusion of a set of Gaussian estimates is a new Gaussian
p.d.f. over x with mean and variance weighted by the trust parameters of the user. In
particular, for the bivariate case (i.e., d = 2), the trust–based CI equation of the fused
mean xf (Equation 3.5) can also be rewritten as follows:

xf,1 = θ−1
f

K∑
k=1

tk

( pk∑
j=1

xk,j,1θk,j

)

xf,2 = θ−1
f

K∑
k=1

tk

( pk∑
j=1

xk,j,2θk,j

)
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Figure 3.3: Example of 10 Gaussian estimates fused through CI fusion (a) and
trust-based CI (b).

where xk,j = 〈xk,j,1, xk,j,2〉 and xf = 〈xf,1, xf,2〉. Recall θk,j is always a univariate
term since we use the same precision for all the input dimensions (see Section 3.1.1).
Specifically, our trust–based CI merges the estimates as jointly weighted by θk and by
tk. This determines that the trustworthy reports are considered with a higher weight,
while the untrustworthy ones are gradually downgraded in the fusion. In this respect,
it could be argued that this way to define a trust–based fusion might be vulnerable
to collusion attacks whereby the untrustworthy reports dominate over the trustworthy
ones. However, in addition to the fact that this situation is excluded by the majority
assumption underlying our model, we notice that collision attacks are not yet seen as a
serious issue in crowdsourcing, due to the openness of the crowd which does not facilitate
user–to–user agreements. This supports our choice of using CI in our fusion model for
crowdsourced estimates that we described in Equations 3.4 and 3.5.

Thus, the property of trust–based CI of using users’ trustworthiness to weight each
report overcomes the limitation of the standard CI which considers all the estimates
as equally trustworthy. Comparing these two fusion approaches, Figure 3.3 shows an
example of fusing 10 one–dimensional Gaussian estimates submitted by two users with
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µ = 8. Specifically, user 1 reports {e1,1, . . . , e1,7} and user 2 reports {e2,1, . . . , e2,3}. In
this example, it can be seen that the trust–based CI fusion (Figure 3.3 (b)) obtained
by setting trustworthiness parameters to t1 = 1 and t2 = 0 is much closer to µ com-
pared the standard CI fusion (Figure 3.3 (a)). This is due to the correct assignment of
trustworthiness which defines a zero weight for the estimates reported by user 2 that are
inconsistent with µ. With this, we can see that the accuracy of this trust-based fusion
method is strictly dependent on the right values of trustworthiness assigned to the users,
which are not known beforehand. Thus, we next show a statistical method to estimate
t from e.

3.1.3 Maximum Likelihood Inference

We wish to infer the values of the trust parameters from the set of crowd reported
estimates. In our model formulation, we do not specifically require to account for the
uncertainty in the estimation of such parameters, i.e., they can be set to static values as
opposed to estimating them through probability distributions. Therefore, we choose to
adopt a maximum likelihood (ML) approach to our inference problem. Specifically, ML
is a standard frequentist approach for learning the values of unobserved parameters in
a statistical model by setting them to the values that maximise the probability of the
observed dataset (likelihood) (Bishop, 2006). In order to apply ML to our model, we
start by defining the likelihood of one trust parameter given a single report as follows.
Without loss of generality, let us assume a bivariate setting (i.e. d = 2) and recall our
notation x = 〈x1, x2〉, xk,j = 〈xk,j,1, xk,j,2〉 and xf = 〈xf,1, xf,2〉. Then, the likelihood of
tk given ek,j and f(x|e, t) is the joint product of the two p.d.f.s described by Equations
3.2 and 3.3, integrated over the two-dimensional space. Formally:

L(tk|rk,j , fR) =
∫
R2
p(x|ek,j , tk)f(x|e, t)dx

=
∫
x1

∫
x2

tkθk,jθf
4π2 exp

(
− 1

2(tkθk,j(x1 − xk,j,1)2

+ tkθk,j(x2 − xk,j,2)2 + θf (x1 − xf,1)2

+ θf (x2 − xf,2)2
)
dx1dx2 (3.6)
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Figure 3.4: Likelihood of three reports ek,1, ek,2, ek,3 over the fused estimate
fR.

Then, applying the basic rules of Gaussian integration, Equation 3.6 can be solved in
closed form as follows:

L(tk|ek,j , fR) = 1
2π( 1

tkθk,j
+ 1

θf
)

exp
(
− tkθk,j

2 (xk,j,1 + xk,j,2)2

+ (tkθk,jxk,j,1 + θfxf,1)2 + (tkθk,jxk,j,2 + θfxf,2)2

2(tkθk,j + θf )

− θf
2 (xf,1 + yf,2)2

)
(3.7)

That is, the likelihood of tk for a single report is taken as the product of the proba-
bilities assigned by ek,j and fR to the area of ∆x. Then, taking the limit ∆x → 0,
and summing up for each possible ∆x, this gives the integral over x. Such an integral
is equal to the exponential of the pairwise distance between x and xk,j and between
xk,j and xf , by tkθk,j and θf respectively. In more detail, Figure 3.4 shows a numerical
example of computing the likelihood of tk = 1 with three reports, ek,1 = 〈7, 0.7〉, ek,2 =
〈9, 0.25〉, ek,3 = 〈12, 0.11〉 and fR = 〈5, 1〉. In particular, it can be seen that the likeli-
hood value is proportional to the area shared between ek,j and fR i.e. the further ek is
from fR, the lower is its likelihood. In this example ek,1 and ek,3 are the most and least
likely estimate given fR, respectively.

Next, assuming independence between ti and tj for i 6= j, i.e. assuming that the users
are independently trustworthy, the joint likelihood of t given e is the product of the
individual likelihood terms. That is:

L(t|R) =
K∏
k=1

pk∏
j=1

L(tk|ek,j , fR)

=
K∏
k=1

pk∏
j=1

(∫
Rd
p(x|ek,j , tk)fR(x|t)dx

)
(3.8)
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Notice that the likelihood does not directly depend on fR as this is implicitly derived
from e and t which are already function parameters (see Equation 3.8). Then, by taking
the logarithm of this function we obtain the following expression:

ln
(
L(t|R)

)
=

K∑
k=1

pk∑
j=1

ln
(
L(tk|ek,j , fR)

)
=− p ln(2π) +

K∑
k=1

pk∑
j=1

(
ln(tkθk,j + θf ) + ln(tkθk,jθf )

+ (xk,j,1tkθk,j + xf,1θf )2 + (xk,j,2tkθk,j + xf,2θf )2

2(tkθk,j + θf )

− tkθk,j
2 (xk,j,1 + xk,j,2)2 − θf

2 (xf,1 + xf,2)2
)

(3.9)

where p = ∑K
k=1 pk is the total number of reports. Finally, factoring in the expressions

of θf and xf (Equations 3.7, 3.8 and 3.9), and maximising this function, we obtain the
ML estimates of t. That is:

tML = arg max
t

K∑
k=1

pk∑
j=1

ln
(
L(tk|ek,j , fR)

)
(3.10)

In so doing, we notice that there are two singularities in the function for tk = −θf/θk
and tk = 0 (see Equation 3.9). We discuss these two cases individually. Specifically,
the case of tk = −θf/θk,j is excluded by our initial assumptions of having θk,j and tk

positively defined (see Section 3.1.1). The case of tk = 0 implies that the trustworthiness
value of any report cannot be set to zero as this would give an infinite variance which is
not tractable numerically. To avoid this case, we can set the range of tk to be open in 0,
i.e. tk ∈ (0, 1], thus approximating the value of an untrustworthy user with a small value
ε, i.e. tk ∈ [ε, 1]. Having now described our model formally, an algorithm for performing
the optimisation step of the maximum likelihood inference of t is provided in the next
section.

3.2 The MaxTrust Algorithm

In this section, we describe our algorithm, named MaxTrust, for the polynomial compu-
tation of ML estimates of the parameters t, xf and θf givenR. Before going into further
detail, we discuss the following two computational aspects concerning the analysis of our
model. Firstly, the non-linear expression of the likelihood described in Equation 3.9 does
not allow a closed form analytical maximisation. Thus, we need to use numerical op-
timisation to carry out such a function maximisation. Secondly, the tk terms are not
separable in this function and there is a mutual dependency between the trustworthiness
parameters, i.e. when we update tk we also need to update the remaining t(−i) parame-
ters. Thus, a natural way to solve this computationally is to iterate over setting values
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of each tk parameter until these converge. To do so, we use Jacobi iteration (Hageman
and Young, 2004), which is a standard numerical technique for solving non-linear sys-
tems. In detail, Jacobi iteration sequentially updates only one system parameter at a
time using the values of the previous iteration1. Drawing these two points together, our
MaxTrust algorithm can now be described (see Algorithm 3.1).

In more detail, in step 1, the algorithm starts with an initial guess of tk. For this step,
random initialisations of the trust parameters in multiple runs of the algorithm are use-
ful to avoid suboptimal solutions, although we found that the initial configuration with
all the tk parameters set to one provided faster convergence in our experiments. Then,
steps 3-6 implement the Jacobi loop in which, at the h-th iteration, t(h)

k is updated
through the line search maximisation of fR with only tk left as a free parameter using
the values of t(h−1)

−k from the previous iteration (step 5). After convergence, that was
empirically found to be reached in approximately 5 - 20 iterations, the algorithm returns
the trustworthiness values t(h) and the fused estimate 〈xf , θf 〉 from the last iteration
(steps 7-8). In this way, MaxTrust computes the output in O(epochs×K|S|) polynomial
time, where |S| is the number of samples used to perform the line search function max-
imisation in step 5. While this procedure is not guaranteed to find the optimal solution,
it can be computed in polynomial time which is more efficient than the optimal search
of the optimal maximiser which has exponential time complexity (O(|S|K)). From this,
MaxTrust is suitable for multiple, cheaper, runs to improve the quality of the learning
output. Having now described our algorithm, its empirical evaluation is presented in
the next section.

3.3 Experimental Evaluation

In this section, we present the results of the evaluation of MaxTrust in performing
multiple fusion tasks. Specifically, our first experiment aims to test the robustness of
MaxTrust in various crowdsourcing settings with different levels of trustworthiness of
the crowd using synthetic data (Section 3.3.2). Then, our second experiment aims to
show the efficacy of MaxTrust in the real-world crowdsourcing application of cell–tower
mapping (Section 3.3.3).

3.3.1 Experimental Setup

We compare the performance of MaxTrust in terms of accuracy and informativeness
of its fusions agains several state–of–the–art approaches. To do so, we describe all the
approaches that we evaluate and the metrics used to measure their performances.
1The dual method, the Gauss-Seidel iteration (Black and Moore, 2006), is also suitable although ir was
found to be less numerically stable in our experiments.
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Algorithm 3.1 MaxTrust
Variables :

R : Report set.
t(s) : Trustworthiness vector at the s-th learning epoch.
fR : Fused estimate.
err : Error bound.
epochs : Maximum number of learning epochs.

Algorithm MaxTrust(R)
1: Start with uniform trustworthiness:

t(0) := 〈1, . . . , 1〉
2: h := 0

3: while ( |t(s−1) − t(s)| < err and h < epochs ) do

4: s := s+ 1

5: for k := 1 : K do

t
(s)
k

:= arg maxt L(〈t, t(s−1)
−k 〉|e) (Equation 3.10)

end for

6: end while

7: θf =
∑K

k=1 t
(s)
k

∑pk

j=1 θk,j (Equation 3.4)

xf = θ−1
f

∑K

k=1 t
(s)
k

∑pk

j=1 xk,jθk,j (Equation 3.6)

8: return (t(s),xf , θf )
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3.3.1.1 Benchmarks

In our evaluation, we compare MaxTrust against five methods taken from the two main
classes of trust–based and non–trust fusion approaches that we discussed in Chapter 2.
These are described as follows:

• Non-Trust Fusion Approaches: These are the approaches that do not explicitly
consider a user’s trustworthiness in the fusion method. In this class, we consider the
following two algorithms that are representative of the fusion approaches discussed
in Chapter 2 (Section 2.3):

– Covariance Intersection (CI): The standard CI fusion method for the
linear fusion of multiple Gaussian estimates as described in Section 2.3.2.1.
Notice that this method is equivalent to MaxTrust without considering the
trust parameters, i.e., tk = 1 ∀k.

– Covariance Union (CU): The standard CU fusion method that merges
the reports by taking the union of their Gaussian estimates as described in
Section 2.3.2.2.

• Trust-Based Fusion Approaches: These are approaches that, similarly to Max-
Trust, compute the fusion of the reports combined with the learning of user’s trust-
worthiness as described in Chapter 2 (Section 2.4). In this class, we consider the
following three algorithms:

– Optimal Trust-Based Fusion (OptTrust): This is a hypothetical optimal
algorithm given by our trust–based CI in which we assume we have correct
knowledge of the trustworthiness of each user. Notice that we can only eval-
uate this algorithm for the case of synthetic data where the ground truth of
the item’s value is available.

– Local Outlier Factor Fusion (LOF): This algorithm is based on the
density-based outlier detection approach described by Algorithm 2.1. Specif-
ically, LOF applies outlier detection to the report set based on an outlier
threshold l = 1 (using k = 5 as the number of nearest neighbours), and then
applies CI to fuse the remaining inlier estimates (see Section 2.4.2.1).

– Reece Method (RM): This is the algorithm presented by Reece et al.
(2009) for fusing sensor estimates combined with the inference of the sensor
trustworthiness as described by Algorithm 2.2 (see Section 2.4.2.2). In our
experiments, we set the trust threshold of RM to β = 3 which follows the
setting that the authors suggest in their paper.

In summary, a set of six algorithms {CI, CU, LOF, OptimalTrust, RM, MaxTrust} were
tested as representative benchmarks from both the trust and the non-trust based fusion
approaches.
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3.3.1.2 Accuracy Metrics

We are interested in measuring the accuracy of the fusion algorithms in terms of their
average error and estimated uncertainty. In fact, a good fusion algorithm is expected
to produce estimates with low error and uncertainty with respect to the item’s true
value. To this end, we consider two standard metrics that to measure the accuracy of
probabilistic estimates with respect to a set of gold standards (i.e., the ground truth
of the items) used for validation. These are the root mean square error (RMSE) and
the continuous rank probability score (CRPS), respectively. Specifically, the RMSE is
measured between the predictive mean xif of the fused estimate and the items’ true
value µi, averaged over N items indexed by i. That is:

RMSE =

√√√√ 1
N

N∑
i=1

(xif − µi)2

Notice that the RMSE is measured only based on the fused mean xif .

To take into account the full predictive distribution of an item that is computed by
the fusion algorithm, we consider the CRPS as an additional , more comprehensive,
accuracy metric that is computed from both the fused mean and the fused precision.
This is is a non-local scoring rule particularly suitable for scoring probabilistic predictors
that is commonly used in statistics (Wallsten et al., 1997) and increasingly in artificial
intelligence (AI) (Quinonero-Candela et al., 2006). This is defined as follows:

CRPS = 1
N

N∑
i=1

∫ x=+∞

x=−∞
(F (i)
e (x)− F ∗i (x))2dx

where F (i)
e is the predictive cumulative density function (c.d.f) of the predictive estimate

of µi and F ∗i is the Heaviside step function, with step from 0 to 1 in µi. In particular,
the CRPS has the properties of properness (i.e. the true generative distribution has
the best score) and distance-sensitive scores (i.e. its score is proportional to predictive
probability mass placed near the true value) (Kohonen and Suomela, 2006). In our
experiments, we need to compute the CRPS of Gaussian predictions in the univariate
case of the first experiment with synthetic data, and in the bivariate case of the second
experiment with real location data. For the univariate case, the CRPS of N Gaussian
predictions can be expressed in closed form as follows:

CRPS = 1
N

N∑
i=1

σif

(
− 1√

π
+ 2ϕ

(
µk − xif
σif

)
+
µk − xif
σif

(
2φ
(
µk − xif
σif

)
− 1

))

where ϕ and φ denote the probability density function and the cumulative distribution
of a standard normal random variable, respectively. For the bivariate case, we use an
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approximate version of the CRPS based on solving the CRPS integral via discretisation.
The details on such a CRPS approximation are described in Appendix A.

Finally, for RM and MaxTrust, we also measure the error in their trustworthiness esti-
mates in terms of the RMSE between the estimated tk and the correct user’s trust value
t∗k, which is known only for the case of synthetic data. That is:

t_error =

√√√√ 1
K

K∑
k=1

(tk − t∗k)2 (3.11)

The results of our experiments are presented in the following sections.

3.3.2 Experiments on Synthetic Data

In this first experiment we evaluate MaxTrust on the task of fusing multiple reports in
a continuous one–dimensional space using synthetic data. To simulate this scenario, we
place a hypothetical item at µ = 8. For the purpose of this experiment that aims to
validate the performance of our fusion algorithm, we use a single–report setting in which
each user reports only one estimate. However, the same experiment can be trivially
extended to a multi-report setting. Then, we generate 50 Gaussian random estimates
of µ, one for each user, i.e. K = 50 and pk = 1 ∀k (for simplicity, we omit the index j
in this description). Then, following the assumptions of the MaxTrust’s model made in
Section 3.1, we simulate a setting in which each user has a bounded random precision and
each trustworthy observation is generated according to the user’s precision. Specifically,
we randomly sample the parameters of each report as θk ∼ U [0.2, 10], which means that
the most (least) accurate users estimate the item within a 18% (130%) error bound, and
xk ∼ N (µ, θk). Next, we simulate a percentage ρ of randomly selected untrustworthy
reports by adding a random bias w to xk as follows:

x̂k = xk + w w ∼ ±U [2, 10] (3.12)

That is, by uniformly sampling w from [2, 10], we avoid the situation in which two
untrustworthy estimates are symmetric, i.e. their bias is +w and −w respectively, and
so balance their noise in the linear fusion. In addition, by randomly choosing the sign of
w in each run, we avoid the bias of considering only positive or negative noise terms in
our results. In this setting, we can validate the trust values estimated by MaxTrust and
RM against the true values of trust that we assume to be t∗k = 0 for the untrustworthy
reports and t∗k = 1 for the trustworthy ones.

In more detail, Figure 3.5 shows the results of the six tested algorithms for N = 600 runs
with a percentage of untrustworthy reports increasingly set to ρ = {10, 20, 30, 40, 50, 60}
(the error bars are not visible due to their very small values). Specifically, Figure 3.5 (a)
shows that, as expected, the RMSE of all the algorithms increases for higher ρ values
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Figure 3.5: Plot of the RMSE (a) and the CRPS (b) of the six algorithms in the
experiment with synthetic data. The x-axis is the percentage of untrustworthy
reports controlled by ρ.

and that OptimalTrust has always approximately zero error due to its prior knowledge
of the trust values. Importantly, the two trust–based fusion algorithms (MaxTrust and
RM) outperform the non–trust algorithms (CI, CU) for the values of ρ between 10% and
50%. Notice that ρ = 60% corresponds to the extreme and least practical case when the
majority of the reports is not guarantee to be trustworthy; thus providing no guarantees
that we could extract correct knowledge about the item from such reports. As this case
violates our initial majority assumption, it is less likely that the trust–based methods can
make right decisions about identifying trustworthy users and in turn provide accurate
estimate.

Comparing the two trust–based methods, MaxTrust’s error is very close to RM for
ρ < 30% and it is lower than RM for 30% < ρ < 50%. In particular, its error is
51% lower than RM when ρ = 40%. In particular, when ρ = 60%, MaxTrust does
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RM MaxTrust
t_error for trustworthy users (t̂k = 1) 0.67± 0.15 0.31± 0.10
t_error for untrustworthy users (t̂k = 0) 0.26± 0.20 0.24± 0.11
Average error 0.46± 0.27 0.28± 0.11

Table 3.1: The error (t_error) of the estimated tk for RM and MaxTrust
evaluated on synthetic data. The lowest error of each row is highlighted in
bold.
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Figure 3.6: The plot of the trust values of each user estimated by MaxTrust at
each training epoch from a synthetic dataset with 10 users.

no longer improves accuracy and conform to the errors of CI and RM. The differences
between the RMSE of MaxTrust and RM were found to be statistically significant for
all the values of ρ, except when ρ = 30% where the error bars overlap, from a t-test at
α = 5% (p < 0.001). Overall, MaxTrust is able to achieve comparable accuracy with
a higher presence of untrustworthy users. Furthermore, the CRPS plotted in Figure
3.5 (b) shows MaxTrust has the best scores for all the configurations of ρ < 60%. The
statistical significance of these comparisons was also tested with a t-test at α = 5%
(p < 0.001) This means that its fusion provides the most informative estimate, i.e., it
predicts the item’s true value with the lowest uncertainty. In particular, this accuracy
gain is due to the more accurate trust learning of MaxTrust, which is also demonstrated
by the trust value’s estimation errors reported in Table 3.1. In this table, we can see
that MaxTrust estimates the trust values with an accuracy that is 39% higher than RM.

To further explain the behaviour of MaxTrust in learning such trust values, Figure
3.6 shows the graph of the values of tk estimated at each epoch by the MaxTrust’s
iterative training process described in Algorithm 3.1. Specifically, we run the algorithm
on a synthetic dataset with 10 users generated in the same setting described in Section
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3.3 when ρ = 50%. The graph shows that the algorithm converges in 18 iterations
(convergence error = 10−2) and the trust values change at each iteration based on the
new configuration of the likelihood function. Crucially, in the last iteration the trust
parameters converge to a set of values in which all the values of the trustworthy users
(user 3, 4, 5, 7, 9) and untrustworthy users (user 1, 2, 5, 8, 10) are correctly learnt2.

Furthermore, we can see from the error plots (Figure 3.5) that CU is consistently the
algorithm with the highest error amongst the tested methods. This means that the
conservative strategy of unifying the estimates is mostly inaccurate in our scenario.
Moreover, LOF marginally improves over CI although its performance might improve
by fine tuning its outlier threshold. However this threshold needs to be tuned for each
ρ which makes LOF less flexible than MaxTrust which is threshold free. Finally, for
ρ = 60% all the algorithms have comparable errors which is determined by the majority
of untrustworthy reports that does not allow any further improvement by the trust-based
fusion algorithms.

From these results, we contend that the trust-based approach improves the accuracy of
the reports’ fusion on our simulated datasets. In particular, MaxTrust is the algorithm
that is the most robust against larger numbers of untrustworthy users. It also achieves a
good accuracy, which is never with lowest uncertainty amongst the tested methods. To
further strengthen this empirical claim, we now explore the performance of MaxTrust
with a real–world dataset.

3.3.3 Experiments on Real Data

In this second experiment, we focus on the application of cell tower mapping from crowd-
sourced cell detections that we introduced in Chapter 1. As already discussed, this is a
key application for the mobile phone industry that involves all the major phone manu-
facturers, including Apple, Google and Microsoft-Nokia. Specifically, the objective is to
build cell tower maps to improve the positioning system of their mobile phones (Ahern
et al., 2006). In fact, by having a map of the cell towers located in the phone’s local
area, triangulation can rapidly give an accurate phone position with a lower battery
drain compared to the standard GPS–based localisation. Moreover, cell tower position-
ing systems also allow phones to localise themselves in indoor environments.

However, the task of mapping the cell towers cannot be easily achieved manually due
to frequent updates to the topology of cellular networks and the fact that the network
operators do not always make the map of their installed radio masts available. For this
reason, a number of projects have recently explored a crowdsourcing approach to this
problem consisting of leveraging the multitude of mobile phones disseminated across
2This convergence is only showed empirically.
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Figure 3.8: Example of the re-
ports for the cell tower (CID 3139,
LAC 22) from the OpenSignalMap
dataset.

the cellular network to collect data about the cell tower locations.3 Specifically, GPS–
equipped phones can provide the list of the cells scanned in their surrounding area
together with the phone’s current GPS position. Then, the cell tower location can
be determined through merging multiple cell detections reported by the phones from
different positions.

However, in so doing, an important issue which relates to the trustworthiness of the
reported cell detections is the fact that several inaccuracies may affect the reporting de-
vices. Firstly, the GPS readings are often inaccurate, due the limited update frequency
of the device that often returns out–of–date fixes. Secondly, the signal strength readings
do not always accurately indicate the current phone–mast distance as the signal may
change dynamically across the cell due to obstacles and reflections. Since such inaccu-
racies are an issue to reliably localise the cell towers, we now show how MaxTrust can
be applied to this problem to improve the accuracy of crowdsourced cell tower maps.
In particular, we focus on the case of an omni–directional cellular network illustrated in
Figure 3.9, namely where a cell tower is placed at the centre of each hexagonal cell. In
this network topology, the mast radiates the signal approximately uniformly spherically
across the cell. Thus, this type of network suits the assumption of normally distributed
probability of the cell tower detection made by MaxTrust in Section 3.1.1

3.3.3.1 Dataset

In this experiment, we used the dataset provided by OpenSignal (opensignal.com).
This includes 1563 records of anonymised phones that reported detections for a set of
130 omni-directional cell towers (max=46, min=6, avg=12 reports per cell tower) in
3For examples, see cellmapper.net, epitiro.com and skyhookwireless.com.

opensignal.com
cell mapper.net
epitiro.com
skyhookwireless.com
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Figure 3.9: Topology of a cellular network with omni–directional cell towers.

the area of Southampton, UK (bounding box: 50.97 N, 1.525 W and 50.85 N, 1.25
W). Specifically, each report comprises (i) the Cell ID (CID) and Location Area Code
(LAC) of the phone’s cell, (ii) the GPS location of the phone (latitude and longitude
degrees), (iii) the precision of the GPS fix (in meters). For privacy reasons, the dataset
did not provide any user identifier that could link between the single user and its mul-
tiple reports. Therefore, similarl to the previous experiment, we can only consider the
single–reporting case in which each user reports only one cell detection. A complete
description of this OpenSignal–Cell tower4 dataset is provided in Appendix B. Further-
more, a second official dataset of cell tower locations is made available by the Authority
of UK Communication (OFCOM, ofcom.org.uk) which we consider as a more reliable
source and, as such, we use the OFCOM data as the ground truth cell tower location to
evaluate the performance of our algorithms.

In order to apply MaxTrust to this dataset, we first convert each geographical position
(in spherical degrees) to planar coordinates (in meters) applying the following standard
equilateral projection:

RLat-Lon =

 lat
lon

 (degrees)
(degrees)

7→ Rx =

x1

x2

 (meters)
(meters)

x1 = 111, 229 · cos(Lat) · (lon− lon0) (3.13)

x2 = 111, 229 · (lat− lat0) (3.14)

where lat0 and lon0 are the coordinates of the point taken as the origin in the planar
system (conventionally set to 50.84 N, 1.52 E). Specifically, given that at 50N one degree
4This name is adopted to distinguish this dataset from the second OpenSignal–WiFi dataset that will
be used in Chapter 4.

ofcom.org.uk
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Figure 3.10: Bar plots of the RMSE (a) and CRPS (b) for the five algorithm in
estimating the positions of the 130 cell towers.

of latitude corresponds to 111,229 meters, this projection compute the approximate line
distance between the origin point and the given location. Such an approximation pro-
vides a good level of accuracy in small areas, which is the case of the area of Southampton
that we consider. It is also faster to compute compared to the more complex Haversine
formula that provides the appropriate trigonometric treatment for spherical distances
between two locations but is constrained for numerical computation (Kells et al., 1951).

To set the values of θk, i.e. the precision of each reported detection, we notice that 66%
of the reports were located within 1200 meters from the true cell tower position. This
is also showed by the cumulative distribution curve of the phone-cell tower distance in
Figure 3.7. Hence, given that σ0 = 1200, we set θk as follows:

θk = (σ_GPS2
k + σ2

0)−1 (3.15)

where σ_GPS2
k is the inverse of the GPS precision reported by user k. Summing up,

the estimate associated with each cell detection reported by the devices is represented
as ek = 〈xk,1, xk,2, θk〉, where 〈xk,1, xk,2〉 is the GPS position of the device and θk is
the precision of the GPS fix, respectively. In more detail, Figure 3.8 shows the reports
collected for the cell (CID 3139, LAC 22) with the circles showing the phone’s GPS
location and the 3/θk range (i.e. the 99% confidence interval) of each report. In this
setting, we evaluate the accuracy of the fusion in each cell produced by our algorithms.

3.3.3.2 Results

Figure 3.10 (a) shows the RMSE of the algorithms based on the mean error of their
fusions for the set of 130 cell towers. In particular, the error bars are the standard
deviation of their mean error. As it can be seen, MaxTrust outperforms all the other
methods with a RMSE which is 42% lower than the best non-trust method, CI, and 22%
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Figure 3.11: The histogram of the trust values estimated by RM and MaxTrust
for the reports of the OpenSignal–Cell tower dataset.

lower than the second best trust-based method, RM. Importantly, such a lower error is
equivalent to an accuracy gain of 147 meters (average error: RM = 804m vs. MaxTrust
= 658m) in localising the cell tower. In addition, Table 3.2 reports the errors (in meters)
measured as the line distance between the predictive mean computed by each algorithm
and the true cell tower location for a subset of 15 cell towers (the results are similar
for other subsets, as is apparent from the result of Figure 3.10 (a)). On such a subset,
MaxTrust has the lowest error in 9 out of 15 cells and it has the lowest average error
of 147 meters. Thus, this result shows that the parameter–free trust learning method
adopted by MaxTrust is able to model the different distributions of reports in each cell
more efficiently. Furthermore, Figure 3.10 (b) shows the CRPS of the predictions of the
algorithms on the same dataset. From this we can see that MaxTrust has the lowest
CRPS, which is 21% lower than the second best score. This means that, similarly to the
conclusions of our previous experiment, MaxTrust provides the most informative fusions
by having the lowest uncertainty in its predictions. Globally, our results show that the
trust–based methods (MaxTrust, LOF and RM) outperform the non–trust ones (CI and
CU) and that MaxTrust is the most accurate fusion algorithm having both the lowest
RMSE and CRPS on the OpenSignal–Cell tower dataset.

Further insights can be gained from the analysing the trust values estimated by RM
and MaxTrust that are showed in the histogram of Figure 3.11. The histogram shows
that RM estimates that 6.8% reports have very low trustworthiness, within [0, 0.1]. In
contrast, MaxTrust estimates that only 1.7% reports have such a range of trustworthi-
ness. This means that RM is more aggressive in selecting untrustworthy reports which
is due to the static threshold that it uses to distinguish the trustworthy reports from
the untrustworthy ones (see Section 2.4.2). Consequently, RM estimates a lower per-
centages (82%) of reports with high trustworthiness, i.e., within [0.9, 1], while MaxTrust
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Figure 3.12: Error (y–axis) of CI and MaxTrust over the number of reports
(x–axis) in each cell tower.

estimates 87% of reports for the same bin. The percentages for the other bins are more
comparable between the two methods. Generally speaking, MaxTrust, which does not
require any thresholds for learning trust values, is able to adapt more flexibly to the
given dataset and it is less aggressive, but still very effective, than RM in selecting
untrustworthy reports.

Another interesting result is the analysis of the RMSE of MaxTrust and CI, i.e. the two
best methods among the trust–based and the non–trust based fusion classes, projected
on the number of reports available in each cell (Figure 3.12) This analysis shows that
MaxTrust minimises the error when the size of the report set is small (i.e. < 15 reports),
while its error is comparable to CI for a medium (i.e. between 20 and 35 reports) and a
large report set (i.e. > 35 reports). This is explained by the fact that having sufficiently
many reports makes it more likely to have a majority of trustworthy reports that mitigate
the error of the untrustworthy ones. However, an important finding is that MaxTrust
provides better accuracy in the more challenging fusion tasks in which only a few reports
are available.

3.4 Summary

In this chapter, we presented our first trust-based fusion method, MaxTrust, which ad-
dresses our requirement for merging crowdsourced estimates of stationary items (Req.
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1). To address this requirement, we designed a trust model that applies uncertainty
scaling techniques to represent the uncertainty of the user’s reliability in the reported
estimate (thus, also addressing Req. 2). Then, by combining this trust model with our
new fusion method, that extends the standard CI by weighting the estimates according
to the individual trustworthiness of the users, we are able to learn the user’s trust-
worthiness from the crowd reports through maximum likelihood inference. Finally, we
showed that MaxTrust outperforms five of the state–of–the–art methods in producing
more accurate and highly informative fusions through experimental evaluation. In par-
ticular, we showed that MaxTrust achieves comparable accuracy with higher presence of
untrustworthy users in our simulated experiments. Moreover, it provides 42% more ac-
curate (i.e., localisation accuracy is improved by 147 meters) and 22% more informative
fusions on the real data given by the OpenSignal cell detection reports .

However, there are several features of the current model that we can possibly leverage
for further improvements, Firstly, this model is designed for a single–item setting (i.e.,
the crowd observes only one item) and can only be applied to a multi–item setting by
assuming that the reports of such items are all independent. However, the limitation of
doing so is that the model ignores the possible correlation in the user’s trustworthiness
emerging from its observations of multiple item. These correlations can be exploited to
bootstrap trust knowledge from some items to be transferred to new items. Secondly,
MaxTrust can only perform batch inference over the observed reports. This does not
allow us to consider prior beliefs over the user’s trustworthiness of the item’s value in
the inference or to update the learning outputs when a new report is added to the set.
To address these limitations, we will analyse a new configuration of our trust model
embedded in a hierarchical Bayesian learning framework for the multi–item setting. In
particular, this new Bayesian trust model will be able to maintain probabilistic beliefs
over the random variables and effectively transfer them across the users and the items
being analysed through Bayesian learning, thus removing the assumption of independent
items. This new model will be presented in our next chapter.
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Tower ID [CID, LAC] CU CI LOF RM MaxTrust
[1687, 608] 1440m 957m 700m 582m 528m(50.908 N 1.358 W)
[11259544, 109] 1461m 1061m 955m 1020m 924m(50.907 N, 1.408 W)
[209873204, 3202] 919m 487m 539m 420m 465m(50.923 N, 1.434 W)
[24155, 122] 1740m 1055m 1177m 959m 985m(50.909 N, 1.408 W)
[45995383, 217] 1309m 1042m 935m 914m 901m(50.911 N, 1.447 W)
[62172, 608] 1350m 1368m 301m 1390m 850m(50.915 N, 1.459 W)
[46005029, 217] 1929m 644m 768m 783m 744m(50.917 N, 1.287 W)
[4664508, 43582] 1246m 257m 424m 243m 192m(50.904 N, 1.417 W)
[46195850, 21] 2947m 2767m 3574m 295m 400m(50.876 N, 1.265 W)
[45995383, 217] 1309m 1042m 935m 914m 901m(50.911 N, 1.447 W)
[4684349, 43582] 495m 1208m 1071m 1131m 689m(50.939 N, 1.350 W)
[46195491, 21] 3125m 1593m 1638m 1074m 853m(50.887 N, 1.291 W)
[11694, 122] 1050m 1159m 938m 1040m 889m(50.908 N, 1.400 W)
[45988753, 217] 1332m 1468m 259m 812m 268m(50.900 N, 1.311 W)
[4671127, 43582] 1256m 368m 589m 493m 282m(50.951 N, 1.382 W)
Average 1527m 1098m 987m 805m 658m

Table 3.2: Error (in meters) between the predictive mean produced by the
algorithms from the ground truth location (reported in brackets) for 15 cell
towers randomly selected from the OpenSignal–Cell tower dataset. The best
prediction of each cell is highlighted in bold.



Chapter 4

A Bayesian Trust Model for
Fusing Crowdsourced Estimates
of Stationary Continuous
Quantities

In the previous chapter, we addressed the problem related to inferring reliable knowledge
from crowdsourced estimates of a stationary item submitted by possibly untrustworthy
users (Req. 1). Specifically, we introduced MaxTrust, an algorithm that simultaneously
estimates the item’s value and the trustworthiness of each user. We then showed that
MaxTrust improves the accuracy of the fused output as a result of its underpinning
trust–based fusion approach that de–emphasises the presence of reports coming from
untrustworthy users (Req. 2). In MaxTrust, however, we assumed that a user’s trust-
worthiness can be inferred on the basis of the observations that a user reports for a single
item (see Section 3.1.1). However, this assumption limits the applicability of MaxTrust
to crowdsourcing isolated items (e.g., only one cell tower) or to sets of uncorrelated items
(e.g., a set comprising a cell tower, a WiFi hotspot and a balloon position), where it is
reasonable to assume that there are no correlations between the reliability of a user’s
observations of different items1. In more detail, the only way to apply MaxTrust to
multi–items crowdsourcing setting is to assume completely independent items. How-
ever, there are situations where such correlations cannot easily be ignored as they are
an important indicator of the user’ reliability. For example, we consider the two cases
where a user’s untrustworthiness is due to a consistent misunderstanding (e.g., the lim-
ited accuracy of its phone) or a sporadic error (e.g., due to a particular item that is more
difficult to observe). While MaxTrust would treat these two cases in the same manner,
a more appropriate trust–based fusion algorithm should be able to distinguish between
1This setting was also used in the experiment of MaxTrust applied to the OpenSignal–Cell tower dataset
(see Section 3.3.3)
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these different types of users’ trust behaviour in order to achieve a better handling of
their reports.

In this chapter, we improve upon this situation by extending the previous trust model to
enable our trust–based fusion framework to account for correlations in the user’s reports
of multiple items. Specifically, we introduce a new model, that we call BACE (Bayesian
Aggregation of Crowdsourced Estimates), that enhances the performance of MaxTrust
in multi–item crowdsourcing settings. This makes our framework more suitable for
the real–world applications, by introducing the following two refinements. Firstly, in
contrast to MaxTrust, BACE assumes that the trust parameters are shared across the
items. This allows it to capture a user’s trustworthiness over the entire set of items based
on patterns of reliability for the reports that emerge across the various items. Notice
this is a non trivial extension of MaxTrust because of the fact of having shared trust
parameters modifies the data likelihood that we described in Section 3.1.3. Consequently,
a new analysis of the BACE’s likelihood is required for the purpose of inferring the
quantities of interest. Secondly, in BACE, the trust assessment follows directly from
Bayesian theory. This has the advantage of providing a full estimation of the uncertainty
over the trust parameters2, which enriches the set of learning outputs and improves
the accuracy of the fusion due to a better handling of uncertainty in the inference
process given by the Bayesian probabilistic framework. Thus, while addressing the same
requirements as MaxTrust in terms of aggregating crowdsourced estimates of a set of
stationary continuous items (Req. 1) combined with learning the user’s trustworthiness
(Req. 2), BACE adds three key advantages.

• Using trust parameters shared across the items, BACE achieves transfer learning,
whereby the trustworthiness of a user learned from the previous items automat-
ically forms an evidence of its reliability for observing new items. This is a key
feature that makes BACE more robust against sparse datasets, i.e., data with (pos-
sibly highly) unbalanced numbers of reports per item. In this situation, BACE is
able to transfer user’s trust knowledge from the items with more reports to other
items with less reports, thus providing a more efficient inference of the aggregated
estimate.

• BACE is able to account for the uncertainty over the trust parameters more ef-
ficiently by adopting a Bayesian learning framework that is optimal under un-
certainty (Bishop, 2006). By doing so, BACE provides probabilistic estimates of
these parameters as well as handling such an uncertainty more efficiently in the
computation of the aggregated values.

• BACE naturally adapts to both batch and online learning settings. That is, it can
process the crowd reports either as a single batch or sequentially.

2Recall that, in MaxTrust, these two quantities were estimated as a single value rather than as probability
densities.
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Thus, we make the following contributions:

• We present BACE, a new trust–based Bayesian fusion algorithm for combining
sets of crowdsourced estimates in multi–item settings through an efficient trans-
fer learning mechanism of user’s trustworthiness realised in a principled Bayesian
framework.

• We provide a sampling algorithm to compute the BACE estimates of the true
value of each item and the trustworthiness of each user, along with the uncertainty
around these quantities, from reported estimates of a set of stationary items.

• We demonstrate that BACE is more efficient than MaxTrust and other existing
fusion algorithms in a multi–items setting being able to improve accuracy by 45%
in a real experiment with crowdsourced WiFi hotspot location data, and by 48% on
synthetic data. Furthermore, it achieves comparable accuracy to existing methods
even with 15% more untrustworthy users.

In the remainder of the chapter, we first describe the theory of BACE in Section 4.1
and detail its Bayesian inference in Section 4.2. We then describe a sampling algorithm
that enables approximate but tractable inference in our proposed model in Section 4.3.
Subsequently, we present our empirical results analysing both real data and synthetic
data in Section 4.4. Finally, we summarise our conclusions against the requirements of
this thesis in Section 4.5.

4.1 Model Description

In this section, we formally describe our BACE model. First, we summarise the nota-
tion introduced in Chapter 3 (see Section 3.1) that provides a common basis for both
MaxTrust and BACE. Specifically, suppose that there is a set of M multivariate items
(such as cell-tower positions) that we wish to estimate given reported observations from
a crowd of K users. For each item i, we define the vector µi ∈ Rd to be the unobserved
item’s true value, for which we receive a set of pk,i observations from each user k. In
each case, the jth observation from k about i is a pair, 〈xk,i,j , θk,i,j〉, where xk,i,j is an
estimate of µi with reported precision θk,i,j . To deal with uncertainty about the user’s
trustworthiness, each user is assigned a latent trust value tk ∈ [0, 1], which models the
accuracy of k in providing observations. In particular, values for tk close to 0 mean that
k is generally unreliable, and should be largely ignored; while values close to 1 mean
that k is trustworthy, and in particular, precisions reported by k accurately reflect the
reliability of its estimates. To capture this intuition, tk is used to scale the precisions
reported by k, such that the true precision of any given estimate, xk,i,j , is assumed to be
tk · θk,i,j . In particular, assuming Gaussian noise on each reported estimate, we obtain
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the same likelihood of a single report described for MaxTrust in Equation 3.8 (with the
only difference that the observations are now also indexed by i). That is:

p(xk,i,j |µi, θk,i,j , tk) = N (xk,i,j |µk,i,j , (tiθ−1
k,i,jId)) (4.1)

where Id is the d-dimensional identity matrix. As per MaxTrust, this expression means
that users are assumed to observe items with uncorrelated (diagonal) noise proportional
to their reported precision scaled by tk. However, since tk is unknown, uncertainty about
its value must be dealt with in some way. In MaxTrust, this is achieved by assigning
a single maximum likelihood estimate to tk (see Section 3.1.3) However, as discussed
earlier, this does not properly account for the amount of uncertainty in tk, and due to
the nature of MaxTrust, must be estimated separately for each item.

To address these issues, we define Θk,i,j = θk,i,jId as the multivariate precision reported
by user k for the j–th estimate for item i, and let x, θ, t, µ be vectors comprising
all reported estimates, precisions, trust values and true item values respectively. Let
us use x′ to indicate the transpose vector of x and so forth for all the other variables.
According to the Gaussian noise model in Equation 4.1, the joint likelihood of the
reported estimates of all the items, x, is thus the product of the Gaussian densities
associated with each report 3, which can be written as follows:

p(x|µ,θ, t) =
M∏
i=1

K∏
k=1

{
exp

(
− tk2

{[ pk,i∑
j=1
x′k,i,jΘk,i,jxk,i,j

]
− 2µ′i

[ pk,i∑
j=1

Θk,i,jxk,i,j

]

+ µ′i

[ pk,i∑
j=1

Θk,i,j

]
µi

})
×

pk,i∏
j=1

√
|tkΘk,i,j |

(2π)d

}

To simplify the notation, letW k,i = ∑pk,i
j=1 Θk,i,j and x̂k,i = W−1

k,i

∑pk,i
j=1 Θk,i,jxk,i,j where

W k,i is an invertible matrix given by the sum of the reported positive definite precision
matrices. In particular, it is interesting to notice that W k,i and x̂k,i are equivalent to
the covariance intersection (CI)’s precision matrix and mean vector obtained by the CI
fusion of the reports of user k for a single item (see Section 2.3.2.1), even though we
derived them through different steps. Thus, the likelihood can be expressed as:

p(x|µ,θ, t) =
(

M∏
i=1

K∏
k=1

pk,i∏
j=1

√
|tkΘk,j |
(2π)d

)
exp

[
K∑
k=i

{
− tk2 +

M∑
i=1

([ pk,i∑
j=1
x′k,jΘk,jxk,j

]

− 2µ′W k,ix̂k,i + µiW k,iµ
′
i

)}]
3Recall that in our previous model the likelihood is taken as the expectation of a report over the fused
estimate of a single item
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Figure 4.1: The factor graph of BACE, illustrating the probabilistic relationship
between the variables of the model.

To derive the quadratic form of the likelihood, we complete the square of the exponential
term4 by adding and subtracting x̂′k,iW k,ix̂k,i:

p(x|µ,θ, t) =
(

M∏
i=1

K∏
k=1

pk,i∏
j=1

√
|tkΘk,i,j |

(2π)d

)
exp

(
K∑
k=1

{
− tk2 +

M∑
i=1

([ pk,i∑
j=1
x′k,i,jΘk,i,jxk,i,j

]

− x̂′k,iW k,ix̂k.i + (x̂k,i − µi)′W k,i(x̂k,i − µi)
)})

(4.2)

In this function, we have four terms inside the exponential whose sum models the fit of
the latent variables µ and t to the dataset. In particular, the first term is the negative
semi–sum of the trust parameters, the second term is the linear sum of user’ estimates
multiplied by their precision, the third term is the CI linear fusion of the user’s reports
and the fourth term models the distance of the user’s fused estimate from µi.

In more detail, the factor graph in Figure 4.1 illustrates the probabilistic relationships
between the variables of the likelihood. In particular the observed variables xk,i and θk,i
appear as shaded nodes, while latent variables tk and µi) are in unshaded nodes – the
index j is omitted in this example for readability. In the graphical model, the variable
ϕk,i denotes the product of the reported precision scaled by trust. The rectangular
boxes of the graph represent plates that are duplicated parts of the graphical model.
Specifically, the graph has two plates that include the random variables associated with
the various items and users. Specifically, the users’ plate includes tk, while the items’
4Additional details on Gaussian square completion can be found in Narasimhan (2008)
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plate includes µi. Both θk,i and xk,i are shared between the two plates as they define
the association between the users and their observed items. The directed links denote
the probabilistic factors connecting the variables. Specifically, tk is connected to θi,j by
a deterministic product factor, while µi is connected to xk,i and tkθk,i by a Gaussian
factor.

Having now described the data likelihood of BACE, the probabilistic inference of all the
unknown variables is described in the following section.

4.2 A Monte Carlo Inference Process

We now describe the prerequisites to perform inference of the trust’s parameters and the
items’ value using BACE. Like in MaxTrust, all the parameters µi and tk are unknown,
therefore we must infer their likely values from the estimates reported by the users. To
accomplish this though Bayesian inference, we assign conjugate prior distributions to
each unknown parameter5. In particular, given the form of the likelihood, the conjugancy
of our model is satisfied by setting the prior for each µi to be Gaussian with multivariate
mean mi and precision matrix H i, and setting the prior for each tk to be a Gamma
distribution, with shape parameter λk and scale parameter νk. That is:

p(µi) = N (µi|mi,H i) ∀i (4.3)

p(tk) = Gamma(tk|λk, νk) ∀k (4.4)

In particular, the parameters of the priors (or hyperparameters) can be appropriately
chosen to define some prior beliefs over these latent variables. For example, we may
want to set a high prior trustworthiness of a particular user by selecting a high λk and
a low νk. This feature is meaningful in many expert crowdsourcing settings where some
users are known to be more reliable than others (Tran-Thanh et al., 2012).

With this in mind, we can apply Bayes theorem to derive the joint posterior distribution
of µ and t as proportional to the likelihood (Equation 4.2) multiplied by their priors
(Equations 4.3 and 4.4). That is:

p(µ, t|x,θ) ∝ p(x|µ,θ, t)
[
M∏
i=1

p(µi)
] [

K∏
k=1

p(tk)
]

(4.5)

This posterior is similar to a combination of independent Normal-Gamma models (DeG-
root and Schervish, 2012) applied separately to each item. However, the introduction of
trust parameters as defined in BACE means that the posterior no longer has a separable
form. Although this coupling ultimately enables transfer learning, it also means that we
5In Bayesian analysis, conjugate priors are distributions specifically chosen so that the posterior distri-
bution has the same form, which simplifies inference (Schlaifer and Raiffa, 1961)
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cannot have an exact inference for µi and tk. To deal with this, we need to approximate
the marginal posterior of each latent variable in some way. For this purpose, while a
number of approximation techniques for Bayesian inference are available (Bishop, 2006),
we choose a Monte Carlo method that provides an accurate and still tractable approach
to approximate inference in Bayesian models (DeGroot and Schervish, 2012)6. In partic-
ular, we perform approximate inference in BACE using a particular Monte Carlo process
called Gibbs sampling (Gelfand and Smith, 1990). This is a Markov chain Monte Carlo
(MCMC) algorithm that computes the marginal distributions of the latent variables by
obtaining samples from their conditional posterior distributions. After an initial burn-
in phase, the chains converge to samples from the posterior distribution and the full
marginal distributions of each variable can be estimated from the frequencies of the
observed samples. To derive a Gibbs sampler for BACE, we require the conditional
distributions of each latent variable which we derive by conditioning the joint posterior
(Equation 4.5) on all the other variables. The next sub–section provides the detailed
proofs of these derivations.

4.2.1 Conditional Distribution for the Items

Starting with analysing the probability density of the true value of each item i, µi, we
condition the likelihood on some known value of t. Then, dropping the constant terms
that do not depend on µ, we have:

p(µi|t,x,θ) ∝ exp
(
− 1

2

{
K∑
k=1

tk
(
− 2µ′iW k,iŷk,i + µ′iW k,ikµi

)})

∝ exp
(
− 1

2

{
−2µ′i

[
K∑
k=1

tkW k,iŷk,i

]
+ µ′i

[
K∑
k=1

tkW k,i

]
µi

})

Let Si = ∑K
k=1 tkW k,i and x̄i = S−1

i

∑K
k=1 tkW k,ix̂k,i be weighted averages of the users’

reported precision and estimates, respectively. Hence, if we complete the square of the
exponential term, we have:

p(µi|t,x,θ,mi,H i) ∝ p(x|µi,θ, t)p(µi|mi,H i)

∝ exp
(
− 1

2
[
(ȳi − µi)′Si(ȳi − µi) + (µi −mi)′Hi(µi −mi)

] )

∝ exp
(
− 1

2
[
µ′i(Si +Hi)µi − 2µ′i(Siȳi +H imi)

] )
6Alternative techniques that may offer performance advantages in the inference of BACE can be found
in Bishop (2006)



Chapter 4 A Bayesian Trust Model for Fusing Crowdsourced Estimates of Stationary
Continuous Quantities 82

From this, after completing the square of the exponential term, we find that the nor-
malised conditional posterior of µi is Gaussian distributed with probability density func-
tion (p.d.f.):

p(µi|t,x,θ,mi,H i) = N (µi|bi,Ai) ∀i (4.6)

where Ai = Si +H i and mean bi = A−1
i (Six̄i +H imi). Notice that this function does

not depend on any µj for j 6= i, which implies that all µj are mutually independent
given t. Moreover, since the posterior for µi is based on the trust–based weighted
average of user reports in both its Gaussian mean and precision, this means that the
model encodes the same idea of our previous model (MaxTrust) based on the majority
assumption, which we now derived through Bayesian analysis.

4.2.2 Conditional Distribution for the Trust Parameters

By a similar process, we now derive the conditional posterior of tk given some known
value of µ and t−k, i.e., all the trust parameters but tk. Hence, absorbing the terms of
the likelihood that do not depend on tk into a constant, we have:

p(tk|µ, t−k,x,θ) ∝
M∏
i=1

pk,i∏
j=1

{
√
tk exp

(
− 1

2(xk,i,j − µi)′tkΘk,i,j(xk,i,j − µi)
)}

∝ t
1
2
∑M

i=1 pk,i
k exp

(
− 1

2 tk
M∑
i=1

pk∑
j=1

{
(xk,i,j − µi)′Θk,i,j(xk,i,j − µi)

})

Define αk = 1
2(∑M

i=1 pk,i) (recall pk,i is the number of reports of user k for item i) and
βk = 1

2
∑M
i=1

∑pk,i
j=1(xk,i,j − µi)′Θk,i,j(xk,i,j − µi). Now we have:

p(tk|µ, t−k,x,θ, λk, νk) ∝ p(x|µ,θ, t)p(tk|λk, νk)

∝ t

(
1
2 (αk+λk−1

)
k exp

(
− tk(βk + νk)

)

From this we find that the conditional posterior of tk is Gamma distributed with p.d.f:

p(tk|µ,x,θ) = Gamma(tk|αk + λk, βk + νk) ∀k (4.7)

That is, the shape parameter (αk + λk) of the Gamma posterior is proportional to the
number of user reports, while the scale parameter (βk+νk) is proportional to the distance
of the user’s reports from µi.

At this point, we have derived the key equations required for Bayesian inference with
BACE. Now, since we wish to estimate the approximate marginal distributions of the
items and the trust parameters using Gibbs sampling, we must iteratively sample from
the conditional posteriors of these variables until we obtain a sufficient number of inde-
pendent samples. This procedure is detailed in the next section.



Chapter 4 A Bayesian Trust Model for Fusing Crowdsourced Estimates of Stationary
Continuous Quantities 83

Algorithm 4.1 BACE
Inputs:

Reports 〈x, θ〉, hyperparameters λk, νk,m,H;

Outputs:

Item’s value samples µ, trust value samples t

Algorithm BACE

1: randomly initialise µi(0) and tk(0)
2: for s = 1 to max_samples do
3: for all item i do
4: W k,i =

∑pk,i

j=1 Θk,i,j ∀k

5: x̂k,i = W−1
k,i

∑pk,i

j=1 Θk,i,jxk,i,j ∀k

6: Si =
∑K

k=1 t(s− 1)kW k,i

7: x̄i = S−1
i

∑K

k=1 tk(s− 1)W k,ix̂k,i

8: Ai = Si +H

9: bi = A−1
i (Siȳi +Hm)

10: µi(s) ∼ N (bi,Ai)

11: end for
12: for all users k do
13: αk = 1

2 (
∑M

i=1 pk,i)

14: βk = 1
2
∑M

i=1

∑pk,i

j=1(xk,i,j − µi(s))′Θk,i,j(xq,i,j − µi(s))

15: tk(s) ∼ Gamma(αk + λk, βk + νk)

16: end for
17: end for
18: return µ, t
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4.3 The BACE Training Algorithm

In this section, we describe the algorithm for training BACE over a set of crowdsourced
estimates and so infer the aggregated values of the observed items as well as the trust-
worthiness of the users. In detail, using the conditional densities of the latent variables
previously derived in Equations 4.6 and 4.7, the Gibbs sampler for BACE can be de-
scribed as follows (see Algorithm 4.1). Given the set of reported estimates and the
initial hyperparameters of the prior distributions, first we define an starting value of t
and µ, which can be set randomly. Then, the algorithm executes the item’s sampling
loop (steps 3-11) where, for each item i, it computes the fusion of the estimates using
the current values of tk (steps 7). After combing the fused estimate with the prior of
µi as by Equation 4.6 (steps 8-9) it draws a random sample of µi from its Gaussian
posterior p.d.f. with the updated parameters (step 10). Subsequently, the algorithm
executes the user’s sampling loop (steps 12-16). Specifically, for each user k, it draws
a new random sample of tk (step 15) from its Gamma posterior with parameters that
are updated using the latest samples of µi. The algorithm iterates over these steps until
the required number of samples is produced. The output is then the chain of samples of
µi and tk, ∀i, k that empirically describe the marginal distributions of each variable. In
practice, this algorithm can generate tens of thousand of samples within minutes on a
standard PC, that can approximate the marginal densities sufficiently accurately. Our
experiments presented in the next section will provide more insights on a real application
of this algorithm.

4.4 Experimental Evaluation

In this section, we present the results of the evaluation of BACE. Following the same
methodology used in the evaluation of MaxTrust (see Section 3.3), we conduct a first
experiment with synthetic data to test the correctness of the trust learning and the
robustness of BACE against various levels untrustworthy crowds (Section 4.4.1). Sub-
sequently, our second experiment will assess the efficacy of BACE in the real–world
application of WiFi hotspots localisation from crowdsourced reports (Section 4.4.2),
which is an equivalent application to cell–tower localisation presented in the previous
chapter (see Section 3.3.3).

In our experiments, we compare the performance of BACE to MaxTrust and several
other methods that were described in the previous chapters (see Section 3.3 for more
details). Specifically, we consider the following four benchmarks: {CI, MaxTrust, RM,
Optimal Fusion} that include representative methods from both the classes of trust–
based fusion (MaxTrust and RM) and non–trust based fusion (CI) algorithms. In this
comparison, we do not consider CU and LOF that were already showed by our previous
experiments to be less efficient methods in our crowdsourcing setting (see Section 3.3.3).
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Specifically, we ran the BACE training algorithm with 1000 samples and burn–in phase
of 100 samples. This number of samples was sufficient to guarantee the convergence of
the MCMC chains all the random variables in our settings – the plots of these MCMC
samples are provided in Section 4.4.2. The priors for both µ and t were uninformative
with hyperparameters mi = 0,H i = diag(100) and λk = 0, νk = 0. In particular, the
use of uninformative priors for all the items’ and trust variables is the most plausible
setting for our case in which no available prior information about the users and the items.
Nevertheless, these priors can be differently chosen to account for initial beliefs over users
and items in more general settings. Moreover, to guarantee the interpretability of the
tk values, the Gamma posterior of tk, which has support in R+, is truncated into the
range [0, 1] by applying rejection sampling within the training algorithm, i.e., rejecting
samples of tk that fall outside this range.

Furthermore, the accuracy of each method is measured by the two metrics described
in the previous chapter (Section 3.3.1.2): the RMSE and the CRPS. In particular, for
the BACE predictions, which are given in the form of sampled distributions, the CRPS
is computed directly from the samples of the posterior of µ via a discretised integral
approximation (see the Appendix A for details on this CRPS approximation).

4.4.1 Experiments on Synthetic Data

In this experiment, we evaluate BACE on fusion tasks with synthetic univariate data.
Same as before, we simulate a crowd of K = 20 users composed by ρ% untrustwor-
thy users and (1 − ρ)% trustworthy users. For a given number of items M , we gen-
erate their true value as µi ∼ U [0, 100], Each user reports pk,i ∼ U [3, 10] estimates.
Specifically, each estimate is randomly generated with values θk,i,j ∼ U [0.2, 1.5] and
xk,i,j ∼ N (µi, θk,i,j). To simulate untrustworthy reports, we randomly pick ρ% of
the users and add a random bias to their reports, i.e., x̂k,i,j = xk,i,j + wk,i,j with
wk,i,j ∼ ±U [2, 8] (keeping the sign of w fixed in a single run to avoid balancing effects
between biases).

Figure 4.2 shows the plot of the CRPS of the algorithms averaged over 100 runs for
ρ = {0, 10, 20, 30, 40, 50, 60} with a small (M = 1, Figure 4.2(a)), moderate (M = 1,
Figure 4.2(b)), and large (M = 10, Figure 4.2(c)) item set. In particular, the CRPS
of CI, RM and MaxTrust are consistent with the results of our previous experiments
with these three methods that rank as MaxTrust < RM < CI (the lower, the better)
for 0% < ρ < 40%. Importantly, the results also show that BACE improves on the
accuracy of all these methods with gains that are up to 30% for one item, up to 45%
for five items, and up 48% for ten items. For one item, this accuracy gain shows that
Bayesian learning performed by BACE that account for the full uncertainty over the
random variables in the fusion process, is more effective than the other algorithm. For
five and ten items, the further improvement on accuracy gains are due to the efficacy of



Chapter 4 A Bayesian Trust Model for Fusing Crowdsourced Estimates of Stationary
Continuous Quantities 86

MaxTrust

RM

CI

OptTrust

BACE
0 10 20 30 40 50 60

101

Lo
g
C
R
PS 100

10−1

101

Lo
g
C
R
PS

100

10−1

0 10 20 30 40 50 60

0 10 20 30 40 50 60

101

Lo
g
C
R
PS

100

10−1

% untrustworthy users (ρ)

(a) CRPS one item (M = 1)

% untrustworthy users (ρ)

(b) CRPS five items (M = 5)

% untrustworthy users (ρ)

(c) CRPS ten items (M = 10)

Figure 4.2: The CRPS of the five methods with increasing percentages of un-
trustworthy users and different numbers of items.
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the trust’s transfer learning that allows BACE to improve accuracy with a larger set of
items by leveraging correlations in the reliabilities of the reports. These improvements
are more evident in the graph in the comparison between one and five items and it is
marginally visible between five and ten items in our setting. In contrast, the accuracy
of the other algorithms is invariant to the number of items as a consequence of treating
items independently by these method. It is also interesting to compare the levels of ρ
at which the error of each method becomes significantly higher than the optimum, i.e.,
logCRPS > 1, which is due to the high presence of untrustworthy reports. In particular,
we can see that BACE start to have a high error only at ρ = 60% while MaxTrust, the
second best method, can tolerate untrustworthiness only up to ρ = 45%. This means
that BACE achieves comparable accuracy with 15% more presence of untrustworthy
users, thus it is generally more robust to untrustworthy crowds.

Furthermore, Figure 4.3 shows the RMSE of the algorithms computed from the same set
of runs. While generally showing a similar trend, the RMSE shows lower but significant
improvements in the performance of BACE against an increasing dimension of the item
set. In particular, the progression of its accuracy gains in terms of RMSE is up to
6%, (M = 1, Figure 4.3(a)), for one item, up to 22% for five items, (M = 5, Figure
4.3(b)), and up to 25% for ten items, (M = 10, Figure 4.3(c)). This means that BACE
substantially reduces the uncertainty in the predictions and also marginally improves
the absolute error of the fused estimates in our simulated crowdsourcing setting.

4.4.2 Experiments on Real Data

In this second experiment, we test the performance of BACE with a real–world appli-
cation of crowdsourcing WiFi hotspots maps from crowdsourced WiFi location reports
provided from mobile devices. This application is relevant to the domain of mobile
WiFi network where several crowdsourcing approaches are currently being explored by
a number of projects such as OpenSignal (www.opensignal.com), Fon (www.fon.com)
and Devicescape (www.devicescape.com) to maintain up–to–date WiFi maps available
for the users. Thus, we now show how BACE can be employed to improve the accuracy
of these maps with its trust–based Bayesian fusion of the reports.

4.4.2.1 Dataset

In our test, we use a dataset of crowdsourced WiFi hotspot location data collected from
Android phones by OpenSignal. This dataset included 3608 reports from 46 Android
devices for 149 WiFi hotspots (avg. reports per device = 50.63). Specifically, each
report provides (i) the SSID and BSSID of the detected WiFi hotspot (ii) the location
(latitude and longitude) of the phone, (iii) the precision of the location fix (in meters)
and (iiii) the OpenSignal app version installed by the phone. In total, the reports were

www.opensignal.com
www.fon.com
www.devicescape.com


Chapter 4 A Bayesian Trust Model for Fusing Crowdsourced Estimates of Stationary
Continuous Quantities 89

Device–as–user (CRPS)
WiFi CI RM MaxTrust BACE
1 0.198 0.270 0.177 0.063
2 0.138 0.171 0.205 0.208
3 0.340 0.185 0.698 0.063
4 0.135 0.120 0.227 0.061
5 0.195 0.744 0.719 0.052
6 0.162 N/A 0.214 0.046
7 0.654 0.416 0.679 0.575
8 0.095 0.206 0.185 0.044
9 0.153 0.061 0.757 0.035
10 0.185 0.160 0.199 0.104
11 0.128 0.188 0.176 0.037
12 0.142 0.218 0.209 0.079
13 0.187 N/A 0.193 0.105

Table 4.1: The CRPS of the
four methods (columns) in predict-
ing the location of the 13 WiFi
hotspots (rows) of the OpenSignal–
WiFi dataset in the device–as–user
setting. The best run of each row is
highlighted in bold.

Device–as–user (RMSE)
WiFi CI RM MaxTrust BACE
1 25.94 17.29 20.59 14.73
2 622.5 603.25 574.7 626.3
3 18.18 32.73 302.7 31.65
4 4.915 34.21 36.16 11.87
5 92.76 102.3 501.6 123.2
6 42.41 N/A 621.6 45.26
7 25.97 28.53 26.35 34.40
8 5.898 114.3 95.52 5.660
9 12.44 5.816 16.31 1.593
10 56.42 48.61 42.97 54.05
11 16.37 38.03 31.74 7.505
12 24.09 22.37 26.89 27.60
13 26.38 N/A 111.15 25.85

Table 4.2: The RMSE (in meters) of
the four methods (columns) in pre-
dicting the location of the 13 WiFi
hotspots (rows) of the OpenSignal
dataset in the device–as–user set-
ting. The best run of each row is
highlighted in bold.

sent from devices with 35 unique app versions (avg. reports per app version = 104.55).
Furthermore, we acquired the true location for 13 of the WiFi hotspots from the British
Telecom (BT) WiFi network database (www.btWiFi.com).

With this data, we focus on the task of recovering the true location of the WiFi hotspot
by merging the signal detections taken by users at different locations. As discussed for
the case of the OpenSignal–Cell tower dataset (see Section 3.3.3), the reports may have
several sources of inaccuracy due, for instance, to the noise of the GPS readings or to
the limited accuracy of the devices. However, a key difference between the cell–tower
dataset and the WiFi dataset is represented by the density of the reports. In fact, the
detection range of a WiFi hotspot is approximately 100 meters, which is two orders of
magnitude lower than a cell tower range that can cover up to 10 km. Thus, in the WiFi
dataset, we have more clustered set of reports which makes the user’s trust assessment
more challenging within a single item. Given this, we now apply BACE to estimate the
position of the WiFi hotspots as well as the trustworthiness of the devices. In particular,
in our setting, we map each device to a single user and each WiFi hotspot to a single
item. For each report, we set µk,i,j to be equal to the device’s GPS location and θk,i,j
to be equal to the reported GPS precision added by 100 meters, which is the default
maximum WiFi range.

www.btWiFi.com
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Figure 4.4: Example of the predicted WiFi hotspot location produced by the
four methods for one of the 13 WiFi hotspot of the OpenSignal–WiFi dataset
in the device-as-user setting.

4.4.2.2 Results

Table 4.2 (left table) reports the CRPS of the algorithms for each of the 13 WiFi hotspots
with ground truth7. In particular, the results show that BACE is the best predictor in
11 out of 13 test cases and, on average, it outperforms the other methods by 45% (0.113
vs. 0.207) with a lower CRPS. In addition, Table 4.1 (right table) reports the RMSE of
the algorithms measured in the same set of runs. The RMSE shows a comparable error
between BACE and CI. Overall, this means the main advantage of BACE is a more
accurate prediction of uncertainty in the fused estimate compared to the other methods.
In general, these results confirm the finding of our previous experiment by showing that
BACE is able to predict the uncertainty of its fusion more accurately, as a result of
using its transfer learning framework. To illustrate this, Figure 4.4 shows the fused
estimates computed by each algorithm for one sample WiFi hotspot of the OpenSignal–
WiFi dataset (corresponding to the 8-th entry in Table 4.2 and Table 4.1). In particular,
by looking at the individual predictions of the WiFi hotspot location, which are depicted
as a circular area with a radius of 3 predictive standard deviations around the mean, we
7The two missing values of RM are due to the fact that the algorithm did not converge in those test
cases with our parameters setting.
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can see that BACE’s estimate is the most consistent with the ground truth’s location of
the WiFi hotspot. In fact, CI predicts the mean value close to the true location (hence
the lower RMSE) but it estimates the uncertainty overconfidently (hence the higher
CRPS), thus providing an inconsistent estimate.

To monitor the convergence of the sampling–based approximate Bayesian inference of
BACE, Figure 4.5 shows the MCMC chains of samples generated from the BACE’s
training algorithm for a sub–set of four users (Figure 4.5(a), (b), (c), (b)) and four items
(Figure 4.5 (e), (f), (g), (h)). For the user’s trustworthiness, the MCMC chain reaches
convergence fast, already after the first 100 burn–in samples. For the items, it can be
seen that the samples are distributed around a Gaussian cluster that corresponds to the
posterior p.d.f.

Another interesting result is the trust values of individual devices estimated from BACE.
These are shown in Figure 4.6(a). Analysing these values, although one might expect
that the cheaper devices would have lower trustworthiness, we did not find a significant
correlation between the device’s estimated trustworthiness and its market price. In
contrast, we found a significant correlation between these trust values and the average
errors of the devices. In fact, using a standard statistical test of the Spearman rank
correlation (Myers et al., 2010), we found that the rank correlation coefficient between
the trust values and the devices’ errors is ρ = −0.527 (p = 0.0047). This indicates a
significant inverse correlation between the two ranks. That is, the devices with estimated
low (high) trustworthiness are mostly far from (close to) the item’s location, which is
indeed the hypothesis of a correct trust leaning formulated by BACE.

In a second test, we repeated the same experiment taking app versions as users, i.e.,
treating all the users with the same app version as having the same trust value. By doing
so, we are able to test the impact of a particular app release on the trustworthiness of the
reports and the quality of the fusion. This shows the usefulness of BACE for debugging
a particular app release by being able to reveal whether it produces more untrustworthy
reports. In particular, Table 4.3 (left table) reports the CRPS of our experiments in
this app version–as–user setting. The results show a generally lower accuracy for all
the methods compared to the previous devise-as-user setting. However, also in this
setting, BACE is the best predictor in 9 out of 13 (69%) the test cases. On average, it
outperforms by 26% (0.148 vs. 0.201) the accuracy of the other methods. In contrast,
the RMSE shows that CI is the best predictor in 8 out of 13 test cases in this setting
(Table 4.4, right table).

Also, the trust values estimated by BACE for each app version (Figure 4.6) show that
there is a majority of 62% app versions that are identified as more trustworthy with
respect to the others. Furthermore, applying the same rank correlation test between
the estimated app version’s trust values and the app version’s average errors of their
reports, we obtained a Spearman’s rank correlation coefficient ρ = −0.314 (p = 0.1648)
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(a) User 8 (b) User 11 

(c) User 23 (d) User 47 

(e) Item 2 (f) Item 10 

(g) Item 15 (h) Item 35 

Figure 4.5: The chains of MCMC samples for the trust values (a, b, c, d) and
the item values (e, f, g, h) generated from the BACE training algorithm in the
device-as-user setting.
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App version–as–user (CRPS)
WiFi CI RM MaxTrust BACE
1 0.138 0.345 0.295 0.092
2 0.159 0.172 0.179 0.179
3 0.359 0.261 0.617 0.152
4 0.127 0.164 0.165 0.095
5 0.154 0.200 0.212 0.702
6 0.145 N/A 0.213 0.067
7 0.642 0.304 0.683 0.202
8 0.092 0.214 0.187 0.039
9 0.1627 0.684 0.716 0.050
10 0.201 0.141 0.195 0.166
11 0.150 0.046 0.175 0.042
12 0.168 0.051 0.127 0.061
13 0.122 0.191 0.179 0.082

Table 4.3: The CRPS of the
four methods (columns) in predict-
ing the location of the 13 WiFi
hotspots (rows) of the OpenSignal–
WiFi dataset in the app version–as–
user setting. The best run of each
row is highlighted in bold.

App version–as–user (RMSE)
WiFi CI RM MaxTrust BACE
1 25.94 19.34 21.18 19.38
2 622.5 721.5 714.94 637.9
3 18.18 30.66 133.76 36.82
4 4.915 27.22 25.89 14.06
5 92.76 965.05 953.6 435.9
6 42.41 N/A 66.82 38.48
7 25.97 28.56 27.87 25.69
8 5.898 114.3 99.72 5.210
9 12.44 72.28 62.05 11.79
10 56.42 56.42 56.42 57.05
11 16.37 16.37 16.37 16.48
12 24.09 24.09 26.89 24.89
13 26.38 135.3 121.9 28.02

Table 4.4: The RMSE (in meters) of
the four methods (columns) in pre-
dicting the location of the 13 WiFi
hotspots (rows) of the OpenSignal
dataset in the app version–as–user
setting. The best run of each row is
highlighted in bold.

which confirms the same, although less significant, inverse correlation between the two
ranks. Therefore, our results show that BACE improves the quality of the fused estimate,
mostly in terms a lower predictive uncertainty, and produces a correct learning of trust
values in both the evaluated settings.

4.5 Summary

In this chapter, we improved our solution to the problem related to the inference of
reliable fused outputs from untrustworthy estimates of continuous quantities in crowd-
sourcing applications. This problem requires the joint learning of the individual trust-
worthiness of users and the computation of consistent fusion of the data in settings where
crowd observations are pairs of values and precisions and items’ values are defined in
continuous spaces. Building upon our previous model (MaxTrust), we presented a new
Bayesian model that improves the qualities of MaxTrust in a multi–item crowdsourcing
setting by modelling correlations between the user’s reports for different items. In fact,
the key innovation of BACE is a fully Bayesian treatment of a probabilistic model in
which the trust parameters are shared across items integrated in multivariate Gaussian
framework. Then, using a Monte Carlo sampling process, we are able to learn approx-
imate posterior probabilities of (i) the trust value of each user and (ii) the true value
of each item. In particular, the use of Bayesian hierarchical modelling allows BACE to
achieve the key feature of transfer learning, whereby user trust knowledge learned from
observations of previous items is used as evidence for new items. By doing so, BACE is
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able to improve the accuracy of the fusion by a more efficient handling of uncertainty
in the inference of the items’ true value. We ran several experiments on WIFI hotspots
localisation data crowdsourced from Android devices and compared the performance of
BACE against MaxTrust and other state-of-the-art fusion methods. We showed that
BACE is 45% more accurate in estimating the WIFI hotspots locations and it correctly
learns user trust values that are correlated to the true user’s errors. We also showed
that BACE achieves the same accuracy compared to the benchmarks with 15% more
untrustworthy users through experiments on synthetic data.

From this we conclude that MaxTrust is our algorithm of choice for crowdsourcing
a single item, as it allows for a more robust trust–based data fusion. Alternatively,
BACE is more indicated for multi–items settings where its Bayesian transfer learning
mechanism is able to exploit correlations between items to provide a more efficient
estimation of uncertainty in the fused estimate. With these two algorithms, we provided
a strong set of solutions which address our first two requirements related to fusing
crowdsourced continuous estimates of stationary quantities. In the next two chapters,
we will focus on our second set of requirements related to the fusion of spatial data
for non–stationary quantities. In detail, we will discuss different instantiations of our
trust–based fusion approach in the context of crowdsourcing spatial fields in Chapter 5
and crowdsourcing spatial point processes in Chapter 6.
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Figure 4.6: Estimated mean trust levels for (a) each device and (b) each app
version learned from BACE on the OpenSignal–WiFi dataset.



Chapter 5

A Trust-based Heteroskedastic
Gaussian Process Model for
Fusing Crowdsourced Estimates
of Spatial Functions

In the previous two chapters, we developed a set of accurate and efficient algorithms for
fusing crowdsourced estimates for a single or multiple stationary items. By so doing,
we provided an important set of solutions that fulfil our first set of requirements (Req.
1 and Req. 2) related to the design of a reliable crowd–based information system (see
Section 1.2). However, the algorithms developed so far strongly rely on the assumption
that all the reported estimates are referring to a fixed continuous quantity, which in our
application examples were referring to the true position of a cell tower (Chapter 3) of
a WiFi hotspot (Chapter 4). In fact, the data aggregation approaches of our algorithm
consist of comparing the observations of a user to the crowd consensus given by the
majority of the trustworthy users. As a result, they are not suitable to be applied in
settings where the crowd reported data relate to non–stationary quantities. In such
settings, their approach fails to consider the fact that each observation is not directly
comparable to one another due to their dependency on the user’s location. For this
reason, they do not satisfy our second set of key requirements that relate to fusing
estimates of non–stationary items (Req. 3 and Req. 4).

In this and the next chapter, we turn to the challenge of fusing crowdsourced estimates
of non–stationary quantities. As discussed in Chapter 1, this challenge is of interest
to the class of participatory sensing applications that rely on crowdsourcing spatial
and spatial–temporal information1, such as tracking contagious diseases (Sadilek et al.,
1Recall that GP regression over spatial and spatial–temporal data can be addressed by choosing specific
types of separable space-time covariance functions within the standard GP framework (Osborne, 2010).

96



Chapter 5 A Trust-based Heteroskedastic Gaussian Process Model for Fusing
Crowdsourced Estimates of Spatial Functions 97

2012), monitoring traffic flows (Horvitz et al., 2012) and monitoring nuclear radioac-
tivity in disaster response (Gertz and Di Justo, 2012). However, similar issues of data
trustworthiness that we discussed in the context for the stationary data (see Section
1.2) represent one of the main obstacles to make the best use of such information in
spatial crowdsourcing as well. In fact, the range of users’ reliability that affects the
data trustworthiness makes the task of aggregating crowdsourced spatial data into a
single function difficult to achieve in practice. As a result, the computation of reli-
able aggregations of possibly untrustworthy spatial estimates is a key challenge in these
crowdsourcing domains (Gao et al., 2011).

In this chapter, we address the first sub–problem related to the fusion of crowdsourced
spatial data. Specifically, we focus on the fusion of continuous estimates of a spatial
function (Req. 3) from the observations reported by possibly untrustworthy users (Req.
2)2. In particular, this setting is relevant to several application areas of crowdsourced
environmental monitoring including sensing weather events, traffic monitoring and nu-
clear radiation monitoring. The key feature of this problem is that observations reported
by the crowd may not only be untrustworthy but they may also be spatially correlated;
a feature that is not handled by our previous models. In fact, in spatial crowdsourcing
settings, the reports are typically pairs of values including a location and the measure-
ments taken at that location, often including the precision of such a measurement. All
together, this information represents a set of location–based observations of a spatial
phenomenon and the goal of the task requestor is to estimate the entire function over
the monitored area. To address this problem with our trust–based fusion approach, we
need to extend our framework to be able to handle spatial correlation within the dataset.
In doing so, we must be aware of the fact that typically such spatial correlations make
the inference of the aggregated function more challenging. In fact, the inference space
has higher complexity and the aggregated output has to be estimated as a continuous
function, Moreover, the crowd observations need to be considered as related to a specific
location, which makes them not directly comparable to one another. As a result, care
must be taken in considering the individual trustworthiness of the reports as related to
their level of the agreement with the underlying function. As discussed in Section 2.5,
a natural way to deal with this problem is by means of regression models. However, the
current spatial regression techniques, which are not designed for a crowdsourcing con-
text, can only deal with data with constant–variance (i.e., homoskedastic) noise. That is,
they work in a setting where the observations are affected by a general underlying noise,
which reflects the possible perturbations of the reporting process as a whole. However,
this idea is far from the concept of heterogeneous data reliabilities of a crowdsourcing
context in which the data are corrupted by different noise sources associated with the
varying trustworthiness of the users.
2The second class of models for spatial crowdsourcing applications will be discussed in Chapter 6.
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To address these limitations, we propose a new method that extends our trust–based
fusion approach to spatial regression. Specifically, our method is based on the integration
of the user trust model that we defined in Section 3.1.1 within the heteroskedastic
Gaussian process (HGP) framework. As we discussed in Section 2.5.3, the HGP is our
model of choice for a spatial regression model as it provides a powerful non–parametric
framework for Bayesian spatial regression. In particular, it is able to model non–linear
spatial phenomena with a tractable Bayesian framework without necessarily requiring
a specific knowledge of the physical model of the system. These qualities make such
a model attractive to be employed for merging spatial data in crowdsourcing settings.
Applying our user trust model, our new trust–based HGP (which we name TrustHGP)
tackles the problem of dealing with heterogeneous data reliabilities in spatial regression
by using a set of trust parameters for the users to scale the data noise rates of the HGP. In
this way, the model has the ability to flexibly increase the noise around subsets of reports
associated with untrustworthy users. Then, by training the model with the spatial
estimates gathered from the crowd, we are able to estimate the underlying function at
any location of interest and also learn the individual user’s trustworthiness. We show
that our method is more accurate than other standard GP and HGP approaches with an
extensive experimental evaluation on both synthetic and real-word data. In particular,
we show the robustness of our model against various levels of untrustworthy crowds
using synthetic data. Then, we use real–world radiation data collected during the 2011
Fukushima earthquake to show the efficacy of the TrustHGP in an important disaster
response application of crowdsourced radiation monitoring.

Thus, the contributions of this chapter are as follows:

• We propose a new trust-based HGP model that extends the HGP through a proba-
bilistic user trust model to be able to aggregate spatial observations while learning
the trustworthiness of the users from crowdsourced spatial estimates.

• We show that our method significantly improves the quality of the predictions of
other GP and HGP methods in an application of crowdsourced radiation monitor-
ing using real-world data from the 2011 Fukushima nuclear disaster. In particular,
we show that our method outperforms the state of the art by up to 23% in provid-
ing more accurate radioactivity predictions. We also provide an in-depth analysis
of the performance of our method using synthetic data. In particular, we show
that our method provides comparable results with up to 30% more untrustworthy
users.

The remainder of this chapter is structured as follows. Section 5.1 describes the TrustHGP
model. Then, section 5.2 details the algorithm to compute the probabilistic predictions
of the spatial function and the trustworthiness of each user from spatial observations.
Section 5.3 presents an empirical evaluation of the TrustHGP using both synthetic data
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and real-world data. Finally, Section 5.4 summarises our results in the context of the
requirements of this thesis.

5.1 Model Description

In this section, we introduce our TrustHGP model by first describing its user trust
model for spatial crowd reporting (Section 5.1.1). Then, we detail our HGP model to
incorporate such a trust model in Bayesian spatial regression (Section 5.1.2).

5.1.1 A User Trust Model for Crowdsourced Spatial Estimates

In our model, we assume that there is a crowd of K users observing an environmental
phenomenon represented by the function f : Rd → R. Without loss of generality, let
us assume a two-dimensional case (i.e., d = 2) to conform with the setting of spatial
crowdsourcing with location data as inputs. Recalling our running examples given in
Chapter 1, we assume that f may represent the crowdsourced radiation levels of a
nuclear cloud, as in the scenario of in the aftermath of the 2011 Japan earthquake, or
the incident levels of the waterborne disease that spread across the Haiti population
as a consequence of a ground water contamination after the 2010 earthquake (Farmer,
2012). In these examples, the domain of f is the range of locations describing the land
area where the phenomenon is monitored, while the codomain of f is the range of values
that such a phenomenon can assume. Given this, we typically have f : R2 → R+

meaning that f takes only two–dimensional locations as inputs and that negative values
are excluded from the function outputs that refer to nuclear radiation levels or the water
contamination levels.

Thus, we assume that each user k reports pk estimates of f at different locations3. Each
reported estimate ek,j provides (i) a location xk,j ∈ R2, i.e., the position of the user
(assumed to be also the position of the measurement), (ii) the output yk,j ∈ R, i.e.,
the value measured at xk,j and (iii) the precision θk,j ∈ R+ i.e., the uncertainty around
yk,j . In particular, as we detailed in Section 3.1.1, θk,j may be referring, for example,
to the precision of a sensor (which is automatically provided by the GPS for location
data), or the user’s confidence level, or the variance of some repeated measurements.
Also, in cases where a user is unable to report its precision, it is still possible to set
θk,j to a non–negative default value while still preserving the properties of our model.
Summing up, we have a report set R = {〈xk,j , yk,j , θk,j〉|k = 1 . . .K, j = 1 . . . pk} that
consists of q = ∑K

k=1 pk estimates; x = {xk,j |k = 1, . . .K, j = 1, . . . pk} is the vector
of the inputs, y = {yk,j |k = 1, . . .K, j = 1, . . . pk} is the vector of the outputs and
θ = {θk,j |k = 1, . . .K, j = 1, . . . pk} is the vector of the precisions.
3Notice that the index i, which was used for indexing items in our previous models, is now omitted from
the variables since the estimates no longer refer to a specific item.
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Figure 5.1: Example of trustworthy (users 1, 2, 3) and untrustworthy (users
4, 5, 6) reporting behaviour in our spatial regression model.

As per our previous models (MaxTrust and BACE), we capture the uncertainty related
to the user’s reported precisions and the unknown user’s trustworthiness using the same
modelling approach introduced in Section 3.1.1. Specifically, we relate the noise of an
estimate to the reported precision by assuming that θk,j is the precision of the Gaussian
noise corrupting yk,j . Furthermore, we define a set of trust parameters tk ∈ (0, 1] to
denote the reliability of a user (1 for a fully trustworthy user and approximately 0 for an
untrustworthy user); t = (t1, . . . , tK) is the vector of such parameters. Each tk is used
as a scaling parameter of the precisions reported by user k. By doing so, in our spatial
setting, the user’s trustworthiness is defined by the level of how the user’s estimates are
consistent with the true values of f . That is, a trustworthy user is expected to report
observations that are sampled from f with a random noise. In contrast, untrustworthy
users typically reports observations that are uncorrelated with f , as we discuss with an
example below.

With this in mind, our trust–based model of spatial estimates can be formally described
as follows. Let ỹk,j be actual value of f at xk,j , i.e. ỹk,j = f(xk,j). Then, we consider
that yk,j is a noisy measurement of ỹk,j with an additive zero-mean, Gaussian noise εk,j
with precision tk · θk,j . That is:

yk,j = ỹk,j + εk,j , ỹk,j = f(xk,j), εk,j ∼ N (0, (tkθk,j)−1) (5.1)

In this way, the model reproduces the same noise scaling effect of an untrustworthy
estimate described in MaxTrust (see Section 3.1.1) which we have now extended to
spatial observations. As a result of this formulation, the information of an untrustworthy
estimate is downgraded by increasing its uncertainty proportionally to tk.
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In more detail, Figure 5.1 shows an example of six users with different levels of trust-
worthiness reporting observations of a one-dimensional function represented by Beta
distribution with parameters α = 6, β = 18 (blue-dotted line). Specifically, in this ex-
ample, each user reports 5 estimates which are placed along x. Each estimate is plotted
as its mean value yk,j (starred point) and the 95% reported confidence interval given
by ±2/θi,j plotted as error bars. The user’s trustworthiness can be inferred from the
characteristics of their estimates relating to the consistency with the function. Specifi-
cally, we can see that user 1 and user 3 are highly trustworthy since all their estimates
are consistent with the true value of the function. Furthermore, user 2 is mostly trust-
worthy since it has only one (the left-most) estimate that is inconsistent with f(xk,j).
In contrast, users 4 and 6 are highly untrustworthy since all of their estimate are sig-
nificantly far (i.e., more than 2 standard deviations away) from f(xk,j). Finally, user
6 is mostly untrustworthy since it has only one of its five estimates that is consistent
with f(xk,j). This example provides a high–level idea of how we can capture the level
of trustworthiness of each user, i.e., tk, based on the level of consistency of its estimates
with the true function. However, the challenge here is how to find the values of tk that
best explains the users’ trustworthiness without observing the actual values of f . Thus,
we detail how we address this problem through the design of a heteroskedastic Gaussian
process model in the following section.

5.1.2 A Trust-Based Heteroskedastic Gaussian Process Model

In our model, we wish to perform probabilistic inference over f and t using the Gaussian
process approach described in Section 2.5.3. To do so, we place a zero-mean GP prior
over f , i.e. m(x) = 0 with a kernel K(x,x′):

f(x) ∼ GP(0,K(x,x′)) (5.2)

Although any GP kernel can be used depending on the specific applications, here we
use the squared–exponential covariance function which is commonly used as a kernel for
modelling smoothly varying quantities:

K(x,x′) = σf exp
(
− d(x,x′)2

2l2
)

(5.3)

where σf is the signal variance, l is the length scale and d(·, ·) is the distance between
the two inputs x and x′ . To compute such a distance, since we primarily deal with
location data as inputs, we use the standard equilateral projection:

d(x,x′) = R0

√
x2 + y2 (5.4)

x = (lon− lon′) cos((lat+ lat′)/2) (5.5)

y = lat− lat′ (5.6)
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where R0 = 6, 371km is the mean Earth’s radius. In fact, this projection is computation-
ally more efficient than the exact Haversine distance (Sinnott, 1984) (which provides the
proper trigonometric treatment for spherical distances) although it introduces an error
by approximating great–circle distances as triangular distances. However, its error is
significant only for large distances, therefore it only marginally affects the correlations
between the variables. In particular, for the case of squared–exponential covariance
functions, which have non–zero values only for small distances, its error becomes even
more negligible in spite of its computational advantages.

Next, as we discussed in Section 2.5.3, we need to assume mutual independence between
the noise terms, i.e. εk,j ⊥ εk′,j′ in order to have a tractable likelihood (Goldberg et al.,
1997). This assumption implies that the θk,j and tk parameters are also independent,
i.e. θk,j ⊥ θk′,j′ and tk ⊥ tk′ , which is equivalent to assuming uncorrelated precisions
between individual measurements and that users are independently trustworthy. Thus,
under the HGP model, the likelihood of y is a normal p.d.f. expressed as follows:

p(y|f) = N (y|f, εk,j) (5.7)

Now, let x∗ be a test location in the domain of f , and y∗ be the corresponding unobserved
output. Then, the joint distribution of y∗ and y under the current model is a Gaussian
p.d.f. that can be written in a matrix form as follows:[

y

y∗

]
∼ N

(
0,
[
K(x,x) + Σx K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
(5.8)

where

Σx = diag((tkθk,j)−1) (5.9)

Specifically, Σx is the diagonal matrix of the noise terms that defined the variability of
each data point and, in our model, it is given by θk,j · tk. Notice that, if such noise terms
are constantly set to σq, then Equation 5.3 is the same likelihood as the standard GP
with Σx = σqIq.

Under such a model, predictions of f can be made by conditioning x∗ to the set of
reported observations x and y, given the trust parameters t. Then, using the marginal-
isation properties of the Gaussian distributions, the predictive distribution of f(x∗) at
the test location, is derived as follows:

p(y∗|x,y,x∗, t) = N (E[y∗], σ2(y∗)) (5.10)
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where

E[y∗] = K(x∗,x)[K(x,x) + Σx]−1y (5.11)

σ2(y∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + Σx]−1K(x,x∗) (5.12)

Specifically, the equations above are respectively the predictive mean and variance of f
at the location x∗ with our TrustHGP. Recall that these equations are all conditioned
on the values of the set of hyperparameters Θ = {σf , l, t1, . . . , tk}. Since these hyper-
parameters are typically unknown, their value needs to be estimated in some way as
part of the model selection. In particular, a standard technique for estimating hyperpa-
rameters in GP models is marginal likelihood optimisation, which sets their values by
maximising the evidence of the observations according to the marginal likelihood of the
model (Rasmussen and Williams, 2006). This method is particularly convenient for our
model since it is possible to derive the expression of the marginal likelihood in closed
form by marginalising out f from Equation 5.7 over the GP prior of Equation 5.2 as
follows:

L = ln
( ∫

p(y|f,x)p(f |x)df
)

= −1
2y

TC−1y − 1
2 ln |C| − q

2 ln(2π)

where C = K(x,x) + Σx. The partial derivatives of the marginal likelihood over Θ are:

∂L
∂Θ = 1

2y
TC−1∂C

∂ΘC−1y + 1
2 tr

(
C−1∂C

∂Θ

)

and factoring in the expression of the squared exponential function (Equation 5.3), we
find that:

∂C

∂σf
= 2σf exp

(
− d2

2l2
)

(5.13)

∂C

∂l
= −

σ2
fd

2

l3
exp

(
− d2

2l2
)

(5.14)
∂C

∂ti
= − 1

t2i
diag(0, . . . , 0, θi,1, . . . θi,pi , 0, . . . , 0)−1 (5.15)

Then, we set the values of the hyperparameters as:

ΘML = {σf,ML, lML, tML} = arg max
σf ,l,t

(ln p(y|x,θ, t, σf , l) (5.16)

At this point, we derived the key equations of the TrustHGP to predict the mean (Equa-
tions 5.11) and the variance (Equations 5.12) of f from the data at any input location.
Furthermore, the analytical expression of the marginal likelihood is suitable for optimis-
ing the trust parameters: To complete this step, we now describe an efficient algorithm



Chapter 5 A Trust-based Heteroskedastic Gaussian Process Model for Fusing
Crowdsourced Estimates of Spatial Functions 104

x0

x

Gradient descent

Conjugate gradient

Figure 5.2: A comparison of the convergence of gradient descent (green) to
conjugate gradient (red) in minimising a quadratic function.

needed for the training of the TrustHGP and learning both the kernel hyperparameters
and the trust parameters.

5.2 The TrustHGP Training Algorithm

In this section, we describe the algorithm for computing the trustworthiness parameters
and, on such a basis, predict the values of f . In particular, we estimate such parameters
using the standard maximum marginal likelihood criterion described by Equation 5.16.
However, since such a likelihood is a non-linear function, its maximisation is not tractable
analytically and it must be carried out numerically. We do this by using an efficient
gradient–based method for such a function optimisation that is able to leverage the
analytical gradients of the hyperparameters that we derived in Equations 5.13, 5.14 and
5.15 . Within the family of gradient–based optimisation algorithms, we use the standard
non-linear conjugate gradient method that is commonly used for iteratively minimising
quadratic functions (that in our case it corresponds to minimising the negative marginal
log–likelihood function) following the steepest conjugate gradient direction (Saad, 1996).
In particular, as it is also illustrated in Figure 5.2, such a method typically converges to
a (local) minimum faster than the standard gradient descent that follows perpendicular
(zig-zag) directions.

Our TrustHGP training algorithm is described in Algorithm 5.1. Step 1 and 2 initialise
t, l and σf to a random value. Then, the conjugate gradient loop (steps 5-12) com-
putes the gradient with respect to the hyperparameters of the previous iteration and
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Algorithm 5.1 TrustHGP (Non-linear conjugate gradient)
Variables :

R : Report set.
Θ(s) : Hyperparameters at the h–th iteration.
σ

(0)
f

: Initial guess of the signal variance.
l(0) : Initial guess of the length scale.
∆Θ(s) : Negative derivatives of the marginal log-likelihood with respect to the hyperparameters
of the s–th iteration.
x∗ : Test inputs.
error : Estimation error bound.
smax : Maximum number of iterations.

Algorithm TrustHGPTraining(R,x∗)

1: t(0) := random initialisation
2: Θ(0) := 〈σ(0)

f
, l(0), t(0)〉

3: γ(0) := − ∂
∂Θ

(
ln p(y|x,Θ(0))

)
4: s := 0

5: while ( |Θ(s−1) −Θ(s)| < err and s < smax ) do

6: s := s+ 1

7: ∆Θ(s) := − ∂
∂Θ

(
ln p(y|x,Θ(s−1)

)
8: β(s) := (∆Θ(s))T (∆Θ(s)−∆Θ(s−1))

(∆Θ(s−1))T ∆Θ(s−1) (Polak-Ribière method)

9: γ(s) := ∆Θ(s−1) + β(s)γ(s−1) (Wolfe line search)

10: α(s) := arg maxα p(y|x, (Θ(s−1) + αγ(s−1)))

11: Θ(s) := Θ(s−1) + α(s)γ(s)

12: end while

13: Θ(s) := 〈σ(s)
f
, l(s), t(s)〉

14: Compute E[y∗|x∗] as by Equation 5.11.

15: Compute σ2(y∗|x∗) as by Equation 5.12.

16: return (t(s), E[y∗], σ2(y∗))
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the search directions given by the β and α parameters. In particular, there are a num-
ber of methods for computing β based on different versions of the conjugate gradient
algorithm (Saad, 1996). Since the purpose of evaluating different versions of these al-
gorithms is out of the scope of this thesis, we use the standard Polak-Ribiere method
(step 8) that provided by the GPML Matlab toolbox4. Therefore, step 10 computes
the search directions, s, and the step length along each directions, α, through Wolfe
line search condition. In particular, by using such a condition to update of the step
length, the method guarantees stability and convergence (Wolfe, 1969). Finally, the hy-
perparameters are updated according to the new α and s in step 11. After convergence
is achieved, and such a convergence was found to be reached in 20-40 iterations5, the
algorithm returns the values of t and the other hyperparameters computed in the last
iteration, together with the mean and variance predictions of the function at the test
inputs x∗. Analysing its complexity, the algorithm requires O(q3) time to compute the
output due to the inversion of the covariance matrix. This is a lower-bound complexity
of inference in GP methods (Rasmussen and Williams, 2006). However, after the in-
version of the the covariance matrix, prediction only takes O(q) time for the predictive
mean and O(q2) for the predictive variance. In practice, we were able to train our model
on up to 2, 500 data points in approximately 5 minutes on a 4 Core i5 3.6 GHz CPU,
8GB RAM architecture.

Having now described our TrustHGP training algorithm, the following section provides
its empirical evaluation against other non-trust GP regression approaches.

5.3 Experimental Evaluation

In our evaluation, we compare the performance of the TrustHGP to other non–trust GP
and HGP methods described in Section 5.3.1 through two set of experiments. Using
the same methodology as in the previous evaluation, we devise two set of experiments
considering both synthetic data and real data. Specifically, in the first experiment, we
run simulations of crowd users with different levels of trustworthiness in order to test the
robustness of the methods in a controlled crowdsourcing setting (Section 5.3.2). Then, in
the second experiments, we look at the key disaster response application of crowdsourced
radiation monitoring evaluating the methods in making spatial predictions on a dataset
of crowdsourced radiation data from the 2011 Fukushima earthquake in Japan (Section
5.3.3).
4GPML Matlab toolbox website: www.gaussianprocess.org/gpml/code/matlab/doc/
5This results refers to our test on simulated data presented in Section 5.3.2

www.gaussianprocess.org/gpml/code/matlab/doc/
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Figure 5.3: Beta function for different values of shape parameters.

5.3.1 Benchmarks

To evaluate our TrustHGP against other non-trust GP and HGP methods, we consider
the following benchmarks:

• GP: This algorithm is the standard GP that assumes homoskedastic data noise
as described Section 2.5.2.

• HGP: This algorithm is the HGP (Section 2.5.1) that assumes individual Gaussian
noise terms for each input point with noise precision defined by θk,j . In particular,
this method is equivalent to our TrustHGP with all the trust parameters statically
set to one, i.e. all the reports are equally trusted.

• Optimal HGP: This is the hypothetical optimal HGP regression which is obtained
by providing the TrustHGP with the correct values of the trustworthiness of each
user. That is, trustworthy users are set with tk = 1 and untrustworthy users are
set with tk = 0. Notice we can only run this method for the case of synthetic data,
since we do not have the ground truth of the values of the user’s trustworthiness
for the Fukushima experiment.

In summary, we evaluated four different GPmodels: {HP, HGP, Optimal HGP, TrustHGP}
in performing regression with crowdsourced spatial data. Our experiments are presented
in the following sections.
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Figure 5.4: Performance of the four methods measured by the root mean square
error (RMSE) (a) and the continuous ranked probability score (CRPS) (b).

5.3.2 Experiment on Synthetic Data

In this experiment, we evaluate TrustHGP in estimating a one-dimensional function from
synthetic data with simulated trustworthiness features. Specifically, the experiment is
set up as follows. We simulate f as a Beta function, Beta(α, β) with the two shape
parameters α and β randomly sampled as {α, β} ∼ U [1, 20]. In particular, the choice
of a Beta function with uniformly random shape parameters guarantees a sufficient
variability of the shape of f in the simulation, as it also illustrated by Figure 5.3. Then,
we simulate a set of observations of f reported by a crowd of 20 users. Each user k
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reports pk estimates, with pk ∼ [3, 20] and each estimate is a vector as described in our
model: (i) xk,j , i.e. a point randomly selected in [0,1] (i.e. the domain of f) for the j-th
report of user k, (ii) yk,j , i.e. the observation of f(xk,j) and (iii) θk,j , i.e. the reported
precision of yk,j . To simulate noise in the observations, the parameters of each estimate
are randomly generated as follows:

θk,j ∼ U [0.5, 20] xk,j ∼ U [0, 1]

yk,j = f(xk,j) + εk,j εk,j ∼ N (0, θ−1
k,j)

Furthermore, we simulate a percentage ρ of untrustworthy users within the crowd by
adding an extra random noise w to some randomly selected users:

yk,j = f(xk,j) + εk,j + wk,j εk,j ∼ N (0, θ−1
k,j) wk,j ∼ ±U [1, 5]

Finally, we measure the accuracy of the set of predictions of the GP methods using the
same metrics (RMSE and CRPS) described in Section 3.3.1.2.

The results of 200 simulations varying the value of ρ as follows: ρ = {0, 10, 20, 30,
40, 50, 60}. are given in Figure 5.4. From this, we can see that, as expected, the
RMSE (Figure 5.4(a)) of all the algorithms grows progressively with ρ, i.e. a large
presence of untrustworthy users reduces the accuracy of the predictions. However, a
key result is that the TrustHGP outperforms the other methods by up to 34% when
ρ = 30% (the statistical significance of this result was tested by a paired t-test, α =
0.01, p = 3.4 ·10−33). In particular, its error is very close to the optimum up to ρ < 30%
and is generally the lowest amongst the tested methods up to ρ < 50%. This means
that the trust learning adopted by the TrustHGP makes it more robust against the
presence of untrustworthy users compared to the other methods. Another interesting
result is the CRPS of the four methods showed in Figure 5.4(b). From this, we can
see that the CRPS of the TrustHGP is significantly lower than the other methods for
any ρ value. In particular, the TrustHGP outperforms the standard GP by 80% when
ρ = 30% (statistical significance tested by a paired t-test, α = 0.01, p = 3.38 · 10−124).
This means that our algorithm computes the most accurate (i.e lowest RMSE) and also
very informative (i.e. lowest CRPS) aggregated predictions in all the settings where the
majority of the reports is trustworthy (ρ < 50%). Also, we find that the standard GP
ranks below the the HGP in terms of CRPS, even though the former is typically more
accurate in terms of RMSE.

In more detail, Figure 5.5 shows the typical prediction results produced by the four
methods. Given the dataset illustrated in Figure 5.5(a) consisting of 241 estimates
reported by 20 users, and ρ = 30, the standard GP prediction is showed in Figure
5.5(b). In particular, such a prediction is very noisy due to the effect of having a single
noise parameter, σq (see Section 2.5.2), which is increased by the GP training up to
include all the estimates. Interestingly, this way of fitting the noise parameter to the
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(a) Xively crowdsourced sensors (b) SPEEDI official sensors

Figure 5.6: Maps of the 557 radiation sensors of the Xively network (a) and the
2122 radiation sensors of the SPEEDI network (b) located in Japan.

data is comparable to the behaviour of covariance union (CU) that we discussed in our
previous experiment with stationary items (see Section 3.3.2). Furthermore, analysing
the HGP prediction showed in Figure 5.5(c)) it typically has lower uncertainty but
its mean prediction is less accurate due to the effect of following every noisy estimate
considered by the model as equally trustworthy. In contrast to all the other methods, the
TrustHGP prediction showed in Figure 5.5(d) achieves the highest accuracy and lowest
uncertainty. This advantage is due to a correct estimation of trustworthiness parameters
that allows the model to exclude most of the untrustworthy estimates. In particular, in
this example, its performance is very close to the Optimal HGP showed Figure 5.5(e).
Globally, these results shows that our method outperforms the benchmarks in both
accuracy and informativeness in predicting the function from synthetic data. To reinforce
our claims, we now provide another evaluation of the TrustHGP with real data.

5.3.3 Experiment on Real Data

In this second experiment, we consider the real–world application of crowdsourced radi-
ation monitoring in disaster response introduced in Chapter 1. In particular, we refer to
the scenario of the aftermath of the 2011 Fukushima earthquake where an unprecedented
effort of local communities contributed a significant volume of crowdsourced radiation
data. On 3 March 2011, a tsunami caused by a 9 magnitude earthquake hit the east
coast of Japan severely damaging the nuclear power plant of Fukushima-Daichii. The
subsequent nuclear accident led to radioactivity increases of up to 1,000 times the nor-
mal levels in the area of Fukushima and provoked the second-largest nuclear emergency
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since Chernobyl, 1985. In response, private individuals deployed 557 Geiger counters
across the country (many of them based on open-hardware boards such as Arduino or
Goldmine) that were able to automatically report radiation data through the the Xively
web platform (xively.com). This entirely crowdsourced sensor network, which is shown
in Figure 5.6 (a), came to life in less than two weeks after the disaster and became a key
resource for the public to gather live radiation data from the disaster scene. However,
an unknown number of sensors were reporting verifiably wrong measurements (Slater
et al., 2012). As a result, the rescue teams faced the key challenge of managing the data
streamed by the sensors into a comprehensive spatial radioactivity prediction, while be-
ing aware of the untrustworthiness of some sensors. In this context, we now detail how
our the TrustHGP can be applied to help address this challenge.

5.3.3.1 Dataset

We collected the readings reported by the Xively sensors over one day, 1 March 2012,
one year after the main quake, through the Xively API6. In particular, this date was
conveniently chosen to allow an overlap with the data provided by the SPEEDI sensors
(see later for details) that we used as test data in our evaluation. However, similar results
were observed on different dates and the same experiment running on a daily basis is also
available at jncm.ecs.soton.ac.uk). To define a suitable setting for our TrustHGP,
we computed the estimates of the radioactivity at each sensor’s location based on the
reported readings as follows. We estimate the mean value yk,j and the precision θk,j

of the readings of each sensor k by taking the average and the inverse variance of the
series of its measurements (assuming that only one estimate is reported by each sensor,
i.e., j = 1). In total, the resulting Xively dataset includes 557 estimates, one from each
sensor. The sensors were reporting readings in the unit of microsieverts per hour (µSv/h)
at an average frequency of 2 readings per hour. The complete description of the Xively
dataset in provided in the Appendix C. To build a ground truth for this experiment,
we used test data provided by the SPEEDI network: the official radiation monitoring
network maintained by the Nuclear Division of the Ministry of Science of Japan (MEXT)
(bousai.ne.jp)7. This network includes 2122 sensors reporting readings at a frequency
of 6 readings per hour in the same unit. The map of the SPEEDI network is showed in
Figure 5.6(b). Specifically, we use the SPEEDI data to obtain estimates of the radiation
levels that are comparable to the ones of the Xively sensors over the same time window.
Then, making the reasonable assumption that the SPEEDI sensors are more reliable due
to their official source, we use the prediction of the standard GP on the SPEEDI dataset
as the spatial radiation levels that we use to evaluate the prediction of our method. In
particular, the radiation levels predicted by the GP on the SPEEDI dataset are shown
6This dataset and the Java code to query the Xively sensors are available at eprints.soton.ac.uk/
354861.
7At present, the SPEEDI network offers digitalised data only starting from April 2012.

xively.com
bousai.ne.jp
eprints.soton.ac.uk/354861
eprints.soton.ac.uk/354861
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Figure 5.7: Radiation heat maps showing the following predictions: the standard
GP on the SPEEDI dataset (a), the standard GP on the Xively dataset (b) and
the TrustHGP on the Xively dataset (c).

8Data source: United States Environmental Protection Agency (EPA, 2001)
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RMSE CRPS
Standard GP 30.80± 0.30 64.34± 0.04
HGP 64.13± 0.99 9.31± 0.12
Trust HGP 26.74± 0.27 7.14± 0.08

Table 5.1: Errors of the three GP methods tested on the Xively dataset.

in Figure 5.7(a) as a heat map with a colormap in the scale of 0 - 0.35 µSv/h. Given
this setting, we present the results of our experiment in the next sub–section.

5.3.3.2 Results

Table 5.1 reports the scores of the predictions of the three methods in 100 trials. In
each run, we randomly sample 80% of the sensors in order to evaluate the performance
of the tested methods over different portions of the Xively dataset. The results show
that the TrustHGP outperforms the best benchmark by 13% with respect to the RMSE
(statistical significance tested by a paired t-test, α = 0.01, p = 2.31 ·10−167) and by 23%
with respect to the CRPS (statistical significance tested by a paired t-test, α = 0.01, p <
10−4). In more detail, while the HGP improves the CRPS compared to the standard
GP, the RMSE of the former is significantly worse. In contrast, our method achieves
the best performance in both the RMSE and CRPS as a result of its correct learning
of the sensor’s trust values. In particular, its lower CRPS shows that its prediction
is considerably more informative than a normal GP. This is even more evident by the
3D visualisation of the two predictions shown in Figure 5.8 where the red bars show
the 2σ predictive standard deviations at each location. From this, we can see that the
TrustHGP has very narrow (not visible) bars compared to the high bars of the standard
GP.

Furthermore, Figure 5.7(b) and Figure 5.7(c) show the predictions of the two methods
(GP and Trust HGP) on the Xively dataset depicted as heat maps. These two methods
are similar in predicting the peak of radioactivity of approximately 0.33 µSv/h near
to the location of the Fukushima power plant, which is approximately four times the
average radiation level of 0.09 µSv measured in Japan before the earthquake.9. However,
their predictions are substantially different in several locations. For example, it can be
noticed that the standard GP does not provide valid radiation values near the location
of Onagawa (Miyagi prefecture, 38.45 N, 141.44 E). In fact, we manually discovered that
some of the sensors located in that area sporadically reported invalid measurements that
caused the GP to predict invalid radiation values. In contrast, the Trust HGP makes
more plausible predictions and overcomes this issue by correctly learning to place a
low degree of trustworthiness on such sensors. In particular, it estimated that 17% of
the Xively sensors have trustworthiness values lower than 0.5. The same analysis on
the SPEEDI sensors revealed that only few of these (less than 1%) were untrustworthy
9Data source: Japan Radiation Open Data sendung.de/japan-radiation-open-data

sendung.de/japan-radiation-open-data
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Figure 5.8: 3D visualisation of the GP prediction (a) and the TrustHGP predic-
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which confirmed our assumption about the SPEEDI network being more reliable. Thus,
this result shows that our method provides an effective aggregation of radiation data
from real–world crowdsourcing application.

5.4 Summary

In this chapter, we extended our trust-based approach to address the problem of estimat-
ing non-stationary quantities from crowdsourced estimates. Specifically, we presented
an algorithm that addresses our third requirements related to building reliable aggrega-
tions of spatial information in crowdsourcing settings, thus complementing our previous
set of algorithms for stationary quantities.

In more detail, we introduced a trust-based heteroskedastic Gaussian process for spatial
regression to model a dataset of crowdsourced spatial estimates reported by untrust-
worthy users. The salient feature of such a model is to integrate user trust learning
in spatial regression within a principled heteroskedastic Gaussian process framework.
Based on this model, we provided an algorithm to estimate the spatial function describ-
ing the phenomenon observed by the crowd and also learn the trustworthiness of the
users. Evaluating our algorithm on a set of synthetic data, we showed that it outper-
forms the standard, non-trust GPs being 34% more accurate and 80% more informative.
Furthermore, a real application of our algorithm to the problem of crowdsourced ra-
diation monitoring in Japan showed that our method estimates the radiation levels
function with 13% lower error and 23% lower predictive uncertainty compared to the
standard GP. With this, our solution is the first to address a spatial regression problem
with crowdsourced information that is an important step in making use of intelligent
machine learning technologies in trustworthy participatory sensing. Other significant
extensions of our model related to space-time based trust estimation, modelling uncer-
tainty over trust parameters and trust–based active learning that could possibly broaden
its applicability will be discussed in Chapter 7.



Chapter 6

A Trust-Based Log Gaussian Cox
Process Model for Fusing
Crowdsourced Spatial Point Data

In this chapter, we address the challenge of modelling spatial patterns in crowdsourced
point data, which relates to our last set of requirements (Req. 4). As discussed in Chap-
ter 1, this is a key challenge in the disaster response domain where people on the ground
provide important information to emergency responders in the form of geo–tagged data
such as tweets and text messages. These reports typically relate to emergency events
happening in the disaster area, such as trapped people, requests for food, water and
shelter that are categorised and mapped through software platforms such as Ushahidi
(www.ushahidi.com), Google crisis response tools (www.google.org/crisisresponse)
or OpenStreetMap (www.openstreetmaps.org). For example, Figure 6.1 shows the map
of the reports collected by Ushahidi during the 2010 Haiti disaster which were grouped by
seven emergency categories that include water contamination, food shortage and power
outage1. In Chapter 1, we discussed that an important goal for emergency responders
who need to undertake relief activities on the ground is to extract information about the
areas where supplies are most needed from such a large amount of reports (Gao et al.,
2011). In fact, several studies support the use of crowd reports to recover the map of
real emergency events by highlighting the fact that the spatial distribution of such crowd
reports is highly correlated to the location of actual disaster events (Corbane et al., 2012;
Goodchild and Glennon, 2010a). In more detail, a disaster event is likely to generate
a number of reports in its surrounding area with an intensity that is correlated to its
level of damage. This finding suggests that we can plausibly recover information about
the locations of disaster events through the statistical analysis of the spatial patterns of
the crowd reports. However, the accuracy and trustworthiness of these reports might,
1In total, Ushahidi collected more than 60,000 reports in Haiti that were manually classified by a team
of volunteers and subsequently mapped into 3,584 events (Morrow et al., 2011).
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Figure 6.1: The Ushahidi-Haiti map of food shortage reports and other
categories of emergencies that were reported by the crowd after the Haiti
earthquake2.

for example, be affected by people who exaggerate their real needs and priority of emer-
gency. Thus, this is a crucial aspect that needs to be taken into account to correctly
learn spatial patterns from such data. In this context, we consider the problem of fusing
untrustworthy point data (i.e., Req. 4) that relates to the locations of crowdsourced
emergency reports in the setting were the data has various categories of trustworthiness,
(i.e., Req. 2). By so doing, we wish to provide an automatic learning tool that relies on
our trust–based fusion approach to help first responders convert a sparse sets of crowd
reports into an actionable map.

As discussed in Chapter 2, the problem of inferring spatial point patterns in crowd-
sourcing presents some unique challenges compared to the problems we studied so far.
In particular, in contrast to spatial regression that we discussed in Chapter 5, where we
discussed the problem of inferring a latent function based on its location–based noisy
observations provided by the crowd, a key difference is that now we do not directly
observe values that are drawn from the continuous function that we wish to estimate.
For example, related to the radiation monitoring scenario discussed in Section 5.3.3,
observations consisted of the readings of a spatial nuclear radiation field as provided
by a number of crowdsourced sensors. Conversely, in spatial point pattern analysis, we
only observe a finite number of points (i.e., the reports) placed in some random loca-
tions, e.g., we received φ(X) reports in a certain region X. Then, our goal is to infer
the function that predicts the intensity of reports over the entire space. In fact, the
knowledge of such an intensity function is useful to learn information about the most
endangered areas by localising places with high values of predicted crowd reporting rates.
However, an important requirement of this learning task is to consider the uncertainty
2Data source: Gao et al. (2011)
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about the reliability of some groups of reports that might deviate from the main spatial
point pattern, thus appearing as outliers to the intensity function. For example, these
untrustworthy points might be given by groups of reports that are more likely to be
generated by isolated events or by reports with locations that are incorrectly reported
by the devices. Given this, we require a model for learning spatial point patterns that is
able to deal with inaccuracies of the data. In Chapter 2, we identified the Log Gaussian
Cox Processes (LGPC) as a suitable basis for a solution to this problem. In fact, the
LGCP is a powerful spatial point process model that provides approximate but still
tractable probabilistic inference for non–linear intensity functions, which are likely to
occur in crowdsourced data. Furthermore, an important advantage of this model is that
it represents a natural extension of the Gaussian process to spatial point processes. This
allows us to incorporate techniques developed for our TrustHGP model in solving this
new problem. In particular, we discussed that, similarly to other GP–based models ap-
plied to crowdsourcing, the standard LGCP suffers from the inability to deal with data
of varying trustworthiness.

Against this background, we introduce a new trust–based LGCP as the first model de-
signed for a fusion task with untrustworthy spatial point data related to a crowdsourcing
context. In particular, the key feature of our model is the ability to simultaneously learn
the spatial intensities from a set of given points and the trustworthiness of categories
of such points. In more detail, our model is inspired by the setting of Ushahidi where
the reports are categorised by a taxonomy of emergency events. Thus, drawing from
the theory of our previous trust–based GP model, we use trust parameters to represent
the reliability of each category of reports. These reliabilities are then used to scale the
correlations of points within categories in a LGCP–based fusion process. By so doing,
we demonstrate the versatility of our trust–based fusion approach that can be adapted
to different types of trust models. For example, the data trustworthiness can be related
to the single report, as in our cell tower application (Chapter 3), to the user, as in
our WiFi mapping (Chapter 4) and radiation monitoring application (Chapter 5) or to
categories of reports. Specifically, we experimentally show that our model provides 10%
more accurate intensity estimates against the state–of–the–art models tested on syn-
thetic data. Furthermore, we apply our model to the Ushahidi–Haiti dataset and show
that its spatial intensity prediction effectively overcomes the presence of untrustworthy
reports and generally provides more informative intensity maps compared to the non–
trust LGCP methods. In addition, we show that our model learns useful information
about the trustworthiness of the reports’ categories which can be used to define priorities
of report verifications or rescue tasks.

Thus, we advance the state of the art as follows:

• We introduce the trust–based Log Gaussian Cox Process (TrustLGCP), the first
model that simultaneously learns the spatial intensities of random point process
and the trustworthiness of categories of crowdsourced point data.
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• We show that our TrustLGCP improves the accuracy of the standard LGCP on
synthetic data. We also show that our model can effectively learn intensity maps
from crowdsourced emergency reports and provide the estimated trustworthiness
of each emergency category with an application to the Ushahidi dataset collected
during the 2010 Haiti earthquake.

In the remainder of the Chapter, we first describe our model formally in Section 6.1.
We then provide an algorithm for training the model on crowdsourced categorised point
data in Section 6.2. Subsequently, we evaluate the method on various datasets in Section
6.3. Finally, we summarise our conclusions in Section 6.4.

6.1 Model Description

In this section, we define a categorical trust model to represent data reliability in our
model within the disaster response scenario (Section 6.1.1). Then, we detail the use of
such a model in the definition of our trust–based LGCP model (Section 6.1.2).

6.1.1 A Trust Model for Categories of Crowdsourced Reports

In disaster response, we gather a set of N geo–located and categorised emergency reports
R := {(xo, co) : o = 1, . . . , N} submitted by the crowd. Each report includes (i) the
location of the reported event xi ∈ R2 and (ii) the category of its emergency ci, selected
from a pre–defined list of F emergency categories, for example the Ushahidi categories
used in the Haiti deployment (see Morrow et al. (2011)). In particular, we are interested
in learning the spatial patterns of such a report set which is expressed by an unobserved
intensity function λ : X → R. This function defines the number of reports (i.e. points)
that are expected to be observed in a certain region X. As discussed in Section 1.2, the
knowledge of λ is important to infer information about the location and the strength
of the real disaster events, e.g. collapsed buildings, trapped persons and unavailable
services. However, the premise for the accurate learning of λ is to be aware of the
possible untrustworthiness of some reports that might not necessarily correlate to the
true intensity rates. To deal with such uncertainty about the data reliability, we start
by making the assumption about the categorical trustworthiness of the reports. That
is, we assume that each category c has an individual and unknown trustworthiness level
expressed by tc ∈ [0, 1] that represents the average reliability of its reports. Specifically,
we relate such a categorical trustworthiness to the fitness of the intensities of reports
contained in c with respect to the underlying λ function. Thus, similarly to the idea
of our previous models (see Section 3.1.1 and Section 5.1.1), untrustworthy data is
considered as the instances that do not follow that generative process described by the
majority of the trustworthy points. Importantly, our choice of modelling trust over data
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categories follows from the setting of Ushahidi in which reports are categorised by their
emergency type. However, it is important to notice that alternative representations of
data trustworthiness can be defined without significantly changing the structure of our
inference model with different parametrisations of uncertainty. For example, trust can
be defined at the single report level or at the user level in the same way as defined in
our previous models.

Therefore, we want to infer the intensities of reports over a certain region while taking
into account their categorical trustworthiness. To do so, we reasonably assume that the
global trustworthiness of the intensities observed in X is the average intensity of each
category weighted by tc. More formally, let φ(X) be the number of reports observed in
X, then the value of φ(X|t) given the vector of categorical trust values t = {tc : c =
1, . . . , C} is obtained as:

φ(X|t) =
⌊

1
T

C∑
c=1

tcφc(X)
⌋

(6.1)

where T = ∑C
c=1 tc and φc(X) is the partial count of reports of category c located in

X. Notice that the floor operator is needed to constrain such counts to be integer value.
In fact, the generative model of the Poisson process assumes that such intensities are
generated from a Poisson distribution, which is defined over integer values. Then, we say
that total trustworthiness tX of the report count observed in X is taken as the average
of the categorical trust parameters weighted by the report counts of each category. That
is:

tX = 1
φ(X)

C∑
c=1

tcφc(X) (6.2)

For example, suppose that 15 reports are counted in X, 10 of these belong to the
category “natural hazards” that we trust with value 0.7 and 5 reports belong to the
category “food requests” that we trust with value 0.3. Then, we will consider that an
average of 8 reports is observed X and the trustworthiness of such an observation is
0.56. Thus, while a non–trust based aggregation method would simply count all reports
as equally trustworthy, our method discounts the report counts of each category with the
associated trustworthiness so that the effect of untrustworthy categories is downgraded
in the total count. Notice that this trust–based averaging method differs from the noise
scaling technique adopted by our previous trust models. This is due to the fact that,
in the disaster response setting, the inference process is defined over the integer report
counts rather than a continuous function’s measurements. Therefore, it is less convenient
to apply trust–based noise scaling in our current setting since the crowd reports do not
provide the precisions for the counts. On the other hand, our choice of using a trust–
based averaging method is a more intuitive way to relate the observed intensities to the
reliability of their categories and, on such a basis, enable a two-way transfer learning
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mechanism whereby the trustworthiness of the categories informs the one of the single
point. In any case, we must be able to infer the trust parameters from the data as a
prerequisite to making predictions of intensities with our trust model. To address this,
we use a model–based machine learning approach that builds upon the LGCP model.

6.1.2 A Trust-Based Log Gaussian Cox Process Model

From the preliminaries introduced in Chapter 2, the LGCP is a non–homogeneous Cox
process model with Poisson intensities that are generated by a latent function z =
ln(λ). In particular, this point process model is characterised by the property that the
number of reports that are counted in two disjoint and bounded regions Xi and Xj are
independent and Poisson distributed with intensity:

λ(Xi) =
∫
Xi

λ(x)dx (6.3)

Then, the LGCP defines a Gaussian Process prior over z (Equation 2.25) in order to
model both the uncertainty about z and the random number of points observed in
each region (see Section 2.6.3). However, we also discussed that the premises to have
a tractable inference in a LGCP model are that (i) the space where the points are
observed must be discretised into disjoint bins X = ∪Xi : Xi = Xi−1 + ∆x and (ii) the
posterior distribution of the log–intensities zi associated with each bin i is assumed to be
multivariate normal under the Laplace approximation. Following this, the approximate
data likelihood of the model factorises over the Poisson distributions of each bin as
given by Equation 2.27 and the predictive posterior distribution at new test points x∗
is approximately multivariate normally distributed with p.d.f. as given by Equation
2.28. Under this model, we can compute predictions of the intensities at any location of
interest after selecting an appropriate kernel K for the GP prior of z (assuming a zero
mean GP prior). In particular, assuming a smoothly changing correlations in the spatial
intensities, we can choose K to be a squared–exponential kernel (Equation 2.14) with a
single–variance noise matrix σ2

NIN .

Now, we consider the feature of having different trustworthiness around each intensity
zi. In this setting, the standard LGCP would be prone to the error of assigning high
intensities even to regions where the points that belong to untrustworthy categories are
located. To rectify this, we design a new LGCP kernel that allows the model to flexibly
increase the uncertainty around regions of untrustworthy points while still modelling
correlations in the locality of such regions. Specifically, we define a trust–based LGCP
kernel where the uncertainty of each region of the intensities is scaled by the trust
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parameters as follows:

Σtrust = diag(tX1 , . . . , tXN
)−1 (6.4)

Ktrust = K + σ2
N ∗ Σtrust (6.5)

That is, Σtrust is a diagonal matrix of the inverse trust parameters that regulates the
variance of the process noise in each region. In this way, untrustworthy reports are
downgraded by the effect of decreasing the correlation of points located in untrustworthy
regions. Notice that the configuration of t = {1, . . . , 1} reduces Ktrust to the standard
single–variance LGCP model.

Then, following the inference steps of Section 2.6.3, we derive the predictive distribution
at the test points z∗ = z(x∗) as:

p(z∗|R,Θ) ≈ N (E[z∗], σ2(z∗)) (6.6)

where

E[z∗] = Ktrust(x∗,x)Ktrust(x,x)−1ẑ (6.7)

σ2(z∗) = Ktrust(x∗,x∗)(Ktrust(x,x) + Σ̂−1)−1Ktrust(x∗,x) (6.8)

where Σ̂−1 is the negative Hessian matrix of the likelihood around its mode (see Equa-
tion 2.33). Thus, the equations above fully characterise our trust–based LGCP model,
hereafter named TrustLGCP. In particular, they provide the predictive equations of the
spatial intensities obtained by combining the empirical intensities observed in the reports
with trustworthiness of their categories. Furthermore, we can derive the approximate
marginal likelihood of the model by factoring Ktrust in Equation 2.34 as follows:

ln p(z|R,Θ) =− 1
2 ẑ

TKtrust(x,x)−1x̂+ ln p(R|ẑ)

− 1
2 |IN + Σ̂

1
2Ktrust(x,x)Σ̂

1
2 | (6.9)

In particular, such a marginal likelihood is important for training the model, i.e., finding
the best kernel hyperparameters and trust parameters for our dataset. Using the same
training approach described for the TrustHGP in Chapter 5, we can learn the values
of the hyperparameters Θ = {σf , l, σN , t} (σf and l are the two hyperparameters of k)
by optimising such a likelihood function. In more detail, an algorithm that implements
such an optimisation for the TrustLGCP training is described next.
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Algorithm 6.1 TrainLGCP (Non–linear Conjugate Gradient)
Variables :

R : Report set
∆x : Resolution of the spatial grid
z : Mean value of the predicted log-intensities
σ2 : Variance of the predicted log-intensities
t : Trustworthiness parameters

Algorithm TrustLGCP

1: Partition space into bins of size: ∆x ×∆x

2: φ(Xi)← Number of points in each bin Xi.

3: Θ(0) ← Initialise hyperparameters

4: repeat

5: ẑ := arg maxz p(z|λ,Θ(s−1)) (Compute MAP estimates)

6: Σ̂ := −55 ln p(ẑ|λ,Θ(s−1))

7: ∆Θ(s−1) := ∂
∂θ2 ln p(z|R,Θ(s−1), ẑ, Σ̂) (Compute likelihood gradient)

8: Θ(s) := Θ(s−1) − α∆Θ(s−1) (Update hyperparameters)

until convergence

9: z, σ2 ← Compute the predictive mean and variance of the intensities under Θ(s) (Equation 6.7
and Equation 6.8)

10: t← Trustworthiness parameters in θ(i)

11: return (z, σ2, t)
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6.2 The TrustLGCP Training Algorithm

In this section, we describe a training algorithm our model based on marginal likelihood
maximisation; a standard training method for GP models (Rasmussen and Williams,
2006). This method finds local estimates of the hyperparameters as given by ΘML =
arg maxΘ p(R|Θ). To do so, we must consider the fact that this likelihood is typically
a non–convex function that requires numerical techniques to perform such a function’s
maximisation. As per the TrustGP (Section 5.2), we consider gradient–based methods
as they typically provide a faster convergence compared to the standard first–order
optimisation algorithms. In particular, we focus on the conjugate gradient method as it
was already showed to provide efficient performances with the TrustHGP described in
Chapter 5. Typically, this method is suitable to optimise functions with a moderately
large set of hyperparameters with polynomial computation (Saad, 1996). Therefore,
we describe its steps in Algorithm 6.1. In step 1-2 the algorithm partitions the space
into bins of size ∆x and pre–computes the number of points in each bin. Steps 5-6
compute the MAP values required by the Laplace approximation and steps 7 updates
the gradient of the approximate marginal likelihood. Step 8 updates the value of the
hyperparameters based on the new gradient. These steps are then repeated for a finite
number of epochs until the parameters reach the convergence. The complexity of this
computation is dominated by the O(N3) time taken by the inversion of the covariance
matrix involved in computing the likelihood gradient (step 7). In practice, we were able
to run this algorithm on our largest set of 2774 points on a 4 Core i5 3.6GHz CPU, 8GB
RAM in approximately 7 minutes

Having described our model of the reports, we now turn to its experimental evaluation.

6.3 Experimental Evaluation

In this section we provide empirical insights into the performance of our TrustLGCP.
With the same methodology as all our previous evaluations, we first describe the set
of benchmarks that we test our method against in Section 6.3.1. Then, we present an
experiment on synthetic data to quantitatively evaluate the robustness of our method
against different levels of trustworthiness in the data in Section 6.3.2. Subsequently,
we run experiments on a real–world dataset consisting of the Ushahidi–Haiti emergency
reports to show the efficacy of our method in practice in Section 6.3.3.

6.3.1 Benchmarks

To show that our method outperforms the state of the art, we compare its performance
against two non–trust based existing benchmarks:
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• LGCP: This algorithm is the non–trust version of the standard LGCP that does
not explicitly model data trustworthiness (see Section 2.6.3). That is, this algo-
rithm is equivalent to a TrustLGCP where the trust parameters are not learned
but they are instead set all statically to one.

• Optimal LGCP: This method is equivalent to a TrustLGCP in which there is
perfect knowledge of the trust parameters. That is, it is a TrustLGCP with the
values of tc that are set to their simulated values, thus providing the best possible
filtering of untrustworthy data. Notice that we can only run this method for the
case of synthetic data, since we do not have the ground truth of the categories’
trustworthiness for the experiment with real data.

In particular, compared to the evaluation presented in Chapter 5, this set of benchmarks
does not comprise the heteroskedastic version of our model with individual noise rates
for each observation. This is due to the fact that our current setting does not consider
points with reported precisions, which is a possible direction for future work. As a
result, it is not trivial to define heteroskedastic noise terms in our current model using
the Ushahidi–Haiti data. In summary, the set of three methods {LGCP, Optimal LGCP,
TrustLGCP} were evaluated in various spatial point process learning tasks. As per the
previous evaluations, the accuracy of each method is measured by the RMSE and the
CRPS (see section 3.3.1.2).

6.3.2 Experiment on Synthetic Data

In this first experiment, we test our method on the task of learning spatial intensi-
ties from a synthetic dataset comprising points that are generated from a number of
trustworthiness categories. Specifically, we simulate two categories of trustworthiness as
given by two disjoint groups of points sharing the same average trustworthiness. In par-
ticular, these two categories are randomly assigned with a trust value t1 ∼ U [0.6, 1] to
more trustworthy points, and t2 ∼ U [0, 0.4], to less trustworthy ones. Notice it is trivial
to extend this setting to multiple categories, which will mainly result in a more complex,
but still feasible to optimise, search space for the parameters. However, this binary cat-
egorisation setting is useful for us to investigate the robustness of our learning method
without requiring a high computational overhead. Then, we take the two–dimensional
“peaks” function3 to simulate the true intensity map as shown in Figure 6.2 (b). The
input space of this function is bounded in x1 ∈ [−2, 3] and x2 ∈ [−2, 3]. Then, we gener-
ate a set of observations of point intensities from the two categories as follows. Firstly,
we partition the space into a regular grid with step ∆x = 0.05 over the x1 and x2 axis.
Secondly, we randomly take a subset of 1000 cells Xi and for each of them we sample the
3The peaks function is a Matlab example function for two variables obtained by translating three Gaus-
sian distributions (www.mathworks.co.uk/help/matlab/ref/peaks.html)

www.mathworks.co.uk/help/matlab/ref/peaks.html
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(a) Ground truth intensity function
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Figure 6.2: The 3D plot (a) and the contour plot (b) of the“peak” function
used as the ground truth in our first experiment. Figure (b) shows an example
dataset of intensities sampled from two categories related to this function. The
black + are intensities from the more trustworthy category and the red + are
intensities from the less trustworthy category.
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Figure 6.3: Performance of the tested methods on synthetic data as measured
by the CRPS (a) and the RMSE (a).
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Figure 6.4: Plots of the spatial intensities estimated by the LGCP (a and b)
the TrustLGCP (c, d) and the Optimal LGCP (e, f) from the synthetic dataset
of Figure 6.2 (b).
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RMSE CRPS
LGCP 1.11 0.77
TrustLGCP 0.89 0.61
Optimal LGCP 0.40 0.36

Table 6.1: Errors of the three LGCP methods in one test on the example syn-
thetic dataset of Figure 6.2 (b).

points located in the cell, i.e., the intensity of Xi, as φ(Xi) ∼ Poisson(exp(ẑi)) where ẑi
is the true value of the intensity given by the peaks function. Thirdly, similarly to our
previous experiments, we want to simulate a percentage ρ of untrustworthy intensities
to challenge the models to correctly learn the trust distribution of such intensities. To
do so, we define a random assignment of ρ% of bins that contains points from the less
trustworthy category 2 and we consider the remaining (1 − ρ)% of intensities to be of
category 1. Then, we introduce a random bias over φ(Xi) set proportionally to the
categorical trust value of Xi. That is:

γ(Xi) = φ(Xi) + (1− ti) ∗ exp(w) w ∼ U [0, 5] (6.10)

In this setting, we test the accuracy of our method in making predictions of the true
intensity function with data generated under different values of ρ.

In more detail, Figure 6.3 (a) shows the CRPS of the three methods for 100 runs with
ρ = {10, 20, 30, 40, 50, 60}. The graph shows that the TrustLGCP improves the per-
formance of the standard LGCP in all configurations. In particular, its CRPS is 10%
lower than LGCP with ρ = 50% and it is generally better than the LGCP for any ρ.
This result shows that our method improves the predictions by correctly assigning low
trustworthiness to less reliable intensities. Moreover, having the highest accuracy gain
for high ρ means that the trust learning of the TrustLGCP is particularly helpful in the
more challenging settings in which the data contain a higher number of untrustworthy
intensities.

Furthermore, Figure 6.3 (b) shows the RMSE of the methods in the same experiment.
In particular, it shows that the TrustLGCP also outperforms the LGCP in terms of
absolute error. This means that the accuracy gain of our method is mostly given by
a lower error in the predictive mean intensity rather than its predictive uncertainty.
To illustrate this, Figure 6.4 shows the plots of the predictions of each method on the
same dataset of Figure 6.2 (b), in which ρ = 30%. From these plots, we notice that
the predictions of the LGCP and the TrustLGCP are similar in their main structures,
i.e., they both identify two peaks of the true function at x1 = −0.45, x2 = −0.4 and
x1 = 1.7, x2 = 0. However, the improvement of the TrustLGCP can be seen, for example,
in the prediction of x1 = 3, x2 = 3 where the LGCP incorrectly predicts an intensity of
value 5, while the TrustLGCP predicts an intensity of value 2.2 against a true value of
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Category # reports Estimated t

Emergency 332 1
Vital lines 1724 0.45
Public health 40 1
Security threats 66 0.45
Infrastructure damage 84 0.56
Natural hazards 5 1
Services available 360 0.78
Other 163 0.22

Table 6.2: The description of the Ushahidi–Haiti dataset with the eight emer-
gency categories, the number of reports in each category, ant the estimated
trustworthiness of each category as computed by the TrustLGCP.

approximately zero. In fact, the assignment of lower trustworthiness to the category of
red points helps our model reduce their noise in the prediction.

Finally, the Optimal LGCP provides the best possible learning of the true function
by completely filtering all the untrustworthy points. Furthermore, the RMSE and the
CRPS of all the methods tested on this example dataset are reported in Table 6.1,
which show that the TrustLGCP errors are significantly lower than the LGCP. Thus,
our experiment on synthetic data demonstrates that our TrustLGCP provides intensity
predictions that are closer to the optimum.

6.3.3 Experiment on Real Data

In this second experiment, we apply the TrustLGCP to the Ushahidi–Haiti dataset that
was described in Section 6.3.3.1. Subsequently, we discuss the results of our evaluation
in Section 6.3.3.2.

6.3.3.1 Dataset

The Ushahidi–Haiti dataset consists of a set of 2774 emergency reports that were submit-
ted by Haitian people by emails, SMS and tweets during the crisis of the 2010 earthquake.
The reports were collected between the 12 January 2010 (the same day of the main
quake) and the 1 August 2010 and were classified among the eight emergency macro–
categories of the Ushaidi–Haiti deployment that are reported in Table 6.24. Specifically,
each report provides the location, the timestamp, the category and the text content
that describes the event as reported by the user. Figure 6.5 shows the map of all the
reports that covers a geographical area of 78,517 km2 (Boundaries: min. longitude =
4The categories reported in the example of Figure 6.1 are sub–groups of the eight Ushahidi macro–
categories
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−74.453, max. longitude = −71.099, min. latitude = 18.041, max. latitude = 20.058).
A complete description of this dataset can be found in Morrow et al. (2011).

We are interested in learning the intensity maps of these reports over the entire area
using our model. To do so, we first project the points to the Cartesian coordinates
(in meters) using the Universal Transverse Mercator (UTM) projection with a reference
zone of 18Q (Snyder, 1987). Then, we partition the space into a regular grid of 200 bins
along the two axis and compute the point counts of each cell. Therefore, each count
provides the empirical intensity observed in the cell.

6.3.3.2 Results

Figure 6.5 shows the contour plots of the predictions of the two LGCP methods com-
puted on the Ushahidi–Haiti dataset. In particular, it can be noticed that the LGCP
concentrates its prediction mainly around one location, i.e., close the capital city of
Port–au–Prince, where the peak of reports is observed. As a counter effect, it is readily
apparent that the LGCP does not provide good predictions in other parts of the map
where its estimated intensities are generally low. Importantly, using the same kernel
hyperparameters as the LGCP, the TrustLGCP is able to provide much more granular
predictions. In particular, it identifies several areas where higher intensities with re-
spect to other areas are predicted, i.e. the red contours (or red areas). As a result, the
TrustLGCP predictions appears to better highlight areas with high intensities from the
rest of the map, which are more helpful in localising damaged areas. Also, we notice
that the TrustLGCP avoids the issue of predicting a very high peak of intensities in
only one point as in the case of the LGCP. This benefit comes from the fact that the
learned trust values provide a better smoothing of the intensity function. This makes
the model more robust to avoid suspicious peaks of intensities observed in the reports.
In particular, the estimated trust values of each category, which are reported in Table
6.2, reveal that the vital lines category that has the largest number of reports (37%) is
only 0.45 trustworthy. This means that the reports in this class tend to be less indica-
tive of the intensities outlined by the reports of the other categories. In general, the
TrustLGCP predicts an average intensity of λ = 1.5 in the red areas and, by integrating
this intensity over the size of such an area, it is possible to find the number of reports
which are expected to be submitted from that region.

Validation with Ground Truth Data A good strategy to validate the learning
outputs of our model would be to compare its predictions to the actual trustworthiness
of the crowd reports. Unfortunately, assessing the trustworthiness of all the reports
collected in Haiti turned out to be infeasible as it required the in–situ verification of
each reported event (the Ushahidi team was able to verify only 1% of all the reports).
Alternatively, a more feasible strategy would be to compare the predicted intensities to



Chapter 6 A Trust-Based Log Gaussian Cox Process Model for Fusing Crowdsourced
Spatial Point Data 133

-74 -73 -72 -71
18

18.5

19

19.5

20

20.5

Longitude

La
tit

ud
e

Cat1: Emergency

Cat2: Vital lines

Cat3: Public health

Cat4: Security threats

Cat5: Infrastructure damage

Cat6: Natural hazards

Cat7: Services available

Cat8: Other

x2

x
1

6 7 8

2.02

2.06

2.1

2.14

2.18

0.1

0.2

0.3

0.4

0.5

x2

x
1

6 7 8 9

2.02

2.06

2.1

2.14

2.18

x 106

0.5

1

1.5

2

2.5

3

z
z

(a) The Ushahidi–Haiti dataset

(b) The LGCP contour

(c) The TrustLGCP contour

x 105

9
x 105

x 106

Figure 6.5: Predictions of the LGCP (a) and the TrustLGCP (b) computed on
the Ushahidi–Haiti dataset.



Chapter 6 A Trust-Based Log Gaussian Cox Process Model for Fusing Crowdsourced
Spatial Point Data 134

the ground truth of the damage levels in the area. This ground truth data about such
damage levels can be collected by experts who are involved in assessing the actual dam-
ages in the disaster area. Despite the temporal discrepancy that such ground truth data
might have compared the crowdsourced reports, which are available immediately after
the disaster, one can measure the correlations between the spatial intensities predicted
by the spatial point process models on the two data sources More specifically, assuming
that ground truth data do not require any special trust–based treatments and can be
handled by a normal LGCP, we can possibly compare their intensities to the predictive
output of the TrustLGCP versus the standard LGCP computed on the crowdsourced
reports. Unfortunately, we do not have such ground truth data to make this compari-
son. Therefore, we can only provide an intuitive validation based on the fact that our
model seems to make more sensible decisions about avoiding peaks of intensities from
the LGCP predictions, using the same kernel hyperparameters. Thus, despite the effort
that we made to provide this new model for crowdsourced spatial point processes, these
conclusions should be taken with caution given the lack of a full validation with ground
truth data.

6.4 Summary

In this chapter, we addressed our fourth and last requirement concerning the fusion
of untrustworthy spatial point data in crowdsourcing. Specifically, we considered the
disaster response scenario where the crowd provides a number of geo–tagged emergency
reports that are categorised by their emergency type. In particular, we focused on
the task of estimating the intensity map that predicts the expected number of reports
over the entire area, which provides a key insight about the disaster scene. To address
this problem, we extended our trust–based fusion approach to the class of spatial point
process models. In particular, we used a LGCP model as a basis to define our new trust–
based LGCP that advances the original model by considering varying trustworthiness
over categories of points. In this way, our TrustLGCP is able to simultaneously learn
the spatial intensities of a random point process and also the trustworthiness of each
data category. In particular, our model assumes that the majority of trustworthy points
are representative samples of the true intensity function. Then, it learns truthfulness of
the reports’ categories on the basis of their fit to the underlying function and refines its
intensity predictions accordingly. By testing our model on synthetic data, we showed
that it improves accuracy by 10% against the non–trust LGCP models as a result of
an effective trust learning that enables our model to filter the noise of untrustworthy
categories of data. Furthermore, by applying our TrustLGCP to the Ushahidi–Haiti
dataset, we intuitively observed that its intensity maps are more plausible to identify the
real disaster areas since they are able to effectively avoid the spikes of the observed point
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intensities. Furthermore, it also provides useful information about the trustworthiness of
each category that can form a basis for emergency planning using crowdsourced reports.

In general, our model provides a solution to many problems that involve reasoning over
point patterns under the uncertainty of the data reliability. For example, other related
applications can be thoughts as predicting intensity of taxi calls from the requests of taxi
users or the spatial distribution of failures in a distributed public service from the reports
of the customers. In this respect, other research directions to potentially integrate the
requirements of these domains in our work are discussed in the next chapter.



Chapter 7

Conclusions

In this thesis, we developed a novel trust-based approach for making reliable inference
over crowdsourced information in participatory sensing applications. Specifically, we
focused on the key challenges of computing reliable aggregations of crowdsourced esti-
mates in stationary settings, i.e., learning a fixed value, and non–stationary settings,
i.e., learning spatial functions. The motivation behind this research is that the data
collected through crowdsourcing systems is often untrustworthy because it is provided
by unreliable human sources who may be inaccurate, uncommitted to the task and/or
can also strategise which information to report. In particular, we studied this prob-
lem of aggregating crowd reports representing continuous estimates collected through
mobile phone–based crowdsourced sensors. To tackle this problem, we proposed an
agent–based architecture in which an output mediator software agent is dedicated to
the tasks of fusing multiple reports and inferring latent trust features of the users (see
Section 1.1). The key requirement for the design of such an agent are the abilities to
(i) compute probabilistic aggregations of multiple crowd reports, (ii) reason about the
trustworthiness of the individual users, (iii) analyse spatial–temporal trends and (iiii)
analysing point patterns in the reports of the crowd. In this context, the major challenge
was outlined as producing good quality aggregations in the presence of untrustworthy
users whose reports complicate the task of computing reliable data aggregation. Given
this, we considered the approach of modelling the unobserved user’s trustworthiness as a
key element of our fusion framework designed for crowdsourcing systems. Based on this
framework, we developed a new family of trust–based algorithms for fusing crowdsourced
continuous data while simultaneously learning the trustworthiness of individuals.

In more detail, in Chapter 2, the relevant literature in the field of machine learning
for reliable crowdsourcing systems, including information fusion, spatial regression and
point process models, was reviewed. Emphasis was given to the class of models that
focus on the joint learning of the user’s trustworthiness and the aggregated value from
crowdsourced datasets. However, the main limitation of the existing models lies in the
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fact that they do not consider the’ reported precision of the users as part of the in-
put data. This is a problem because crowdsourced sensor estimates typically include
a precision value that quantifies the uncertainty by the precision of the user reported
for its observation. As such, crowdsourcing must permit solutions in which inference
takes such reported uncertainties into account in a crowdsourced dataset. In addition,
reviewing models from the fiends of probabilistic data fusion, we discussed a number
of methods that deal with the fusion of continuous estimates in the single-hypothesis
and the multiple-hypothesis setting (see Section 2.3.2). These are the CI method and
the CU method respectively. Whilst the latter was identified as the conservative fusion
benchmark because of its property of unifying the estimates under the most general out-
put, the former was considered as a valid basis for the design of one of our trust-based
fusion methods due to its property of reducing noise in Gaussian estimates. Moreover,
to address the requirement of identifying untrustworthy reports within a crowdsourced
dataset, we discussed a density-based outlier detection method and sensor fusion al-
gorithms for untrustworthy sensors (see Section 2.4.2). In particular, the local outlier
factor (LOF) and the Reece et al.’s algorithm (RM) were considered as suitable represen-
tatives of these two classes, respectively, and were included as benchmarks to evaluate
our approach.

Furthermore, we provided the key background of spatial regression with crowdsourced
data when presenting the Gaussian process (GP) model (see Section 2.5). In partic-
ular, we considered the class of heteroskedastic Gaussian processes (HGP) to handle
spatial data with constant noise variance. In fact, these models are suitable for learning
continuous functions from noisy observations as our problem requires. However, the
standard HGP regression model does not provide any support against estimates of vary-
ing trustworthiness as defined by crowdsourced estimates. To address this shortcoming,
we developed a new trust-based HGP model (TrustHGCP) for spatial regression that
considers different levels of trustworthiness over the observed spatial estimate.

Finally, we discussed the class of Bayesian non–parametric models for learning for spatial
point processes from crowdsourced data (see Section 2.6). Specifically, these models
are designed for learning point patterns by means of an intensity function that maps a
continuous space into a number of points that are expected to be observed at each region.
In particular, we described the theory of the Log Gaussian Cox Process (LGCP) that
applies a GP treatment of the intensity function of a spatial Cox point process. Similarly
to the limitation of the GP regression model, also the LGCP does not deal with the
untrustworthy estimates as it is necessary within a crowdsourcing domain. Therefore,
using our trust–based approach, we designed a new LGCP model that incorporates the
ability of modelling categories of points with different trustworthiness within a point
process learning model.



Chapter 7 Conclusions 138

7.1 Summary of Results

The results of the work presented in this thesis were detailed in four chapters. Specifi-
cally, Chapter 3 presented our trust-based model for fusing crowdsourced estimates for
stationary quantities, within the application of crowdsourced cell tower localisation. The
key feature of our model is to represent the user’s trustworthiness as a scaling param-
eter of the reported precisions in a way that untrustworthy estimates are turned into
uninformative contributions to the fusion process. Then, we developed an efficient algo-
rithm (MaxTrust) to simultaneously learn the true value of the observed item and the
trustworthiness of each user from the crowd reports. Using the OpenSignal–cell tower
dataset containing cell tower estimates provided by Android phones, we showed that
MaxTrust improves the accuracy by 21% compared to established approaches from data
fusion and sensor networks. Furthermore, we showed that it also achieves comparable
accuracy with 10% more untrustworthy users through experiments on synthetic data.
In fact, our uncertainty scaling trust model provides more flexibility, and in turn better
accuracy, compared to the evaluated threshold–based trust modelling approaches.

In Chapter 4, we improved MaxTrust in situations where the user’s trustworthiness
is correlated to observations of a set of items. Specifically, we designed a Bayesian
trust–based fusion model (BACE) that addresses the same problem as MaxTrust, i.e.,
aggregate crowdsourced estimates of stationary items, by introducing the following two
refinements. Firstly, the model uses trust parameters that are shared among observations
of different items. By so doing, it incorporates the ability to transfer the learned user’s
trustworthiness to inform inference over new items or items with only a few reports.
Secondly, the model accepts prior distributions over the trust parameters and the items’
true value that allows it to exploit existing knowledge over these random variables to
achieve better inference. We showed that BACE is more effective than MaxTrust, and
the a number of benchmarks, in an evaluation on crowdsourcing WiFi hotspots. In
particular, due to its efficient exploitation of correlations in users’ trust behaviours in
observing multiple items, it is able to improve accuracy by up to 45% on real data and
be more robust to untrustworthy crowds by 15% on synthetic data.

Furthermore, in Chapter 5, we addressed the problem of learning non–stationary quan-
tities such as continuous functions and environmental phenomena from crowdsourced
data. In particular, we detailed our trust-based heteroskedastic Gaussian process model
to perform regression over crowdsourced estimates. This model integrates the trust ap-
proach underpinning MaxTrust within the principled Bayesian inference framework of
heteroskedastic Gaussian process models. Then, by training the trust parameters on
the reports gathered from the crowd, the model is able to estimate the trustworthiness
of each user as well as the spatial function describing the phenomena observed by the
crowd. Experiments on synthetic data show that our method outperforms the non-trust
GP methods, improving accuracy by up to 34% and reducing uncertainty by up to 80%.
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Moreover, using real–world radiation data collected from the 2011 Fukushima nuclear
disaster provided by crowdsourced sensors, our method outperforms the benchmarks in
making more accurate predictions, by 13%, and with significantly lower uncertainty, by
89% of nuclear radiation levels.

Finally, in Chapter 5, we further extended our trust–based approach for modelling spa-
tial data. In particular, we tackled the problem of learning spatial patterns from crowd-
sourced point reports. Our solution was the TrustLGCP model that applies the trust
modelling approach to deal with categories of untrustworthy points reported from the
crowd in learning spatial intensity functions. This model is able to simultaneously learn
the spatial intensities of the reported points, as well as the trustworthiness of each point
type (i.e., category). In particular, our experimental validation within the scenario of
the Haiti earthquake showed that our model can efficiently learn the intensity map of
crowdsourced emergency reports as well as estimate the trustworthiness of each emer-
gency category. Furthermore, we showed that the TrustLGCP is 10% more accurate
than the standard LGCP in learning spatial intensities on synthetic data.

When taken together, these results make a significant contribution to computing re-
liable aggregations of data generated within crowdsourcing and participatory sensing
applications.

7.1.1 Impact of our Results

Apart from crowdsourcing, there are a number of application areas that can take ad-
vantage from the trust–based information fusion approach developed in this thesis. For
example, a central problem in recommendation systems is how to aggregate multiple
judgments that the users provide while rating a number of items (Stern et al., 2009).
Similarly, automated peer reviewing systems deal with inferring a true score of a sub-
mission (e.g., a conference paper or student’s coursework) based on the subjective con-
tinuous scores provided by the reviewers (Flach et al., 2010). All these systems, and
many others besides, face the problem of making decisions based on subjective inputs
provided by human–generated estimates, and therefore they are suitable applications
for our methods.

7.1.2 Limitations

Although we developed a number of methods for aggregating crowdsourced estimates
by learning the trustworthiness of the users, there are still some open issues for which
we do not provide a solution. In particular, we identify the following three limitations:
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• Uncertainty over Trustworthiness in the Spatial Models. Both the TrustGP
and the TrustLGCP assess the trustworthiness of the users and categories of re-
ports as a scalar value. In general, it might required to provide confidence intervals
around such estimated trust values. To do so, the method would require to con-
sider the uncertainty over the trust parameters but this would also require an extra
level of complexity, which is not currently present in our models.

• Learning without Gold Standards. Though our methods, we provided solu-
tions to make inference over the aggregated output by only looking at the crowd
reports, without ever observing the true value of the estimated output. In some
cases, it might be desirable for these methods to be able to to integrate gold stan-
dards in their learning process. This would allow them to reduce the uncertainty in
the data fusion process but it also requires extra mechanisms to adapt our current
models to semi–supervised learning settings.

• Batch Learning. All our methods are designed to train in batch over a set of
estimates that reported offline by the crowd. Although this fits the requirement of
our applications, other situations might require to train the methods online over
estimates that are reported sequentially. This use case is is not currently available
in our methods.

In addition, there are a number of ways in which our work could be extended, to bet-
ter support data collection and scalable inference in such applications. We examine a
number of possible promising directions for future research in the following section.

7.2 Future Work

As crowdsourcing continues to expand across many applications of Artificial Intelli-
gence (AI), trust–based fusion algorithms will need to accommodate increasingly larger
amounts of data and seek more efficient ways of data collection. Moreover, since the same
users could participate in different tasks proposed by various crowdsourcing projects, a
key question is to look at combining signals of user’s trustworthiness emerging from
various tasks. Therefore, we identify the following areas in which further research is
warranted to extend the scope of our work.

• Trust–Based Active Learning
An important extension of our trust–based fusion algorithms would be to incorpo-
rate the ability of reasoning about which user could provide the best contribution
to our learning system by providing a new estimate. In particular, this topic has
been extensively studied in the machine learning community in the area of Active
Learning (AL) problems. Specifically, the AL paradigm focuses identifying the
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next task that a learning system wants to be observed by a human subject. While
AL seems to be a natural fit to crowdsourcing, there is an important element which
is not considered. In crowdsourcing, instead of just selecting a particular item to
be observed, an AL algorithm could also choose the most trustworthy users that
is particularly appropriate to take such an observation. However, while this ad-
ditional flexibility seems to be good for getting informative estimates, there are
computational and practical challenges. In fact, the search of the best item–worker
pair becomes computationally unfeasible as it involves searching over the product
space of users and items. Furthermore, the traditional AL approaches based on
requesting observations by a single best worker might loose the advantage of par-
allelising crowdsourcing tasks. Therefore, methods to address the AL problem in
crowdsourcing would require solutions to both these challenges.

• Community–Based Trust Models
To deal with the increasing scale of crowdsourcing systems, community based trust
models (Falcone and Castelfranchi, 2008) could inspire ways to deal with the large
volume of data in trust–based fusion algorithms. Specifically, the key feature of
such community models is to reason about groups of workers that naturally form
within the crowd based on some common reporting behaviours. In this context, the
communities define types of users (e.g., accurate users, conservative users, biased
users, etc.) that approximate the structure of an arbitrarily large group of users.
Given these communities, probabilistic inference could benefit from hierarchically
learning community profiles and using them to reduce the number of users to
reason about, i.e., communities can be used to identify representative users within
a large crowd. However, an open question is how to design effective community
models that can be learned from large datasets of continuous estimates and meet
the requirements of our trust–based fusion approach.

• Multi–Task Crowdsourcing
As mentioned earlier, crowdsourcing is likely to move towards the reality of having
the same users who participate in many outsourced tasks. For example, each user
could take part in jobs such as classification, weather sensing, image tagging, cell–
tower mapping, etc. As a result, crowdsourcing platforms will be able to observe
cross–task user signals such as the average time spent on producing data, their
accuracies and other features. When taken together, these signals could reveal in-
formative patterns that would allow a system to transfer the user’s trustworthiness
from existing tasks to new ones. Thus, a key direction is to investigate extensions
to our current techniques to perform trust–based fusions of heterogeneous types
of data (i.e., discrete labels, continuous estimates, etc.) that are produced from
these tasks.



Appendix A

Approximate Continuous Rank
Probability Score for Sampled
Distributions

This appendix provides the details of our approximate computation of the continuous
rank probability score (CRPS) (Kohonen and Suomela, 2006) for univariate sampled
probability distributions that we used to evaluate the performance of all the trust-based
algorithms presented in this thesis.

In more detail, the CRPS is a rank probability score that compares a distribution over
µi to the point mass distribution centred on the true value µ∗. Its calculation is given by
the finite integral of the square difference between the cumulative distribution function
(c.d.f) of µi, Fi(µ) and the Heaviside function of µ∗i , Hi(µ) i.e. the single step-function
centered on µ∗i :

CRPS =
∫ +∞

−∞
(Fi(µ)−Hi(µ))2dµ

Using the definition of the Heaviside function, this integral divides into two terms:

CRPS =
∫ µ∗i

−∞
Fi(µ)2dµ+

∫ +∞

µ∗i

(1− Fi(µ))2dµ

Now, assume we are given N samples of Fi(µ). Let us sort the samples in ascending
order µ′1, . . . , µ′N and approximate F (µ) as constant within two adjacent samples. Then,
Fi(µ) can be written as:

Fi(µ) =


0 µ < x1

s/N xs ≤ µ < xs+1

1 µ ≥ xN
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Therefore the CRPS for the sampled F (µ) is given by the following sum:

CRPS =
s′−1∑
s=1

( s
N

)2
(µ′s+1 − µ′s)

+
N−1∑
s=s′

(
1− s

N

)2
(µ′s+1 − µ′s)

where s′ is the index of the greatest sample smaller than µ∗i .



Appendix B

The OpenSignal–Cell Tower
Dataset

This appendix describes the crowdsourced dataset of cell detections collected by the
OpenSignalMap project that was used in the experiment presented in Chapter 3. The
intent of this project is to map cell towers and signal coverage by collecting reports about
cell detections submitted by Android devices. In particular, we received a set of 68, 714
reports collected in Septemper 2011 which were located in the area of Southampton,
UK, bounding box: 50.85 N, 1.25 W and 50.97 N, 1.525 W (see Figure B.1). Each
report is described by the following fields:

• entity_id: Record identifier.

• inserted_at: Timestamp of the detection.

• device_type: Model of the device, e.g. HTC Desire, GT-I9000, Nexus S, etc.

• network_type: Type of cellular connection: EDGE, GPRS, HSPA, UMTS, Un-
known.

• network_name: Name of the network operator: Three, O2, Orange, T-Mobile,
Virgin, Vodafone, MCP Maritime Com, Unknown.

• network_id: A 5 digit identifier of the network operator combining the Mobile
Country Code (MCC) (first 3 digits) and the Mobile Network Code (MNC) (second
2 digits): 23410 (O2-UK), 23415 (Vodafone-UK), 23420 (Three), 23430 (T-Mobile),
23433 (Orange-UK), 90112 (Telenoir Maritime Communications), Unknown.

• roaming: Flag indicating whether the device is connected via roaming: 1=roam-
ing, -1=non-roaming.

• my_lat: Latitude (in degrees) of the device’s current location.
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Network operator Num. of reports (after filtering) Device type Num. of reports (after filtering)
Vodafone 31838 10308 HTC 3728 1455
Orange 10644 3712 Samsung 2903 1056
T-Mobile 10919 3925 Motorola 2480 612
O2 8492 2715 Orange MT 100 26
Three 4609 1794 LG 42 29
Virgin 1122 359 Sony Ericsson 2 1
MCP Maritine Com 1 1 Unknown 59486 20157
Unknown 1116 318

Network type Num. of reports (after filtering) Positioning Num. of reports (after filtering)
EDGE 2160 711 GPS 66165 22337
GPRS 33252 11725 WIFI 2576 1006
HSPA 26312 8847
UMTS 6691 1901
Unknown 325 159

Table B.1: The number of reports for each network operator, device types,
network types and location sources.

• my_lon: Longitude (in degrees) of the device’s current location.

• my_altitude: Altitude (in meters) at the device’s location.

• location_source: Flag indicating the positioning system used to discover the
device’s location: 0=GPS, 1=WIFI.

• location_inaccuracy: Precision (in meters) of the location fix.

• location_speed: Speed (in meters/seconds) of the device over ground.

• rssi: Received signal strength in “Arbitrary Strength Unit” (ASU) (dBm= 2×ASU
- 113).

• CID: Cell Identifier.

• LAC: Local Area Code.

• cell_lat: Latitude degrees of the mast location estimated by the OpenSignalMap
system (if available).

• cell_lon: Longitude degrees of of the mast location estimated by the OpenSignalMap
system (if available).

• app_version: Version of the OpenSignalMap-Android app used to generate the
report.

Specifically, the location inaccuracy had values ranging between 2 and 4930 meters and
the received signal strength indication (rssi) between 1 and 99 ASU. In addition, a
considerable number of reports were found to be duplicates and were removed. This
duplication was probably generated by the software feature available on the app that
enables the device to send reports periodically on behalf of the user, and is likely to
generate duplicates when the device is statically in one place. Thus, the dataset was
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Figure B.1: Screenshot showing the bounding box of the Southampton, UK area
and the location of the masts (based on the cell_lat and cell_lon fields) tagged
within the OpenSignalMaps dataset.

reduced by 66% after filtering, see Table B.1 which shows the statistics for before and
after removing duplicates. In particular, it shows that the device type was unknown
in 60% of the reports and that 53% of the detections came from Vodafone cells. In
addition, more than 96% of the reports were sent using 3G mobile connection (GPRS
+ HSPA + UMTS) and 67% of the devices used GPS for positioning.

Furthermore, the reports tagged a total of 2291 base stations whose locations are shown
in Figure B.1. Among these, we were able to reliably identify 157 masts as omni-
directional base stations through an on-site, visual inspection.1 In more detail, the two
topologies of cellular networks that are typically adopted for mobile telecommunications
based on directional and/or omni-directional radio masts are showed in Figure B.2. In
an omni-directional cellular network, the land area is divided into regular hexagonal cell.
A cell tower is placed in the centre of each cell with a set of antennas transmitting and
receiving at the assigned cell frequency range. Thus, the signal is radiated approximately
spherically (360 degrees angle) across the cell. In a directional cellular network, a cell
tower is placed at the corners of each cell and each tower has three sets of directional
antennas pointing in different directions with an opening angle of 120 degrees. In this
1In the experiment presented in Chapter 3, we considered only the omni-directional masts with more
than 5 reports and this discarded 28 base stations from this group.
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(a) (b)

Figure B.2: Illustration of the topology and picture of the mast for a directional
(a) and an omni-directional (b) cellular network.

case, a mobile device receives the signal from three different masts within the same cell
depending on the nearest corner where it is located. We discussed in Chapter 3 that
directional networks are much more difficult to localise from this dataset because the
reports do not provide the information about the direction in which the cell tower lies.2

2Sometimes, an approximate bearing of the cell tower position can be inferred by knowing that the
carriers conventionally number the three sectors of a cell in clockwise order and the sector number is
usually indicated by one digit of the CID (e.g. CID=jxxx where j is either 0=omni-directional, 1=south,
2=north-west or 3=north-east). However, we were not able to reliably identify such a digit for each
carrier in our data.



Appendix C

Xively Radiation Dataset

This appendix describes the radiation dataset provided by the Xively sensors located in
Japan. In total, the dataset comprises 446 feeds from sensors. The datapoints provided
by each sensor are formatted according to the following XML template:

<feeds end= "end of period timestamp " start =" start of period timestamp ">

<feed id= " Sensor Xively Identifier " >
<title > " Sensor name" </title >
<lat > " Sensor latitude " </lat >
<lon > " Sensor longitude " </lon >
<unit > "Unit of measurement " </unit >
<elevation > " Sensor altitude " </elevation >

<datapoints >
<value at= " timestamp " > " Value " </value >

</ datapoints >
</feed >

Specifically, the feeds can classified as follows:

• Bad Unit: The unit of measurement is invalid.

• Unreadable Format: The feed is reported in an XML that not readable for
Xively.

• Empty Dataset: The series of datapoints is empty.

• Bad Values: The datapoint value is invalid.

• Single Datapoint: The series of datapoints has only one value.

• Multiple Datapoints: The feeds that report more than one datapoint for their
set of measurements. This category of feeds is the one that has been used for
performing the experiment presented in Section 4.3.2.

The percentages of feeds for each of these categories found in this dataset is showed in
the pie chart in Figure C.1.
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Figure C.1: Pie chart of the Xively dataset

An example sample of seven feeds taken from the Xively dataset, with the category of
each feed indicated in the attached XML comments:

<feeds end ="2011 -08 -24 T17 :38:43 Z" start ="2011 -07 -26 T17 :38:43 Z">

<feed id ="29316" > <!-- Multiple Datapoints -->
<title > Geiger Counter in Hachioji , Tokyo , JPN </ title >
<lat >35.6660131471511 </ lat >
<lon >139.317798614502 </ lon >
<unit >uSv/h </ unit >
<elevation >4m </ elevation >
<datapoints >
<value at ="2011 -08 -24 T16 :14:32.528963 Z " >0.06666667 </ value >
<value at ="2011 -07 -26 T22 :40:36.575907 Z " >0.083333336 </ value >
<value at ="2011 -07 -27 T11 :37:32.348107 Z " >0.13333334 </ value >
<value at ="2011 -07 -27 T23 :14:05.721960 Z " >0.116666675 </ value >
<value at ="2011 -07 -28 T11 :59:15.094900 Z " >0.09166667 </ value >
<value at ="2011 -07 -28 T23 :19:07.424571 Z " >0.083333336 </ value >
<value at ="2011 -07 -29 T11 :41:06.914655 Z " >0.09166667 </ value >
<value at ="2011 -07 -29 T23 :12:59.255784 Z" >0.09166667 </ value >
<value at ="2011 -07 -30 T11 :59:39.987595 Z " >0.18333334 </ value >
<value at ="2011 -07 -30 T19 :10:39.382951 Z " >0.116666675 </ value >
<value at ="2011 -07 -31 T17 :53:47.445835 Z " >0.14166668 </ value >
<value at ="2011 -08 -01 T11 :59:34.912675 Z" >0.075 </ value >
<value at ="2011 -08 -01 T22 :59:57.363402 Z " >0.116666675 </ value >
<value at ="2011 -08 -02 T11 :59:23.359377 Z" >0.10000001 </ value >
<value at ="2011 -08 -02 T23 :14:51.511688 Z " >0.116666675 </ value >
<value at ="2011 -08 -03 T11 :59:34.050613 Z" >0.075 </ value >
<value at ="2011 -08 -03 T23 :59:44.540151 Z " >0.083333336 </ value >
<value at ="2011 -08 -04 T11 :37:58.142513 Z" >0.075 </ value >
<value at ="2011 -08 -04 T23 :59:12.339526 Z " >0.13333334 </ value >
<value at ="2011 -08 -05 T11 :59:04.226102 Z" >0.14166668 </ value >
<value at ="2011 -08 -05 T20 :14:11.982138 Z " >0.26666668 </ value >
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<value at ="2011 -08 -06 T11 :59:17.013373 Z" >0.13333334 </ value >
<value at ="2011 -08 -06 T23 :59:19.511640 Z " >0.14166668 </ value >
<value at ="2011 -08 -07 T08 :23:44.017187 Z " >0.116666675 </ value >
<value at ="2011 -08 -07 T23 :59:04.459241 Z" >0.10833334 </ value >
<value at ="2011 -08 -08 T07 :52:31.086786 Z" >0.15 </ value >
<value at ="2011 -08 -08 T23 :59:19.166662 Z " >0.10833334 </ value >
<value at ="2011 -08 -09 T11 :59:38.688544 Z" >0.125 </ value >
<value at ="2011 -08 -09 T20 :50:22.391484 Z" >0.10833334 </ value >
<value at ="2011 -08 -13 T11 :59:37.708707 Z " >0.10000001 </ value >
<value at ="2011 -08 -13 T19 :01:46.534556 Z " >0.09166667 </ value >
<value at ="2011 -08 -14 T11 :59:27.203382 Z " >0.13333334 </ value >
<value at ="2011 -08 -14 T23 :59:44.121526 Z" >0.09166667 </ value >
<value at ="2011 -08 -15 T11 :59:01.963549 Z " >0.116666675 </ value >
<value at ="2011 -08 -15 T23 :59:22.979722 Z " >0.19166668 </ value >
<value at ="2011 -08 -16 T11 :59:40.605287 Z " >0.14166668 </ value >
<value at ="2011 -08 -16 T18 :01:19.606337 Z " >0.058333337 </ value >
<value at ="2011 -08 -17 T08 :02:48.710350 Z " >0.116666675 </ value >
<value at ="2011 -08 -17 T23 :59:17.301783 Z " >0.13333334 </ value >
<value at ="2011 -08 -18 T11 :19:33.509494 Z " >0.09166667 </ value >
<value at ="2011 -08 -18 T21 :50:28.700705 Z " >0.083333336 </ value >
<value at ="2011 -08 -19 T11 :59:52.292633 Z " >0.10833334 </ value >
<value at ="2011 -08 -19 T21 :55:34.910898 Z " >0.09166667 </ value >
<value at ="2011 -08 -20 T11 :59:59.405274 Z" >0.10833334 </ value >
<value at ="2011 -08 -20 T20 :11:57.677557 Z " >0.083333336 </ value >
<value at ="2011 -08 -21 T03 :59:55.135269 Z " >0.083333336 </ value >
<value at ="2011 -08 -21 T23 :59:52.765817 Z" >0.09166667 </ value >
<value at ="2011 -08 -22 T10 :57:21.091489 Z" >0.125 </ value >
<value at ="2011 -08 -22 T23 :59:53.335037 Z " >0.083333336 </ value >
<value at ="2011 -08 -23 T11 :59:23.872506 Z" >0.13333334 </ value >
<value at ="2011 -08 -23 T16 :15:24.313347 Z" >0.075 </ value >
</ datapoints >

</feed >

<feed id ="25342" > <!-- Bad Unit -->
<title > radiation in Mitaka , Tokyo </ title >
<lat >35.7015333818623 </ lat >
<lon >139.559712409973 </ lon >
<unit >? Sv/h </ unit >

<datapoints >
<value at ="2011 -06 -26 T14 :36:47.427950 Z" >0.318 </ value >
</ datapoints >

</feed >

<feed id ="29324" > <!-- Single Datapoint -->
<title > Radiation @ Futomi </ title >
<lat >43.1882581168454 </ lat >
<lon >141.438689608967 </ lon >
<unit >uSv/h </ unit >
<elevation >0 </ elevation >

<datapoints >
<value at ="2011 -07 -16 T04 :47:37.376689 Z" >3.39 </ value >
</ datapoints >

</feed >

<feed id ="25885" > <!-- Empty Dataset -->
<title > Airborn radiation on 4F roof in Arakawa , Tokyo (uSv/h)</title >
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<lat >35.7305931286104 </ lat >
<lon >139.79763507843 </ lon >
<unit >uSv/h </ unit >
<elevation >12 </ elevation >

<datapoints >
</ datapoints >

</feed >

<feed id ="26485" > <!-- Multiple Datapoints -->
<title > Mejiro Radiation Meter </ title >
<lat >35.7203154126837 </ lat >
<lon >139.701633453369 </ lon >
<unit >uSv/h </ unit >
<elevation >33.89 </ elevation >

<datapoints >
<value at ="2011 -08 -24 T16 :38:34.356060 Z" >0.130 </ value >
<value at ="2011 -07 -26 T23 :59:12.132096 Z" >0.138 </ value >
</ datapoints >

</feed >

<feed id ="22524" > <!-- Bad Values -->
<title > Monitoring data at Fukushima Daiichi Nuclear Power Stations : MP -1 </ title >
<lat >37.441609604785 </ lat >
<lon >141.028575897217 </ lon >
<unit >uSv/h </ unit >

<datapoints >
<value at ="2011 -06 -12 T12 :00:00.000000 Z" >????????? </ value >
</ datapoints >

</feed >

<feed id ="25972" > <!-- Single Datapoint -->
<title > Geiger Counter Feeds from Fukushima ,JAPAN </ title >
<lat >37.5577104682266 </ lat >
<lon >139.85312461853 </ lon >
<unit >uSv/h </ unit >
<elevation >182 </ elevation >

<datapoints >
<value at ="2011 -08 -24 T16 :38:06.617218 Z" >0.217 </ value >
</ datapoints >

</feed >
</feeds >
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In this appendix we provide the abstracts of the publications written by M. Venanzi
during the PhD, three of them as the first author, which are not described as chapters
of this thesis.

M. Venanzi, J. Guiver, G. Kazai, P. Kohli, M. Shokouhi. Community-Based Bayesian
Aggregation Models for Crowdsourcing. In the 23rd International World Wide Web
Conference (WWW), 2014. Best Paper Runner–up. Microsoft, one of the partners of
the ORCHID project (www.orchid.ac.uk), has registered the algorithm presented in
this paper under a US patent. MS ref: 340522.01.

Abstract: This paper addresses the problem of extracting accurate labels from crowd-
sourced datasets, a key challenge in crowdsourcing. Prior work has focused on modelling
the reliability of individual workers, for instance, by way of confusion matrices, and using
these latent traits to estimate the true labels more accurately. However, this strategy
becomes ineffective when there are too few labels per worker to reliably estimate their
quality. To mitigate this issue, we propose a novel community-based Bayesian label
aggregation model, CommunityBCC, which assumes that crowd workers conform to a
few different types, where each type represents a group of workers with similar con-
fusion matrices. We assume that each worker belongs to a certain community, where
the workerÕs confusion matrix is similar to (a perturbation of) the community’s con-
fusion matrix. Our model can then learn a set of key latent features: (i) the confusion
matrix of each community, (ii) the community membership of each user, and (iii) the
aggregated label of each item. We compare the performance of our model against es-
tablished aggregation methods on a number of large-scale, real-world crowdsourcing
datasets. Our experimental results show that our CommunityBCC model consistently
outperforms state–of–the–art label aggregation methods, gaining, on average, 8% more
accuracy with the same amount of labels.
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L. Tran-Thanh, M. Venanzi, A. Rogers, N.R. Jennings (2013) Efficient Budget Allo-
cation with Accuracy Guarantees for Crowdsourcing Classification Tasks. In the 12th
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
2013, 901-908.

Abstract: In this paper we address the problem of budget allocation for redundantly
crowdsourcing a set of classification tasks where a key challenge is to find a tradeÐoff
between the total cost and the accuracy of estimation. We propose CrowdBudget, an
agentÐbased budget allocation algorithm, that efficiently divides a given budget among
different tasks in order to achieve low estimation error. In particular, we prove that
CrowdBudget can achieve at most max{0,K/2 − O(

√
B)} estimation error with high

probability, where K is the number of tasks and B is the budget size. This result
significantly outperforms the current best theoretical guarantee from Karger et al. In
addition, we demonstrate that our algorithm outperforms existing methods by up to 40%
in experiments based on real–world data from a prominent database of crowdsourced
classification responses.

S. Ramchurn, T. D. Huynh, M. Venanzi, B. Shi. Collabmap: Crowdsourcing Maps for
Emergency Planning. In the 5th Annual ACM Web Science Conference, 4, (2), 2013,
326-335.

Abstract: In this paper, we present a software tool to help emergency planners at Hamp-
shire County Council in the UK to create maps for high-fidelity crowd simulations that
require evacuation routes from buildings to roads. The main feature of the system is a
crowdsourcing mechanism that breaks down the problem of creating evacuation routes
into micro–tasks that a contributor to the platform can execute in less than a minute. As
part of the mechanism we developed a consensus–based trust mechanism that filters out
incorrect contributions and ensures that the individual tasks are complete and correct.
To drive people to contribute to the platform, we experimented with different incentive
mechanisms and applied these over different time scales, the aim being to evaluate what
incentives work with different types of crowds, including anonymous contributors from
Amazon Mechanical Turk. The results of the ’in the wild’ deployment of the system
show that the system is effective at engaging contributors to perform tasks correctly
and that users respond to incentives in different ways. More specifically, we show that
purely social motives are not good enough to attract a large number of contributors and
that contributors are averse to the uncertainty in winning rewards. When taken alto-
gether, our results suggest that a combination of incentives may be the best approach
to harnessing the maximum number of resources to get socially valuable tasks (such for
planning applications) performed on a large scale.

A. Rutherford, M. Cebrian, I. Rahwan, S. Dsouza, J. McInerney, V. Naroditskiy, M.
Venanzi, N. R. Jennings, J.R. deLara, E. Wahlstedt, S. U. Miller. Targeted Social
Mobilization in a Global Manhunt. PLoS ONE, 2013, 8(9): e74628.
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Abstract: Social mobilisation, the ability to mobilise large numbers of people via so-
cial networks to achieve highly distributed tasks, has received significant attention in
recent times. This growing capability, facilitated by modern communication technology
is highly relevant to endeavours which require the search for individuals that possess
rare information or skills, such as finding medical doctors during disasters, or searching
for missing people. An open question remains, as to whether in time-critical situations,
people are able to recruit in a targeted manner, or whether they resort to so-called blind
search, recruiting as many acquaintances as possible via broadcast communication. To
explore this question, we examine data from our recent success in the U.S. State De-
partment’s Tag Challenge, which required locating and photographing 5 target persons
in 5 different cities in the United States and Europe, in under 12 hours, based only on
a single mug-shot. We find that people are able to consistently route information in a
targeted fashion even under increasing time pressure. We derive an analytical model for
social–media fueled global mobilisation and use it to quantify the extent to which people
were targeting their peers during recruitment. Our model estimates that approximately
1 in 3 messages were of targeted fashion during the most time–sensitive period of the
challenge. This is a novel observation at such short temporal scales, and calls for op-
portunities for devising viral incentive schemes that provide distance or time-sensitive
rewards to approach the target geography more rapidly. This observation of “12 hours
of separation” between individuals has applications in multiple areas from emergency
preparedness, to political mobilisation.

H. T. Dong, M. Ebden, M. Venanzi, S. Ramchurn, S. Roberts, L. Moreau. Interpretation
of Crowdsourced Activities Using Provenance Network Analysis. In the 1st International
Conference on Human Computation and Crowdsourcing (HCOMP), 2013, 78-85.

Abstract: Understanding the dynamics of a crowdsourcing application and controlling
the quality of the data it generates is challenging, partly due to the lack of tools to
do so. Provenance is a domain-independent means to represent what happened in an
application, which can help verify data and infer their quality. It can also reveal the
processes that led to a data item and the interactions of contributors with it. Provenance
patterns can manifest real-world phenomena such as a significant interest in a piece of
content, providing an indication of its quality, or even issues such as undesirable inter-
actions within a group of contributors. This paper presents an application-independent
methodology for analysing provenance graphs, constructed from provenance records, to
learn about such patterns and to use them for assessing some key properties of crowd-
sourced data, such as their quality, in an automated manner. Validating this method on
the provenance records of CollabMap, an online crowdsourcing mapping application, we
demonstrated an accuracy level of over 95% for the trust classification of data generated
by the crowd therein.

V. Capraro, M. Venanzi, M. Polukarov, N.R. Jennings. Cooperative Equilibria in Iter-
ated Social Dilemmas. In, 6th International Symposium on Algorithmic Game Theory
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(SAGT), 2013, 146-158.

Abstract: The implausibility of the extreme rationality assumptions of Nash equilibrium
has been attested by numerous experimental studies with human players. In particu-
lar, the fundamental social dilemmas such as the TravelerÕs dilemma, the PrisonerÕs
dilemma, and the Public Goods game demonstrate high rates of deviation from the
unique Nash equilibrium, dependent on the game parameters or the environment in
which the game is played. These results inspired several attempts to develop suitable
solution concepts to more accurately explain human behaviour. In this line, the re-
cently proposed notion of cooperative equilibrium based on the idea that players have
a natural attitude to cooperation, has shown promising results for single-shot games.
In this paper, we extend this approach to iterated settings. Specifically, we define the
Iterated Cooperative Equilibrium (ICE) and show it makes statistically precise predic-
tions of population average behaviour in the aforementioned domains. Importantly, the
definition of ICE does not involve any free parameters, and so it is fully predictive.

M. Venanzi, M. Piunti, R. Falcone, C. Castelfranchi. Facing Openness with Socio Cog-
nitive Trust and Categories. In the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), 2011, 400-405.

Abstract: Typical solutions for agents assessing trust relies on the circulation of informa-
tion on the individual level, i.e. reputational images, subjective experiences, statistical
analysis, etc. This work presents an alternative approach, inspired to the cognitive
heuristics enabling humans to reason at a categorial level. The approach is envisaged as
a crucial ability for agents in order to: (1) estimate trustworthiness of unknown trustees
based on an ascribed membership to categories; (2) learn a series of emergent rela-
tions between trustees observable properties and their effective abilities to fulfil tasks
in situated conditions. On such a basis, categorization is provided to recognize signs
(Manifesta) through which hidden capabilities (Kripta) can be inferred. Learning is
provided to refine reasoning attitudes needed to ascribe tasks to categories. A series
of architectures combining categorization abilities, individual experiences and context
awareness are evaluated and compared in simulated experiments.

R. Falcone, M. Piunti, M. Venanzi, C. Castelfranchi, From manifesta to krypta: The
relevance of categories for trusting others. ACM Transactions on Intelligent Systems
and Technology (TIST), special issue on Trust in Multi-Agent Systems, 2011, 1-24.

Abstract: In this paper we consider the special abilities needed by agents for assessing
trust based on inference and reasoning. We analyze the case in which it is possible
to infer trust towards unknown counterparts by reasoning on abstract classes or cat-
egories of agents shaped in a concrete application domain. We present a scenario of
interacting agents providing a computational model implementing different strategies to
assess trust. Assuming a medical domain, categories, including both competencies and
dispositions of possible trustees, are exploited to infer trust towards possibly unknown
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counterparts. The proposed approach for the cognitive assessment of trust relies on
agents’ abilities to analyze heterogeneous information sources along different dimensions.
Trust is inferred based on specific observable properties (Manifesta), namely explicitly
readable signals indicating internal features (Krypta) regulating agents’ behaviour and
effectiveness on specific tasks. Simulative experiments evaluate the performance of trust-
ing agents adopting different strategies to delegate tasks to possibly unknown trustees,
while experimental results show the relevance of this kind of cognitive ability in the case
of open Multi Agent Systems.
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