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Abstract—A design methodology based on the Minimum Bit5
Error Ratio (MBER) framework is proposed for a non-regenera-6
tive Multiple-Input Multiple-Output (MIMO) relay-aided system7
to determine various linear parameters. We consider both the8
Relay-Destination (RD) as well as the Source-Relay-Destination9
(SRD) link design based on this MBER framework, including the10
precoder, the Amplify-and-Forward (AF) matrix and the equal-11
izer matrix of our system. It has been shown in the previous12
literature that MBER based communication systems are capable13
of reducing the Bit-Error-Ratio (BER) compared to their Linear14
Minimum Mean Square Error (LMMSE) based counterparts. We15
design a novel relay-aided system using various signal constella-16
tions, ranging from QPSK to the general M -QAM and M -PSK17
constellations. Finally, we propose its sub-optimal versions for18
reducing the computational complexity imposed. Our simulation19
results demonstrate that the proposed scheme indeed achieves a20
significant BER reduction over the existing LMMSE scheme.21

Index Terms—Minimum bit error ratio (MBER), linear mini-22
mum mean square error (LMMSE), Relay, multiple-input multi-23
ple-output (MIMO), singular-value-decomposition (SVD).24

I. INTRODUCTION25

R ELAY-BASED communication systems have enjoyed26

considerable research attention due to their ability to27

provide a substantial spatial diversity gain with the aid of28

distributed nodes, hence potentially extending the coverage29

area and/or for reducing the transmit power [1], [2]. A pair30

of key protocols has been conceived for relay-aided systems,31

namely the regenerative [3], [4] and the non-regenerative [5],32

[6] protocols. In the regenerative scenario, the relay node (RN)33

decodes the signal and then forwards it after amplification to34

the destination node (DN) (also known as a decode-forward35

relay), while maintaining the same total relay- plus source-36

power as the original non-relaying scheme. By contrast, in the37

case of non-regenerative relaying, the RN only amplifies the38

signal received from the source node (SN) and then forwards it39
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to the DNwithout any decoding (also known as an amplify-and- 40
forward relay), again, without increasing the power of the orig- 41
inal direct SN-DN pair. Non-regenerative relaying is invoked 42
for applications, where both low latency and low complexity 43
are required. 44

Multiple-input multiple-output (MIMO) techniques may be 45
beneficially combined with relaying for further increasing both 46
the attainable spectral efficiency and the signal reliability. The 47
non-regenerative relay involves the design of both the Amplify- 48
and-Forward (AF) matrix at the RN and the linear equalizer 49
design at the DN, or any precoder matrix at the SN, subject to 50
the above total SN and (or) RN power constraints. Various Cost 51
Functions (CF) have been proposed for optimizing these matri- 52
ces, such as the Linear MinimumMean Square Error (LMMSE) 53
[7]–[10] and the Maximum Capacity (MC) [11], [12] CFs, etc. 54
However, the direct minimization of the Bit-Error-Ratio (BER) 55
at the DN has not as yet been fully explored in the context of 56
designing the various parameters of non-regenerative MIMO- 57
aided relaying, although a BER based RN design was proposed 58
In reply to: [13] for a single-antenna scenario. Hence, the work 59
in [13] does not deal with the design of precoder, AF and 60
linear equalizers as matrices due to the consideration of single 61
antenna at SN, RN and DN. Though, a Minimum Bit Error 62
Ratio (MBER) CF based MIMO-aided relay design [14] was 63
provided for a cooperative, non-regenerative relay employing 64
distributed space time coding, it was based on the classic BPSK 65

signal sets. This work assumes the power allocation matrix 66
to be diagonal and no RN power constraint was used in the 67
optimization problem. In this case of [14], the relay power 68
was normalized after determining the diagonal AF and precoder 69
matrices with unconstrained optimization problem, which leads 70
to a sub-optimal solution. 71

The benefit of MBER-based linear system design has been 72
well studied in literature. To elaborate a little further, the MBER 73

CF directly minimizes the BER [15]. Previous literature has 74
shown that a sophisticated system design based on this criterion 75
is capable of outperforming its LMMSE counterpart in terms of 76
the attainable BER. Owing to its benefits, it has been used for 77
the design of a linear equalizer [15], for the precoder matrix 78
[16] and for various other MIMO, SDMA as well as OFDM 79

systems conceived for achieving the best BER performance 80
[17]–[19] at the of higher computational complexity. MBER 81

based linear receiver design has also been shown to be very 82
effective in terms of BER performance in the rank-deficient 83
case, where conventional LMMSE-based receiver fails to per- 84
form significantly [20]. 85
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Scope and contribution: Against this background based on86

the MBER CF, we design of a new non-regenerative MIMO-87

aided relaying system, which comprises a SN, a RN and a DN.88

We assume a half duplex system at the RN, where one time slot89

is used for receiving from the SN and another for forwarding90

it to the DN. No SN-RN transmission takes place during the91

RN-DN transmission. In this work, we consider the joint design92

of the SN’s transmit precoder, the RN’s AF matrix and the93

DN’s linear equalizer matrix based on the MBER CF subject94

to the above total RN-SN power constraints. The performance95

of the proposed scheme is evaluated and compared to that of the96

existing LMMSE based method. The main contributions of this97

treatise are as follows:98

1) A CF is conceived for the design of the RN-DN and the99

SN-RN-DN links of a non-regenerative relaying system100

based on the MBER CF subject to the SN and (or) RN101

power constraints. The MBER CF is formulated for vari-102

ous data constellations, ranging from BPSK to the general103

M -QAM and M -PSK constellations. Naturally, the spe-104

cific choice of the constellation fundamentally influences105

the MBER CF [15], [17]–[19]. We jointly determine106

the precoder, AF and equalizer matrices based on this107

MBERCF under a source and relay power constraint. The108

existing MIMOMBER solutions are designed for uncon-109

strained scenarios and hence this constrained MBER op-110

timization poses specific challenges. Therefore, we have111

conceived both the heuristic constrained binary Genetic112

Algorithm (GA) [21] and the Projected Steepest Descent113

(PSD) [22] algorithm for determining these parameters.114

2) A suboptimal method is also proposed for reduc-115

ing the number of variables using the Singular-Value-116

Decomposition (SVD) approach, which allows the opti-117

mization problem to be decomposed into multiple parallel118

optimization problems. The key contribution here is that119

we propose to split the complete constrained optimization120

problem into unconstrained parallel optimization prob-121

lems except for one of the cases.122

3) The Cost Function (CF) ofM -PSK constellation has been123

approximated for the sake of conceiving a more tractable124

form for the MIMO-aided relaying system considered.125

This approximation can also be used for classic MIMO126

scenarios.127

4) An impediment of the MBER CF is however its high128

computational complexity compared to its LMMSE129

counterpart [15]. To mitigate this, we have conceived130

a low-complexity data detection scheme for the MBER131

method with the aid of the phase rotation of the con-132

stellation in the context of rotationally invariant QPSK133

and M -PSK constellations. This scheme can be equally134

applicable to any other MIMO system design based on135

the MBER criterion.136

5) An approximate complexity analysis is performed for the137

MBER scheme under various constrained optimization138

methods such as the GA and PSD. This step-by-step139

analysis may be readily applied to other MBER solutions.140

Notation: Bold upper and lower case letters denote matrices141

and vectors, respectively. The superscripts (·)T and (·)H denote142

Fig. 1. Single relay system with multiple input-output antennas at source,
relay, and destination.

the transpose and the conjugate transpose of a matrix, respec- 143
tively. E[·] denotes the expectation, while IN denotes a (N × 144

N)-element identity matrix. Tr[·] represents the trace of a 145
matrix. A diagonal matrix is denoted by diag{a1, a2, . . . , aN}, 146
where an denotes the nth diagonal element. vec(A) is the vec- 147
torization of the matrixA with columns stacked one-by-one. 148

II. SYSTEM MODEL 149

We consider a communication system consisting of a SN, a 150
RN and a DN having Ns, Nr, and Nd antennas, respectively, 151
as shown in Fig. 1. It is assumed that there is no Line-Of- 152
Sight (LOS) component between the SN and the DN. Both 153
the SN-RN and the RN-DN channel matrices are assumed 154
to be those of flat-fading channels, which are denoted as 155
Hsr ∈ C

Nr×Ns andHrd ∈ C
Nd×Nr , respectively. The symbol 156

vector transmitted from the SN before precoding is denoted 157
as x ∈ C

Nx×1 with Nx being the length of the input vector. 158
We assume AS ∈ C

NS×Nx to be the precoding matrix at the 159
SN. The average transmitted power is constrained to Pt = 160

E[sHs] with s
Δ
= ASx, which is assumed to be the same for 161

all symbols at the SN. Hence, we have the transmit power con- 162

straint as Pt
Δ
= E‖ASx‖2 = σ2

xTr(ASA
H
S ) and the transmit 163

data covariance matrix is RS
Δ
= E(ssH) = (Pt/Nx)(ASA

H
S ), 164

where σ2
x = (Pt/Nx) is the signal power of each data xi. The 165

noise vectors at the RN and the DN are nr ∈ C
Nr×1 and 166

nd ∈ C
Nd×1, respectively, which are assumed to be zero mean, 167

circularly symmetric complex i.i.d Gaussian vectors having 168
the covariance matrices of σ2

rINr
and σ2

dINd
, respectively. We 169

consider a classic half duplex system. Hence, in the first time 170
slot, the SN transmits a source vector s and the vector yr ∈ 171

C
Nr×1, received at the RN is given by, 172

yr = Hsrs+ nr. (1)

During the next time slot, the relay would multiply the 173
received vector yr with the AF matrix AF ∈ C

Nr×Nr and 174

then forwards it to the DN. Let us assume that yF
Δ
= AFyr = 175

AF (Hsrs+ nr). We impose the RN transmit power restric- 176
tion of E[yH

F yF ] ≤ Pr, where Pr is the RN’s transmit power. 177
Assuming that the SN’s transmitted signal and the noise are 178
independent, the RN’s power can be calculated as, 179

E
[
yH
f yf

]
=Tr

{
E
(
AF(Hsrs+ nr)(Hsrs+ nr)

HAH
F

)}
=Tr

{
AF

(
σ2
xHsrASA

H
S HH

sr + σ2
rINr

)
AH

F

}
≤Pr, (2)
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TABLE I
REQUIREMENT OF CSI AT VARIOUS NODES FOR
MBER CRITERION BASED RELAY DESIGN

where E{xxH} = σ2
xINx

. Now, the signal received at the DN,180

yd ∈ C
Nd×1 is obtained as,181

yd =Hrdyf + nd

=HrdAF (Hsrs+ nr) + nd

= {HrdAFHsrAS}x+ {HrdAFnr + nd}
Δ
=Hx+ n, (3)

where H
Δ
= HrdAFHsrAS and n

Δ
= HrdAFnr + nd. The182

new effective noise vector n is a colored zero-mean Gaus-183

sian vector with the distribution of CN(0,Cn), where Cn ∈184

C
Nd×Nd is the new noise covariance matrix, which may be185

expressed as,186

Cn =E[nnH ]

=σ2
dINd

+ σ2
rHrdAFA

H
F HH

rd. (4)

At the DN, we employ a linear equalizer for detecting the187

transmitted symbol x. We assume that the equalizer matrix at188

the DN is Wd ∈ C
Nx×Nd , hence the estimated value of x is189

x̂ = WH
d yd.190

Note: The RN determines the AS , AF and Wd matrices191

jointly. Thus, we assume that the RN has the complete knowl-192

edge ofHsr andHrd, while the DN knows onlyHrd and feeds193

it back to the RN through a reliable communication channel.194

The SN has to know the matrixHsr only for the case of the sub-195

optimal SN-RN-DN (SRD) relay design to be described later.196

We refer “sub-optimal”, when Singular-Value-Decomposition197

(SVD) based structure is assumed for AF and source precoder198

matrices. In this case, only the singular values of these matrices199

need to be determined. By contrast, “optimal” refers to the case,200

where full complex AF and source precoder matrices need to be201

determined. Thus, for “optimal” case, SN need not to know the202

Hsr as the whole solution of the precoder will be sent back to203

SN by RN. For the sub-optimal case, the SN needs to recon-204

struct the precoder matrix from the SVD component of theHsr205

matrix. Table I shows the parameter knowledge requirements206

at different nodes, which are consistent with [9], except for207

our proposed optimal SN-RN-DN link design. We first develop208

the RN-DN link and then extend it to the SN-RN-DN link.209

For the RN-DN system, only the matrices AF and Wd have210

to be determined subject to the above RN power constraints.211

By contrast, for the SN-RN-DN system, the matrices AS , AF212

and Wd are determined subject to both the SN and the RN213

power constraints.214

III. MBER BASED RELAY-DESTINATION DESIGN 215

We first consider the RN-DN link design, which involves 216
the design of both the AF matrix AF and of the equalizer 217
matrix Wd. Various existing CFs, such as the LMMSE [7], 218
the Maximum Capacity (MC) [11] have been considered to 219
design bothAF andWd. In this treatise, we propose a solution 220
based on the MBER CF for jointly determining these matrices. 221
For the RN-DN link, the precoder matrix AS is fixed to INs

222

along with Ns = Nx. The total transmitted power is fixed to 223
Pt = σ2

xNs. The signals received at the RN and the DN are 224
yr = Hsrx+ nr and yd = HrdAFHsrx+HrdAFnr + nd, 225
respectively. The RN’s power becomes Tr{AF (σ

2
xHsrH

H
sr + 226

σ2
rINr

)AH
F }. In the current context, the MBER CF directly 227

minimizes the BER of the system at the DN. We first consider 228
the CF based on the BPSK constellation and then we extend it 229
to theM -QAM andM -PSK constellations. 230

Note: We will be formulating the cost function (CF) as the 231
symbol error ratio (SER). With a slight inaccuracy of terminol- 232
ogy, we refer to the MBER as that of minimizing the SER in the 233
subsequent sections. It is to be noted that minimizing SER will 234
also lead to minimization of BER as BER ≈ SER/ log2(M) 235
for most of the constellations [23]. 236

A. Cost Function 237

Let us assume that Pe,i denotes the SER, when detecting xi 238

(the ith component of x) at the DN. If every xi is detected inde- 239
pendently, the average probability of a symbol error associated 240
with detecting the complete vector x is given by, 241

Pe =
1

Ns

Ns∑
i=1

Pe,i. (5)

We constrain the RN’s transmission power to Pr and formulate 242
Pe,i associated with various constellations. Furthermore, we 243
would simplify the expression of Pe,i using various sub-optimal 244
approaches. The optimization problem is stated as follows: 245

Amber
F ,Wmber

d = arg
AF ,Wd

min Pe(AF ,Wd)

s.t T r
{
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

} ≤ Pr. (6)

Note: Equation (6) describes a constrained optimization 246
problem, where the constraint is with respect to the RN’s 247
transmitter power. Here, all Pe,i for i = 1, 2 . . . , Ns are opti- 248
mized together to arrive at the optimized AF and Wd matri- 249
ces. Explicitly, Equation (6) is simultaneously optimized over 250
(N2

r +Ns ×Nd) number of complex-valued variables. This is 251
because the AF matrix has N2

r number of complex entries, 252
while the Wd matrix has (Ns ×Nd) complex entries. There- 253
fore, the related optimization problem has a high computational 254
complexity. Hence, we now propose a suboptimal technique for 255
reducing the number of variables to be optimized. 256

1) Sub-Optimal Approaches for Reducing Both the Number 257
of Variables and the Complexity: Let us first decompose Hsr 258

and Hrd using the Singular Value Decomposition (SVD) as 259
Hsr = U1ΣsrV

H
1 andHrd = U2ΣrdV

H
2 respectively, where 260

U1∈C
Nr×Nr ,V1∈C

Ns×Ns ,U2∈C
Nd×Nd ,V2∈C

Nr×Nr are 261
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unitary matrices, whereas Σsr∈R
Nr×NS and Σrd∈R

Nd×Nr262

are matrices having singular values of σsr,i for i = 1, 2, . . . ,263

min(Nr, Ns) and σrd,i for i=1, 2, . . . ,min(Nd, Nr) in a de-264

scending order on the main diagonal, respectively. We also265

assume thatwi is the ith column ofWd for i=0, 1, . . . , Nd−1.266

We now propose a pair of computational complexity reduc-267

tion techniques.268

1) We use the SVD of the matrixAF , which has been shown269

to be optimal in the Mean Square Error (MSE) sense [7].270

However, this decomposition may not be optimal in the271

MBER sense. The assumed structure ofAF is defined as,272

AF
Δ
= V2ΣFU

H
1 (7)

where the unitary matricesV2 andU1 have been defined273

earlier. Furthermore, ΣF ∈ R
Nr×1 is the singular value274

matrix of AF , which has the singular values of σf,i275

for i = 1, 2, . . . , Nr. This reduces the N2
r number of276

complex variables to just Nr real variables.277

2) We propose to optimize each Pe,i in parallel. This re-278

duces the optimization complexity for each index i. We279

propose furthermore that for the kth index i = k, Pe,k is280

optimized with respect to bothΣF andwk. The obtained281

ΣF is then used for the rest of the Pe,i values for i =282

1, 2, 3, . . . , k − 1, k + 1, . . . , Ns as a given parameter. It283

is noted that the RN’s power constraint is not a function284

of any of the equalizers for i = 1, 2, 3, . . . , k − 1, k +285

1, . . . , Ns, hence the RN’s power constraint is not con-286

sidered thereafter. As a benefit, a valuable computational287

complexity reduction is achieved, since we only have to288

deal with (Nr +Nd) number of complex variables for289

i = k and then only with Nd complex variables for rest290

of i values without any RN power constraint. Further-291

more, for i = 1, 2, 3, . . . , k − 1, k + 1, . . . , Ns onward,292

the computation of wi can be performed in parallel,293

which facilitates the design of a larger chip capable of294

operating at a higher bit-rate, regardless of the specific295

choice of optimization method.296

By exploiting the SVD structure based assumption concern-297

ingAF ,H can be reduced to298

H =HrdAFHsr

=U2ΣrdV2HV2ΣFU1HU1ΣsrV1H

=U2ΣrdΣFΣsrV1H

Δ
=U2ΣVH

1 , (8)

where Σ
Δ
= ΣrdΣFΣsr. Let us now compute the RN’s power299

under the assumed structure ofAF as follows300

E
[
yH
f yf

]
=Tr

{
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

}
=Tr

{
V2ΣF

(
σ2
xΣsrΣ

H
sr + σ2

rINr

)
ΣH

F VH
2

}
=Tr

{
ΣF

(
σ2
xΣsrΣ

H
sr + σ2

rINr

)
ΣH

F

}
=

Nr∑
i=1

σ2
f,i

(
σ2
xσ

2
sr,i + σ2

r

) ≤ Pr. (9)

Explicitly, the RN’s power constraint becomes less complex, 301
since it does not involve any complex-valued matrix operations. 302
In a similar way, we now re-calculate the covariance matrixCn 303

of the composite noise, as perceived at the DN. Let us assume 304

thatA
Δ
= HrdAFA

H
F Hrd. Thus, we calculateA as follows 305

A =HrdAFA
H
F Hrd

=U2ΣrdV
H
2 V2ΣFΣ

H
F VH

2 V2Σ
H
rdU

H
2

=U2ΣrdΣFΣ
H
F ΣH

rdU
H
2

Δ
=U2ΣAU

H
2 , (10)

whereΣA
Δ
= ΣrdΣFΣ

H
F ΣH

rd. Upon substituting Equation (10) 306
into Equation (4), we arrive at Cn = σ2

dINd
+ σ2

rU2ΣAU
H
2 . 307

Our new optimization problem is then redefined as follows 308

For i = k :

Σmber
F ,wmber

k = arg
ΣF ,wk

min Pe,k(ΣF ,wk)

s.t

Nr∑
i=1

σ2
f,i

(
σ2
xσ

2
sr,i + σ2

r

) ≤ Pr. (11)

For i = 1, 2, 3, . . . , k− 1, k + 1, . . . ,N_s :

wmber
i = arg

wi

min Pe,i(Σ
mber
F ,wi). (12)

2) MBER CF Associated With the BPSK Constellation: We 309
first formulate the MBER CF for the BPSK constellation for the 310
sake of conceptual simplicity and then extend it to theM -QAM 311

and M -PSK constellations. Let us assume that wi is the ith 312
column of the DN’s equalizer matrixWd. If x̂i is the estimate 313
of xi for the BPSK constellation, we arrive at the expression of 314
PBPSK
e,i as follows [15]: 315

PBPSK
e,i =Pr {xi�{x̂i} < 0}

=Pr

{�{xi(wi)
HHx+ xi(wi)

Hn} < 0
}

=Ex

[
Pr

{�{xi(wi)
HHx+ xi(wi)

Hn} < 0
} |x]

=Ex

⎡
⎣Q

⎛
⎝� [

(wi)
HHxxi

]
√

1
2 (wi)HCnwi

⎞
⎠
⎤
⎦

=
1

L

L∑
j=1

Q

⎛
⎝� [

(wi)
HHxjxi

]
√

1
2 (wi)HCnwi

⎞
⎠ , (13)

where L = 2Ns represents the total number of unique realiza- 316
tions of x, while xj is the jth such realization of x. 317

3) The MBER CF Associated With the M -QAM Con- 318
stellation: For the M -QAM constellation, we assume that 319
the distance between any two adjacent constellation points 320
along either the real or the imaginary axis is 2a for a > 0. 321
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TheM -QAM constellation can thus be interpreted as a pair of322

PAM sequences of length
√
M along the real and imaginary323

axes. Thus, the SER of theM -QAM constellation is derived as,324

PQAM
e,i = 1− PR

c,i · P I
c,i (14)

where PR
c,i, P

I
c,i are the probability of correct decision for the325

QAM signal along the real and imaginary axes, respectively.326

For computational simplicity, we assume that the decision327

region of each point along either the real or imaginary axis328

is bounded by the length 2a, though the terminal points have329

larger range for decision region. This way, we only make each330

decision region uniform and restrictive to an extent. Let us331

now define L1 = M ((Ns−1)/2). Now, PR
c,i, P

I
c,i are derived in332

Equations (15) and (16), respectively (see equation at bottom333

of page).334

4) The MBER CF Associated With the M -PSK Constella-335

tion: For the M -PSK signal constellation set, each point is336

assumed to be on a unit circle and represented as ej(2πm/M) for337

m = 0, 1, . . . ,M − 1. Note that the real and imaginary compo-338

nents of the DN’s equalizer output noise, wH
i n, are correlated339

Gaussian random variables. For computational simplicity, we340

invoke an approximation and we whiten the noise by assuming341

AF to have the proposed SVD form of Equation (7). We342

commence by using Cn from Equation (4) as,343

Cn = ΣrdΣFΣ
T
FΣ

T
rd + σ2

dINd
. (17)

Thus, the ith diagonal element of Cn is [Cn]ii = σ2
d +344

σ2
rd,iσ

2
f,i. The noise whitening matrix is defined as Cs

Δ
=345

C
−(1/2)
n with [Cs]ii = (1/

√
σ2
d + σ2

rd,iσ
2
f,i). Therefore, the346

modified output vector received at the DN is defined as,347

ys =Csyd

=CsHx+ ns

=Hsx+ ns, (18)

with ns ∈ C
Ns×1 being the zero-mean i.i.d Gaussian random 348

vector with each component having a unit variance. Let us 349

assume that μR
i

Δ
= �{wH

i Hsx} and μI
i

Δ
= �{wH

i Hsx}, where 350
wi is the ith equalizer as defined earlier. Let furthermore r1 351
and r2 be the real and imaginary components of the equalizer 352
output. Their joint probability is calculated as [23], 353

pr1,r2,i =
1

2πσ2
e−{(r1−μR)2+(r2−μI)2}/2σ2

(19)

where σ2 = (1/2)wH
i wi. Let us now define V

Δ
=

√
r21 + r22 354

and the angle θ
Δ
= tan−1((r2/r1)). Thus, the probability of θ 355

for the ith symbol is obtained as [23] 356

pθ,i =
1

2πσ2
e−(μ

R
i sin(θ)−μI

i cos(θ))
2
/2σ2

×
∞∫
0

V e−(V −μI
i sin(θ)−μR

i cos(θ))
2
/2σ2

dV. (20)

At the higher SNR values, an approximation has been proposed 357
for Equation (20) in [23] as follows, 358

pθ,i ≈ 1√
2πσ2

(
μI
i sin(θ) + μR

i cos(θ)
)

×e−(μ
R
i sin(θ)−μI

i cos(θ))
2
/2σ2

, (21)

with |θ| ≤ π/2 and |θ| << 1. Equation (21) is valid form = 0. 359
This suggests that any constellation point at the ith position of 360
x can be rotated to the one corresponding tom = 0. Hence, we 361
may conceive a scheme by exploiting the circular constellation 362
ofM -PSK, where the SER has to be found for the constellation 363
point corresponding tom = 0. Thus,wi is determined by min- 364
imizing the probability of this particular symbol error only. We 365
then create M rotated versions of yd as ym

d = e−mπ/MINd
yd 366

for m = 0, 1, . . . ,M − 1. The estimated constellation point 367
(wH

i ym
d ) is then the one corresponding to any of theM number 368

of ym
d variables giving the minimum absolute angle. 369

PR
c,i =

1

L1

L1∑
j=1

√
M−1∑

m=−(
√
M−1),m odd

⎡
⎣Q

⎛
⎝ma− a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠

−Q

⎛
⎝ma+ a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠
⎤
⎦ (15)

P I
c,i =

1

L1

L1∑
j=1

√
M−1∑

m=−(
√
M−1),m odd

⎡
⎣Q

⎛
⎝ma− a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠

−Q

⎛
⎝ma+ a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠
⎤
⎦ (16)
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Note: This technique imposes a low computational complex-370

ity for the following reasons.371

1) Since, we consider the SER only for m = 0, the number372

of computational loops required for calculating the SER373

will be reduced toMNs−1 fromMNs per iteration.374

2) Since, the SER of each constellation point requires a375

unique representation in terms of the Gaussian error376

functionQ(·), the complexity of calculating all of them is377

high. However, for our low-complexity solution, we only378

have to calculate the SER for a single constellation point379

corresponding tom = 0.380

The SER of the ith symbol of x is then formulated for our381

low-complexity method as382

PPSK
e,i =1− 1

L2

L2∑
l=1

π
M∫

−π/M

pθ,idθ

=
1

L2

L2∑
l=1

Q

[
μR
i,l sin

(
π
M

)− μI
i,l cos

(
π
M

)
σ

]

+
1

L2

L2∑
l=1

Q

[
μI
i,l cos

(
π
M

)
+ μR

i,l sin
(

π
M

)
σ

]
, (22)

where L2 = MNs−1 and μR
i,l or μ

I
i,l represent the values of μ

R
i383

or μI
i (as defined earlier) corresponding to the lth realization of384

x, respectively.385

IV. MBER BASED SOURCE-RELAY-DESTINATION386

LINK DESIGN387

Let us now consider the design of the SRD link based on388

the MBER CF. This involves a transmit precoder (TPC) matrix389

design at the SN in addition to the AF matrix of the RN and390

the equalizer matrix of the DN. We also have to obey the power391

constraint at the SN involving the TPC matrix in addition to the392

RN power constraint. The TPC, AF and equalizer matrices are393

optimized jointly. The CFs are again those of Equations (13),394

(15), (16), (22), i.e the same as in Section III for various con-395

stellations. The optimization problem of the SRD link design396

can be stated as,397

Amber
S ,Amber

F ,Wmber
d = arg

AS ,AF ,Wd

min Pe(AS ,AF ,Wd)

s.t (1) Tr
{
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

} ≤ Pr

(2) σ2
xTr

{
AH

S AS

} ≤ Pt, (23)

where Pt is the transmit power limit. Additionally, we also398

consider a suboptimal structure forAS for the case of reducing399

the number of variables during the optimization process. We400

consider the SVD ofAS withAS = V1ΣS , whereV1 is from401

the SVD decomposition of Hsr and ΣS is a diagonal matrix402

having the singular values. We also use the parallel optimiza-403

tion of Pe,i, as formulated in Section III. With these subop-404

timal approaches in mind, the optimization problem can be 405
restated as, 406

For i = k :

Σmber
S ,Σmber

F ,wmber
k = arg

ΣS ,ΣF ,wk

min Pe,k(ΣS ,ΣF ,wk)

s.t (1)

Nr∑
i=1

σ2
f,i

(
σ2
xσ

2
sr,i+σ2

r

)≤Pr,

(2) σ2
x

Ns∑
i=1

σ2
s,i ≤ Pt. (24)

For i = 1, 2, . . . , k− 1, k + 1, . . . , Nx :

wmber
i = arg

wi

min Pe,i

(
Σmber

S ,Σmber
F ,wi

)
, (25)

where σs,i represents the singular value ofAS . 407

V. SOLUTION OF THE MBER OPTIMIZATION PROBLEM 408

Remarks on CF 409

The MBER CF may have multiple local minima. As for 410
example, Fig. 2. plots a CF with respect to the equalizer weights 411
(Only the first equalizer w1) for Ns = Nr = Nd = 2 for a 412
fixed real-valued channel and for fixed real-valued AF and 413
AS matrices for the BPSK signal sets. The equalizer length 414
is 2. For this example, the real-valued channels are assumed 415

to be Hsr =

[−1.12 0.74
0.41 0.90

]
and Hrd =

[−1.53 −0.86
0.51 −0.38

]
. 416

Observe in Fig. 2 that the CF has several minima with respect 417
to the equalizer weight w1, hence conventional gradient-based 418
receivers might get stuck in a local optimum, depending on 419
where the search is started on this surface. It is also noted that 420
the solutions obtained from both the MBER and the LMMSE 421
methods are different ((3.4, 8.2) and (5.2, 9.4) for MBER and 422
LMMSE, respectively), while the CF values are 7.8× 10−3 and 423
1.1× 10−2 for MBER and LMMSE methods, respectively. The 424
LMMSE solution might be a reasonable starting point [17]. 425

426

Binary Genetic Algorithm: Fortunately, random guided op- 427
timization methods, like Genetic Algorithms (GA) [21], Simu- 428
lated Annealing (SA) [24] etc. are capable of circumventing this 429
problem. In this work, we used the binary GA for findingWd, 430
AF . As this GA accepts only real-valued variables, we form 431

a vector v ∈ R
(NdNx+NrNs+N2

r )×1 by stacking all the real and 432
imaginary components of theWd,AF ,AS matrices as follows 433

v = [�{vec(Wd)}� {vec(Wd)}� {vec(AS)}
�{vec(AS)}�{vec(AF )}� {vec(AF )}]T . (26)

Similarly, for the case of the suboptimal scenario, we would 434
form the vector as 435

v = [�{vec(wk)} {vec(ΣS)} {vec(ΣF )}]T . (27)

The vector v is first converted to a binary string and then a 436
series of GA operations like “Parents selection”, “Crossover” 437
and “Mutation” are invoked [21] for finding an improved 438
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Fig. 2. Logarithm of CF from Equation (11) is plotted with respect to the first
equalizerw1. Equalizerw1 is real-valued and is of the length 2. Ns = Nr =
Nd = 2 are associated with fixed AF and AS matrices and fixed real-valued
channel. The signal set is assumed to be BPSK. The MBER solution (obtained
from GA) of w1 is (3.4, 8.2), while its LMMSE solution is (5.2, 9.4). The
value of CF at the MBER solution is 7.8× 10−3, while it is 1.1× 10−2 at
the LMMSE solution.

Fig. 3. Complexity (in terms of multiplication) vs. Nd comparison with
various optimization options for SRD link design fixing Nr = 2, Ns = 2,
Ns = Nx and QPSK data set.

solution. This binary string is also known as a chromosome.439

We initially “seed” the GA with an initial solution consti-440

tuted by the LMMSE one, so that the GA achieves a faster441

convergence. Unlike any steepest descent method, GA would442

search through various possible minima using “evolutionary”443

techniques. Thus, it has a reduced chance of getting into a444

local minimum compared to the case of completely random445

initialization. We provide a brief description of the GA in446

Appendix I. The procedure conceived for finding AF , Wd447

and AS with the aid of our constrained binary GA is given in 448
Algorithm. 1. 449

Algorithm 1: MBER basedAF ,Wd andAF design for the 450
relay link (Suboptimal). 451

1: Given: Ns, Nr, Nd,Hsr,Hrd with SVD components σ2
x, 452

σ2
r , σ

2
d and Pr along with LMMSE solutions ofWd, AF and 453

AS as initial “seed”. 454

2: Obtain Σmber
F , wmber

k from Equation (11) using our 455
constrained binary GA. 456

3: for i = 1, 2, . . . , k − 1, k + 1, . . . , Nx} 457

4: Substitute Σmber
F calculated for i = k into Pe,i. 458

5: Find wmber
i from Equation (12) using our binary GA. 459

6: end for 460

7: returnwmber
i for i = 1, . . . , Nx and Σ

mber
F , Σmber

S . 461

Projected Steepest Descent method: We have also used tech- 462
niques, the low-complexity Projected Steepest Descent (PSD) 463
[22] optimization method, which is one of the steepest descent 464
conceived for constrained optimization [22]. We first form a 465
vector of all the variables of interest. In the case of the optimal 466
scenario, we stack all the complex components of the Wd, 467
AF and AS matrices to form v ∈ C

(NdNx+N2
r+NsNr)×1 (the 468

variable of interest) as follows 469

v = [{vec(Wd)} {vec(AF )} {vec(AS)}]T . (28)

For the PSD method, the updated vector at the jth iteration is 470
obtained as 471

vj+1 = vj + αsj −Gj

(
GH

j Gj

)−1
gj (29)

where Gj is the gradient of the feasible constraints, gj is the 472
stack of feasible constraints and can be defined as follows 473

gj =

[ (
Tr

(
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

)− Pr

)(
σ2
x

(
Tr

(
AH

S AS

))− Pt

) ]
(30)

We also define sj as follows 474

sj = −
[
I−Gj

(
GH

j Gj

)−1
GH

j

]
∇f(xj). (31)

along with α = −(γf(xj)/s
H
j ∇f(xj)), where γ is the desired 475

reduction factor, usually assumed to be 0.05 (5%). For our 476
specific problem with the optimal case, Gj will be obtained 477
as follows 478

Gj =

⎡
⎣ vec (0Nd×Nx

) vec (0Nd×Nx
)

vec (AFA1) vec (0Nr×Nr
)

vec (0Ns×Ns
) vec (AS)

⎤
⎦ (32)

where A1
Δ
= (σ2

xHsrH
H
sr + σ2

rINr
)(σ2

xHsrH
H
sr + σ2

rINr
)H . 479

For the suboptimal case,Gj would be obtained as follows 480

Gsub
j =

⎡
⎣ vec (0Nd×1) vec (0Nd×1)

c1 vec (0Nr×1)
vec (0Nx×1) c2

⎤
⎦ (33)
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TABLE II
COMPUTATION COMPLEXITY COMPARISON BETWEEN THE PROPOSED

MBER METHOD WITH LMMSE METHOD FOR SRD RELAY

where [c1]i = (σ2
xσ

2
sr,i + σ2

r) and [c2]i = σ2
x. For suboptimal481

case, gj is defined as follows482

gsub
j =

⎡
⎣
(∑Nr

i=1 σ
2
f,i(σ

2
xσ

2
sr,i + σ2

r)− Pr

)
(
σ2
x

∑Ns

i=1 σ
2
s,i − Pt

)
⎤
⎦ (34)

For all cases, the initial value of v is chosen from the LMMSE483

solution.484

VI. COMPUTATIONAL COMPLEXITY ANALYSIS485

Let us now approximate the computational complexity of the486

relay link designs using the MBER CF. We express it in terms487

of the number of operations, which can be addition, subtraction488

and multiplication operations. We first quantify the complexity489

in terms of the number of multiplications and then in terms of490

all the operations. We found that the complexity is dominated491

by the multiplications due to the associated matrix operations.492

We have also considered the complexity separately for both the493

optimal and sub-optimal approaches. Let us assume that Npop494

and Nga are the population size and the average number of GA495

iterations, respectively. The complexity results are presented in496

Table II for the SRD case. However, the details of the analysis497

are given in Appendix II along with the RD case as well. We498

have also analyzed the detailed complexity involving the PSD499

optimization, albeit they are not given in the table due to space500

limitations.501

Notes:502

1) An approximation for NQ can be obtained in several503

ways. In practice, the Q(·)-function is calculated using504

the look-up table. Ignoring the off-line calculations of505

its values at various data points, we need to compute506

the index of the discretized argument, which needs one507

unit of operation followed by a memory-read. The other508

approach is constituted by the more accurate Taylor 509
series. 510

Q(x) =
1

2
− 1√

2π

∞∑
n=0

(−1)(n)x2n+1

n!(2n+ 1)2n
. (35)

We note that typically 2n is calculated by the left-shifting 511
of the binary string by one position and 2n is simply a 512
binary number of length (n+ 1) with only a single ‘1’ at 513
the (n+ 1)th position. Thus, we can ignore the complex- 514
ity involving these two operations. Now, we can calculate 515
the NQ as NQ ≈ 4Nlim with multiplications and NQ ≈ 516

5Nlim with total operations, respectively, where Nlim 517

is a number for representing the limit of Taylor series 518
sum. Simulation shows that evenNlim ≥ 20 gives a good 519
approximation with argument x ≤ 4. 520

2) In the complexity analysis, another complexity compo- 521
nent involving the SVD decomposition of a matrix has 522
to be mentioned, which is required for both the LMMSE 523
algorithm and for our proposed low complexity solution. 524
For the channel matricesHsr andHrd, the order of com- 525
plexity will beO(4N2

rNs+22N3
s )+O(4N2

dNr+22N3
r ). 526

3) The computational complexity of the LMMSE solution 527
relying on ARITH-BER [9] has not been analyzed in [9], 528
hence we analyze it for comparison. The complexity in 529
terms of the multiplications is approximately 4N2

sNx + 530

8Ns + 4 + 19Ns + 2Nr + 4N3
r + 4Nr N

2
s + (32N3

s − 531

12N2
s − 2Ns)/6 + 3min(Nd, Ns, Nr, Nx) + 2NdNx + 532

(32N3
d−12N2

d−2Nd)/6+4NdN
2
r +2N2

d+4NdNsNx+ 533

4NsN
2
d+2NsNd. The total complexity is approximately 534

(8Ns − 2)NsNx + 29Ns + 3 + (8Nr − 2)N2
r + 2Nr + 535

(8Ns−2)NrNs + (32N3
s + 60N2

s −14Ns)/3 + (8Ns − 536

2)NdNx+(8Nd− 2)NsNd+2NsNd+4N2
d +(32N3

d + 537

60N2
d − 14Nd)/3 + 3min(Nd, Nr, Ns, Nx)2NdNx + 538

(8Nr − 2)NrNd +Nd. 539

VII. NUMERICAL RESULTS 540

Let us now study the BER performance of the proposed 541
method against that of the LMMSE method [7]. Our simu- 542
lations are performed in two stages. During the first stage, 543
we use a known training sequence for determining both the 544
TPC as well as the AF and equalizer matrices of the SN, 545
RN, DN respectively. In the second stage, the data sequence 546
is detected. We consider a flat Rayleigh fading i.i.d channel 547
with unit variance for each complex element of Hsr and Hrd. 548
Thus, the Channel Impulse Response (CIR) is a non-dispersive 549
Rayleigh-faded one. Most of the simulations are preformed 550
for Ns = 2, Nr = 2, Nd = 2 with channel coding, which uses 551
Convolution Code (CC) of (7, 5)8. We have used the Soft- 552
Output Viterbi decoding [23]. The RN’s SNR is defined as 553
SNR1 = 10 log10((σ

2
x/σ

2
1)) dB, where σ

2
x is the power of each 554

xi, which is set to (Pt/Nx) with Pt = 1 dBm. The DN’s SNR 555

is defined as SNR2 = 10 log10((Pr/Nrσ
2
2)) dB, with the RN 556

power constraint of Pr = 5 dBm. Finally the SN’s power is 557
constrained to Pt = 1 dBm unless specified otherwise. The 558
SNR1 is kept at 20 dB. Our simulation results are averaged 559
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TABLE III
GA PARAMETERS

Fig. 4. BER vs. SNR2 performance of the RN-DN link design based on the
MBER method (with full AF , Wd (equation (6)) and suboptimal methods
(equations (11) and (12)) along with the LMMSE method over a flat Rayleigh
fading channel. Performances with and without the channel estimation are
presented. Ns, Nr, Nd = 2, Pr is constrained to 5 dBm and SNR1 is 20 dB.
Convolution code of (7, 5)8 is used along with the GA optimization.

over 1000 channel realizations per SNR value. In all our sim-560

ulation setup, we have assumed Nx = Ns, though any value561

of Nx can be assumed. The GA related parameters are chosen562

as per Table III.563

Experiment 1: This experiment is for the RD link design.564

The primary focus of this experiment is to characterize the BER565

performance of the proposed MBER method against that of the566

LMMSE benchmark [7]. We have also evaluated the BER per-567

formance both with perfect and with estimated channel, where568

the channel was also estimated using the LMMSE technique.569

In the second part of the experiment, we characterized the570

various suboptimal methods along with the original problem571

formulation of Equation (6) for analyzing the effects ofAF and572

Wd. In this experiment, we have also shown the superiority573

of the MBER method over a rank-deficient system, where574

conventional LMMSE technique fails to perform adequately.575

Remarks:576

1) Fig. 4. plots the BER vs. SNR2 performance of both577

the MBER and LMMSE based RD link design. Ob-578

serve in Fig. 4 that as the SNR increases, the MBER579

method increasingly outperforms the LMMSE method.580

Fig. 5. BER vs. SNR2 performance of the rank-deficient RN-DN link design
based on the MBER method (optimal) along with the LMMSE method over
a flat Rayleigh fading perfect channel. Ns = 4 and Nr, Nd = 2, Pr is
constrained to 5 dBm and SNR1 is 20 dB. Convolution code of (7, 5)8 is used
along with the GA optimization.

At BER = 10−3 the MBER method requires an SNR 581

of approximately 19.5 dB (suboptimal, SVD based) 582
and 20.7 dB (optimal), respectively, while the LMMSE 583
method needs SNR ≈ 26 dB for the perfectly known 584
channel. Thus, the MBER method attains an SNR gain of 585
approximately 5 dB (suboptimal) and 6.5 dB (optimal), 586
respectively for the scenario of SNR1 = 20 dB and Pr = 587

5 dBm. The SNR gain of the LMMSE-estimated channel 588
remains almost ≥ 5 dB for the suboptimal MBER based 589
RN-DN link design. 590

2) Fig. 5 shows the BER performance of a rank-deficient 591
system. The Ns = 4 with Nr = 2Nd = 2. It shows that 592
at BER = 4× 10−3, the MBERmethod gives a BER gain 593
of almost 5 dB, where conventional LMMSEmethod fails 594
to perform adequately. 595

3) Let us now consider both the SVD structure of AF and 596
its original non-decomposed structure. In both the cases, 597
we generate wi in both ways, first as in Equation (6) and 598
then as in Equations (11) and (12). Fig. 6 characterizes 599
all these cases. Observe that at BER = 10−3, the SVD 600

structure basedAF obtains a degraded SNR performance 601
of 1.5 dB compared to the case, where AF assumes no 602
SVD structure. It is also observed from Fig. 6 that the two 603
choices for determining the equalizer matrixWd do not 604
have severe impact on the performance. This implies that 605
AF dominates the CF compared to the equalizer matrix 606
Wd in the MBER framework. This also highlights the 607
fact that our low-complexity solution of Equations (11) 608
and (12) conceived for determining the DN’s equalizers 609
in parallel does not impose any substantial degradation 610
on the BER performance in Fig. 6. 611
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Fig. 6. BER vs. SNR2 performance of the RD link design based on the MBER
method with various options forAF andWd matrices (Various combinations
of equations (6) and (11), (12)) with a flat Rayleigh fading channel. Channels
are perfectly known. Ns, Nr, Nd = 2, Pr is constrained to 5 dBm and SNR1

is 20 dB with CC code of (7, 5)8.

Experiment 2: Thi experiment characterizes the BER per-612

formance of both 8-PSK and 16-PSK relying on the MBER613

CF for transmission over a flat Rayleigh fading channel for the614

RD link. The channels are assumed to be perfectly known. The615

rest of the experimental setup is the same as in Experiment-1.616

Remarks:617

1) Fig. 7 plots the BER of the MBER method for both 8-618

PSK and 16-PSK. Observe in Fig. 7 that at the BER =619

10−3 8-PSK using the MBER CF requires an SNR of620

approximately 24.5 dB (suboptimal, SVD), while the621

LMMSE method needs approximately 29.5 dB. Thus, the622

MBER method provides an SNR gain of approximately 5623

dB (suboptimal) in conjunction with SNR1 = 20 dB and624

Pr = 5 dBm for 8-PSK. Similar BER improvements are625

attained also for 16-PSK.626

Experiment 3: In this experiment, the Gaussian Q(·)-627

function encapsulated in the CF is approximated by the less628

complex function of Q(x) ≈ (1/2)e−x2/2[23]. In Fig. 8, we629

only characterize the RD link, this investigation may be readily630

extended to the SRD link design as well. Again, the chan-631

nels are assumed to be perfectly known in this experiment.632

Remarks:633

1) Fig. 8 portrays the BER performance of the MBER634

method using the above-mentioned Q(x) ≈ (1/2)e−x2/2635

approximation for the RD link, which reduces the com-636

plexity of the search from that of Equation (11) to637

Equation (12) imposed, when finding AF andWd. Ob-638

serve in Fig. 8 that the performance penalty imposed by639

this approximation is negligible at higher SNR values640

(> 25 dB), although at lower SNR values this degradation641

is non-negligible.642

Experiment 4: In this experiment we consider the SRD link643

using our proposed MBER based framework. We have also644

Fig. 7. BER vs. SNR2 performance of the RD link design based on the MBER
method over a flat Rayleigh fading channel with 8- and 16-PSK signal sets with
CC code of (7, 5)8. Channels are perfectly known. Ns, Nr, Nd = 2 with Pr

and SNR1 being constrained to 5 dBm and 20 dB, respectively.

Fig. 8. BER vs. SNR2 performance of the RD link design based on the MBER
method with the Gaussian error function Q(.)-function approximation to an
exponential one over a flat Rayleigh fading channel. Channels are perfectly
known. QPSK signal set is used with CC code of (7, 5)8. Ns, Nr, Nd = 2
with Pr being constrained to 5 dBm.

considered a 4× 2× 2 rank-deficient SRD case. We set the SN 645

and RN power constraints to be Pt = 5 dBm and Pr = 5 dBm, 646
respectively. We do not invoke the SVD of the AF and AS 647

matrices in this experiment. The channels are assumed to be 648
perfectly known. We have used CC code of (7, 5)8. In this 649
experiment, we have used both GA with LMMSE “seed” and 650
PSD with LMMSE initial solution. Remarks: 651

1) Fig. 9 characterizes the BER performance of the SN-RN- 652
DN link using our MBER framework. With GA method, 653
at the BER = 10−3, the MBER method requires an SNR 654
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Fig. 9. BER vs. SNR2 performance of the SRD link design based on the
MBER method over a flat Rayleigh fading channel. Channels are perfectly
known. Ns, Nr, Nd = 2, Pr and Pt are constrained to 5 dBm and SNR1

is 20 dB. QPSK signal set is used with CC code of (7, 5)8. GA and PSD
optimizations are used.

Fig. 10. BER vs. SNR2 performance of a rank-deficient 4× 2× 2 SRD link
design based on the MBER method over a flat Rayleigh fading channel. Chan-
nels are perfectly known. Ns = 4, Nr, Nd = 2, Pr and Pt are constrained to
5 dBm and SNR1 is 20 dB. QPSK signal set is used with CC code of (7, 5)8.
PSD optimization is used.

of approximately 9.8 dB (optimal), while the LMMSE655

method needs 15 dB and ARITH-BER requires 13.5 dB,656

respectively. Thus, the MBER method attains an SNR657

gain of approximately 5.2 dB and 3.7 dB for the SRD link658

with respect to LMMSE and ARITH-BER, respectively.659

We observe that PSD gives a 0.7 dB SNR degradation.660

2) Fig. 10 shows the BER performance of the rank-deficient661

case. It shows that we can still attain an SNR gain of662

almost 3.5 db at the BER = 1× 10−3 with coded data663

along with the PSD optimization method.664

VIII. CONCLUSIONS 665

New MBER-based TPC, AF and equalizer matrices were 666
designed for the RN-DN link and SN-RN-DN links. The CFs of 667
various constellations were derived and a solution was found for 668
the design of these matrices using the MBER framework. Sub- 669
optimal approaches have also been proposed for computational 670
complexity reduction. It was shown that the BER performance 671
of the proposed method is superior compared to the LMMSE 672
method, albeit this improved performance has been achieved at 673
an increased computational complexity. 674

APPENDIX I 675

OPTIMIZATION TECHNIQUES 676

In this contribution, we have adopted two optimization meth- 677
ods, namely the binary GA [21] and the PSD [22]. Below we 678
provide a brief description of the GA technique in the context 679
of our problem. 680

A. Binary GA 681

The binary GA is a heuristic method of optimization [21]. 682
We form a vector also referred to as a chromosome from the 683
variables of interest by stacking all the variables’ real and 684
imaginary components as defined in Equation (26). 685

1) Population selection GA commences its operation from 686

a set of initial chromosome values known as the initial 687
population having a size of Npop. The initial solution can 688
be randomly generated or “seeded” with a better initial 689
choice. The second option leads to a faster convergence. 690
In our case, the “seed” is the “LMMSE” solution and 691
the initial population is generated with the aid of a slight 692
random variation around the “seed”. Now, for every chro- 693
mosome in the population, a “fitness” value is obtained by 694
calculating the CF value against each of them. Then, the 695
Roulette-Wheel algorithm of [21] is invoked for selecting 696
the suitable parent solutions for generating child solutions 697
for the next iteration. A pair of techniques referred to 698
as crossover and mutation are invoked for generating 699
children from the parents. 700

2) Crossover The crossover operation is a chromosome “re- 701
production” technique by which an off-spring is gener- 702
ated upon picking various parts of its parent chromosome. 703
This method introduces a large amount of characteristic 704
variation into the off-spring. Let us consider the following 705
example. Let us assume that a random binary string, B1, 706
which has the same length as chromosome is created. We 707
also assume that two children, namelyCh1 andCh2 have 708
to be created from two parent chromosomes P1 and P2. 709
Then, if the ith position of B1 is 0, Ch1 and Ch2 would 710
fill up their ith position from the ith position of P1 and 711
P2, respectively. Otherwise, the ith position of P1 would 712
populate Ch2 and that of P2 would go to Ch1. 713

P1 = [11000110];

P2 = [10111001];

B1 = [00101011]; (36)
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Hence, the children become714

Ch1 = [11101101];

Ch2 = [10010010]; (37)

Mutation Mutation is a relatively small-scale character-715

istic variational “reproduction” tool for off-spring gen-716

eration. It introduces a bit flipping at a few randomly717

selected places of the chromosomes. For example, if a718

parent chromosome is P = [11000110], a mutation at719

the 2nd Least-Significant-Bit (LSB) position generates a720

child Ch = [11000100].721

3) Termination Using the crossover and mutation tech-722

niques, a new set of off-spring is generated along with723

their fitness value. If one of them satisfies the required724

fitness value, the process is terminated with that chromo-725

some being the solution. The process is also terminated,726

if the maximum number of iterations is exceeded. If no727

sufficiently good fit is found at a given iteration (provided728

the maximum iteration number has not been reached),729

the algorithm goes ahead with the selection of parents730

from the current set of children using the Roulette-Wheel731

algorithm mentioned earlier.732

APPENDIX II733

DETAIL COMPLEXITY ANALYSIS734

The CF of BPSK formulated in Equation (13) is considered735

here first for this calculation, which is readily extended to other736

constellations as well. However, it is noted that the overall737

complexity depends on the specific choice of optimization738

method. We first calculate the complexity of calculating the CF739

and constraints once, irrespective of the choice of optimization740

method.741

RN-DN Link: Let us commence with the BPSK CF Equa-742

tion (13). Let us first consider the term (wi)
HHxjxi. The743

fundamental assumption is that multiplication of two complex744

numbers would take 4 real data multiplication and 6 total745

operation (2 extra additions are required). Hence, two complex746

matrices of orders C
M×N and C

N×K would take 4MNK747

multiplications, whereas the total operation required is (8N −748

2)MK. Multiplication of a complex-valued matrix and a vector749

of orderCM×N andCN×1 would require 4MN multiplications750

and (8N − 2)M total operations, respectively.751

1) Thus, effective channel matrix H takes Nm
1 = 4NrNd752

(Nr +Ns) multiplications and N t
1 = 2Nd(Nr +Ns)753

(4Nr − 1) total operations respectively. Calculation ofH754

is common with all the equalizers wi.755

2) (wi)
HHxjxi requires Nm

2 = 4NdNs + 4Ns + 1 multi-756

plications and N t
2 = 8NsNd + 6Nd − 1 total operations,757

respectively.758

3) Similarly, the noise covariance matrix Cn(4) re-759

quires Nm
3 = 4NdN

2
r + 2N2

d multiplications and N t
3 =760

(8Nr − 2)NrNd + 2N2
d +Nd total operations, respec-761

tively. It assumes that calculation of HrdAF is already762

done with H. Calculation of Cn is common with all the763

equalizers wi.764

4) Thus,wH
i Cnwi requiresNm

4 =4N2
d+4Ndmultiplication 765

and N t
4=8N2

d+6Nd−2 total operations, respectively. 766

5) Assuming the square root and division as two unit of op- 767
erations, the total complexity of calculating the CF once 768
is Nm

5 = Nm
1 +Nm

3 +NxN
m
4 + 4NdNsNx +Nx2

Nx 769

(4Nx + 1 +NQ) (with only multiplication) and N t
5 = 770

Nm
1 +Nm

3 +NxN
t
4+Nx(8NsNd−2Ns)+ 2Nx(8Nx+ 771

1 +NQ) (with total operations), respectively, where NQ 772

is the complexity involving the Q(·)-function. 773

6) If M -QAM is chosen, the complexity will be approx- 774
imately Nm

5 ≈ Nm
1 +Nm

3 +NxN
m
4 + 4NdNsNx + 775

2NxM
Nx(4Nx+ 1+NQ) with multiplication and N t

5 ≈ 776

N t
1+N t

3+NxN
t
4+6N2

sNd+2NxM
Nx(2NxNd+6Nd+ 777

NQ) with the total complexity, respectively. For the 778
M -PSK case with the rotated constellation concept, 779
we need to multiply (4Nx + 1 +NQ) with only 780
2NxM

Nx−1(4Nx + 1 +NQ). 781

7) For the SVD-based approach, the complexity of 782
H requires Nm

1 = min(Nd, Nr) + 2N2
d + 4NdN

2
s mul- 783

tiplications and N t
1 = min(Nd, Nr) + 2N2

d + (8Ns − 784

2)NdNs total operations. 785

8) Let us calculate the complexity involving the constraints. 786
From equation (6), we obtain the complexity for con- 787
straints as Nm,c

1 = 8N3
r + 4N2

rNs + 2N2
r with multipli- 788

cation only and N t,c
1 = N2

r (8Ns + 16Nr − 6) + 2Nr + 789

2(Nr − 1) with total operations, respectively. For the 790
SVD approach, it would be Nm,c

1 = 2Nr with multipli- 791
cations and N t,c

1 = 3Nr total operations, respectively. 792

SN-RN-DN Link: For the case of the SN-RN-DN link, we 793
have to additionally incorporate the calculation of the TPC 794

matrixAS . 795

1) We obtain the complexity forH as Nm
1 = 4NrNd(Nr + 796

Ns) + 4NrNsNx with multiplication and N t
1 = 797

2Nd(Nr +Ns)(4Nr − 1) + (8Ns − 2)NrNx with total 798
operations, respectively. For the SVD-based approach, 799
we obtain Nm

1 = 3min(Nd, Nr, Ns, Nx) + 2NdNx 800

for multiplications and N t
1 = Nm

1 as well for the total 801
operations. 802

2) An additional complexity for the source power constraint 803
may be calculated as Nm,c

2 = 4N2
sNx + 1 with multi- 804

plication and N t,c
2 = (8Ns − 2)NsNx + 2Ns − 1 with 805

total computations, respectively. For the SVD-based ap- 806
proach, they become Nm,c

2 = 1 for multiplication and 807
N t,c

2 = Ns + 1 for total operations, respectively. 808

Computational-Complexity, Specific to Optimization 809
Method: Computational complexity is also dependent on 810
the specific choice of optimization algorithm to determine 811
the parameters. For binary GA, time-complexity is more 812
appropriate. However, we try to give an approximate 813
computational-complexity for GA. The computational- 814
complexity for GA is dominated by the function and constraint 815
evaluations to determine the eligible population at each 816
iterations. Let us assume that total size of population is Npop 817

and GA requires Nga iterations to converge. Then, total 818
complexity will be approximately NpopNga(N

m
5 +Nm,c

1 + 819

Nm,c
2 ) with multiplication and NpopNga(N

t
5 +N t,c

1 +N t,c
2 ) 820

with total operations, respectively. 821
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For the PSD algorithm, we need to calculate the gradient822

for both function and constraint. Gradient of CF is calculated823

numerically.824

1) Gradient ofCF takesNm,psd
1 =2(NdNx+N2

r +NsNr)N
m
5825

multiplication and N t,psd
1 =2(NdNx+N2

r +NsNr)N
t
5826

total operations, if we use numerical method. For the827

SVD-based approach, it would be Nm,psd
1 = 2(Nd +828

Nx +Nr)N
m
5 with multiplication andN t,psd

1 = 2(Nd +829

Nx +Nr)N
t
5 with total operations.830

2) Per iteration, other steps require Nm,psd
2 = 18(N2

r +831

NsNr)+ 6(NdNx +N2
r +NsNr) + 4(N2

r +N2
s )

2 + 9832

multiplications and N t,psd
2 = 25(N2

r +NsNr) + 22 +833

10(NdNx +N2
r +NsNr) + 8(N2

r +NsNr)
2 total834

operations. For sub-optimal case, it would be Nm,psd
2 =835

2(N2
r +N2

s ) + 3(Nd +Nr +Ns) + 1 + 2(Nd +Ns)836

for multiplication and N t,psd
2 = 6(Nr +Ns)− 6 +837

7(Nd +Nr +Ns) for total operations.838

3) If PSD takes an average iteration of Npsd, the839

computational complexity may be approximated as840

Npsd(N
m,psd
1 +Nm,psd

2 ) with multiplication and841

Npsd(N
t,psd
1 +N t,psd

2 ) with total operations.842

Computational Complexity for LMMSE [9]-ARITH BER843

Case: We give an approximate computational complexity for844

the LMMSE case for comparison purpose.845

1) The computationof precodermatrixAS requires4N2
sNx+846

8Ns + 3 multiplication and (8Ns − 2)NsNx + 5Ns + 1847

total operations.848

2) The computation of AF matrix requires 19Ns+1+2Nr+849

4N3
r + 4NrN

2
s + (32N3

s − 12N2
s − 2Ns)/6 multiplica-850

tions and 24Ns + 2 + (8Nr − 2)N2
r + 2Nr + (8Ns −851

2)NrNs + (32N3
s + 60N2

s − 14Ns)/3 total operations.852

3) Computation of effective channel matrix and noise co-853

variance matrix are already given.854

4) Computation of equalizer matrix requires 4NdNsNx +855

4NsN
2
d+2NsNd+(32N3

d−12N2
d−2Nd)/6 multiplica-856

tions and (8Ns−2)NdNx+(8Nd−2)NsNd+2NsNd+857

2N2
d+(32N3

d + 60N2
d − 14Nd)/3 total operations.858

ACKNOWLEDGMENT859

The financial support of the DST, India and of the EPSRC,860

UK under the auspices of the India-UK Advanced Technology861

Centre (IUATC) is gratefully acknowledged.862

REFERENCES863

[1] Y. Rong, X. Tang, and Y. Hua, “A unified framework for optimizing linear864
nonregenerative multicarrier MIMO relay communication systems,” IEEE865
Trans. Signal Process., vol. 57, no. 12, pp. 4837–4851, Dec. 2009.866

[2] Y. Rong, “Optimal linear non-regenerative multi-hop MIMO relays with867
MMSE-DFE receiver at the destination,” IEEE Trans. Wireless Commun.,868
vol. 9, no. 7, pp. 2268–2279, Jul. 2010.869

[3] X. J. Zhang and Y. Gong, “Adaptive power allocation for multihop re-870
generative relaying with limited feedback,” IEEE Trans. Veh. Technol.,871
vol. 58, no. 7, pp. 3862–3867, Sep. 2009.872

[4] X. J. Zhang and Y. Gong, “Jointly optimizing power allocation and relay873
positions for multi-relay regenerative relaying with relay selection,” in874
Proc. 4th ICSPCS, 2010, pp. 1–9.875

[5] J. Zou, H. Luo, M. Tao, and R. Wang, “Joint source and relay optimization876
for non-regenerative MIMO two-way relay systems with imperfect CSI,”877
IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3305–3315, Sep. 2012.878

[6] W. Zhang, U. Mitra, and M. Chiang, “Optimization of amplify-and- for- 879
ward multicarrier two-hop transmission,” IEEE Trans. Commun., vol. 59, 880
no. 5, pp. 1434–1445, May 2011. 881

[7] W. Guan and H. Luo, “Joint MMSE transceiver design in non- regenera- 882
tive MIMO relay systems,” IEEE Commun. Lett., vol. 12, no. 7, pp. 517– 883
519, Jul. 2008. 884

[8] C. Jeong and H.-M. Kim, “Precoder design of non-regenerative relays 885
with covariance feedback,” IEEE Commun. Lett., vol. 13, no. 12, pp. 920– 886
922, Dec. 2009. 887

[9] C. Song, K.-J. Lee, and I. Lee, “MMSE based transceiver designs in 888
closed-loop non-regenerative MIMO relaying systems,” IEEE Trans. 889
Wireless Commun., vol. 9, no. 7, pp. 2310–2319, Jul. 2010. 890

[10] C. Xing, S. Ma, and Y.-C. Wu, “Robust joint design of linear relay pre- 891
coder and destination equalizer for dual-hop amplifyand- forward MIMO 892
relay systems,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2273– 893
2283, Apr. 2010. 894

[11] X. Tang and Y. Hua, “Optimal design of non-regenerative MIMO wireless 895
relays,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1398–1407, 896
Apr. 2007. 897

[12] O. Munoz-Medina, J. Vidal, and A. Agustin, “Linear transceiver design 898
in nonregenerative relays with channel state information,” IEEE Trans. 899
Signal Process., vol. 55, no. 6, pp. 2593–2604, Jun. 2007. 900

[13] B. Sainath and N. Mehta, “Generalizing the amplify-and-forward relay 901
gain model: An optimal SEP perspective,” IEEE Trans. Wireless Com- 902
mun., vol. 11, no. 11, pp. 4118–4127, Nov. 2012. 903

[14] T. Peng, R. de Lamare, and A. Schmeink, “Joint minimum BER power al- 904
location and receiver design for distributed space-time coded cooperative 905
MIMO relaying systems,” in Proc. Int. ITG WSA, 2012, pp. 225–229. 906

[15] C.-C. Yeh and J. Barry, “Adaptive minimum bit-error rate equalization for 907
binary signaling,” IEEE Trans. Commun., vol. 48, no. 7, pp. 1226–1235, 908
Jul. 2000. 909

[16] W. Yao, S. Chen, and L. Hanzo, “Generalised vector precoding design 910
based on the MBER criterion for multiuser transmission,” in Proc. IEEE 911
VTC-Fall, 2010, pp. 1–5. 912

[17] S. Chen, A. Livingstone, and L. Hanzo, “Minimum bit-error rate de- 913
sign for space-time equalization-based multiuser detection,” IEEE Trans. 914
Commun, vol. 54, no. 5, pp. 824–832, May 2006. 915

[18] W. Yao, S. Chen, and L. Hanzo, “Generalized MBER-based vector pre- 916
coding design for multiuser transmission,” IEEE Trans. Veh. Technol., 917
vol. 60, no. 2, pp. 739–745, Feb. 2011. 918

[19] W. Yao, S. Chen, and L. Hanzo, “A transceiver design based on uniform 919
channel decomposition andMBER vector perturbation,” IEEE Trans. Veh. 920
Technol., vol. 59, no. 6, pp. 3153–3159, Jul. 2010. 921

[20] M. Alias, S. Chen, and L. Hanzo, “Multiple-antenna-aided OFDM em- 922
ploying genetic-algorithm-assisted minimum bit error rate multiuser de- 923
tection,” IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1713–1721, 924
Sep. 2005. 925

[21] D. E. Goldberg., Genetic Algorithms in Search, Optimization, Machine 926
Learning. Boston, MA, USA: Addison-Wesley Longman Publishing 927
Co., Inc, 2009. 928

[22] D. H. Luenberger, Linear and Nonlinear Programming. Englewood 929
Cliffs, NJ, USA: Prentice-Hall, 1984. 930

[23] J. Proakis, Digital Communications., 4th ed. New York, NY, USA: 931
McGraw-Hill, 2000. 932

[24] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Appli- 933
cations. Norwell, MA, USA: Kluwer, 1987. 934

Amit Kumar Dutta (SM’XX) received the B.E. de- AQ1935
gree in electronics and tele-communication engineer- 936
ing fromBengal Engineering and Science University, 937
India, in 2000. He is currently pursuing the Ph.D 938
degree at the Department of ECE, Indian Institute of 939
Science, India. 940
He worked in Texas Instrument (TI) Pvt. Ltd., 941

India, from 2000 to 2009. During his career at TI, 942
he worked on various design and test aspects of 943
communication and entertainment related System- 944
on-Chip. The works included digital VLSI design 945

and its test, validation and characterization. 946
He is interested in the applications of statistical signal processing algorithms 947

to wireless communication systems. His current research interests are on the 948
various parameter estimation and signal detection for MIMO wireless receiver 949
based on the Minimum Bit-Error-Ratio criterion. 950



IE
EE

Pr
oo
f

14 IEEE TRANSACTIONS ON COMMUNICATIONS

K. V. S. Hari (M’92–SM’97) received the B.E.951
degree from Osmania University in 1983, M.Tech.952
degree from IIT Delhi in 1985, and the Ph.D. degree953
University of California at San Diego in 1990. Since954
1992, he has been a Faculty Member at the De-955
partment of ECE, Indian Institute of Science (IISc),956
Bangalore, where he is currently a Professor and957
coordinates the activities of the Statistical Signal958
Processing Lab in the department. Currently, he is959
also an Affiliated Professor in the School of Elec-960
trical Engineering, KTH-Royal Institute of Technol-961

ogy, Stockholm, Sweden.962
He has been a visiting faculty member at Stanford University, KTH-Royal In-963

stitute of Technology and Helsinki University of Technology (now Aalto Univ).964
He also worked at DLRL, Hyderabad, and at the R&D unit for Navigational965
Electronics, Osmania University.966
His research interests are in developing signal processing algorithms for967

MIMO wireless communication systems, sparse signal recovery problems,968
indoor positioning and DOA estimation.969
During his work at Stanford University, he worked on MIMO wireless970

channel modeling and is the coauthor of the WiMAX standard on wireless971
channel models for fixed-broadband wireless communication systems which972
proposed the Stanford University Interim (SUI) channel models. He is currently973
an Editor of the EURASIP’s Journal on Signal Processing published by Elsevier974
and the Senior Associate Editor, Editorial Board of Sadhana (Indian Academy975
of Science Proceedings in Engineering Sciences). He is also an academic976
entrepreneur and is a cofounder of the company ESQUBE Communication977
Solutions, Bangalore.978

Lajos Hanzo (F’08) received the bachelor’s degree 979
in electronics in 1976 and the doctoral degree in 980
1983. In 2009 he was awarded the honorary doc- 981
torate “Doctor Honoris Causa” by the Technical 982
University of Budapest. During his 37-year career 983
in telecommunications he has held various research 984
and academic posts in Hungary, Germany and the 985
UK. Since 1986 he has been with the School of 986
Electronics and Computer Science, University of 987
Southampton, U.K., where he holds the chair in 988
telecommunications. He has successfully supervised 989

more than 80 Ph.D. students, co-authored 20 John Wiley/IEEE Press books 990
on mobile radio communications totalling in excess of 10 000 pages, published 991
1400+ research entries at IEEE Xplore, acted both as TPC and General Chair of 992
IEEE conferences, presented keynote lectures and has been awarded a number 993
of distinctions. Currently he is directing a 100-strong academic research team, 994
working on a range of research projects in the field of wireless multimedia 995
communications sponsored by industry, the Engineering and Physical Sciences 996
Research Council (EPSRC) UK, the European Research Council’s Advanced 997
Fellow Grant and the Royal Society’s Wolfson Research Merit Award. He is an 998
enthusiastic supporter of industrial and academic liaison and he offers a range of 999
industrial courses. He is also a Governor of the IEEE VTS. During 2008–2012 1000
he was the Editor-in-Chief of the IEEE Press and a Chaired Professor also at 1001
Tsinghua University, Beijing. His research is funded by the European Research 1002
Council’s Senior Research Fellow Grant. For further information on research 1003
in progress and associated publications please refer to http://www-mobile.ecs. 1004
soton.ac.uk.Dr.Hanzohasmorethan20&thinsp;000+citations. 1005



IE
EE

Pr
oo
f

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Please provide membership history of author Amit Kumar Dutta.

END OF ALL QUERIES



IE
EE

Pr
oo
f

IEEE TRANSACTIONS ON COMMUNICATIONS 1

Linear Transceiver Design for an
Amplify-and-Forward Relay Based

on the MBER Criterion
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3
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Abstract—A design methodology based on the Minimum Bit5
Error Ratio (MBER) framework is proposed for a non-regenera-6
tive Multiple-Input Multiple-Output (MIMO) relay-aided system7
to determine various linear parameters. We consider both the8
Relay-Destination (RD) as well as the Source-Relay-Destination9
(SRD) link design based on this MBER framework, including the10
precoder, the Amplify-and-Forward (AF) matrix and the equal-11
izer matrix of our system. It has been shown in the previous12
literature that MBER based communication systems are capable13
of reducing the Bit-Error-Ratio (BER) compared to their Linear14
Minimum Mean Square Error (LMMSE) based counterparts. We15
design a novel relay-aided system using various signal constella-16
tions, ranging from QPSK to the general M -QAM and M -PSK17
constellations. Finally, we propose its sub-optimal versions for18
reducing the computational complexity imposed. Our simulation19
results demonstrate that the proposed scheme indeed achieves a20
significant BER reduction over the existing LMMSE scheme.21

Index Terms—Minimum bit error ratio (MBER), linear mini-22
mum mean square error (LMMSE), Relay, multiple-input multi-23
ple-output (MIMO), singular-value-decomposition (SVD).24

I. INTRODUCTION25

R ELAY-BASED communication systems have enjoyed26

considerable research attention due to their ability to27

provide a substantial spatial diversity gain with the aid of28

distributed nodes, hence potentially extending the coverage29

area and/or for reducing the transmit power [1], [2]. A pair30

of key protocols has been conceived for relay-aided systems,31

namely the regenerative [3], [4] and the non-regenerative [5],32

[6] protocols. In the regenerative scenario, the relay node (RN)33

decodes the signal and then forwards it after amplification to34

the destination node (DN) (also known as a decode-forward35

relay), while maintaining the same total relay- plus source-36

power as the original non-relaying scheme. By contrast, in the37

case of non-regenerative relaying, the RN only amplifies the38

signal received from the source node (SN) and then forwards it39
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to the DNwithout any decoding (also known as an amplify-and- 40
forward relay), again, without increasing the power of the orig- 41
inal direct SN-DN pair. Non-regenerative relaying is invoked 42
for applications, where both low latency and low complexity 43
are required. 44

Multiple-input multiple-output (MIMO) techniques may be 45
beneficially combined with relaying for further increasing both 46
the attainable spectral efficiency and the signal reliability. The 47
non-regenerative relay involves the design of both the Amplify- 48
and-Forward (AF) matrix at the RN and the linear equalizer 49
design at the DN, or any precoder matrix at the SN, subject to 50
the above total SN and (or) RN power constraints. Various Cost 51
Functions (CF) have been proposed for optimizing these matri- 52
ces, such as the Linear MinimumMean Square Error (LMMSE) 53
[7]–[10] and the Maximum Capacity (MC) [11], [12] CFs, etc. 54
However, the direct minimization of the Bit-Error-Ratio (BER) 55
at the DN has not as yet been fully explored in the context of 56
designing the various parameters of non-regenerative MIMO- 57
aided relaying, although a BER based RN design was proposed 58
In reply to: [13] for a single-antenna scenario. Hence, the work 59
in [13] does not deal with the design of precoder, AF and 60
linear equalizers as matrices due to the consideration of single 61
antenna at SN, RN and DN. Though, a Minimum Bit Error 62
Ratio (MBER) CF based MIMO-aided relay design [14] was 63
provided for a cooperative, non-regenerative relay employing 64
distributed space time coding, it was based on the classic BPSK 65

signal sets. This work assumes the power allocation matrix 66
to be diagonal and no RN power constraint was used in the 67
optimization problem. In this case of [14], the relay power 68
was normalized after determining the diagonal AF and precoder 69
matrices with unconstrained optimization problem, which leads 70
to a sub-optimal solution. 71

The benefit of MBER-based linear system design has been 72
well studied in literature. To elaborate a little further, the MBER 73

CF directly minimizes the BER [15]. Previous literature has 74
shown that a sophisticated system design based on this criterion 75
is capable of outperforming its LMMSE counterpart in terms of 76
the attainable BER. Owing to its benefits, it has been used for 77
the design of a linear equalizer [15], for the precoder matrix 78
[16] and for various other MIMO, SDMA as well as OFDM 79

systems conceived for achieving the best BER performance 80
[17]–[19] at the of higher computational complexity. MBER 81

based linear receiver design has also been shown to be very 82
effective in terms of BER performance in the rank-deficient 83
case, where conventional LMMSE-based receiver fails to per- 84
form significantly [20]. 85

0090-6778 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Scope and contribution: Against this background based on86

the MBER CF, we design of a new non-regenerative MIMO-87

aided relaying system, which comprises a SN, a RN and a DN.88

We assume a half duplex system at the RN, where one time slot89

is used for receiving from the SN and another for forwarding90

it to the DN. No SN-RN transmission takes place during the91

RN-DN transmission. In this work, we consider the joint design92

of the SN’s transmit precoder, the RN’s AF matrix and the93

DN’s linear equalizer matrix based on the MBER CF subject94

to the above total RN-SN power constraints. The performance95

of the proposed scheme is evaluated and compared to that of the96

existing LMMSE based method. The main contributions of this97

treatise are as follows:98

1) A CF is conceived for the design of the RN-DN and the99

SN-RN-DN links of a non-regenerative relaying system100

based on the MBER CF subject to the SN and (or) RN101

power constraints. The MBER CF is formulated for vari-102

ous data constellations, ranging from BPSK to the general103

M -QAM and M -PSK constellations. Naturally, the spe-104

cific choice of the constellation fundamentally influences105

the MBER CF [15], [17]–[19]. We jointly determine106

the precoder, AF and equalizer matrices based on this107

MBERCF under a source and relay power constraint. The108

existing MIMOMBER solutions are designed for uncon-109

strained scenarios and hence this constrained MBER op-110

timization poses specific challenges. Therefore, we have111

conceived both the heuristic constrained binary Genetic112

Algorithm (GA) [21] and the Projected Steepest Descent113

(PSD) [22] algorithm for determining these parameters.114

2) A suboptimal method is also proposed for reduc-115

ing the number of variables using the Singular-Value-116

Decomposition (SVD) approach, which allows the opti-117

mization problem to be decomposed into multiple parallel118

optimization problems. The key contribution here is that119

we propose to split the complete constrained optimization120

problem into unconstrained parallel optimization prob-121

lems except for one of the cases.122

3) The Cost Function (CF) ofM -PSK constellation has been123

approximated for the sake of conceiving a more tractable124

form for the MIMO-aided relaying system considered.125

This approximation can also be used for classic MIMO126

scenarios.127

4) An impediment of the MBER CF is however its high128

computational complexity compared to its LMMSE129

counterpart [15]. To mitigate this, we have conceived130

a low-complexity data detection scheme for the MBER131

method with the aid of the phase rotation of the con-132

stellation in the context of rotationally invariant QPSK133

and M -PSK constellations. This scheme can be equally134

applicable to any other MIMO system design based on135

the MBER criterion.136

5) An approximate complexity analysis is performed for the137

MBER scheme under various constrained optimization138

methods such as the GA and PSD. This step-by-step139

analysis may be readily applied to other MBER solutions.140

Notation: Bold upper and lower case letters denote matrices141

and vectors, respectively. The superscripts (·)T and (·)H denote142

Fig. 1. Single relay system with multiple input-output antennas at source,
relay, and destination.

the transpose and the conjugate transpose of a matrix, respec- 143
tively. E[·] denotes the expectation, while IN denotes a (N × 144

N)-element identity matrix. Tr[·] represents the trace of a 145
matrix. A diagonal matrix is denoted by diag{a1, a2, . . . , aN}, 146
where an denotes the nth diagonal element. vec(A) is the vec- 147
torization of the matrixA with columns stacked one-by-one. 148

II. SYSTEM MODEL 149

We consider a communication system consisting of a SN, a 150
RN and a DN having Ns, Nr, and Nd antennas, respectively, 151
as shown in Fig. 1. It is assumed that there is no Line-Of- 152
Sight (LOS) component between the SN and the DN. Both 153
the SN-RN and the RN-DN channel matrices are assumed 154
to be those of flat-fading channels, which are denoted as 155
Hsr ∈ C

Nr×Ns andHrd ∈ C
Nd×Nr , respectively. The symbol 156

vector transmitted from the SN before precoding is denoted 157
as x ∈ C

Nx×1 with Nx being the length of the input vector. 158
We assume AS ∈ C

NS×Nx to be the precoding matrix at the 159
SN. The average transmitted power is constrained to Pt = 160

E[sHs] with s
Δ
= ASx, which is assumed to be the same for 161

all symbols at the SN. Hence, we have the transmit power con- 162

straint as Pt
Δ
= E‖ASx‖2 = σ2

xTr(ASA
H
S ) and the transmit 163

data covariance matrix is RS
Δ
= E(ssH) = (Pt/Nx)(ASA

H
S ), 164

where σ2
x = (Pt/Nx) is the signal power of each data xi. The 165

noise vectors at the RN and the DN are nr ∈ C
Nr×1 and 166

nd ∈ C
Nd×1, respectively, which are assumed to be zero mean, 167

circularly symmetric complex i.i.d Gaussian vectors having 168
the covariance matrices of σ2

rINr
and σ2

dINd
, respectively. We 169

consider a classic half duplex system. Hence, in the first time 170
slot, the SN transmits a source vector s and the vector yr ∈ 171

C
Nr×1, received at the RN is given by, 172

yr = Hsrs+ nr. (1)

During the next time slot, the relay would multiply the 173
received vector yr with the AF matrix AF ∈ C

Nr×Nr and 174

then forwards it to the DN. Let us assume that yF
Δ
= AFyr = 175

AF (Hsrs+ nr). We impose the RN transmit power restric- 176
tion of E[yH

F yF ] ≤ Pr, where Pr is the RN’s transmit power. 177
Assuming that the SN’s transmitted signal and the noise are 178
independent, the RN’s power can be calculated as, 179

E
[
yH
f yf

]
=Tr

{
E
(
AF(Hsrs+ nr)(Hsrs+ nr)

HAH
F

)}
=Tr

{
AF

(
σ2
xHsrASA

H
S HH

sr + σ2
rINr

)
AH

F

}
≤Pr, (2)



IE
EE

Pr
oo
f

DUTTA et al.: DESIGN FOR AN AMPLIFY-AND-FORWARD RELAY BASED ON THE MBER CRITERION 3

TABLE I
REQUIREMENT OF CSI AT VARIOUS NODES FOR
MBER CRITERION BASED RELAY DESIGN

where E{xxH} = σ2
xINx

. Now, the signal received at the DN,180

yd ∈ C
Nd×1 is obtained as,181

yd =Hrdyf + nd

=HrdAF (Hsrs+ nr) + nd

= {HrdAFHsrAS}x+ {HrdAFnr + nd}
Δ
=Hx+ n, (3)

where H
Δ
= HrdAFHsrAS and n

Δ
= HrdAFnr + nd. The182

new effective noise vector n is a colored zero-mean Gaus-183

sian vector with the distribution of CN(0,Cn), where Cn ∈184

C
Nd×Nd is the new noise covariance matrix, which may be185

expressed as,186

Cn =E[nnH ]

=σ2
dINd

+ σ2
rHrdAFA

H
F HH

rd. (4)

At the DN, we employ a linear equalizer for detecting the187

transmitted symbol x. We assume that the equalizer matrix at188

the DN is Wd ∈ C
Nx×Nd , hence the estimated value of x is189

x̂ = WH
d yd.190

Note: The RN determines the AS , AF and Wd matrices191

jointly. Thus, we assume that the RN has the complete knowl-192

edge ofHsr andHrd, while the DN knows onlyHrd and feeds193

it back to the RN through a reliable communication channel.194

The SN has to know the matrixHsr only for the case of the sub-195

optimal SN-RN-DN (SRD) relay design to be described later.196

We refer “sub-optimal”, when Singular-Value-Decomposition197

(SVD) based structure is assumed for AF and source precoder198

matrices. In this case, only the singular values of these matrices199

need to be determined. By contrast, “optimal” refers to the case,200

where full complex AF and source precoder matrices need to be201

determined. Thus, for “optimal” case, SN need not to know the202

Hsr as the whole solution of the precoder will be sent back to203

SN by RN. For the sub-optimal case, the SN needs to recon-204

struct the precoder matrix from the SVD component of theHsr205

matrix. Table I shows the parameter knowledge requirements206

at different nodes, which are consistent with [9], except for207

our proposed optimal SN-RN-DN link design. We first develop208

the RN-DN link and then extend it to the SN-RN-DN link.209

For the RN-DN system, only the matrices AF and Wd have210

to be determined subject to the above RN power constraints.211

By contrast, for the SN-RN-DN system, the matrices AS , AF212

and Wd are determined subject to both the SN and the RN213

power constraints.214

III. MBER BASED RELAY-DESTINATION DESIGN 215

We first consider the RN-DN link design, which involves 216
the design of both the AF matrix AF and of the equalizer 217
matrix Wd. Various existing CFs, such as the LMMSE [7], 218
the Maximum Capacity (MC) [11] have been considered to 219
design bothAF andWd. In this treatise, we propose a solution 220
based on the MBER CF for jointly determining these matrices. 221
For the RN-DN link, the precoder matrix AS is fixed to INs

222

along with Ns = Nx. The total transmitted power is fixed to 223
Pt = σ2

xNs. The signals received at the RN and the DN are 224
yr = Hsrx+ nr and yd = HrdAFHsrx+HrdAFnr + nd, 225
respectively. The RN’s power becomes Tr{AF (σ

2
xHsrH

H
sr + 226

σ2
rINr

)AH
F }. In the current context, the MBER CF directly 227

minimizes the BER of the system at the DN. We first consider 228
the CF based on the BPSK constellation and then we extend it 229
to theM -QAM andM -PSK constellations. 230

Note: We will be formulating the cost function (CF) as the 231
symbol error ratio (SER). With a slight inaccuracy of terminol- 232
ogy, we refer to the MBER as that of minimizing the SER in the 233
subsequent sections. It is to be noted that minimizing SER will 234
also lead to minimization of BER as BER ≈ SER/ log2(M) 235
for most of the constellations [23]. 236

A. Cost Function 237

Let us assume that Pe,i denotes the SER, when detecting xi 238

(the ith component of x) at the DN. If every xi is detected inde- 239
pendently, the average probability of a symbol error associated 240
with detecting the complete vector x is given by, 241

Pe =
1

Ns

Ns∑
i=1

Pe,i. (5)

We constrain the RN’s transmission power to Pr and formulate 242
Pe,i associated with various constellations. Furthermore, we 243
would simplify the expression of Pe,i using various sub-optimal 244
approaches. The optimization problem is stated as follows: 245

Amber
F ,Wmber

d = arg
AF ,Wd

min Pe(AF ,Wd)

s.t T r
{
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

} ≤ Pr. (6)

Note: Equation (6) describes a constrained optimization 246
problem, where the constraint is with respect to the RN’s 247
transmitter power. Here, all Pe,i for i = 1, 2 . . . , Ns are opti- 248
mized together to arrive at the optimized AF and Wd matri- 249
ces. Explicitly, Equation (6) is simultaneously optimized over 250
(N2

r +Ns ×Nd) number of complex-valued variables. This is 251
because the AF matrix has N2

r number of complex entries, 252
while the Wd matrix has (Ns ×Nd) complex entries. There- 253
fore, the related optimization problem has a high computational 254
complexity. Hence, we now propose a suboptimal technique for 255
reducing the number of variables to be optimized. 256

1) Sub-Optimal Approaches for Reducing Both the Number 257
of Variables and the Complexity: Let us first decompose Hsr 258

and Hrd using the Singular Value Decomposition (SVD) as 259
Hsr = U1ΣsrV

H
1 andHrd = U2ΣrdV

H
2 respectively, where 260

U1∈C
Nr×Nr ,V1∈C

Ns×Ns ,U2∈C
Nd×Nd ,V2∈C

Nr×Nr are 261
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unitary matrices, whereas Σsr∈R
Nr×NS and Σrd∈R

Nd×Nr262

are matrices having singular values of σsr,i for i = 1, 2, . . . ,263

min(Nr, Ns) and σrd,i for i=1, 2, . . . ,min(Nd, Nr) in a de-264

scending order on the main diagonal, respectively. We also265

assume thatwi is the ith column ofWd for i=0, 1, . . . , Nd−1.266

We now propose a pair of computational complexity reduc-267

tion techniques.268

1) We use the SVD of the matrixAF , which has been shown269

to be optimal in the Mean Square Error (MSE) sense [7].270

However, this decomposition may not be optimal in the271

MBER sense. The assumed structure ofAF is defined as,272

AF
Δ
= V2ΣFU

H
1 (7)

where the unitary matricesV2 andU1 have been defined273

earlier. Furthermore, ΣF ∈ R
Nr×1 is the singular value274

matrix of AF , which has the singular values of σf,i275

for i = 1, 2, . . . , Nr. This reduces the N2
r number of276

complex variables to just Nr real variables.277

2) We propose to optimize each Pe,i in parallel. This re-278

duces the optimization complexity for each index i. We279

propose furthermore that for the kth index i = k, Pe,k is280

optimized with respect to bothΣF andwk. The obtained281

ΣF is then used for the rest of the Pe,i values for i =282

1, 2, 3, . . . , k − 1, k + 1, . . . , Ns as a given parameter. It283

is noted that the RN’s power constraint is not a function284

of any of the equalizers for i = 1, 2, 3, . . . , k − 1, k +285

1, . . . , Ns, hence the RN’s power constraint is not con-286

sidered thereafter. As a benefit, a valuable computational287

complexity reduction is achieved, since we only have to288

deal with (Nr +Nd) number of complex variables for289

i = k and then only with Nd complex variables for rest290

of i values without any RN power constraint. Further-291

more, for i = 1, 2, 3, . . . , k − 1, k + 1, . . . , Ns onward,292

the computation of wi can be performed in parallel,293

which facilitates the design of a larger chip capable of294

operating at a higher bit-rate, regardless of the specific295

choice of optimization method.296

By exploiting the SVD structure based assumption concern-297

ingAF ,H can be reduced to298

H =HrdAFHsr

=U2ΣrdV2HV2ΣFU1HU1ΣsrV1H

=U2ΣrdΣFΣsrV1H

Δ
=U2ΣVH

1 , (8)

where Σ
Δ
= ΣrdΣFΣsr. Let us now compute the RN’s power299

under the assumed structure ofAF as follows300

E
[
yH
f yf

]
=Tr

{
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

}
=Tr

{
V2ΣF

(
σ2
xΣsrΣ

H
sr + σ2

rINr

)
ΣH

F VH
2

}
=Tr

{
ΣF

(
σ2
xΣsrΣ

H
sr + σ2

rINr

)
ΣH

F

}
=

Nr∑
i=1

σ2
f,i

(
σ2
xσ

2
sr,i + σ2

r

) ≤ Pr. (9)

Explicitly, the RN’s power constraint becomes less complex, 301
since it does not involve any complex-valued matrix operations. 302
In a similar way, we now re-calculate the covariance matrixCn 303

of the composite noise, as perceived at the DN. Let us assume 304

thatA
Δ
= HrdAFA

H
F Hrd. Thus, we calculateA as follows 305

A =HrdAFA
H
F Hrd

=U2ΣrdV
H
2 V2ΣFΣ

H
F VH

2 V2Σ
H
rdU

H
2

=U2ΣrdΣFΣ
H
F ΣH

rdU
H
2

Δ
=U2ΣAU

H
2 , (10)

whereΣA
Δ
= ΣrdΣFΣ

H
F ΣH

rd. Upon substituting Equation (10) 306
into Equation (4), we arrive at Cn = σ2

dINd
+ σ2

rU2ΣAU
H
2 . 307

Our new optimization problem is then redefined as follows 308

For i = k :

Σmber
F ,wmber

k = arg
ΣF ,wk

min Pe,k(ΣF ,wk)

s.t

Nr∑
i=1

σ2
f,i

(
σ2
xσ

2
sr,i + σ2

r

) ≤ Pr. (11)

For i = 1, 2, 3, . . . , k− 1, k + 1, . . . ,N_s :

wmber
i = arg

wi

min Pe,i(Σ
mber
F ,wi). (12)

2) MBER CF Associated With the BPSK Constellation: We 309
first formulate the MBER CF for the BPSK constellation for the 310
sake of conceptual simplicity and then extend it to theM -QAM 311

and M -PSK constellations. Let us assume that wi is the ith 312
column of the DN’s equalizer matrixWd. If x̂i is the estimate 313
of xi for the BPSK constellation, we arrive at the expression of 314
PBPSK
e,i as follows [15]: 315

PBPSK
e,i =Pr {xi�{x̂i} < 0}

=Pr

{�{xi(wi)
HHx+ xi(wi)

Hn} < 0
}

=Ex

[
Pr

{�{xi(wi)
HHx+ xi(wi)

Hn} < 0
} |x]

=Ex

⎡
⎣Q

⎛
⎝� [

(wi)
HHxxi

]
√

1
2 (wi)HCnwi

⎞
⎠
⎤
⎦

=
1

L

L∑
j=1

Q

⎛
⎝� [

(wi)
HHxjxi

]
√

1
2 (wi)HCnwi

⎞
⎠ , (13)

where L = 2Ns represents the total number of unique realiza- 316
tions of x, while xj is the jth such realization of x. 317

3) The MBER CF Associated With the M -QAM Con- 318
stellation: For the M -QAM constellation, we assume that 319
the distance between any two adjacent constellation points 320
along either the real or the imaginary axis is 2a for a > 0. 321
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TheM -QAM constellation can thus be interpreted as a pair of322

PAM sequences of length
√
M along the real and imaginary323

axes. Thus, the SER of theM -QAM constellation is derived as,324

PQAM
e,i = 1− PR

c,i · P I
c,i (14)

where PR
c,i, P

I
c,i are the probability of correct decision for the325

QAM signal along the real and imaginary axes, respectively.326

For computational simplicity, we assume that the decision327

region of each point along either the real or imaginary axis328

is bounded by the length 2a, though the terminal points have329

larger range for decision region. This way, we only make each330

decision region uniform and restrictive to an extent. Let us331

now define L1 = M ((Ns−1)/2). Now, PR
c,i, P

I
c,i are derived in332

Equations (15) and (16), respectively (see equation at bottom333

of page).334

4) The MBER CF Associated With the M -PSK Constella-335

tion: For the M -PSK signal constellation set, each point is336

assumed to be on a unit circle and represented as ej(2πm/M) for337

m = 0, 1, . . . ,M − 1. Note that the real and imaginary compo-338

nents of the DN’s equalizer output noise, wH
i n, are correlated339

Gaussian random variables. For computational simplicity, we340

invoke an approximation and we whiten the noise by assuming341

AF to have the proposed SVD form of Equation (7). We342

commence by using Cn from Equation (4) as,343

Cn = ΣrdΣFΣ
T
FΣ

T
rd + σ2

dINd
. (17)

Thus, the ith diagonal element of Cn is [Cn]ii = σ2
d +344

σ2
rd,iσ

2
f,i. The noise whitening matrix is defined as Cs

Δ
=345

C
−(1/2)
n with [Cs]ii = (1/

√
σ2
d + σ2

rd,iσ
2
f,i). Therefore, the346

modified output vector received at the DN is defined as,347

ys =Csyd

=CsHx+ ns

=Hsx+ ns, (18)

with ns ∈ C
Ns×1 being the zero-mean i.i.d Gaussian random 348

vector with each component having a unit variance. Let us 349

assume that μR
i

Δ
= �{wH

i Hsx} and μI
i

Δ
= �{wH

i Hsx}, where 350
wi is the ith equalizer as defined earlier. Let furthermore r1 351
and r2 be the real and imaginary components of the equalizer 352
output. Their joint probability is calculated as [23], 353

pr1,r2,i =
1

2πσ2
e−{(r1−μR)2+(r2−μI)2}/2σ2

(19)

where σ2 = (1/2)wH
i wi. Let us now define V

Δ
=

√
r21 + r22 354

and the angle θ
Δ
= tan−1((r2/r1)). Thus, the probability of θ 355

for the ith symbol is obtained as [23] 356

pθ,i =
1

2πσ2
e−(μ

R
i sin(θ)−μI

i cos(θ))
2
/2σ2

×
∞∫
0

V e−(V −μI
i sin(θ)−μR

i cos(θ))
2
/2σ2

dV. (20)

At the higher SNR values, an approximation has been proposed 357
for Equation (20) in [23] as follows, 358

pθ,i ≈ 1√
2πσ2

(
μI
i sin(θ) + μR

i cos(θ)
)

×e−(μ
R
i sin(θ)−μI

i cos(θ))
2
/2σ2

, (21)

with |θ| ≤ π/2 and |θ| << 1. Equation (21) is valid form = 0. 359
This suggests that any constellation point at the ith position of 360
x can be rotated to the one corresponding tom = 0. Hence, we 361
may conceive a scheme by exploiting the circular constellation 362
ofM -PSK, where the SER has to be found for the constellation 363
point corresponding tom = 0. Thus,wi is determined by min- 364
imizing the probability of this particular symbol error only. We 365
then create M rotated versions of yd as ym

d = e−mπ/MINd
yd 366

for m = 0, 1, . . . ,M − 1. The estimated constellation point 367
(wH

i ym
d ) is then the one corresponding to any of theM number 368

of ym
d variables giving the minimum absolute angle. 369

PR
c,i =

1

L1

L1∑
j=1

√
M−1∑

m=−(
√
M−1),m odd

⎡
⎣Q

⎛
⎝ma− a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠

−Q

⎛
⎝ma+ a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠
⎤
⎦ (15)

P I
c,i =

1

L1

L1∑
j=1

√
M−1∑

m=−(
√
M−1),m odd

⎡
⎣Q

⎛
⎝ma− a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠

−Q

⎛
⎝ma+ a−� [

(wi)
HHxj

]
√

1
2 (wi)HCnwi

⎞
⎠
⎤
⎦ (16)
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Note: This technique imposes a low computational complex-370

ity for the following reasons.371

1) Since, we consider the SER only for m = 0, the number372

of computational loops required for calculating the SER373

will be reduced toMNs−1 fromMNs per iteration.374

2) Since, the SER of each constellation point requires a375

unique representation in terms of the Gaussian error376

functionQ(·), the complexity of calculating all of them is377

high. However, for our low-complexity solution, we only378

have to calculate the SER for a single constellation point379

corresponding tom = 0.380

The SER of the ith symbol of x is then formulated for our381

low-complexity method as382

PPSK
e,i =1− 1

L2

L2∑
l=1

π
M∫

−π/M

pθ,idθ

=
1

L2

L2∑
l=1

Q

[
μR
i,l sin

(
π
M

)− μI
i,l cos

(
π
M

)
σ

]

+
1

L2

L2∑
l=1

Q

[
μI
i,l cos

(
π
M

)
+ μR

i,l sin
(

π
M

)
σ

]
, (22)

where L2 = MNs−1 and μR
i,l or μ

I
i,l represent the values of μ

R
i383

or μI
i (as defined earlier) corresponding to the lth realization of384

x, respectively.385

IV. MBER BASED SOURCE-RELAY-DESTINATION386

LINK DESIGN387

Let us now consider the design of the SRD link based on388

the MBER CF. This involves a transmit precoder (TPC) matrix389

design at the SN in addition to the AF matrix of the RN and390

the equalizer matrix of the DN. We also have to obey the power391

constraint at the SN involving the TPC matrix in addition to the392

RN power constraint. The TPC, AF and equalizer matrices are393

optimized jointly. The CFs are again those of Equations (13),394

(15), (16), (22), i.e the same as in Section III for various con-395

stellations. The optimization problem of the SRD link design396

can be stated as,397

Amber
S ,Amber

F ,Wmber
d = arg

AS ,AF ,Wd

min Pe(AS ,AF ,Wd)

s.t (1) Tr
{
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

} ≤ Pr

(2) σ2
xTr

{
AH

S AS

} ≤ Pt, (23)

where Pt is the transmit power limit. Additionally, we also398

consider a suboptimal structure forAS for the case of reducing399

the number of variables during the optimization process. We400

consider the SVD ofAS withAS = V1ΣS , whereV1 is from401

the SVD decomposition of Hsr and ΣS is a diagonal matrix402

having the singular values. We also use the parallel optimiza-403

tion of Pe,i, as formulated in Section III. With these subop-404

timal approaches in mind, the optimization problem can be 405
restated as, 406

For i = k :

Σmber
S ,Σmber

F ,wmber
k = arg

ΣS ,ΣF ,wk

min Pe,k(ΣS ,ΣF ,wk)

s.t (1)

Nr∑
i=1

σ2
f,i

(
σ2
xσ

2
sr,i+σ2

r

)≤Pr,

(2) σ2
x

Ns∑
i=1

σ2
s,i ≤ Pt. (24)

For i = 1, 2, . . . , k− 1, k + 1, . . . , Nx :

wmber
i = arg

wi

min Pe,i

(
Σmber

S ,Σmber
F ,wi

)
, (25)

where σs,i represents the singular value ofAS . 407

V. SOLUTION OF THE MBER OPTIMIZATION PROBLEM 408

Remarks on CF 409

The MBER CF may have multiple local minima. As for 410
example, Fig. 2. plots a CF with respect to the equalizer weights 411
(Only the first equalizer w1) for Ns = Nr = Nd = 2 for a 412
fixed real-valued channel and for fixed real-valued AF and 413
AS matrices for the BPSK signal sets. The equalizer length 414
is 2. For this example, the real-valued channels are assumed 415

to be Hsr =

[−1.12 0.74
0.41 0.90

]
and Hrd =

[−1.53 −0.86
0.51 −0.38

]
. 416

Observe in Fig. 2 that the CF has several minima with respect 417
to the equalizer weight w1, hence conventional gradient-based 418
receivers might get stuck in a local optimum, depending on 419
where the search is started on this surface. It is also noted that 420
the solutions obtained from both the MBER and the LMMSE 421
methods are different ((3.4, 8.2) and (5.2, 9.4) for MBER and 422
LMMSE, respectively), while the CF values are 7.8× 10−3 and 423
1.1× 10−2 for MBER and LMMSE methods, respectively. The 424
LMMSE solution might be a reasonable starting point [17]. 425

426

Binary Genetic Algorithm: Fortunately, random guided op- 427
timization methods, like Genetic Algorithms (GA) [21], Simu- 428
lated Annealing (SA) [24] etc. are capable of circumventing this 429
problem. In this work, we used the binary GA for findingWd, 430
AF . As this GA accepts only real-valued variables, we form 431

a vector v ∈ R
(NdNx+NrNs+N2

r )×1 by stacking all the real and 432
imaginary components of theWd,AF ,AS matrices as follows 433

v = [�{vec(Wd)}� {vec(Wd)}� {vec(AS)}
�{vec(AS)}�{vec(AF )}� {vec(AF )}]T . (26)

Similarly, for the case of the suboptimal scenario, we would 434
form the vector as 435

v = [�{vec(wk)} {vec(ΣS)} {vec(ΣF )}]T . (27)

The vector v is first converted to a binary string and then a 436
series of GA operations like “Parents selection”, “Crossover” 437
and “Mutation” are invoked [21] for finding an improved 438
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Fig. 2. Logarithm of CF from Equation (11) is plotted with respect to the first
equalizerw1. Equalizerw1 is real-valued and is of the length 2. Ns = Nr =
Nd = 2 are associated with fixed AF and AS matrices and fixed real-valued
channel. The signal set is assumed to be BPSK. The MBER solution (obtained
from GA) of w1 is (3.4, 8.2), while its LMMSE solution is (5.2, 9.4). The
value of CF at the MBER solution is 7.8× 10−3, while it is 1.1× 10−2 at
the LMMSE solution.

Fig. 3. Complexity (in terms of multiplication) vs. Nd comparison with
various optimization options for SRD link design fixing Nr = 2, Ns = 2,
Ns = Nx and QPSK data set.

solution. This binary string is also known as a chromosome.439

We initially “seed” the GA with an initial solution consti-440

tuted by the LMMSE one, so that the GA achieves a faster441

convergence. Unlike any steepest descent method, GA would442

search through various possible minima using “evolutionary”443

techniques. Thus, it has a reduced chance of getting into a444

local minimum compared to the case of completely random445

initialization. We provide a brief description of the GA in446

Appendix I. The procedure conceived for finding AF , Wd447

and AS with the aid of our constrained binary GA is given in 448
Algorithm. 1. 449

Algorithm 1: MBER basedAF ,Wd andAF design for the 450
relay link (Suboptimal). 451

1: Given: Ns, Nr, Nd,Hsr,Hrd with SVD components σ2
x, 452

σ2
r , σ

2
d and Pr along with LMMSE solutions ofWd, AF and 453

AS as initial “seed”. 454

2: Obtain Σmber
F , wmber

k from Equation (11) using our 455
constrained binary GA. 456

3: for i = 1, 2, . . . , k − 1, k + 1, . . . , Nx} 457

4: Substitute Σmber
F calculated for i = k into Pe,i. 458

5: Find wmber
i from Equation (12) using our binary GA. 459

6: end for 460

7: returnwmber
i for i = 1, . . . , Nx and Σ

mber
F , Σmber

S . 461

Projected Steepest Descent method: We have also used tech- 462
niques, the low-complexity Projected Steepest Descent (PSD) 463
[22] optimization method, which is one of the steepest descent 464
conceived for constrained optimization [22]. We first form a 465
vector of all the variables of interest. In the case of the optimal 466
scenario, we stack all the complex components of the Wd, 467
AF and AS matrices to form v ∈ C

(NdNx+N2
r+NsNr)×1 (the 468

variable of interest) as follows 469

v = [{vec(Wd)} {vec(AF )} {vec(AS)}]T . (28)

For the PSD method, the updated vector at the jth iteration is 470
obtained as 471

vj+1 = vj + αsj −Gj

(
GH

j Gj

)−1
gj (29)

where Gj is the gradient of the feasible constraints, gj is the 472
stack of feasible constraints and can be defined as follows 473

gj =

[ (
Tr

(
AF

(
σ2
xHsrH

H
sr + σ2

rINr

)
AH

F

)− Pr

)(
σ2
x

(
Tr

(
AH

S AS

))− Pt

) ]
(30)

We also define sj as follows 474

sj = −
[
I−Gj

(
GH

j Gj

)−1
GH

j

]
∇f(xj). (31)

along with α = −(γf(xj)/s
H
j ∇f(xj)), where γ is the desired 475

reduction factor, usually assumed to be 0.05 (5%). For our 476
specific problem with the optimal case, Gj will be obtained 477
as follows 478

Gj =

⎡
⎣ vec (0Nd×Nx

) vec (0Nd×Nx
)

vec (AFA1) vec (0Nr×Nr
)

vec (0Ns×Ns
) vec (AS)

⎤
⎦ (32)

where A1
Δ
= (σ2

xHsrH
H
sr + σ2

rINr
)(σ2

xHsrH
H
sr + σ2

rINr
)H . 479

For the suboptimal case,Gj would be obtained as follows 480

Gsub
j =

⎡
⎣ vec (0Nd×1) vec (0Nd×1)

c1 vec (0Nr×1)
vec (0Nx×1) c2

⎤
⎦ (33)
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TABLE II
COMPUTATION COMPLEXITY COMPARISON BETWEEN THE PROPOSED

MBER METHOD WITH LMMSE METHOD FOR SRD RELAY

where [c1]i = (σ2
xσ

2
sr,i + σ2

r) and [c2]i = σ2
x. For suboptimal481

case, gj is defined as follows482

gsub
j =

⎡
⎣
(∑Nr

i=1 σ
2
f,i(σ

2
xσ

2
sr,i + σ2

r)− Pr

)
(
σ2
x

∑Ns

i=1 σ
2
s,i − Pt

)
⎤
⎦ (34)

For all cases, the initial value of v is chosen from the LMMSE483

solution.484

VI. COMPUTATIONAL COMPLEXITY ANALYSIS485

Let us now approximate the computational complexity of the486

relay link designs using the MBER CF. We express it in terms487

of the number of operations, which can be addition, subtraction488

and multiplication operations. We first quantify the complexity489

in terms of the number of multiplications and then in terms of490

all the operations. We found that the complexity is dominated491

by the multiplications due to the associated matrix operations.492

We have also considered the complexity separately for both the493

optimal and sub-optimal approaches. Let us assume that Npop494

and Nga are the population size and the average number of GA495

iterations, respectively. The complexity results are presented in496

Table II for the SRD case. However, the details of the analysis497

are given in Appendix II along with the RD case as well. We498

have also analyzed the detailed complexity involving the PSD499

optimization, albeit they are not given in the table due to space500

limitations.501

Notes:502

1) An approximation for NQ can be obtained in several503

ways. In practice, the Q(·)-function is calculated using504

the look-up table. Ignoring the off-line calculations of505

its values at various data points, we need to compute506

the index of the discretized argument, which needs one507

unit of operation followed by a memory-read. The other508

approach is constituted by the more accurate Taylor 509
series. 510

Q(x) =
1

2
− 1√

2π

∞∑
n=0

(−1)(n)x2n+1

n!(2n+ 1)2n
. (35)

We note that typically 2n is calculated by the left-shifting 511
of the binary string by one position and 2n is simply a 512
binary number of length (n+ 1) with only a single ‘1’ at 513
the (n+ 1)th position. Thus, we can ignore the complex- 514
ity involving these two operations. Now, we can calculate 515
the NQ as NQ ≈ 4Nlim with multiplications and NQ ≈ 516

5Nlim with total operations, respectively, where Nlim 517

is a number for representing the limit of Taylor series 518
sum. Simulation shows that evenNlim ≥ 20 gives a good 519
approximation with argument x ≤ 4. 520

2) In the complexity analysis, another complexity compo- 521
nent involving the SVD decomposition of a matrix has 522
to be mentioned, which is required for both the LMMSE 523
algorithm and for our proposed low complexity solution. 524
For the channel matricesHsr andHrd, the order of com- 525
plexity will beO(4N2

rNs+22N3
s )+O(4N2

dNr+22N3
r ). 526

3) The computational complexity of the LMMSE solution 527
relying on ARITH-BER [9] has not been analyzed in [9], 528
hence we analyze it for comparison. The complexity in 529
terms of the multiplications is approximately 4N2

sNx + 530

8Ns + 4 + 19Ns + 2Nr + 4N3
r + 4Nr N

2
s + (32N3

s − 531

12N2
s − 2Ns)/6 + 3min(Nd, Ns, Nr, Nx) + 2NdNx + 532

(32N3
d−12N2

d−2Nd)/6+4NdN
2
r +2N2

d+4NdNsNx+ 533

4NsN
2
d+2NsNd. The total complexity is approximately 534

(8Ns − 2)NsNx + 29Ns + 3 + (8Nr − 2)N2
r + 2Nr + 535

(8Ns−2)NrNs + (32N3
s + 60N2

s −14Ns)/3 + (8Ns − 536

2)NdNx+(8Nd− 2)NsNd+2NsNd+4N2
d +(32N3

d + 537

60N2
d − 14Nd)/3 + 3min(Nd, Nr, Ns, Nx)2NdNx + 538

(8Nr − 2)NrNd +Nd. 539

VII. NUMERICAL RESULTS 540

Let us now study the BER performance of the proposed 541
method against that of the LMMSE method [7]. Our simu- 542
lations are performed in two stages. During the first stage, 543
we use a known training sequence for determining both the 544
TPC as well as the AF and equalizer matrices of the SN, 545
RN, DN respectively. In the second stage, the data sequence 546
is detected. We consider a flat Rayleigh fading i.i.d channel 547
with unit variance for each complex element of Hsr and Hrd. 548
Thus, the Channel Impulse Response (CIR) is a non-dispersive 549
Rayleigh-faded one. Most of the simulations are preformed 550
for Ns = 2, Nr = 2, Nd = 2 with channel coding, which uses 551
Convolution Code (CC) of (7, 5)8. We have used the Soft- 552
Output Viterbi decoding [23]. The RN’s SNR is defined as 553
SNR1 = 10 log10((σ

2
x/σ

2
1)) dB, where σ

2
x is the power of each 554

xi, which is set to (Pt/Nx) with Pt = 1 dBm. The DN’s SNR 555

is defined as SNR2 = 10 log10((Pr/Nrσ
2
2)) dB, with the RN 556

power constraint of Pr = 5 dBm. Finally the SN’s power is 557
constrained to Pt = 1 dBm unless specified otherwise. The 558
SNR1 is kept at 20 dB. Our simulation results are averaged 559
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TABLE III
GA PARAMETERS

Fig. 4. BER vs. SNR2 performance of the RN-DN link design based on the
MBER method (with full AF , Wd (equation (6)) and suboptimal methods
(equations (11) and (12)) along with the LMMSE method over a flat Rayleigh
fading channel. Performances with and without the channel estimation are
presented. Ns, Nr, Nd = 2, Pr is constrained to 5 dBm and SNR1 is 20 dB.
Convolution code of (7, 5)8 is used along with the GA optimization.

over 1000 channel realizations per SNR value. In all our sim-560

ulation setup, we have assumed Nx = Ns, though any value561

of Nx can be assumed. The GA related parameters are chosen562

as per Table III.563

Experiment 1: This experiment is for the RD link design.564

The primary focus of this experiment is to characterize the BER565

performance of the proposed MBER method against that of the566

LMMSE benchmark [7]. We have also evaluated the BER per-567

formance both with perfect and with estimated channel, where568

the channel was also estimated using the LMMSE technique.569

In the second part of the experiment, we characterized the570

various suboptimal methods along with the original problem571

formulation of Equation (6) for analyzing the effects ofAF and572

Wd. In this experiment, we have also shown the superiority573

of the MBER method over a rank-deficient system, where574

conventional LMMSE technique fails to perform adequately.575

Remarks:576

1) Fig. 4. plots the BER vs. SNR2 performance of both577

the MBER and LMMSE based RD link design. Ob-578

serve in Fig. 4 that as the SNR increases, the MBER579

method increasingly outperforms the LMMSE method.580

Fig. 5. BER vs. SNR2 performance of the rank-deficient RN-DN link design
based on the MBER method (optimal) along with the LMMSE method over
a flat Rayleigh fading perfect channel. Ns = 4 and Nr, Nd = 2, Pr is
constrained to 5 dBm and SNR1 is 20 dB. Convolution code of (7, 5)8 is used
along with the GA optimization.

At BER = 10−3 the MBER method requires an SNR 581

of approximately 19.5 dB (suboptimal, SVD based) 582
and 20.7 dB (optimal), respectively, while the LMMSE 583
method needs SNR ≈ 26 dB for the perfectly known 584
channel. Thus, the MBER method attains an SNR gain of 585
approximately 5 dB (suboptimal) and 6.5 dB (optimal), 586
respectively for the scenario of SNR1 = 20 dB and Pr = 587

5 dBm. The SNR gain of the LMMSE-estimated channel 588
remains almost ≥ 5 dB for the suboptimal MBER based 589
RN-DN link design. 590

2) Fig. 5 shows the BER performance of a rank-deficient 591
system. The Ns = 4 with Nr = 2Nd = 2. It shows that 592
at BER = 4× 10−3, the MBERmethod gives a BER gain 593
of almost 5 dB, where conventional LMMSEmethod fails 594
to perform adequately. 595

3) Let us now consider both the SVD structure of AF and 596
its original non-decomposed structure. In both the cases, 597
we generate wi in both ways, first as in Equation (6) and 598
then as in Equations (11) and (12). Fig. 6 characterizes 599
all these cases. Observe that at BER = 10−3, the SVD 600

structure basedAF obtains a degraded SNR performance 601
of 1.5 dB compared to the case, where AF assumes no 602
SVD structure. It is also observed from Fig. 6 that the two 603
choices for determining the equalizer matrixWd do not 604
have severe impact on the performance. This implies that 605
AF dominates the CF compared to the equalizer matrix 606
Wd in the MBER framework. This also highlights the 607
fact that our low-complexity solution of Equations (11) 608
and (12) conceived for determining the DN’s equalizers 609
in parallel does not impose any substantial degradation 610
on the BER performance in Fig. 6. 611
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Fig. 6. BER vs. SNR2 performance of the RD link design based on the MBER
method with various options forAF andWd matrices (Various combinations
of equations (6) and (11), (12)) with a flat Rayleigh fading channel. Channels
are perfectly known. Ns, Nr, Nd = 2, Pr is constrained to 5 dBm and SNR1

is 20 dB with CC code of (7, 5)8.

Experiment 2: Thi experiment characterizes the BER per-612

formance of both 8-PSK and 16-PSK relying on the MBER613

CF for transmission over a flat Rayleigh fading channel for the614

RD link. The channels are assumed to be perfectly known. The615

rest of the experimental setup is the same as in Experiment-1.616

Remarks:617

1) Fig. 7 plots the BER of the MBER method for both 8-618

PSK and 16-PSK. Observe in Fig. 7 that at the BER =619

10−3 8-PSK using the MBER CF requires an SNR of620

approximately 24.5 dB (suboptimal, SVD), while the621

LMMSE method needs approximately 29.5 dB. Thus, the622

MBER method provides an SNR gain of approximately 5623

dB (suboptimal) in conjunction with SNR1 = 20 dB and624

Pr = 5 dBm for 8-PSK. Similar BER improvements are625

attained also for 16-PSK.626

Experiment 3: In this experiment, the Gaussian Q(·)-627

function encapsulated in the CF is approximated by the less628

complex function of Q(x) ≈ (1/2)e−x2/2[23]. In Fig. 8, we629

only characterize the RD link, this investigation may be readily630

extended to the SRD link design as well. Again, the chan-631

nels are assumed to be perfectly known in this experiment.632

Remarks:633

1) Fig. 8 portrays the BER performance of the MBER634

method using the above-mentioned Q(x) ≈ (1/2)e−x2/2635

approximation for the RD link, which reduces the com-636

plexity of the search from that of Equation (11) to637

Equation (12) imposed, when finding AF andWd. Ob-638

serve in Fig. 8 that the performance penalty imposed by639

this approximation is negligible at higher SNR values640

(> 25 dB), although at lower SNR values this degradation641

is non-negligible.642

Experiment 4: In this experiment we consider the SRD link643

using our proposed MBER based framework. We have also644

Fig. 7. BER vs. SNR2 performance of the RD link design based on the MBER
method over a flat Rayleigh fading channel with 8- and 16-PSK signal sets with
CC code of (7, 5)8. Channels are perfectly known. Ns, Nr, Nd = 2 with Pr

and SNR1 being constrained to 5 dBm and 20 dB, respectively.

Fig. 8. BER vs. SNR2 performance of the RD link design based on the MBER
method with the Gaussian error function Q(.)-function approximation to an
exponential one over a flat Rayleigh fading channel. Channels are perfectly
known. QPSK signal set is used with CC code of (7, 5)8. Ns, Nr, Nd = 2
with Pr being constrained to 5 dBm.

considered a 4× 2× 2 rank-deficient SRD case. We set the SN 645

and RN power constraints to be Pt = 5 dBm and Pr = 5 dBm, 646
respectively. We do not invoke the SVD of the AF and AS 647

matrices in this experiment. The channels are assumed to be 648
perfectly known. We have used CC code of (7, 5)8. In this 649
experiment, we have used both GA with LMMSE “seed” and 650
PSD with LMMSE initial solution. Remarks: 651

1) Fig. 9 characterizes the BER performance of the SN-RN- 652
DN link using our MBER framework. With GA method, 653
at the BER = 10−3, the MBER method requires an SNR 654
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Fig. 9. BER vs. SNR2 performance of the SRD link design based on the
MBER method over a flat Rayleigh fading channel. Channels are perfectly
known. Ns, Nr, Nd = 2, Pr and Pt are constrained to 5 dBm and SNR1

is 20 dB. QPSK signal set is used with CC code of (7, 5)8. GA and PSD
optimizations are used.

Fig. 10. BER vs. SNR2 performance of a rank-deficient 4× 2× 2 SRD link
design based on the MBER method over a flat Rayleigh fading channel. Chan-
nels are perfectly known. Ns = 4, Nr, Nd = 2, Pr and Pt are constrained to
5 dBm and SNR1 is 20 dB. QPSK signal set is used with CC code of (7, 5)8.
PSD optimization is used.

of approximately 9.8 dB (optimal), while the LMMSE655

method needs 15 dB and ARITH-BER requires 13.5 dB,656

respectively. Thus, the MBER method attains an SNR657

gain of approximately 5.2 dB and 3.7 dB for the SRD link658

with respect to LMMSE and ARITH-BER, respectively.659

We observe that PSD gives a 0.7 dB SNR degradation.660

2) Fig. 10 shows the BER performance of the rank-deficient661

case. It shows that we can still attain an SNR gain of662

almost 3.5 db at the BER = 1× 10−3 with coded data663

along with the PSD optimization method.664

VIII. CONCLUSIONS 665

New MBER-based TPC, AF and equalizer matrices were 666
designed for the RN-DN link and SN-RN-DN links. The CFs of 667
various constellations were derived and a solution was found for 668
the design of these matrices using the MBER framework. Sub- 669
optimal approaches have also been proposed for computational 670
complexity reduction. It was shown that the BER performance 671
of the proposed method is superior compared to the LMMSE 672
method, albeit this improved performance has been achieved at 673
an increased computational complexity. 674

APPENDIX I 675

OPTIMIZATION TECHNIQUES 676

In this contribution, we have adopted two optimization meth- 677
ods, namely the binary GA [21] and the PSD [22]. Below we 678
provide a brief description of the GA technique in the context 679
of our problem. 680

A. Binary GA 681

The binary GA is a heuristic method of optimization [21]. 682
We form a vector also referred to as a chromosome from the 683
variables of interest by stacking all the variables’ real and 684
imaginary components as defined in Equation (26). 685

1) Population selection GA commences its operation from 686

a set of initial chromosome values known as the initial 687
population having a size of Npop. The initial solution can 688
be randomly generated or “seeded” with a better initial 689
choice. The second option leads to a faster convergence. 690
In our case, the “seed” is the “LMMSE” solution and 691
the initial population is generated with the aid of a slight 692
random variation around the “seed”. Now, for every chro- 693
mosome in the population, a “fitness” value is obtained by 694
calculating the CF value against each of them. Then, the 695
Roulette-Wheel algorithm of [21] is invoked for selecting 696
the suitable parent solutions for generating child solutions 697
for the next iteration. A pair of techniques referred to 698
as crossover and mutation are invoked for generating 699
children from the parents. 700

2) Crossover The crossover operation is a chromosome “re- 701
production” technique by which an off-spring is gener- 702
ated upon picking various parts of its parent chromosome. 703
This method introduces a large amount of characteristic 704
variation into the off-spring. Let us consider the following 705
example. Let us assume that a random binary string, B1, 706
which has the same length as chromosome is created. We 707
also assume that two children, namelyCh1 andCh2 have 708
to be created from two parent chromosomes P1 and P2. 709
Then, if the ith position of B1 is 0, Ch1 and Ch2 would 710
fill up their ith position from the ith position of P1 and 711
P2, respectively. Otherwise, the ith position of P1 would 712
populate Ch2 and that of P2 would go to Ch1. 713

P1 = [11000110];

P2 = [10111001];

B1 = [00101011]; (36)
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Hence, the children become714

Ch1 = [11101101];

Ch2 = [10010010]; (37)

Mutation Mutation is a relatively small-scale character-715

istic variational “reproduction” tool for off-spring gen-716

eration. It introduces a bit flipping at a few randomly717

selected places of the chromosomes. For example, if a718

parent chromosome is P = [11000110], a mutation at719

the 2nd Least-Significant-Bit (LSB) position generates a720

child Ch = [11000100].721

3) Termination Using the crossover and mutation tech-722

niques, a new set of off-spring is generated along with723

their fitness value. If one of them satisfies the required724

fitness value, the process is terminated with that chromo-725

some being the solution. The process is also terminated,726

if the maximum number of iterations is exceeded. If no727

sufficiently good fit is found at a given iteration (provided728

the maximum iteration number has not been reached),729

the algorithm goes ahead with the selection of parents730

from the current set of children using the Roulette-Wheel731

algorithm mentioned earlier.732

APPENDIX II733

DETAIL COMPLEXITY ANALYSIS734

The CF of BPSK formulated in Equation (13) is considered735

here first for this calculation, which is readily extended to other736

constellations as well. However, it is noted that the overall737

complexity depends on the specific choice of optimization738

method. We first calculate the complexity of calculating the CF739

and constraints once, irrespective of the choice of optimization740

method.741

RN-DN Link: Let us commence with the BPSK CF Equa-742

tion (13). Let us first consider the term (wi)
HHxjxi. The743

fundamental assumption is that multiplication of two complex744

numbers would take 4 real data multiplication and 6 total745

operation (2 extra additions are required). Hence, two complex746

matrices of orders C
M×N and C

N×K would take 4MNK747

multiplications, whereas the total operation required is (8N −748

2)MK. Multiplication of a complex-valued matrix and a vector749

of orderCM×N andCN×1 would require 4MN multiplications750

and (8N − 2)M total operations, respectively.751

1) Thus, effective channel matrix H takes Nm
1 = 4NrNd752

(Nr +Ns) multiplications and N t
1 = 2Nd(Nr +Ns)753

(4Nr − 1) total operations respectively. Calculation ofH754

is common with all the equalizers wi.755

2) (wi)
HHxjxi requires Nm

2 = 4NdNs + 4Ns + 1 multi-756

plications and N t
2 = 8NsNd + 6Nd − 1 total operations,757

respectively.758

3) Similarly, the noise covariance matrix Cn(4) re-759

quires Nm
3 = 4NdN

2
r + 2N2

d multiplications and N t
3 =760

(8Nr − 2)NrNd + 2N2
d +Nd total operations, respec-761

tively. It assumes that calculation of HrdAF is already762

done with H. Calculation of Cn is common with all the763

equalizers wi.764

4) Thus,wH
i Cnwi requiresNm

4 =4N2
d+4Ndmultiplication 765

and N t
4=8N2

d+6Nd−2 total operations, respectively. 766

5) Assuming the square root and division as two unit of op- 767
erations, the total complexity of calculating the CF once 768
is Nm

5 = Nm
1 +Nm

3 +NxN
m
4 + 4NdNsNx +Nx2

Nx 769

(4Nx + 1 +NQ) (with only multiplication) and N t
5 = 770

Nm
1 +Nm

3 +NxN
t
4+Nx(8NsNd−2Ns)+ 2Nx(8Nx+ 771

1 +NQ) (with total operations), respectively, where NQ 772

is the complexity involving the Q(·)-function. 773

6) If M -QAM is chosen, the complexity will be approx- 774
imately Nm

5 ≈ Nm
1 +Nm

3 +NxN
m
4 + 4NdNsNx + 775

2NxM
Nx(4Nx+ 1+NQ) with multiplication and N t

5 ≈ 776

N t
1+N t

3+NxN
t
4+6N2

sNd+2NxM
Nx(2NxNd+6Nd+ 777

NQ) with the total complexity, respectively. For the 778
M -PSK case with the rotated constellation concept, 779
we need to multiply (4Nx + 1 +NQ) with only 780
2NxM

Nx−1(4Nx + 1 +NQ). 781

7) For the SVD-based approach, the complexity of 782
H requires Nm

1 = min(Nd, Nr) + 2N2
d + 4NdN

2
s mul- 783

tiplications and N t
1 = min(Nd, Nr) + 2N2

d + (8Ns − 784

2)NdNs total operations. 785

8) Let us calculate the complexity involving the constraints. 786
From equation (6), we obtain the complexity for con- 787
straints as Nm,c

1 = 8N3
r + 4N2

rNs + 2N2
r with multipli- 788

cation only and N t,c
1 = N2

r (8Ns + 16Nr − 6) + 2Nr + 789

2(Nr − 1) with total operations, respectively. For the 790
SVD approach, it would be Nm,c

1 = 2Nr with multipli- 791
cations and N t,c

1 = 3Nr total operations, respectively. 792

SN-RN-DN Link: For the case of the SN-RN-DN link, we 793
have to additionally incorporate the calculation of the TPC 794

matrixAS . 795

1) We obtain the complexity forH as Nm
1 = 4NrNd(Nr + 796

Ns) + 4NrNsNx with multiplication and N t
1 = 797

2Nd(Nr +Ns)(4Nr − 1) + (8Ns − 2)NrNx with total 798
operations, respectively. For the SVD-based approach, 799
we obtain Nm

1 = 3min(Nd, Nr, Ns, Nx) + 2NdNx 800

for multiplications and N t
1 = Nm

1 as well for the total 801
operations. 802

2) An additional complexity for the source power constraint 803
may be calculated as Nm,c

2 = 4N2
sNx + 1 with multi- 804

plication and N t,c
2 = (8Ns − 2)NsNx + 2Ns − 1 with 805

total computations, respectively. For the SVD-based ap- 806
proach, they become Nm,c

2 = 1 for multiplication and 807
N t,c

2 = Ns + 1 for total operations, respectively. 808

Computational-Complexity, Specific to Optimization 809
Method: Computational complexity is also dependent on 810
the specific choice of optimization algorithm to determine 811
the parameters. For binary GA, time-complexity is more 812
appropriate. However, we try to give an approximate 813
computational-complexity for GA. The computational- 814
complexity for GA is dominated by the function and constraint 815
evaluations to determine the eligible population at each 816
iterations. Let us assume that total size of population is Npop 817

and GA requires Nga iterations to converge. Then, total 818
complexity will be approximately NpopNga(N

m
5 +Nm,c

1 + 819

Nm,c
2 ) with multiplication and NpopNga(N

t
5 +N t,c

1 +N t,c
2 ) 820

with total operations, respectively. 821
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For the PSD algorithm, we need to calculate the gradient822

for both function and constraint. Gradient of CF is calculated823

numerically.824

1) Gradient ofCF takesNm,psd
1 =2(NdNx+N2

r +NsNr)N
m
5825

multiplication and N t,psd
1 =2(NdNx+N2

r +NsNr)N
t
5826

total operations, if we use numerical method. For the827

SVD-based approach, it would be Nm,psd
1 = 2(Nd +828

Nx +Nr)N
m
5 with multiplication andN t,psd

1 = 2(Nd +829

Nx +Nr)N
t
5 with total operations.830

2) Per iteration, other steps require Nm,psd
2 = 18(N2

r +831

NsNr)+ 6(NdNx +N2
r +NsNr) + 4(N2

r +N2
s )

2 + 9832

multiplications and N t,psd
2 = 25(N2

r +NsNr) + 22 +833

10(NdNx +N2
r +NsNr) + 8(N2

r +NsNr)
2 total834

operations. For sub-optimal case, it would be Nm,psd
2 =835

2(N2
r +N2

s ) + 3(Nd +Nr +Ns) + 1 + 2(Nd +Ns)836

for multiplication and N t,psd
2 = 6(Nr +Ns)− 6 +837

7(Nd +Nr +Ns) for total operations.838

3) If PSD takes an average iteration of Npsd, the839

computational complexity may be approximated as840

Npsd(N
m,psd
1 +Nm,psd

2 ) with multiplication and841

Npsd(N
t,psd
1 +N t,psd

2 ) with total operations.842

Computational Complexity for LMMSE [9]-ARITH BER843

Case: We give an approximate computational complexity for844

the LMMSE case for comparison purpose.845

1) The computationof precodermatrixAS requires4N2
sNx+846

8Ns + 3 multiplication and (8Ns − 2)NsNx + 5Ns + 1847

total operations.848

2) The computation of AF matrix requires 19Ns+1+2Nr+849

4N3
r + 4NrN

2
s + (32N3

s − 12N2
s − 2Ns)/6 multiplica-850

tions and 24Ns + 2 + (8Nr − 2)N2
r + 2Nr + (8Ns −851

2)NrNs + (32N3
s + 60N2

s − 14Ns)/3 total operations.852

3) Computation of effective channel matrix and noise co-853

variance matrix are already given.854

4) Computation of equalizer matrix requires 4NdNsNx +855

4NsN
2
d+2NsNd+(32N3

d−12N2
d−2Nd)/6 multiplica-856

tions and (8Ns−2)NdNx+(8Nd−2)NsNd+2NsNd+857

2N2
d+(32N3

d + 60N2
d − 14Nd)/3 total operations.858
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