8 to determine various linear parameters. We consider both the 9 Relay-Destination (RD) as well as the Source-Relay-Destination 0 (SRD) link design based on this MBER framework, including the 1 precoder, the Amplify-and-Forward (AF) matrix and the equal2 izer matrix of our system. It has been shown in the previous 3 literature that MBER based communication systems are capable 4 of reducing the Bit-Error-Ratio (BER) compared to their Linear 5 Minimum Mean Square Error (LMMSE) based counterparts. We 6 design a novel relay-aided system using various signal constella7 tions, ranging from QPSK to the general M-QAM and M-PSK 8 constellations. Finally, we propose its sub-optimal versions for 9 reducing the computational complexity imposed. Our simulation 0 results demonstrate that the proposed scheme indeed achieves a 1 significant BER reduction over the existing LMMSE scheme.

Index Terms-Minimum bit error ratio (MBER), linear minimum mean square error (LMMSE), Relay, multiple-input multi-ple-output (MIMO), singular-value-decomposition (SVD).

RELAY-BASED communication systems have enjoyed considerable research attention due to their ability to 8 provide a substantial spatial diversity gain with the aid of distributed nodes, hence potentially extending the coverage area and/or for reducing the transmit power [1], [2]. A pair 1 of key protocols has been conceived for relay-aided systems, 2 namely the regenerative [3], [4] and the non-regenerative [5], [6] protocols. In the regenerative scenario, the relay node (RN) 3 decodes the signal and then forwards it after amplification to 5 the destination node (DN) (also known as a decode-forward 6 relay), while maintaining the same total relay- plus source7 power as the original non-relaying scheme. By contrast, in the 8 case of non-regenerative relaying, the RN only amplifies the 9 signal received from the source node (SN) and then forwards it

[^0]to the DN without any decoding (also known as an amplify-and- 40 forward relay), again, without increasing the power of the orig- 41 inal direct SN-DN pair. Non-regenerative relaying is invoked 42 for applications, where both low latency and low complexity 43 are required.

Multiple-input multiple-output (MIMO) techniques may be 45 beneficially combined with relaying for further increasing both 46 the attainable spectral efficiency and the signal reliability. The 47 non-regenerative relay involves the design of both the Amplify- 48 and-Forward (AF) matrix at the RN and the linear equalizer 49 design at the DN, or any precoder matrix at the SN , subject to 50 the above total SN and (or) RN power constraints. Various Cost 51 Functions (CF) have been proposed for optimizing these matri- 52 ces, such as the Linear Minimum Mean Square Error (LMMSE) 53 [7]-[10] and the Maximum Capacity (MC) [11], [12] CFs, etc. 54 However, the direct minimization of the Bit-Error-Ratio (BER) 55 at the DN has not as yet been fully explored in the context of 56 designing the various parameters of non-regenerative MIMO- 57 aided relaying, although a BER based RN design was proposed 58 In reply to: [13] for a single-antenna scenario. Hence, the work 59 in [13] does not deal with the design of precoder, AF and 60 linear equalizers as matrices due to the consideration of single 61 antenna at SN, RN and DN. Though, a Minimum Bit Error 62 Ratio (MBER) CF based MIMO-aided relay design [14] was 63 provided for a cooperative, non-regenerative relay employing 64 distributed space time coding, it was based on the classic BPSK 65 signal sets. This work assumes the power allocation matrix 66 to be diagonal and no RN power constraint was used in the 67 optimization problem. In this case of [14], the relay power 68 was normalized after determining the diagonal AF and precoder 69 matrices with unconstrained optimization problem, which leads 70 to a sub-optimal solution.

The benefit of MBER-based linear system design has been 72 well studied in literature. To elaborate a little further, the MBER 73 CF directly minimizes the BER [15]. Previous literature has 74 shown that a sophisticated system design based on this criterion 75 is capable of outperforming its LMMSE counterpart in terms of 76 the attainable BER. Owing to its benefits, it has been used for 77 the design of a linear equalizer [15], for the precoder matrix 78 [16] and for various other MIMO, SDMA as well as OFDM 79 systems conceived for achieving the best BER performance 80 [17]-[19] at the of higher computational complexity. MBER 81 based linear receiver design has also been shown to be very 82 effective in terms of BER performance in the rank-deficient 83 case, where conventional LMMSE-based receiver fails to per- 84 form significantly [20].

141 Notation: Bold upper and lower case letters denote matrices 142 and vectors, respectively. The superscripts $(\cdot)^{T}$ and $(\cdot)^{H}$ denote

Scope and contribution: Against this background based on the MBER CF, we design of a new non-regenerative MIMOaided relaying system, which comprises a SN, a RN and a DN. We assume a half duplex system at the RN, where one time slot is used for receiving from the SN and another for forwarding it to the DN. No SN-RN transmission takes place during the RN-DN transmission. In this work, we consider the joint design of the SN's transmit precoder, the RN's AF matrix and the DN's linear equalizer matrix based on the MBER CF subject to the above total RN-SN power constraints. The performance of the proposed scheme is evaluated and compared to that of the existing LMMSE based method. The main contributions of this treatise are as follows:

1) A CF is conceived for the design of the RN-DN and the SN-RN-DN links of a non-regenerative relaying system based on the MBER CF subject to the SN and (or) RN power constraints. The MBER CF is formulated for various data constellations, ranging from BPSK to the general M-QAM and M-PSK constellations. Naturally, the specific choice of the constellation fundamentally influences the MBER CF [15], [17]-[19]. We jointly determine the precoder, AF and equalizer matrices based on this MBER CF under a source and relay power constraint. The existing MIMO MBER solutions are designed for unconstrained scenarios and hence this constrained MBER optimization poses specific challenges. Therefore, we have conceived both the heuristic constrained binary Genetic Algorithm (GA) [21] and the Projected Steepest Descent (PSD) [22] algorithm for determining these parameters.
2) A suboptimal method is also proposed for reducing the number of variables using the Singular-ValueDecomposition (SVD) approach, which allows the optimization problem to be decomposed into multiple parallel optimization problems. The key contribution here is that we propose to split the complete constrained optimization problem into unconstrained parallel optimization problems except for one of the cases.
3) The Cost Function (CF) of M-PSK constellation has been approximated for the sake of conceiving a more tractable form for the MIMO-aided relaying system considered. This approximation can also be used for classic MIMO scenarios.
4) An impediment of the MBER CF is however its high computational complexity compared to its LMMSE counterpart [15]. To mitigate this, we have conceived a low-complexity data detection scheme for the MBER method with the aid of the phase rotation of the constellation in the context of rotationally invariant QPSK and M-PSK constellations. This scheme can be equally applicable to any other MIMO system design based on the MBER criterion.
5) An approximate complexity analysis is performed for the MBER scheme under various constrained optimization methods such as the GA and PSD. This step-by-step analysis may be readily applied to other MBER solutions.

Fig. 1. Single relay system with multiple input-output antennas at source, relay, and destination.
the transpose and the conjugate transpose of a matrix, respec- 143 tively. $\mathbb{E}[\cdot]$ denotes the expectation, while \mathbf{I}_{N} denotes a $(N \times 144$ N)-element identity matrix. $\operatorname{Tr}[\cdot]$ represents the trace of a 145 matrix. A diagonal matrix is denoted by $\operatorname{diag}\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}, 146$ where a_{n} denotes the nth diagonal element. $\operatorname{vec}(\mathbf{A})$ is the vec- 147 torization of the matrix A with columns stacked one-by-one. 148

II. System Model

We consider a communication system consisting of a SN, a 150 RN and a DN having N_{s}, N_{r}, and N_{d} antennas, respectively, 151 as shown in Fig. 1. It is assumed that there is no Line-Of- 152 Sight (LOS) component between the SN and the DN. Both 153 the $\mathrm{SN}-\mathrm{RN}$ and the RN-DN channel matrices are assumed 154 to be those of flat-fading channels, which are denoted as 155 $\mathbf{H}_{s r} \in \mathbb{C}^{N_{r} \times N_{s}}$ and $\mathbf{H}_{r d} \in \mathbb{C}^{N_{d} \times N_{r}}$, respectively. The symbol 156 vector transmitted from the SN before precoding is denoted 157 as $\mathbf{x} \in \mathbb{C}^{N_{x} \times 1}$ with N_{x} being the length of the input vector. 158 We assume $\mathbf{A}_{S} \in \mathbb{C}^{N_{S} \times N_{x}}$ to be the precoding matrix at the 159 SN . The average transmitted power is constrained to $P_{t}=160$ $\mathbb{E}\left[\mathbf{s}^{H} \mathbf{s}\right]$ with $\mathbf{s} \triangleq \mathbf{A}_{S} \mathbf{x}$, which is assumed to be the same for 161 all symbols at the SN. Hence, we have the transmit power con- 162 straint as $P_{t} \triangleq \mathbb{E}\left\|\mathbf{A}_{S} \mathbf{x}\right\|^{2}=\sigma_{x}^{2} \operatorname{Tr}\left(\mathbf{A}_{S} \mathbf{A}_{S}^{H}\right)$ and the transmit 163 data covariance matrix is $\mathbf{R}_{S} \triangleq \mathbb{E}\left(\mathbf{s s}^{H}\right)=\left(P_{t} / N_{x}\right)\left(\mathbf{A}_{S} \mathbf{A}_{S}^{H}\right), 164$ where $\sigma_{x}^{2}=\left(P_{t} / N_{x}\right)$ is the signal power of each data x_{i}. The 165 noise vectors at the RN and the DN are $\mathbf{n}_{r} \in \mathbb{C}^{N_{r} \times 1}$ and 166 $\mathbf{n}_{d} \in \mathbb{C}^{N_{d} \times 1}$, respectively, which are assumed to be zero mean, 167 circularly symmetric complex i.i.d Gaussian vectors having 168 the covariance matrices of $\sigma_{r}^{2} \mathbf{I}_{N_{r}}$ and $\sigma_{d}^{2} \mathbf{I}_{N_{d}}$, respectively. We 169 consider a classic half duplex system. Hence, in the first time 170 slot, the SN transmits a source vector \mathbf{s} and the vector $\mathbf{y}_{r} \in 171$ $\mathbb{C}^{N_{r} \times 1}$, received at the RN is given by,

$$
\begin{equation*}
\mathbf{y}_{r}=\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r} . \tag{1}
\end{equation*}
$$

During the next time slot, the relay would multiply the 173 received vector \mathbf{y}_{r} with the AF matrix $\mathbf{A}_{F} \in \mathbb{C}^{N_{r} \times N_{r}}$ and 174 then forwards it to the DN. Let us assume that $\mathbf{y}_{F} \triangleq \mathbf{A}_{F} \mathbf{y}_{r}=175$ $\mathbf{A}_{F}\left(\mathbf{H}_{s r} \mathbf{S}+\mathbf{n}_{r}\right)$. We impose the RN transmit power restric- 176 tion of $\mathbb{E}\left[\mathbf{y}_{F}^{H} \mathbf{y}_{F}\right] \leq P_{r}$, where P_{r} is the RN's transmit power. 177 Assuming that the SN's transmitted signal and the noise are 178 independent, the RN's power can be calculated as,

$$
\begin{align*}
\mathbb{E}\left[\mathbf{y}_{f}^{H} \mathbf{y}_{f}\right] & =\operatorname{Tr}\left\{\mathbb{E}\left(\mathbf{A}_{\mathbf{F}}\left(\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r}\right)\left(\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r}\right)^{H} \mathbf{A}_{F}^{H}\right)\right\} \\
& =\operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{A}_{S} \mathbf{A}_{S}^{H} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \\
& \leq P_{r}, \tag{2}
\end{align*}
$$

TABLE I
Requirement of CSI at Various Nodes for MBER Criterion Based Relay Design

Relay design type	$S N$	$R N$	$D N$
RN-DN		$\mathbf{H}_{s r}, \mathbf{H}_{r d}$	$\mathbf{H}_{r d}$
SN-RN-DN (Sub-optimal)	$\mathbf{H}_{s r}$	$\mathbf{H}_{s r}, \mathbf{H}_{r d}$	$\mathbf{H}_{r d}$
SN-RN-DN (Optimal)		$\mathbf{H}_{s r}, \mathbf{H}_{r d}$	$\mathbf{H}_{r d}$

180 where $\mathbb{E}\left\{\mathbf{x x}^{H}\right\}=\sigma_{x}^{2} \mathbf{I}_{N_{x}}$. Now, the signal received at the DN, $181 \mathbf{y}_{d} \in \mathbb{C}^{N_{d} \times 1}$ is obtained as,

$$
\begin{align*}
\mathbf{y}_{d} & =\mathbf{H}_{r d} \mathbf{y}_{f}+\mathbf{n}_{d} \\
& =\mathbf{H}_{r d} \mathbf{A}_{F}\left(\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r}\right)+\mathbf{n}_{d} \\
& =\left\{\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \mathbf{A}_{S}\right\} \mathbf{x}+\left\{\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{n}_{r}+\mathbf{n}_{d}\right\} \\
& \triangleq \mathbf{H} \mathbf{x}+\mathbf{n} \tag{3}
\end{align*}
$$

182 where $\mathbf{H} \triangleq \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \mathbf{A}_{S}$ and $\mathbf{n} \triangleq \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{n}_{r}+\mathbf{n}_{d}$. The 183 new effective noise vector \mathbf{n} is a colored zero-mean Gaus184 sian vector with the distribution of $C N\left(\mathbf{0}, \mathbf{C}_{n}\right)$, where $\mathbf{C}_{n} \in$ $185 \mathbb{C}^{N_{d} \times N_{d}}$ is the new noise covariance matrix, which may be 186 expressed as,

$$
\begin{align*}
\mathbf{C}_{n} & =\mathbb{E}\left[\mathbf{n} \mathbf{n}^{H}\right] \\
& =\sigma_{d}^{2} \mathbf{I}_{N_{d}}+\sigma_{r}^{2} \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{A}_{F}^{H} \mathbf{H}_{r d}^{H} \tag{4}
\end{align*}
$$

187 At the DN, we employ a linear equalizer for detecting the 188 transmitted symbol x. We assume that the equalizer matrix at 189 the DN is $\mathbf{W}_{d} \in \mathbb{C}^{N_{x} \times N_{d}}$, hence the estimated value of \mathbf{x} is $190 \hat{\mathbf{x}}=\mathbf{W}_{d}^{H} \mathbf{y}_{d}$.
191 Note: The RN determines the $\mathbf{A}_{S}, \mathbf{A}_{F}$ and \mathbf{W}_{d} matrices 192 jointly. Thus, we assume that the RN has the complete knowl193 edge of $\mathbf{H}_{s r}$ and $\mathbf{H}_{r d}$, while the DN knows only $\mathbf{H}_{r d}$ and feeds 194 it back to the RN through a reliable communication channel. 195 The SN has to know the matrix $\mathbf{H}_{s r}$ only for the case of the sub196 optimal SN-RN-DN (SRD) relay design to be described later. 197 We refer "sub-optimal", when Singular-Value-Decomposition 198 (SVD) based structure is assumed for AF and source precoder 199 matrices. In this case, only the singular values of these matrices 200 need to be determined. By contrast, "optimal" refers to the case, 201 where full complex AF and source precoder matrices need to be 202 determined. Thus, for "optimal" case, SN need not to know the $203 \mathbf{H}_{s r}$ as the whole solution of the precoder will be sent back to 204 SN by RN. For the sub-optimal case, the SN needs to recon205 struct the precoder matrix from the SVD component of the $\mathbf{H}_{s r}$ 206 matrix. Table I shows the parameter knowledge requirements 207 at different nodes, which are consistent with [9], except for 208 our proposed optimal SN-RN-DN link design. We first develop 209 the RN-DN link and then extend it to the SN-RN-DN link. 210 For the RN-DN system, only the matrices \mathbf{A}_{F} and \mathbf{W}_{d} have 211 to be determined subject to the above RN power constraints. 212 By contrast, for the SN-RN-DN system, the matrices $\mathbf{A}_{S}, \mathbf{A}_{F}$ 213 and \mathbf{W}_{d} are determined subject to both the SN and the RN 214 power constraints.

III. MBER Based Relay-Destination Design

We first consider the RN-DN link design, which involves 216 the design of both the AF matrix \mathbf{A}_{F} and of the equalizer 217 matrix \mathbf{W}_{d}. Various existing CFs, such as the LMMSE [7], 218 the Maximum Capacity (MC) [11] have been considered to 219 design both \mathbf{A}_{F} and \mathbf{W}_{d}. In this treatise, we propose a solution 220 based on the MBER CF for jointly determining these matrices. 221 For the RN-DN link, the precoder matrix \mathbf{A}_{S} is fixed to $\mathbf{I}_{N_{s}} 222$ along with $N_{s}=N_{x}$. The total transmitted power is fixed to 223 $P_{t}=\sigma_{x}^{2} N_{s}$. The signals received at the RN and the DN are 224 $\mathbf{y}_{r}=\mathbf{H}_{s r} \mathbf{x}+\mathbf{n}_{r}$ and $\mathbf{y}_{d}=\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \mathbf{x}+\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{n}_{r}+\mathbf{n}_{d}, 225$ respectively. The RN's power becomes $\operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+226\right.\right.$ $\left.\left.\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\}$. In the current context, the MBER CF directly 227 minimizes the BER of the system at the DN. We first consider 228 the CF based on the BPSK constellation and then we extend it 229 to the M-QAM and M-PSK constellations.

Note: We will be formulating the cost function (CF) as the 231 symbol error ratio (SER). With a slight inaccuracy of terminol- 232 ogy, we refer to the MBER as that of minimizing the SER in the 233 subsequent sections. It is to be noted that minimizing SER will 234 also lead to minimization of BER as $B E R \approx S E R / \log _{2}(M) 235$ for most of the constellations [23].

A. Cost Function

Let us assume that $P_{e, i}$ denotes the SER, when detecting $x_{i} 238$ (the i th component of \mathbf{x}) at the DN. If every x_{i} is detected inde- 239 pendently, the average probability of a symbol error associated 240 with detecting the complete vector \mathbf{x} is given by,

$$
\begin{equation*}
P_{e}=\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} P_{e, i} \tag{5}
\end{equation*}
$$

We constrain the RN's transmission power to P_{r} and formulate 242 $P_{e, i}$ associated with various constellations. Furthermore, we 243 would simplify the expression of $P_{e, i}$ using various sub-optimal 244 approaches. The optimization problem is stated as follows: 245

$$
\begin{align*}
& \mathbf{A}_{F}^{m b e r}, \mathbf{W}_{d}^{m b e r}=\underset{\mathbf{A}_{F}, \mathbf{W}_{d}}{\arg \min } P_{e}\left(\mathbf{A}_{F}, \mathbf{W}_{d}\right) \\
& \text { s.t } \operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \leq P_{r} . \tag{6}
\end{align*}
$$

Note: Equation (6) describes a constrained optimization 246 problem, where the constraint is with respect to the RN's 247 transmitter power. Here, all $P_{e, i}$ for $i=1,2 \ldots, N_{s}$ are opti- 248 mized together to arrive at the optimized \mathbf{A}_{F} and \mathbf{W}_{d} matri- 249 ces. Explicitly, Equation (6) is simultaneously optimized over 250 $\left(N_{r}^{2}+N_{s} \times N_{d}\right)$ number of complex-valued variables. This is 251 because the \mathbf{A}_{F} matrix has N_{r}^{2} number of complex entries, 252 while the \mathbf{W}_{d} matrix has $\left(N_{s} \times N_{d}\right)$ complex entries. There- 253 fore, the related optimization problem has a high computational 254 complexity. Hence, we now propose a suboptimal technique for 255 reducing the number of variables to be optimized.

1) Sub-Optimal Approaches for Reducing Both the Number 257 of Variables and the Complexity: Let us first decompose $\mathbf{H}_{s r} 258$ and $\mathbf{H}_{r d}$ using the Singular Value Decomposition (SVD) as 259 $\mathbf{H}_{s r}=\mathbf{U}_{1} \boldsymbol{\Sigma}_{s r} \mathbf{V}_{1}^{H}$ and $\mathbf{H}_{r d}=\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \mathbf{V}_{2}^{H}$ respectively, where 260 $\mathbf{U}_{1} \in \mathbb{C}^{N_{r} \times N_{r}}, \mathbf{V}_{1} \in \mathbb{C}^{N_{s} \times N_{s}}, \mathbf{U}_{2} \in \mathbb{C}^{N_{d} \times N_{d}}, \mathbf{V}_{2} \in \mathbb{C}^{N_{r} \times N_{r}}$ are 261

262 unitary matrices, whereas $\boldsymbol{\Sigma}_{s r} \in \mathbb{R}^{N_{r} \times N_{S}}$ and $\boldsymbol{\Sigma}_{r d} \in \mathbb{R}^{N_{d} \times N_{r}}$ 263 are matrices having singular values of $\sigma_{s r, i}$ for $i=1,2, \ldots$, $264 \min \left(N_{r}, N_{s}\right)$ and $\sigma_{r d, i}$ for $i=1,2, \ldots, \min \left(N_{d}, N_{r}\right)$ in a de265 scending order on the main diagonal, respectively. We also 266 assume that \mathbf{w}_{i} is the i th column of \mathbf{W}_{d} for $i=0,1, \ldots, N_{d}-1$. 267 We now propose a pair of computational complexity reduc268 tion techniques. 298 ing $\mathbf{A}_{F}, \mathbf{H}$ can be reduced to

$$
\begin{align*}
\mathbf{H} & =\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \mathbf{V} \mathbf{2}^{H} \mathbf{V}_{2} \boldsymbol{\Sigma}_{F} \mathbf{U} \mathbf{1}^{H} \mathbf{U}_{1} \boldsymbol{\Sigma}_{s r} \mathbf{V} \mathbf{1}^{H} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{s r} \mathbf{V} \mathbf{1}^{H} \\
& \triangleq \mathbf{U}_{2} \boldsymbol{\Sigma} \mathbf{V}_{1}^{H} \tag{8}
\end{align*}
$$

299 where $\boldsymbol{\Sigma} \triangleq \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{s r}$. Let us now compute the RN's power 300 under the assumed structure of \mathbf{A}_{F} as follows

$$
\begin{align*}
\mathbb{E}\left[\mathbf{y}_{f}^{H} \mathbf{y}_{f}\right] & =\operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \\
& =\operatorname{Tr}\left\{\mathbf{V}_{2} \boldsymbol{\Sigma}_{F}\left(\sigma_{x}^{2} \boldsymbol{\Sigma}_{s r} \boldsymbol{\Sigma}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \boldsymbol{\Sigma}_{F}^{H} \mathbf{V}_{2}^{H}\right\} \\
& =\operatorname{Tr}\left\{\boldsymbol{\Sigma}_{F}\left(\sigma_{x}^{2} \boldsymbol{\Sigma}_{s r} \boldsymbol{\Sigma}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \boldsymbol{\Sigma}_{F}^{H}\right\} \\
& =\sum_{i=1}^{N_{r}} \sigma_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right) \leq P_{r} . \tag{9}
\end{align*}
$$

Explicitly, the RN's power constraint becomes less complex, 301 since it does not involve any complex-valued matrix operations. 302 In a similar way, we now re-calculate the covariance matrix $\mathbf{C}_{n} 303$ of the composite noise, as perceived at the DN. Let us assume 304 that $\mathbf{A} \triangleq \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{A}_{F}^{H} \mathbf{H}_{r d}$. Thus, we calculate \mathbf{A} as follows 305

$$
\begin{align*}
\mathbf{A} & =\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{A}_{F}^{H} \mathbf{H}_{r d} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \mathbf{V}_{2}^{H} \mathbf{V}_{2} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{H} \mathbf{V}_{2}^{H} \mathbf{V}_{2} \boldsymbol{\Sigma}_{r d}^{H} \mathbf{U}_{2}^{H} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{H} \boldsymbol{\Sigma}_{r d}^{H} \mathbf{U}_{2}^{H} \\
& \triangleq \mathbf{U}_{2} \boldsymbol{\Sigma}_{A} \mathbf{U}_{2}^{H}, \tag{10}
\end{align*}
$$

where $\boldsymbol{\Sigma}_{A} \triangleq \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{H} \boldsymbol{\Sigma}_{r d}^{H}$. Upon substituting Equation (10) 306 into Equation (4), we arrive at $\mathbf{C}_{n}=\sigma_{d}^{2} \mathbf{I}_{N_{d}}+\sigma_{r}^{2} \mathbf{U}_{2} \boldsymbol{\Sigma}_{A} \mathbf{U}_{2}^{H} .307$ Our new optimization problem is then redefined as follows

$$
\begin{align*}
& \text { For } \mathrm{i}=\mathrm{k}: \\
& \qquad \begin{array}{l}
\boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{k}^{m b e r}= \\
\\
\\
\\
\text { s.t } \sum_{i=1}^{\boldsymbol{\Sigma}_{F}, \mathbf{w}_{k}} \arg \min P_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\boldsymbol{\Sigma}_{F}^{2}, \mathbf{w}_{k}\right) \leq P_{r}
\end{array}
\end{align*}
$$

For $\mathrm{i}=1,2,3, \ldots, \mathrm{k}-1, \mathrm{k}+1, \ldots, \mathrm{~N} _\mathrm{s}:$

$$
\begin{equation*}
\mathbf{w}_{i}^{m b e r}=\underset{\mathbf{w}_{i}}{\arg \min } P_{e, i}\left(\boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{i}\right) \tag{12}
\end{equation*}
$$

2) MBER CF Associated With the BPSK Constellation: We 309 first formulate the MBER CF for the BPSK constellation for the 310 sake of conceptual simplicity and then extend it to the M-QAM 311 and M-PSK constellations. Let us assume that \mathbf{w}_{i} is the i th 312 column of the DN's equalizer matrix \mathbf{W}_{d}. If \hat{x}_{i} is the estimate 313 of x_{i} for the BPSK constellation, we arrive at the expression of 314 $P_{e, i}^{B P S K}$ as follows [15]:

$$
\begin{align*}
P_{e, i}^{B P S K} & =P_{r}\left\{x_{i} \Re\left\{\hat{x}_{i}\right\}<0\right\} \\
& =P_{r}\left\{\Re\left\{x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}+x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{n}\right\}<0\right\} \\
& =\mathbb{E}_{\mathbf{x}}\left[P_{r}\left\{\Re\left\{x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}+x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{n}\right\}<0\right\} \mid \mathbf{x}\right] \\
& =\mathbb{E}_{\mathbf{x}}\left[Q\left(\frac{\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x} x_{i}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right] \\
& =\frac{1}{L} \sum_{j=1}^{L} Q\left(\frac{\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j} x_{i}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right) \tag{13}
\end{align*}
$$

where $L=2^{N_{s}}$ represents the total number of unique realiza- 316 tions of \mathbf{x}, while \mathbf{x}_{j} is the j th such realization of \mathbf{x}. 317
3) The MBER CF Associated With the M-QAM Con- 318 stellation: For the M-QAM constellation, we assume that 319 the distance between any two adjacent constellation points 320 along either the real or the imaginary axis is $2 a$ for $a>0.321$

322 The M-QAM constellation can thus be interpreted as a pair of 323 PAM sequences of length \sqrt{M} along the real and imaginary 324 axes. Thus, the SER of the M-QAM constellation is derived as,

$$
\begin{equation*}
P_{e, i}^{Q A M}=1-P_{c, i}^{R} \cdot P_{c, i}^{I} \tag{14}
\end{equation*}
$$

325 where $P_{c, i}^{R}, P_{c, i}^{I}$ are the probability of correct decision for the 326 QAM signal along the real and imaginary axes, respectively. 327 For computational simplicity, we assume that the decision 328 region of each point along either the real or imaginary axis 329 is bounded by the length $2 a$, though the terminal points have 330 larger range for decision region. This way, we only make each 331 decision region uniform and restrictive to an extent. Let us 332 now define $L_{1}=M^{\left(\left(N_{s}-1\right) / 2\right)}$. Now, $P_{c, i}^{R}, P_{c, i}^{I}$ are derived in 333 Equations (15) and (16), respectively (see equation at bottom 334 of page).
335 4) The MBER CF Associated With the M-PSK Constella336 tion: For the M-PSK signal constellation set, each point is 337 assumed to be on a unit circle and represented as $e^{j(2 \pi m / M)}$ for $338 m=0,1, \ldots, M-1$. Note that the real and imaginary compo339 nents of the DN's equalizer output noise, $\mathbf{w}_{i}^{H} \mathbf{n}$, are correlated 340 Gaussian random variables. For computational simplicity, we 341 invoke an approximation and we whiten the noise by assuming $342 \mathbf{A}_{F}$ to have the proposed SVD form of Equation (7). We 343 commence by using \mathbf{C}_{n} from Equation (4) as,

$$
\begin{equation*}
\mathbf{C}_{n}=\boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{T} \boldsymbol{\Sigma}_{r d}^{T}+\sigma_{d}^{2} \mathbf{I}_{N_{d}} \tag{17}
\end{equation*}
$$

344 Thus, the i th diagonal element of \mathbf{C}_{n} is $\left[\mathbf{C}_{n}\right]_{i i}=\sigma_{d}^{2}+$ $345 \sigma_{r d, i}^{2} \sigma_{f, i}^{2}$. The noise whitening matrix is defined as $\mathbf{C}_{s} \triangleq$ $346 \mathbf{C}_{n}^{-(1 / 2)}$ with $\left[\mathbf{C}_{s}\right]_{i i}=\left(1 / \sqrt{\sigma_{d}^{2}+\sigma_{r d, i}^{2} \sigma_{f, i}^{2}}\right)$. Therefore, the 347 modified output vector received at the DN is defined as,

$$
\begin{align*}
\mathbf{y}_{s} & =\mathbf{C}_{s} \mathbf{y}_{d} \\
& =\mathbf{C}_{s} \mathbf{H} \mathbf{x}+\mathbf{n}_{s} \\
& =\mathbf{H}_{s} \mathbf{x}+\mathbf{n}_{s} \tag{18}
\end{align*}
$$

with $\mathbf{n}_{s} \in \mathbb{C}^{N_{s} \times 1}$ being the zero-mean i.i.d Gaussian random 348 vector with each component having a unit variance. Let us 349 assume that $\mu_{i}^{R} \triangleq \Re\left\{\mathbf{w}_{i}^{H} \mathbf{H}_{s} \mathbf{x}\right\}$ and $\mu_{i}^{I} \triangleq \Im\left\{\mathbf{w}_{i}^{H} \mathbf{H}_{s} \mathbf{x}\right\}$, where 350 \mathbf{w}_{i} is the i th equalizer as defined earlier. Let furthermore $r_{1} 351$ and r_{2} be the real and imaginary components of the equalizer 352 output. Their joint probability is calculated as [23],

$$
\begin{equation*}
p_{r_{1}, r_{2}, i}=\frac{1}{2 \pi \sigma^{2}} e^{-\left\{\left(r_{1}-\mu^{R}\right)^{2}+\left(r_{2}-\mu^{I}\right)^{2}\right\} / 2 \sigma^{2}} \tag{19}
\end{equation*}
$$

where $\sigma^{2}=(1 / 2) \mathbf{w}_{i}^{H} \mathbf{w}_{i}$. Let us now define $V \triangleq \sqrt{r_{1}^{2}+r_{2}^{2}} 354$ and the angle $\theta \triangleq \tan ^{-1}\left(\left(r_{2} / r_{1}\right)\right)$. Thus, the probability of $\theta 355$ for the i th symbol is obtained as [23]
$p_{\theta, i}=\frac{1}{2 \pi \sigma^{2}} e^{-\left(\mu_{i}^{R} \sin (\theta)-\mu_{i}^{I} \cos (\theta)\right)^{2} / 2 \sigma^{2}}$

$$
\begin{equation*}
\times \int_{0}^{\infty} V e^{-\left(V-\mu_{i}^{I} \sin (\theta)-\mu_{i}^{R} \cos (\theta)\right)^{2} / 2 \sigma^{2}} d V \tag{20}
\end{equation*}
$$

At the higher SNR values, an approximation has been proposed 357 for Equation (20) in [23] as follows, 358

$$
\begin{align*}
p_{\theta, i} \approx \frac{1}{\sqrt{2 \pi \sigma^{2}}}\left(\mu_{i}^{I} \sin (\theta)\right. & \left.+\mu_{i}^{R} \cos (\theta)\right) \\
& \times e^{-\left(\mu_{i}^{R} \sin (\theta)-\mu_{i}^{I} \cos (\theta)\right)^{2} / 2 \sigma^{2}} \tag{21}
\end{align*}
$$

with $|\theta| \leq \pi / 2$ and $|\theta| \ll 1$. Equation (21) is valid for $m=0.359$ This suggests that any constellation point at the i th position of 360 x can be rotated to the one corresponding to $m=0$. Hence, we 361 may conceive a scheme by exploiting the circular constellation 362 of M-PSK, where the SER has to be found for the constellation 363 point corresponding to $m=0$. Thus, \mathbf{w}_{i} is determined by min- 364 imizing the probability of this particular symbol error only. We 365 then create M rotated versions of \mathbf{y}_{d} as $\mathbf{y}_{d}^{m}=e^{-m \pi / M} \mathbf{I}_{N_{d}} \mathbf{y}_{d} 366$ for $m=0,1, \ldots, M-1$. The estimated constellation point 367 $\left(\mathbf{w}_{i}^{H} \mathbf{y}_{d}^{m}\right)$ is then the one corresponding to any of the M number 368 of \mathbf{y}_{d}^{m} variables giving the minimum absolute angle.

$$
\begin{align*}
P_{c, i}^{R}=\frac{1}{L_{1}} \sum_{j=1}^{L_{1}} \sum_{m=-(\sqrt{M}-1), m \text { odd }}^{\sqrt{M}-1} & {\left[Q\left(\frac{m a-a-\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right.} \\
& \left.-Q\left(\frac{m a+a-\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right] \tag{15}\\
P_{c, i}^{I}=\frac{1}{L_{1}} \sum_{j=1}^{L_{1}} \sum_{m=-(\sqrt{M}-1), m \text { odd }}^{\sqrt{M}-1}[& {\left[\left(\frac{m a-a-\Im\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right.} \\
& \left.-Q\left(\frac{m a+a-\Im\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right] \tag{16}
\end{align*}
$$

370 Note: This technique imposes a low computational complex371 ity for the following reasons.

381 The SER of the i th symbol of \mathbf{x} is then formulated for our 382 low-complexity method as

$$
\begin{align*}
P_{e, i}^{P S K}= & 1-\frac{1}{L_{2}} \sum_{l=1}^{L_{2}} \int_{-\pi / M}^{\frac{\pi}{M}} p_{\theta, i} d \theta \\
= & \frac{1}{L_{2}} \sum_{l=1}^{L_{2}} Q\left[\frac{\mu_{i, l}^{R} \sin \left(\frac{\pi}{M}\right)-\mu_{i, l}^{I} \cos \left(\frac{\pi}{M}\right)}{\sigma}\right] \\
& +\frac{1}{L_{2}} \sum_{l=1}^{L_{2}} Q\left[\frac{\mu_{i, l}^{I} \cos \left(\frac{\pi}{M}\right)+\mu_{i, l}^{R} \sin \left(\frac{\pi}{M}\right)}{\sigma}\right] \tag{22}
\end{align*}
$$

383 where $L_{2}=M^{N_{s}-1}$ and $\mu_{i, l}^{R}$ or $\mu_{i, l}^{I}$ represent the values of μ_{i}^{R} 384 or μ_{i}^{I} (as defined earlier) corresponding to the l th realization of 385 x , respectively.

386

$$
387
$$

IV. MBER Based Source-Relay-Destination Link Design

388 Let us now consider the design of the SRD link based on 389 the MBER CF. This involves a transmit precoder (TPC) matrix 390 design at the SN in addition to the AF matrix of the RN and 391 the equalizer matrix of the DN. We also have to obey the power 392 constraint at the SN involving the TPC matrix in addition to the 393 RN power constraint. The TPC, AF and equalizer matrices are 394 optimized jointly. The CFs are again those of Equations (13), 395 (15), (16), (22), i.e the same as in Section III for various con396 stellations. The optimization problem of the SRD link design 397 can be stated as,

$$
\begin{align*}
& \mathbf{A}_{S}^{m b e r}, \mathbf{A}_{F}^{m b e r}, \mathbf{W}_{d}^{m b e r}=\underset{\mathbf{A}_{S}, \mathbf{A}_{F}, \mathbf{W}_{d}}{\arg \min P_{e}\left(\mathbf{A}_{S}, \mathbf{A}_{F}, \mathbf{W}_{d}\right)} \\
& \text { s.t (1) } \operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \leq P_{r} \\
& \text { (2) } \sigma_{x}^{2} \operatorname{Tr}\left\{\mathbf{A}_{S}^{H} \mathbf{A}_{S}\right\} \leq P_{t}, \tag{23}
\end{align*}
$$

398 where P_{t} is the transmit power limit. Additionally, we also 399 consider a suboptimal structure for \mathbf{A}_{S} for the case of reducing 400 the number of variables during the optimization process. We 401 consider the SVD of \mathbf{A}_{S} with $\mathbf{A}_{S}=\mathbf{V}_{1} \boldsymbol{\Sigma}_{S}$, where \mathbf{V}_{1} is from 402 the SVD decomposition of $\mathbf{H}_{s r}$ and $\boldsymbol{\Sigma}_{S}$ is a diagonal matrix 403 having the singular values. We also use the parallel optimiza404 tion of $P_{e, i}$, as formulated in Section III. With these subop-
timal approaches in mind, the optimization problem can be 405 restated as,

For $\mathrm{i}=\mathrm{k}$:

$$
\begin{gather*}
\boldsymbol{\Sigma}_{S}^{m b e r}, \boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{k}^{m b e r}=\underset{\boldsymbol{\Sigma}_{S}, \boldsymbol{\Sigma}_{F}, \boldsymbol{w}_{k}}{\arg \min } P_{e, k}\left(\boldsymbol{\Sigma}_{S}, \boldsymbol{\Sigma}_{F}, \mathbf{w}_{k}\right) \\
\text { s.t (1) } \sum_{i=1}^{N_{r}} \sigma_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right) \leq P_{r}, \\
\text { (2) } \sigma_{x}^{2} \sum_{i=1}^{N_{s}} \sigma_{s, i}^{2} \leq P_{t} . \tag{24}
\end{gather*}
$$

For $\mathrm{i}=1,2, \ldots, \mathrm{k}-1, \mathrm{k}+1, \ldots, N_{x}$:
$\mathbf{w}_{i}^{m b e r}=\underset{\boldsymbol{w}_{i}}{\arg \min } P_{e, i}\left(\boldsymbol{\Sigma}_{S}^{m b e r}, \boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{i}\right)$,
where $\sigma_{s, i}$ represents the singular value of \mathbf{A}_{S}.
V. Solution of the MBER Optimization Problem

408
Remarks on CF

$$
409
$$

The MBER CF may have multiple local minima. As for 410 example, Fig. 2. plots a CF with respect to the equalizer weights 411 (Only the first equalizer \mathbf{w}_{1}) for $N_{s}=N_{r}=N_{d}=2$ for a 412 fixed real-valued channel and for fixed real-valued \mathbf{A}_{F} and 413 \mathbf{A}_{S} matrices for the BPSK signal sets. The equalizer length 414 is 2 . For this example, the real-valued channels are assumed 415 to be $\mathbf{H}_{s r}=\left[\begin{array}{cc}-1.12 & 0.74 \\ 0.41 & 0.90\end{array}\right]$ and $\mathbf{H}_{r d}=\left[\begin{array}{cc}-1.53 & -0.86 \\ 0.51 & -0.38\end{array}\right] \cdot 416$ Observe in Fig. 2 that the CF has several minima with respect 417 to the equalizer weight \mathbf{w}_{1}, hence conventional gradient-based 418 receivers might get stuck in a local optimum, depending on 419 where the search is started on this surface. It is also noted that 420 the solutions obtained from both the MBER and the LMMSE 421 methods are different $((3.4,8.2)$ and $(5.2,9.4)$ for MBER and 422 LMMSE, respectively), while the CF values are 7.8×10^{-3} and 423 1.1×10^{-2} for MBER and LMMSE methods, respectively. The 424 LMMSE solution might be a reasonable starting point [17]. 425 426
Binary Genetic Algorithm: Fortunately, random guided op- 427 timization methods, like Genetic Algorithms (GA) [21], Simu- 428 lated Annealing (SA) [24] etc. are capable of circumventing this 429 problem. In this work, we used the binary GA for finding $\mathbf{W}_{d}, 430$ \mathbf{A}_{F}. As this GA accepts only real-valued variables, we form 431 a vector $\mathbf{v} \in \mathbb{R}^{\left(N_{d} N_{x}+N_{r} N_{s}+N_{r}^{2}\right) \times 1}$ by stacking all the real and 432 imaginary components of the $\mathbf{W}_{d}, \mathbf{A}_{F}, \mathbf{A}_{S}$ matrices as follows 433

$$
\begin{align*}
\mathbf{v}= & {\left[\Re\left\{\operatorname{vec}\left(\mathbf{W}_{d}\right)\right\} \Im\left\{\operatorname{vec}\left(\mathbf{W}_{d}\right)\right\} \Re\left\{\operatorname{vec}\left(\mathbf{A}_{S}\right)\right\}\right.} \\
& \left.\Im\left\{\operatorname{vec}\left(\mathbf{A}_{S}\right)\right\} \Re\left\{\operatorname{vec}\left(\mathbf{A}_{F}\right)\right\} \Im\left\{\operatorname{vec}\left(\mathbf{A}_{F}\right)\right\}\right]^{T} . \tag{26}
\end{align*}
$$

Similarly, for the case of the suboptimal scenario, we would 434 form the vector as

$$
\begin{equation*}
\mathbf{v}=\left[\Re\left\{\operatorname{vec}\left(\mathbf{w}_{k}\right)\right\}\left\{\operatorname{vec}\left(\boldsymbol{\Sigma}_{S}\right)\right\}\left\{\operatorname{vec}\left(\boldsymbol{\Sigma}_{F}\right)\right\}\right]^{T} \tag{27}
\end{equation*}
$$

The vector \mathbf{v} is first converted to a binary string and then a 436 series of GA operations like "Parents selection", "Crossover" 437 and "Mutation" are invoked [21] for finding an improved 438

Fig. 2. Logarithm of CF from Equation (11) is plotted with respect to the first equalizer \mathbf{w}_{1}. Equalizer \mathbf{w}_{1} is real-valued and is of the length 2. $N_{s}=N_{r}=$ $N_{d}=2$ are associated with fixed \mathbf{A}_{F} and \mathbf{A}_{S} matrices and fixed real-valued channel. The signal set is assumed to be BPSK. The MBER solution (obtained from GA) of \mathbf{w}_{1} is $(3.4,8.2)$, while its LMMSE solution is (5.2, 9.4). The value of CF at the MBER solution is 7.8×10^{-3}, while it is 1.1×10^{-2} at the LMMSE solution.

Fig. 3. Complexity (in terms of multiplication) vs. N_{d} comparison with various optimization options for SRD link design fixing $N_{r}=2, N_{s}=2$, $N_{s}=N_{x}$ and QPSK data set.

439 solution. This binary string is also known as a chromosome. 440 We initially "seed" the GA with an initial solution consti441 tuted by the LMMSE one, so that the GA achieves a faster 442 convergence. Unlike any steepest descent method, GA would 443 search through various possible minima using "evolutionary" 444 techniques. Thus, it has a reduced chance of getting into a 445 local minimum compared to the case of completely random 446 initialization. We provide a brief description of the GA in 447 Appendix I. The procedure conceived for finding $\mathbf{A}_{F}, \mathbf{W}_{d}$
and \mathbf{A}_{S} with the aid of our constrained binary GA is given in 448 Algorithm. 1.

Algorithm 1: MBER based $\mathbf{A}_{F}, \mathbf{W}_{d}$ and \mathbf{A}_{F} design for the 450 relay link (Suboptimal).

1: Given: $N_{s}, N_{r}, N_{d}, \mathbf{H}_{s r}, \mathbf{H}_{r d}$ with SVD components $\sigma_{x}^{2}, 452$ $\sigma_{r}^{2}, \sigma_{d}^{2}$ and P_{r} along with LMMSE solutions of $\mathbf{W}_{d}, \mathbf{A}_{F}$ and 453 \mathbf{A}_{S} as initial "seed".

2: Obtain $\boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{k}^{m b e r}$ from Equation (11) using our 455 constrained binary GA.
3. for $i=1,2, \ldots, k=1, k+1, \ldots, N_{x}$

4: Substitute $\boldsymbol{\Sigma}_{F}^{m b e r}$ calculated for $i=k$ into $P_{e, i}$. 458
5: Find $\mathbf{w}_{i}^{m b e r}$ from Equation (12) using our binary GA. 459
end for 460
returnw $_{i}^{\text {mber }}$ for $i=1, \ldots, N_{x}$ and $\boldsymbol{\Sigma}_{F}^{m b e r}, \boldsymbol{\Sigma}_{S}^{m b e r}$.

Projected Steepest Descent method: We have also used tech- 462 niques, the low-complexity Projected Steepest Descent (PSD) 463 [22] optimization method, which is one of the steepest descent 464 conceived for constrained optimization [22]. We first form a 465 vector of all the variables of interest. In the case of the optimal 466 scenario, we stack all the complex components of the $\mathbf{W}_{d}, 467$ \mathbf{A}_{F} and \mathbf{A}_{S} matrices to form $\mathbf{v} \in \mathbb{C}^{\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right) \times 1}$ (the 468 variable of interest) as follows

$$
\begin{equation*}
\mathbf{v}=\left[\left\{\operatorname{vec}\left(\mathbf{W}_{d}\right)\right\}\left\{\operatorname{vec}\left(\mathbf{A}_{F}\right)\right\}\left\{\operatorname{vec}\left(\mathbf{A}_{S}\right)\right\}\right]^{T} \tag{28}
\end{equation*}
$$

For the PSD method, the updated vector at the j th iteration is 470 obtained as

$$
\begin{equation*}
\mathbf{v}_{j+1}=\mathbf{v}_{j}+\alpha \mathbf{s}_{j}-\mathbf{G}_{j}\left(\mathbf{G}_{j}^{H} \mathbf{G}_{j}\right)^{-1} \mathbf{g}_{j} \tag{29}
\end{equation*}
$$

where \mathbf{G}_{j} is the gradient of the feasible constraints, \mathbf{g}_{j} is the 472 stack of feasible constraints and can be defined as follows 473

$$
\mathbf{g}_{j}=\left[\begin{array}{c}
\left(T r\left(\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right)-P_{r}\right) \tag{30}\\
\left(\sigma_{x}^{2}\left(\operatorname{Tr}\left(\mathbf{A}_{S}^{H} \mathbf{A}_{S}\right)\right)-P_{t}\right)
\end{array}\right]
$$

We also define \mathbf{s}_{j} as follows

$$
\begin{equation*}
\mathbf{s}_{j}=-\left[\mathbf{I}-\mathbf{G}_{j}\left(\mathbf{G}_{j}^{H} \mathbf{G}_{j}\right)^{-1} \mathbf{G}_{j}^{H}\right] \nabla f\left(\mathbf{x}_{j}\right) \tag{31}
\end{equation*}
$$

along with $\alpha=-\left(\gamma f\left(\mathbf{x}_{j}\right) / \mathbf{s}_{j}^{H} \nabla f\left(\mathbf{x}_{j}\right)\right)$, where γ is the desired 475 reduction factor, usually assumed to be 0.05 (5\%). For our 476 specific problem with the optimal case, \mathbf{G}_{j} will be obtained 477 as follows

$$
\mathbf{G}_{j}=\left[\begin{array}{cc}
\operatorname{vec}\left(\mathbf{0}_{N_{d} \times N_{x}}\right) & \operatorname{vec}\left(\mathbf{0}_{N_{d} \times N_{x}}\right) \tag{32}\\
\operatorname{vec}\left(\mathbf{A}_{F} \mathbf{A}_{1}\right) & \operatorname{vec}\left(\mathbf{0}_{N_{r} \times N_{r}}\right) \\
\operatorname{vec}\left(\mathbf{0}_{N_{s} \times N_{s}}\right) & \operatorname{vec}\left(\mathbf{A}_{S}\right)
\end{array}\right]
$$

where $\quad \mathbf{A}_{1} \triangleq\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right)\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right)^{H} .479$ For the suboptimal case, \mathbf{G}_{j} would be obtained as follows 480

$$
\mathbf{G}_{j}^{s u b}=\left[\begin{array}{cc}
\operatorname{vec}\left(\mathbf{0}_{N_{d} \times 1}\right) & \operatorname{vec}\left(\mathbf{0}_{N_{d} \times 1}\right) \tag{33}\\
\mathbf{c}_{1} & \operatorname{vec}\left(\mathbf{0}_{N_{r} \times 1}\right) \\
\operatorname{vec}\left(\mathbf{0}_{N_{x} \times 1}\right) & \mathbf{c}_{2}
\end{array}\right]
$$

TABLE II
Computation Complexity Comparison Between the Proposed MBER Method With LMMSE Method for SRD Relay

Algorithm	MBER Complexity
GA	$N_{p o p} N_{g a}\left(4 N_{r} N_{d}\left(N_{r}+N_{s}\right)\right.$
(Multiplication)	$+4 N_{r} N_{s} N_{x}+4 N_{d} N_{r}^{2}+2 N_{d}^{2}$
(Optimal)	$+N_{x}\left(4 N_{d}^{2}+4 N_{d}\right)+4 N_{d} N_{s} N_{x}+8 N_{r}^{3}$
	$+2 N_{x} M^{N_{x}}\left(4 N_{x}+1+N_{Q}\right)+4 N_{r}^{2} N_{s}$
	$\left.+2 N_{r}^{2}+4 N_{s}^{2} N_{x}+1\right)$
GA	$N_{p o p} N_{g a}\left(2 N_{d}\left(N_{r}+N_{s}\right)\left(4 N_{r}-1\right)\right.$
(Total operations)	$+\left(8 N_{s}-2\right) N_{r} N_{x}+\left(8 N_{r}-2\right) N_{r} N_{d}$
(Optimal)	$+2 N_{d}^{2}+N_{d}+N_{x}\left(8 N_{d}^{2}+6 N_{d}-2\right)$
	$+4 N_{d} N_{s} N_{x}+2 N_{x} M^{N_{x}}\left(4 N_{x}+1+N_{Q}\right)$
	$+N_{r}^{2}\left(8 N_{s}+16 N_{r}-6\right)+2 N_{r}$
	$+2\left(N_{r}-1\right)+\left(8 N_{s}-2\right) N_{s} N_{x}-1$
(Multiplication)	$N_{p o p} N_{g a}\left(3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right)\right.$
(Sub-optimal)	$+2 N_{d} N_{x}+4 N_{d} N_{r}^{2}+2 N_{d}^{2}$
	$+N_{x}+N_{x}\left(4 N_{d}^{2}+4 N_{d}\right)+4 N_{d} N_{s} N_{x}$
	$\left.+2 N_{x} M^{N_{x}} N_{Q}+2 N_{r}+1\right)$
GA	$N_{p o p} N_{g a}\left(3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right)\right.$
(Total operations)	$+2 N_{d} N_{x}+\left(8 N_{r}-2\right) N_{r} N_{d}+2 N_{d}^{2}$
(Sub-optimal)	$+N_{x}\left(8 N_{d}^{2}+6 N_{d}-2\right)+4 N_{d} N_{s} N_{x}$
	$+2 N_{x} M^{\left.N_{x} N_{Q}+3 N_{r}+N_{s}+1+N_{d}\right)}$

481 where $\left[\mathbf{c}_{1}\right]_{i}=\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right)$ and $\left[\mathbf{c}_{2}\right]_{i}=\sigma_{x}^{2}$. For suboptimal 482 case, \mathbf{g}_{j} is defined as follows

$$
\mathbf{g}_{j}^{s u b}=\left[\begin{array}{c}
\left(\sum_{i=1}^{N_{r}} \sigma_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right)-P_{r}\right) \tag{34}\\
\left(\sigma_{x}^{2} \sum_{i=1}^{N_{s}} \sigma_{s, i}^{2}-P_{t}\right)
\end{array}\right]
$$

483 For all cases, the initial value of \mathbf{v} is chosen from the LMMSE 484 solution.

485

VI. Computational Complexity Analysis

486 Let us now approximate the computational complexity of the 487 relay link designs using the MBER CF. We express it in terms 488 of the number of operations, which can be addition, subtraction 489 and multiplication operations. We first quantify the complexity 490 in terms of the number of multiplications and then in terms of 491 all the operations. We found that the complexity is dominated 492 by the multiplications due to the associated matrix operations. 493 We have also considered the complexity separately for both the 494 optimal and sub-optimal approaches. Let us assume that $N_{p o p}$ 495 and $N_{g a}$ are the population size and the average number of GA 496 iterations, respectively. The complexity results are presented in 497 Table II for the SRD case. However, the details of the analysis 498 are given in Appendix II along with the RD case as well. We 499 have also analyzed the detailed complexity involving the PSD 500 optimization, albeit they are not given in the table due to space 501 limitations.

Notes:

1) An approximation for N_{Q} can be obtained in several ways. In practice, the $Q(\cdot)$-function is calculated using the look-up table. Ignoring the off-line calculations of its values at various data points, we need to compute the index of the discretized argument, which needs one unit of operation followed by a memory-read. The other
approach is constituted by the more accurate Taylor 509 series.

$$
\begin{equation*}
Q(x)=\frac{1}{2}-\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} \frac{(-1)^{(n)} x^{2 n+1}}{n!(2 n+1) 2^{n}} \tag{35}
\end{equation*}
$$

We note that typically $2 n$ is calculated by the left-shifting 511 of the binary string by one position and 2^{n} is simply a 512 binary number of length $(n+1)$ with only a single ' 1 ' at 513 the $(n+1)^{t h}$ position. Thus, we can ignore the complex- 514 ity involving these two operations. Now, we can calculate 515 the N_{Q} as $N_{Q} \approx 4 N_{\text {lim }}$ with multiplications and $N_{Q} \approx 516$ $5 N_{\text {lim }}$ with total operations, respectively, where $N_{\text {lim }} 517$ is a number for representing the limit of Taylor series 518 sum. Simulation shows that even $N_{\text {lim }} \geq 20$ gives a good 519 approximation with argument $x \leq 4$.
2) In the complexity analysis, another complexity compo- 521 nent involving the SVD decomposition of a matrix has 522 to be mentioned, which is required for both the LMMSE 523 algorithm and for our proposed low complexity solution. 524 For the channel matrices $\mathbf{H}_{s r}$ and $\mathbf{H}_{r d}$, the order of com- 525 plexity will be $O\left(4 N_{r}^{2} N_{s}+22 N_{s}^{3}\right)+O\left(4 N_{d}^{2} N_{r}+22 N_{r}^{3}\right) .526$
3) The computational complexity of the LMMSE solution 527 relying on ARITH-BER [9] has not been analyzed in [9], 528 hence we analyze it for comparison. The complexity in 529 terms of the multiplications is approximately $4 N_{s}^{2} N_{x}+530$ $8 N_{s}+4+19 N_{s}+2 N_{r}+4 N_{r}^{3}+4 N_{r} N_{s}^{2}+\left(32 N_{s}^{3}-531\right.$ $\left.12 N_{s}^{2}-2 N_{s}\right) / 6+3 \min \left(N_{d}, N_{s}, N_{r}, N_{x}\right)+2 N_{d} N_{x}+532$ $\left(32 N_{d}^{3}-12 N_{d}^{2}-2 N_{d}\right) / 6+4 N_{d} N_{r}^{2}+2 N_{d}^{2}+4 N_{d} N_{s} N_{x}+533$ $4 N_{s} N_{d}^{2}+2 N_{s} N_{d}$. The total complexity is approximately 534 $\left(8 N_{s}-2\right) N_{s} N_{x}+29 N_{s}+3+\left(8 N_{r}-2\right) N_{r}^{2}+2 N_{r}+535$ $\left(8 N_{s}-2\right) N_{r} N_{s}+\left(32 N_{s}^{3}+60 N_{s}^{2}-14 N_{s}\right) / 3+\left(8 N_{s}-536\right.$ 2) $N_{d} N_{x}+\left(8 N_{d}-2\right) N_{s} N_{d}+2 N_{s} N_{d}+4 N_{d}^{2}+\left(32 N_{d}^{3}+537\right.$ $\left.60 N_{d}^{2}-14 N_{d}\right) / 3+3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right) 2 N_{d} N_{x}+538$ $\left(8 N_{r}-2\right) N_{r} N_{d}+N_{d}$.

VII. Numerical Results

Let us now study the BER performance of the proposed 541 method against that of the LMMSE method [7]. Our simu- 542 lations are performed in two stages. During the first stage, 543 we use a known training sequence for determining both the 544 TPC as well as the AF and equalizer matrices of the $\mathrm{SN}, 545$ RN, DN respectively. In the second stage, the data sequence 546 is detected. We consider a flat Rayleigh fading i.i.d channel 547 with unit variance for each complex element of $\mathbf{H}_{s r}$ and $\mathbf{H}_{r d} .548$ Thus, the Channel Impulse Response (CIR) is a non-dispersive 549 Rayleigh-faded one. Most of the simulations are preformed 550 for $N_{s}=2, N_{r}=2, N_{d}=2$ with channel coding, which uses 551 Convolution Code (CC) of $(7,5)_{8}$. We have used the Soft- 552 Output Viterbi decoding [23]. The RN's SNR is defined as 553 $\mathrm{SNR}_{1}=10 \log _{10}\left(\left(\sigma_{x}^{2} / \sigma_{1}^{2}\right)\right) \mathrm{dB}$, where σ_{x}^{2} is the power of each 554 x_{i}, which is set to $\left(P_{t} / N_{x}\right)$ with $P_{t}=1 \mathrm{dBm}$. The DN's SNR 555 is defined as $\mathrm{SNR}_{2}=10 \log _{10}\left(\left(P_{r} / N_{r} \sigma_{2}^{2}\right)\right) \mathrm{dB}$, with the RN 556 power constraint of $P_{r}=5 \mathrm{dBm}$. Finally the SN's power is 557 constrained to $P_{t}=1 \mathrm{dBm}$ unless specified otherwise. The 558 SNR_{1} is kept at 20 dB . Our simulation results are averaged 559

TABLE III
GA Parameters

Parameters	Values
Population Size	50
GA maximum iteration limit	500
Mutation Type	Bit flipping
Probability of mutation	0.01
Binary string length per variable	16 bit
Initialization	LMMSE
Crossover type	Single point

Fig. 4. BER vs. SNR_{2} performance of the $\mathrm{RN}-\mathrm{DN}$ link design based on the MBER method (with full $\mathbf{A}_{F}, \mathbf{W}_{d}$ (equation (6)) and suboptimal methods (equations (11) and (12)) along with the LMMSE method over a flat Rayleigh fading channel. Performances with and without the channel estimation are presented. $N_{s}, N_{r}, N_{d}=2, P_{r}$ is constrained to 5 dBm and SNR_{1} is 20 dB . Convolution code of $(7,5)_{8}$ is used along with the GA optimization.

560 over 1000 channel realizations per SNR value. In all our sim561 ulation setup, we have assumed $N_{x}=N_{s}$, though any value 562 of N_{x} can be assumed. The GA related parameters are chosen 563 as per Table III.
564 Experiment 1: This experiment is for the RD link design. 565 The primary focus of this experiment is to characterize the BER 566 performance of the proposed MBER method against that of the 567 LMMSE benchmark [7]. We have also evaluated the BER per568 formance both with perfect and with estimated channel, where 569 the channel was also estimated using the LMMSE technique. 570 In the second part of the experiment, we characterized the 571 various suboptimal methods along with the original problem 572 formulation of Equation (6) for analyzing the effects of \mathbf{A}_{F} and $573 \mathbf{W}_{d}$. In this experiment, we have also shown the superiority 574 of the MBER method over a rank-deficient system, where 575 conventional LMMSE technique fails to perform adequately. 576 Remarks:

1) Fig. 4. plots the BER vs. SNR_{2} performance of both the MBER and LMMSE based RD link design. Observe in Fig. 4 that as the SNR increases, the MBER method increasingly outperforms the LMMSE method.

Fig. 5. BER vs. SNR_{2} performance of the rank-deficient RN-DN link design based on the MBER method (optimal) along with the LMMSE method over a flat Rayleigh fading perfect channel. $N_{s}=4$ and $N_{r}, N_{d}=2, P_{r}$ is constrained to 5 dBm and SNR_{1} is 20 dB . Convolution code of $(7,5)_{8}$ is used along with the GA optimization.

At $\mathrm{BER}=10^{-3}$ the MBER method requires an SNR 581 of approximately 19.5 dB (suboptimal, SVD based) 582 and 20.7 dB (optimal), respectively, while the LMMSE 583 method needs $\mathrm{SNR} \approx 26 \mathrm{~dB}$ for the perfectly known 584 channel. Thus, the MBER method attains an SNR gain of 585 approximately 5 dB (suboptimal) and 6.5 dB (optimal), 586 respectively for the scenario of $\mathrm{SNR}_{1}=20 \mathrm{~dB}$ and $P_{r}=587$ 5 dBm . The SNR gain of the LMMSE-estimated channel 588 remains almost $\geq 5 \mathrm{~dB}$ for the suboptimal MBER based 589 RN-DN link design.
2) Fig. 5 shows the BER performance of a rank-deficient 591 system. The $N_{s}=4$ with $N_{r}=2 N_{d}=2$. It shows that 592 at $\mathrm{BER}=4 \times 10^{-3}$, the MBER method gives a BER gain 593 of almost 5 dB , where conventional LMMSE method fails 594 to perform adequately.
3) Let us now consider both the SVD structure of \mathbf{A}_{F} and 596 its original non-decomposed structure. In both the cases, 597 we generate \mathbf{w}_{i} in both ways, first as in Equation (6) and 598 then as in Equations (11) and (12). Fig. 6 characterizes 599 all these cases. Observe that at $\mathrm{BER}=10^{-3}$, the SVD 600 structure based \mathbf{A}_{F} obtains a degraded SNR performance 601 of 1.5 dB compared to the case, where \mathbf{A}_{F} assumes no 602 SVD structure. It is also observed from Fig. 6 that the two 603 choices for determining the equalizer matrix \mathbf{W}_{d} do not 604 have severe impact on the performance. This implies that 605 \mathbf{A}_{F} dominates the CF compared to the equalizer matrix 606 \mathbf{W}_{d} in the MBER framework. This also highlights the 607 fact that our low-complexity solution of Equations (11) 608 and (12) conceived for determining the DN's equalizers 609 in parallel does not impose any substantial degradation 610 on the BER performance in Fig. 6.

Fig. 6. BER vs. SNR_{2} performance of the RD link design based on the MBER method with various options for \mathbf{A}_{F} and \mathbf{W}_{d} matrices (Various combinations of equations (6) and (11), (12)) with a flat Rayleigh fading channel. Channels are perfectly known. $N_{s}, N_{r}, N_{d}=2, P_{r}$ is constrained to 5 dBm and SNR_{1} is 20 dB with CC code of $(7,5)_{8}$.

$$
612
$$

628 function encapsulated in the CF is approximated by the less 629 complex function of $Q(x) \approx(1 / 2) e^{-x^{2} / 2}$ [23]. In Fig. 8 , we 630 only characterize the RD link, this investigation may be readily 631 extended to the SRD link design as well. Again, the chan632 nels are assumed to be perfectly known in this experiment. 633 Remarks:

1) Fig. 8 portrays the BER performance of the MBER method using the above-mentioned $Q(x) \approx(1 / 2) e^{-x^{2} / 2}$ approximation for the RD link, which reduces the complexity of the search from that of Equation (11) to Equation (12) imposed, when finding \mathbf{A}_{F} and \mathbf{W}_{d}. Observe in Fig. 8 that the performance penalty imposed by this approximation is negligible at higher SNR values ($>25 \mathrm{~dB}$), although at lower SNR values this degradation is non-negligible.
643 Experiment 4: In this experiment we consider the SRD link 644 using our proposed MBER based framework. We have also

Fig. 7. BER vs. SNR_{2} performance of the RD link design based on the MBER method over a flat Rayleigh fading channel with 8- and 16-PSK signal sets with CC code of $(7,5)_{8}$. Channels are perfectly known. $N_{s}, N_{r}, N_{d}=2$ with P_{r} and SNR_{1} being constrained to 5 dBm and 20 dB , respectively.

Fig. 8. BER vs. SNR_{2} performance of the RD link design based on the MBER method with the Gaussian error function Q (.)-function approximation to an exponential one over a flat Rayleigh fading channel. Channels are perfectly known. QPSK signal set is used with CC code of $(7,5)_{8} . N_{s}, N_{r}, N_{d}=2$ with P_{r} being constrained to 5 dBm .
considered a $4 \times 2 \times 2$ rank-deficient SRD case. We set the SN 645 and RN power constraints to be $P_{t}=5 \mathrm{dBm}$ and $P_{r}=5 \mathrm{dBm}, 646$ respectively. We do not invoke the SVD of the \mathbf{A}_{F} and $\mathbf{A}_{S} 647$ matrices in this experiment. The channels are assumed to be 648 perfectly known. We have used CC code of $(7,5)_{8}$. In this 649 experiment, we have used both GA with LMMSE "seed" and 650 PSD with LMMSE initial solution. Remarks:

1) Fig. 9 characterizes the BER performance of the SN-RN- 652 DN link using our MBER framework. With GA method, 653 at the $\operatorname{BER}=10^{-3}$, the MBER method requires an SNR 654

Fig. 9. BER vs. SNR_{2} performance of the SRD link design based on the MBER method over a flat Rayleigh fading channel. Channels are perfectly known. $N_{s}, N_{r}, N_{d}=2, P_{r}$ and P_{t} are constrained to 5 dBm and SNR_{1} is 20 dB . QPSK signal set is used with CC code of $(7,5)_{8}$. GA and PSD optimizations are used.

Fig. 10. BER vs. SNR $_{2}$ performance of a rank-deficient $4 \times 2 \times 2$ SRD link design based on the MBER method over a flat Rayleigh fading channel. Channels are perfectly known. $N_{s}=4, N_{r}, N_{d}=2, P_{r}$ and P_{t} are constrained to 5 dBm and SNR_{1} is 20 dB . QPSK signal set is used with CC code of $(7,5)_{8}$. PSD optimization is used.
of approximately 9.8 dB (optimal), while the LMMSE method needs 15 dB and ARITH-BER requires 13.5 dB , respectively. Thus, the MBER method attains an SNR gain of approximately 5.2 dB and 3.7 dB for the SRD link with respect to LMMSE and ARITH-BER, respectively. We observe that PSD gives a 0.7 dB SNR degradation.
2) Fig. 10 shows the BER performance of the rank-deficient case. It shows that we can still attain an SNR gain of almost 3.5 db at the $\mathrm{BER}=1 \times 10^{-3}$ with coded data along with the PSD optimization method.

New MBER-based TPC, AF and equalizer matrices were 666 designed for the RN-DN link and SN-RN-DN links. The CFs of 667 various constellations were derived and a solution was found for 668 the design of these matrices using the MBER framework. Sub- 669 optimal approaches have also been proposed for computational 670 complexity reduction. It was shown that the BER performance 671 of the proposed method is superior compared to the LMMSE 672 method, albeit this improved performance has been achieved at 673 an increased computational complexity.

Appendix I

Optimization Techniques
In this contribution, we have adopted two optimization meth- 677 ods, namely the binary GA [21] and the PSD [22]. Below we 678 provide a brief description of the GA technique in the context 679 of our problem.

A. Binary GA

 681The binary GA is a heuristic method of optimization [21]. 682 We form a vector also referred to as a chromosome from the 683 variables of interest by stacking all the variables' real and 684 imaginary components as defined in Equation (26).

1) Population selection GA commences its operation from 686 a set of initial chromosome values known as the initial 687 population having a size of $N_{\text {pop }}$. The initial solution can 688 be randomly generated or "seeded" with a better initial 689 choice. The second option leads to a faster convergence. 690 In our case, the "seed" is the "LMMSE" solution and 691 the initial population is generated with the aid of a slight 692 random variation around the "seed". Now, for every chro- 693 mosome in the population, a "fitness" value is obtained by 694 calculating the CF value against each of them. Then, the 695 Roulette-Wheel algorithm of [21] is invoked for selecting 696 the suitable parent solutions for generating child solutions 697 for the next iteration. A pair of techniques referred to 698 as crossover and mutation are invoked for generating 699 children from the parents.
2) Crossover The crossover operation is a chromosome "re- 701 production" technique by which an off-spring is gener- 702 ated upon picking various parts of its parent chromosome. 703 This method introduces a large amount of characteristic 704 variation into the off-spring. Let us consider the following 705 example. Let us assume that a random binary string, $B 1,706$ which has the same length as chromosome is created. We 707 also assume that two children, namely $C h 1$ and $C h 2$ have 708 to be created from two parent chromosomes $P 1$ and $P 2.709$ Then, if the i th position of $B 1$ is $0, C h 1$ and $C h 2$ would 710 fill up their i th position from the i th position of $P 1$ and 711 $P 2$, respectively. Otherwise, the i th position of $P 1$ would 712 populate $C h 2$ and that of $P 2$ would go to $C h 1$.

$$
\begin{align*}
& P 1=[11000110] ; \\
& P 2=[10111001] ; \\
& B 1=[00101011] ; \tag{36}
\end{align*}
$$

Hence, the children become

$$
\begin{align*}
& C h 1=[11101101] ; \\
& C h 2=[10010010] ; \tag{37}
\end{align*}
$$ 2) $M K$. Multiplication of a complex-valued matrix and a vector

736

737

738

743 ti
744 f
745 n

746

747 m

 748 7492 child $C h=[11000100]$. algorithm mentioned earlier. method. respectively. equalizers \mathbf{w}_{i}.Mutation Mutation is a relatively small-scale characteristic variational "reproduction" tool for off-spring generation. It introduces a bit flipping at a few randomly selected places of the chromosomes. For example, if a parent chromosome is $P=$ [11000110], a mutation at the 2nd Least-Significant-Bit (LSB) position generates a
3) Termination Using the crossover and mutation techniques, a new set of off-spring is generated along with their fitness value. If one of them satisfies the required fitness value, the process is terminated with that chromosome being the solution. The process is also terminated, if the maximum number of iterations is exceeded. If no sufficiently good fit is found at a given iteration (provided the maximum iteration number has not been reached), the algorithm goes ahead with the selection of parents from the current set of children using the Roulette-Wheel

Appendix II Detail Complexity Analysis

The CF of BPSK formulated in Equation (13) is considered here first for this calculation, which is readily extended to other constellations as well. However, it is noted that the overall complexity depends on the specific choice of optimization method. We first calculate the complexity of calculating the CF and constraints once, irrespective of the choice of optimization
$R N-D N$ Link: Let us commence with the BPSK CF Equation (13). Let us first consider the term $\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j} x_{i}$. The fundamental assumption is that multiplication of two complex numbers would take 4 real data multiplication and 6 total operation (2 extra additions are required). Hence, two complex matrices of orders $\mathbb{C}^{M \times N}$ and $\mathbb{C}^{N \times K}$ would take $4 M N K$ multiplications, whereas the total operation required is $(8 N-$ of order $\mathbb{C}^{M \times N}$ and $\mathbb{C}^{N \times 1}$ would require $4 M N$ multiplications and $(8 N-2) M$ total operations, respectively.

1) Thus, effective channel matrix \mathbf{H} takes $N_{1}^{m}=4 N_{r} N_{d}$ $\left(N_{r}+N_{s}\right)$ multiplications and $N_{1}^{t}=2 N_{d}\left(N_{r}+N_{s}\right)$ $\left(4 N_{r}-1\right)$ total operations respectively. Calculation of \mathbf{H} is common with all the equalizers \mathbf{w}_{i}.
2) $\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j} x_{i}$ requires $N_{2}^{m}=4 N_{d} N_{s}+4 N_{s}+1$ multiplications and $N_{2}^{t}=8 N_{s} N_{d}+6 N_{d}-1$ total operations,
3) Similarly, the noise covariance matrix \mathbf{C}_{n} (4) requires $N_{3}^{m}=4 N_{d} N_{r}^{2}+2 N_{d}^{2}$ multiplications and $N_{3}^{t}=$ $\left(8 N_{r}-2\right) N_{r} N_{d}+2 N_{d}^{2}+N_{d}$ total operations, respectively. It assumes that calculation of $\mathbf{H}_{r d} \mathbf{A}_{F}$ is already done with \mathbf{H}. Calculation of \mathbf{C}_{n} is common with all the
4) Thus, $\mathbf{w}_{i}^{H} \mathbf{C}_{n} \mathbf{w}_{i}$ requires $N_{4}^{m}=4 N_{d}^{2}+4 N_{d}$ multiplication 765 and $N_{4}^{t}=8 N_{d}^{2}+6 N_{d}-2$ total operations, respectively. 766
5) Assuming the square root and division as two unit of op- 767 erations, the total complexity of calculating the CF once 768 is $N_{5}^{m}=N_{1}^{m}+N_{3}^{m}+N_{x} N_{4}^{m}+4 N_{d} N_{s} N_{x}+N_{x} 2^{N_{x}} 769$ $\left(4 N_{x}+1+N_{Q}\right)$ (with only multiplication) and $N_{5}^{t}=770$ $N_{1}^{m}+N_{3}^{m}+N_{x} N_{4}^{t}+N x\left(8 N_{s} N_{d}-2 N s\right)+2^{N_{x}}\left(8 N_{x}+771\right.$ $1+N_{Q}$) (with total operations), respectively, where $N_{Q} 772$ is the complexity involving the $Q(\cdot)$-function.

773
6) If M-QAM is chosen, the complexity will be approx- 774 imately $\quad N_{5}^{m} \approx N_{1}^{m}+N_{3}^{m}+N_{x} N_{4}^{m}+4 N_{d} N_{s} N_{x}+775$ $2 N_{x} M^{N_{x}}\left(4 N_{x}+1+N_{Q}\right)$ with multiplication and $N_{5}^{t} \approx 776$ $N_{1}^{t}+N_{3}^{t}+N_{x} N_{4}^{t}+6 N_{s}^{2} N_{d}+2 N_{x} M^{N_{x}}\left(2 N_{x} N_{d}+6 N_{d}+777\right.$ N_{Q}) with the total complexity, respectively. For the 778 M-PSK case with the rotated constellation concept, 779 we need to multiply $\left(4 N_{x}+1+N_{Q}\right)$ with only 780 $2 N_{x} M^{N_{x}-1}\left(4 N_{x}+1+N_{Q}\right)$.

781
7) For the SVD-based approach, the complexity of 782 H requires $N_{1}^{m}=\min \left(N_{d}, N_{r}\right)+2 N_{d}^{2}+4 N_{d} N_{s}^{2}$ mul- 783 tiplications and $N_{1}^{t}=\min \left(N_{d}, N_{r}\right)+2 N_{d}^{2}+\left(8 N_{s}-784\right.$ 2) $N_{d} N_{s}$ total operations. 785
8) Let us calculate the complexity involving the constraints. 786 From equation (6), we obtain the complexity for con- 787 straints as $N_{1}^{m, c}=8 N_{r}^{3}+4 N_{r}^{2} N_{s}+2 N_{r}^{2}$ with multipli- 788 cation only and $N_{1}^{t, c}=N_{r}^{2}\left(8 N_{s}+16 N_{r}-6\right)+2 N_{r}+789$ $2\left(N_{r}-1\right)$ with total operations, respectively. For the 790 SVD approach, it would be $N_{1}^{m, c}=2 N_{r}$ with multipli- 791 cations and $N_{1}^{t, c}=3 N_{r}$ total operations, respectively. 792
SN-RN-DN Link: For the case of the SN-RN-DN link, we 793 have to additionally incorporate the calculation of the TPC 794 matrix \mathbf{A}_{S}.

795

1) We obtain the complexity for \mathbf{H} as $N_{1}^{m}=4 N_{r} N_{d}\left(N_{r}+796\right.$ $\left.N_{s}\right)+4 N_{r} N_{s} N_{x} \quad$ with multiplication and $N_{1}^{t}=797$ $2 N_{d}\left(N_{r}+N_{s}\right)\left(4 N_{r}-1\right)+\left(8 N_{s}-2\right) N_{r} N_{x}$ with total 798 operations, respectively. For the SVD-based approach, 799 we obtain $\quad N_{1}^{m}=3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right)+2 N_{d} N_{x} 800$ for multiplications and $N_{1}^{t}=N_{1}^{m}$ as well for the total 801 operations.

802
2) An additional complexity for the source power constraint 803 may be calculated as $N_{2}^{m, c}=4 N_{s}^{2} N_{x}+1$ with multi- 804 plication and $N_{2}^{t, c}=\left(8 N_{s}-2\right) N_{s} N_{x}+2 N_{s}-1$ with 805 total computations, respectively. For the SVD-based ap- 806 proach, they become $N_{2}^{m, c}=1$ for multiplication and 807 $N_{2}^{t, c}=N_{s}+1$ for total operations, respectively. 808
Computational-Complexity, Specific to Optimization 809 Method: Computational complexity is also dependent on 810 the specific choice of optimization algorithm to determine 811 the parameters. For binary GA, time-complexity is more 812 appropriate. However, we try to give an approximate 813 computational-complexity for GA. The computational- 814 complexity for GA is dominated by the function and constraint 815 evaluations to determine the eligible population at each 816 iterations. Let us assume that total size of population is $N_{\text {pop }} 817$ and GA requires $N_{g a}$ iterations to converge. Then, total 818 complexity will be approximately $N_{\text {pop }} N_{g a}\left(N_{5}^{m}+N_{1}^{m, c}+819\right.$ $\left.N_{2}^{m, c}\right)$ with multiplication and $N_{\text {pop }} N_{g a}\left(N_{5}^{t}+N_{1}^{t, c}+N_{2}^{t, c}\right) 820$ with total operations, respectively.

For the PSD algorithm, we need to calculate the gradient 823 for both function and constraint. Gradient of CF is calculated 824 numerically.

1) Gradient of CF takes $N_{1}^{m, p s d}=2\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right) N_{5}^{m}$ multiplication and $N_{1}^{t, p s d}=2\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right) N_{5}^{t}$ total operations, if we use numerical method. For the SVD-based approach, it would be $N_{1}^{m, p s d}=2\left(N_{d}+\right.$ $\left.N_{x}+N_{r}\right) N_{5}^{m}$ with multiplication and $N_{1}^{t, p s d}=2\left(N_{d}+\right.$ $\left.N_{x}+N_{r}\right) N_{5}^{t}$ with total operations.
2) Per iteration, other steps require $N_{2}^{m, p s d}=18\left(N_{r}^{2}+\right.$ $\left.N_{s} N_{r}\right)+6\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right)+4\left(N_{r}^{2}+N_{s}^{2}\right)^{2}+9$ multiplications and $N_{2}^{t, p s d}=25\left(N_{r}^{2}+N_{s} N_{r}\right)+22+$ $10\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right)+8\left(N_{r}^{2}+N_{s} N_{r}\right)^{2} \quad$ total operations. For sub-optimal case, it would be $N_{2}^{m, p s d}=$ $2\left(N_{r}^{2}+N_{s}^{2}\right)+3\left(N_{d}+N_{r}+N_{s}\right)+1+2\left(N_{d}+N_{s}\right)$ for multiplication and $N_{2}^{t, p s d}=6\left(N_{r}+N_{s}\right)-6+$ $7\left(N_{d}+N_{r}+N_{s}\right)$ for total operations.
3) If PSD takes an average iteration of $N_{p s d}$, the computational complexity may be approximated as $N_{p s d}\left(N_{1}^{m, p s d}+N_{2}^{m, p s d}\right)$ with multiplication and $N_{p s d}\left(N_{1}^{t, p s d}+N_{2}^{t, p s d}\right)$ with total operations.
Computational Complexity for LMMSE [9]-ARITH BER Case: We give an approximate computational complexity for e LMMSE case for comparison purpose.
4) The computation of precoder matrix \mathbf{A}_{S} requires $4 N_{s}^{2} N_{x}+$ $8 N_{s}+3$ multiplication and $\left(8 N_{s}-2\right) N_{s} N_{x}+5 N_{s}+1$ total operations.
5) The computation of AF matrix requires $19 N_{s}+1+2 N_{r}+$ $4 N_{r}^{3}+4 N_{r} N_{s}^{2}+\left(32 N_{s}^{3}-12 N_{s}^{2}-2 N_{s}\right) / 6$ multiplications and $24 N_{s}+2+\left(8 N_{r}-2\right) N_{r}^{2}+2 N_{r}+\left(8 N_{s}-\right.$ 2) $N_{r} N_{s}+\left(32 N_{s}^{3}+60 N_{s}^{2}-14 N_{s}\right) / 3$ total operations.
6) Computation of effective channel matrix and noise covariance matrix are already given.
7) Computation of equalizer matrix requires $4 N_{d} N_{s} N_{x}+$ $4 N_{s} N_{d}^{2}+2 N_{s} N_{d}+\left(32 N_{d}^{3}-12 N_{d}^{2}-2 N_{d}\right) / 6$ multiplications and $\left(8 N_{s}-2\right) N_{d} N_{x}+\left(8 N_{d}-2\right) N_{s} N_{d}+2 N_{s} N_{d}+$ $2 N_{d}^{2}+\left(32 N_{d}^{3}+60 N_{d}^{2}-14 N_{d}\right) / 3$ total operations.

ACKNOWLEDGMENT

The financial support of the DST, India and of the EPSRC, UK under the auspices of the India-UK Advanced Technology Centre (IUATC) is gratefully acknowledged.

REFERENCES

[1] Y. Rong, X. Tang, and Y. Hua, "A unified framework for optimizing linear nonregenerative multicarrier MIMO relay communication systems," IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4837-4851, Dec. 2009.
[2] Y. Rong, "Optimal linear non-regenerative multi-hop MIMO relays with MMSE-DFE receiver at the destination," IEEE Trans. Wireless Commun., vol. 9, no. 7, pp. 2268-2279, Jul. 2010.
[3] X. J. Zhang and Y. Gong, "Adaptive power allocation for multihop regenerative relaying with limited feedback," IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3862-3867, Sep. 2009.
[4] X. J. Zhang and Y. Gong, "Jointly optimizing power allocation and relay positions for multi-relay regenerative relaying with relay selection," in Proc. 4th ICSPCS, 2010, pp. 1-9.
[5] J. Zou, H. Luo, M. Tao, and R. Wang, "Joint source and relay optimization for non-regenerative MIMO two-way relay systems with imperfect CSI," IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3305-3315, Sep. 2012.
[6] W. Zhang, U. Mitra, and M. Chiang, "Optimization of amplify-and- for- 879 ward multicarrier two-hop transmission," IEEE Trans. Commun., vol. 59, 880 no. 5, pp. 1434-1445, May 2011.
[7] W. Guan and H. Luo, "Joint MMSE transceiver design in non- regenera- 882 tive MIMO relay systems," IEEE Commun. Lett., vol. 12, no. 7, pp. 517- 883 519, Jul. 2008.
[8] C. Jeong and H.-M. Kim, "Precoder design of non-regenerative relays 885 with covariance feedback," IEEE Commun. Lett., vol. 13, no. 12, pp. 920-886 922, Dec. 2009.
[9] C. Song, K.-J. Lee, and I. Lee, "MMSE based transceiver designs in 888 closed-loop non-regenerative MIMO relaying systems," IEEE Trans. 889 Wireless Commun., vol. 9, no. 7, pp. 2310-2319, Jul. 2010.890
[10] C. Xing, S. Ma, and Y.-C. Wu, "Robust joint design of linear relay pre- 891 coder and destination equalizer for dual-hop amplifyand- forward MIMO 892 relay systems," IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2273-893 2283, Apr. 2010.
[11] X. Tang and Y. Hua, "Optimal design of non-regenerative MIMO wireless 895 relays," IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1398-1407, 896 Apr. 2007.
[12] O. Munoz-Medina, J. Vidal, and A. Agustin, "Linear transceiver design 898 in nonregenerative relays with channel state information," IEEE Trans. 899 Signal Process., vol. 55, no. 6, pp. 2593-2604, Jun. 2007.
[13] B. Sainath and N. Mehta, "Generalizing the amplify-and-forward relay 901 gain model: An optimal SEP perspective," IEEE Trans. Wireless Com- 902 mun., vol. 11, no. 11, pp. 4118-4127, Nov. 2012.
[14] T. Peng, R. de Lamare, and A. Schmeink, "Joint minimum BER power al- 904 location and receiver design for distributed space-time coded cooperative 905 MIMO relaying systems," in Proc. Int. ITG WSA, 2012, pp. 225-229. 906
[15] C.-C. Yeh and J. Barry, "Adaptive minimum bit-error rate equalization for 907 binary signaling," IEEE Trans. Commun., vol. 48, no. 7, pp. 1226-1235, 908 Jul. 2000.
[16] W. Yao, S. Chen, and L. Hanzo, "Generalised vector precoding design 910 based on the MBER criterion for multiuser transmission," in Proc. IEEE 911 VTC-Fall, 2010, pp. 1-5.
[17] S. Chen, A. Livingstone, and L. Hanzo, "Minimum bit-error rate de- 913 sign for space-time equalization-based multiuser detection," IEEE Trans. 914 Commun, vol. 54, no. 5, pp. 824-832, May 2006.
[18] W. Yao, S. Chen, and L. Hanzo, "Generalized MBER-based vector pre- 916 coding design for multiuser transmission," IEEE Trans. Veh. Technol., 917 vol. 60, no. 2, pp. 739-745, Feb. 2011.
[19] W. Yao, S. Chen, and L. Hanzo, "A transceiver design based on uniform 919 channel decomposition and MBER vector perturbation," IEEE Trans. Veh. 920 Technol., vol. 59, no. 6, pp. 3153-3159, Jul. 2010.
[20] M. Alias, S. Chen, and L. Hanzo, "Multiple-antenna-aided OFDM em- 922 ploying genetic-algorithm-assisted minimum bit error rate multiuser de- 923 tection," IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1713-1721, 924 Sep. 2005.
[21] D. E. Goldberg., Genetic Algorithms in Search, Optimization, Machine 926 Learning. Boston, MA, USA: Addison-Wesley Longman Publishing 927 Co., Inc, 2009.
[22] D. H. Luenberger, Linear and Nonlinear Programming. Englewood 929 Cliffs, NJ, USA: Prentice-Hall, 1984.
[23] J. Proakis, Digital Communications., 4th ed. New York, NY, USA: 931 McGraw-Hill, 2000.
[24] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Appli- 933 cations. Norwell, MA, USA: Kluwer, 1987.

Amit Kumar Dutta (SM'XX) received the B.E. de- 935 gree in electronics and tele-communication engineer- 936 ing from Bengal Engineering and Science University, 937 India, in 2000. He is currently pursuing the Ph.D 938 degree at the Department of ECE, Indian Institute of 939 Science, India.

He worked in Texas Instrument (TI) Pvt. Ltd., 941 India, from 2000 to 2009. During his career at TI, 942 he worked on various design and test aspects of 943 communication and entertainment related System- 944 on-Chip. The works included digital VLSI design 945 and its test, validation and characterization.

He is interested in the applications of statistical signal processing algorithms 947 to wireless communication systems. His current research interests are on the 948 various parameter estimation and signal detection for MIMO wireless receiver 949 based on the Minimum Bit-Error-Ratio criterion.

962 ogy, Stockholm, Sweden.
963 He has been a visiting faculty member at Stanford University, KTH-Royal In964 stitute of Technology and Helsinki University of Technology (now Aalto Univ). 965 He also worked at DLRL, Hyderabad, and at the R\&D unit for Navigational 966 Electronics, Osmania University.
967 His research interests are in developing signal processing algorithms for 968 MIMO wireless communication systems, sparse signal recovery problems, 969 indoor positioning and DOA estimation.
970 During his work at Stanford University, he worked on MIMO wireless 971 channel modeling and is the coauthor of the WiMAX standard on wireless
972 channel models for fixed-broadband wireless communication systems which 973 proposed the Stanford University Interim (SUI) channel models. He is currently 974 an Editor of the EURASIP's Journal on Signal Processing published by Elsevier 975 and the Senior Associate Editor, Editorial Board of Sadhana (Indian Academy 976 of Science Proceedings in Engineering Sciences). He is also an academic 977 entrepreneur and is a cofounder of the company ESQUBE Communication 978 Solutions, Bangalore.

Lajos Hanzo (F'08) received the bachelor's degree 979 in electronics in 1976 and the doctoral degree in 980 1983. In 2009 he was awarded the honorary doc- 981 torate "Doctor Honoris Causa" by the Technical 982 University of Budapest. During his 37-year career 983 in telecommunications he has held various research 984 and academic posts in Hungary, Germany and the 985 UK. Since 1986 he has been with the School of 986 Electronics and Computer Science, University of 987 Southampton, U.K., where he holds the chair in 988 telecommunications. He has successfully supervised 989 more than 80 Ph. D. students, co-authored 20 John Wiley/IEEE Press books 990 on mobile radio communications totalling in excess of 10000 pages, published 991 1400+ research entries at IEEE Xplore, acted both as TPC and General Chair of 992 IEEE conferences, presented keynote lectures and has been awarded a number 993 of distinctions. Currently he is directing a 100-strong academic research team, 994 working on a range of research projects in the field of wireless multimedia 995 communications sponsored by industry, the Engineering and Physical Sciences 996 Research Council (EPSRC) UK, the European Research Council's Advanced 997 Fellow Grant and the Royal Society's Wolfson Research Merit Award. He is an 998 enthusiastic supporter of industrial and academic liaison and he offers a range of 999 industrial courses. He is also a Governor of the IEEE VTS. During 2008-2012 1000 he was the Editor-in-Chief of the IEEE Press and a Chaired Professor also at 1001 Tsinghua University, Beijing. His research is funded by the European Research 1002 Council's Senior Research Fellow Grant. For further information on research 1003 in progress and associated publications please refer to http://www-mobile.ecs. 1004 soton.ac.uk.Dr.Hanzohasmorethan20\ 000+citations.

1005

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Please provide membership history of author Amit Kumar Dutta.

END OF ALL QUERIES 8 to determine various linear parameters. We consider both the 9 Relay-Destination (RD) as well as the Source-Relay-Destination 0 (SRD) link design based on this MBER framework, including the 1 precoder, the Amplify-and-Forward (AF) matrix and the equal2 izer matrix of our system. It has been shown in the previous 3 literature that MBER based communication systems are capable 4 of reducing the Bit-Error-Ratio (BER) compared to their Linear 5 Minimum Mean Square Error (LMMSE) based counterparts. We 6 design a novel relay-aided system using various signal constella7 tions, ranging from QPSK to the general M-QAM and M-PSK 8 constellations. Finally, we propose its sub-optimal versions for 9 reducing the computational complexity imposed. Our simulation 0 results demonstrate that the proposed scheme indeed achieves a 1 significant BER reduction over the existing LMMSE scheme.

Index Terms-Minimum bit error ratio (MBER), linear minimum mean square error (LMMSE), Relay, multiple-input multi-ple-output (MIMO), singular-value-decomposition (SVD).

RELAY-BASED communication systems have enjoyed considerable research attention due to their ability to 8 provide a substantial spatial diversity gain with the aid of distributed nodes, hence potentially extending the coverage area and/or for reducing the transmit power [1], [2]. A pair 1 of key protocols has been conceived for relay-aided systems, 2 namely the regenerative [3], [4] and the non-regenerative [5], [6] protocols. In the regenerative scenario, the relay node (RN) 3 decodes the signal and then forwards it after amplification to 5 the destination node (DN) (also known as a decode-forward 6 relay), while maintaining the same total relay- plus source7 power as the original non-relaying scheme. By contrast, in the 8 case of non-regenerative relaying, the RN only amplifies the 9 signal received from the source node (SN) and then forwards it

[^1]to the DN without any decoding (also known as an amplify-and- 40 forward relay), again, without increasing the power of the orig- 41 inal direct SN-DN pair. Non-regenerative relaying is invoked 42 for applications, where both low latency and low complexity 43 are required.

Multiple-input multiple-output (MIMO) techniques may be 45 beneficially combined with relaying for further increasing both 46 the attainable spectral efficiency and the signal reliability. The 47 non-regenerative relay involves the design of both the Amplify- 48 and-Forward (AF) matrix at the RN and the linear equalizer 49 design at the DN, or any precoder matrix at the SN , subject to 50 the above total SN and (or) RN power constraints. Various Cost 51 Functions (CF) have been proposed for optimizing these matri- 52 ces, such as the Linear Minimum Mean Square Error (LMMSE) 53 [7]-[10] and the Maximum Capacity (MC) [11], [12] CFs, etc. 54 However, the direct minimization of the Bit-Error-Ratio (BER) 55 at the DN has not as yet been fully explored in the context of 56 designing the various parameters of non-regenerative MIMO- 57 aided relaying, although a BER based RN design was proposed 58 In reply to: [13] for a single-antenna scenario. Hence, the work 59 in [13] does not deal with the design of precoder, AF and 60 linear equalizers as matrices due to the consideration of single 61 antenna at SN, RN and DN. Though, a Minimum Bit Error 62 Ratio (MBER) CF based MIMO-aided relay design [14] was 63 provided for a cooperative, non-regenerative relay employing 64 distributed space time coding, it was based on the classic BPSK 65 signal sets. This work assumes the power allocation matrix 66 to be diagonal and no RN power constraint was used in the 67 optimization problem. In this case of [14], the relay power 68 was normalized after determining the diagonal AF and precoder 69 matrices with unconstrained optimization problem, which leads 70 to a sub-optimal solution.

The benefit of MBER-based linear system design has been 72 well studied in literature. To elaborate a little further, the MBER 73 CF directly minimizes the BER [15]. Previous literature has 74 shown that a sophisticated system design based on this criterion 75 is capable of outperforming its LMMSE counterpart in terms of 76 the attainable BER. Owing to its benefits, it has been used for 77 the design of a linear equalizer [15], for the precoder matrix 78 [16] and for various other MIMO, SDMA as well as OFDM 79 systems conceived for achieving the best BER performance 80 [17]-[19] at the of higher computational complexity. MBER 81 based linear receiver design has also been shown to be very 82 effective in terms of BER performance in the rank-deficient 83 case, where conventional LMMSE-based receiver fails to per- 84 form significantly [20].

141 Notation: Bold upper and lower case letters denote matrices 142 and vectors, respectively. The superscripts $(\cdot)^{T}$ and $(\cdot)^{H}$ denote

Scope and contribution: Against this background based on the MBER CF, we design of a new non-regenerative MIMOaided relaying system, which comprises a SN, a RN and a DN. We assume a half duplex system at the RN, where one time slot is used for receiving from the SN and another for forwarding it to the DN. No SN-RN transmission takes place during the RN-DN transmission. In this work, we consider the joint design of the SN's transmit precoder, the RN's AF matrix and the DN's linear equalizer matrix based on the MBER CF subject to the above total RN-SN power constraints. The performance of the proposed scheme is evaluated and compared to that of the existing LMMSE based method. The main contributions of this treatise are as follows:

1) A CF is conceived for the design of the RN-DN and the SN-RN-DN links of a non-regenerative relaying system based on the MBER CF subject to the SN and (or) RN power constraints. The MBER CF is formulated for various data constellations, ranging from BPSK to the general M-QAM and M-PSK constellations. Naturally, the specific choice of the constellation fundamentally influences the MBER CF [15], [17]-[19]. We jointly determine the precoder, AF and equalizer matrices based on this MBER CF under a source and relay power constraint. The existing MIMO MBER solutions are designed for unconstrained scenarios and hence this constrained MBER optimization poses specific challenges. Therefore, we have conceived both the heuristic constrained binary Genetic Algorithm (GA) [21] and the Projected Steepest Descent (PSD) [22] algorithm for determining these parameters.
2) A suboptimal method is also proposed for reducing the number of variables using the Singular-ValueDecomposition (SVD) approach, which allows the optimization problem to be decomposed into multiple parallel optimization problems. The key contribution here is that we propose to split the complete constrained optimization problem into unconstrained parallel optimization problems except for one of the cases.
3) The Cost Function (CF) of M-PSK constellation has been approximated for the sake of conceiving a more tractable form for the MIMO-aided relaying system considered. This approximation can also be used for classic MIMO scenarios.
4) An impediment of the MBER CF is however its high computational complexity compared to its LMMSE counterpart [15]. To mitigate this, we have conceived a low-complexity data detection scheme for the MBER method with the aid of the phase rotation of the constellation in the context of rotationally invariant QPSK and M-PSK constellations. This scheme can be equally applicable to any other MIMO system design based on the MBER criterion.
5) An approximate complexity analysis is performed for the MBER scheme under various constrained optimization methods such as the GA and PSD. This step-by-step analysis may be readily applied to other MBER solutions.

Fig. 1. Single relay system with multiple input-output antennas at source, relay, and destination.
the transpose and the conjugate transpose of a matrix, respec- 143 tively. $\mathbb{E}[\cdot]$ denotes the expectation, while \mathbf{I}_{N} denotes a $(N \times 144$ N)-element identity matrix. $\operatorname{Tr}[\cdot]$ represents the trace of a 145 matrix. A diagonal matrix is denoted by $\operatorname{diag}\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}, 146$ where a_{n} denotes the nth diagonal element. $\operatorname{vec}(\mathbf{A})$ is the vec- 147 torization of the matrix A with columns stacked one-by-one. 148

II. System Model

We consider a communication system consisting of a SN, a 150 RN and a DN having N_{s}, N_{r}, and N_{d} antennas, respectively, 151 as shown in Fig. 1. It is assumed that there is no Line-Of- 152 Sight (LOS) component between the SN and the DN. Both 153 the $\mathrm{SN}-\mathrm{RN}$ and the RN-DN channel matrices are assumed 154 to be those of flat-fading channels, which are denoted as 155 $\mathbf{H}_{s r} \in \mathbb{C}^{N_{r} \times N_{s}}$ and $\mathbf{H}_{r d} \in \mathbb{C}^{N_{d} \times N_{r}}$, respectively. The symbol 156 vector transmitted from the SN before precoding is denoted 157 as $\mathbf{x} \in \mathbb{C}^{N_{x} \times 1}$ with N_{x} being the length of the input vector. 158 We assume $\mathbf{A}_{S} \in \mathbb{C}^{N_{S} \times N_{x}}$ to be the precoding matrix at the 159 SN . The average transmitted power is constrained to $P_{t}=160$ $\mathbb{E}\left[\mathbf{s}^{H} \mathbf{s}\right]$ with $\mathbf{s} \triangleq \mathbf{A}_{S} \mathbf{x}$, which is assumed to be the same for 161 all symbols at the SN. Hence, we have the transmit power con- 162 straint as $P_{t} \triangleq \mathbb{E}\left\|\mathbf{A}_{S} \mathbf{x}\right\|^{2}=\sigma_{x}^{2} \operatorname{Tr}\left(\mathbf{A}_{S} \mathbf{A}_{S}^{H}\right)$ and the transmit 163 data covariance matrix is $\mathbf{R}_{S} \triangleq \mathbb{E}\left(\mathbf{s s}^{H}\right)=\left(P_{t} / N_{x}\right)\left(\mathbf{A}_{S} \mathbf{A}_{S}^{H}\right), 164$ where $\sigma_{x}^{2}=\left(P_{t} / N_{x}\right)$ is the signal power of each data x_{i}. The 165 noise vectors at the RN and the DN are $\mathbf{n}_{r} \in \mathbb{C}^{N_{r} \times 1}$ and 166 $\mathbf{n}_{d} \in \mathbb{C}^{N_{d} \times 1}$, respectively, which are assumed to be zero mean, 167 circularly symmetric complex i.i.d Gaussian vectors having 168 the covariance matrices of $\sigma_{r}^{2} \mathbf{I}_{N_{r}}$ and $\sigma_{d}^{2} \mathbf{I}_{N_{d}}$, respectively. We 169 consider a classic half duplex system. Hence, in the first time 170 slot, the SN transmits a source vector \mathbf{s} and the vector $\mathbf{y}_{r} \in 171$ $\mathbb{C}^{N_{r} \times 1}$, received at the RN is given by,

$$
\begin{equation*}
\mathbf{y}_{r}=\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r} . \tag{1}
\end{equation*}
$$

During the next time slot, the relay would multiply the 173 received vector \mathbf{y}_{r} with the AF matrix $\mathbf{A}_{F} \in \mathbb{C}^{N_{r} \times N_{r}}$ and 174 then forwards it to the DN. Let us assume that $\mathbf{y}_{F} \triangleq \mathbf{A}_{F} \mathbf{y}_{r}=175$ $\mathbf{A}_{F}\left(\mathbf{H}_{s r} \mathbf{S}+\mathbf{n}_{r}\right)$. We impose the RN transmit power restric- 176 tion of $\mathbb{E}\left[\mathbf{y}_{F}^{H} \mathbf{y}_{F}\right] \leq P_{r}$, where P_{r} is the RN's transmit power. 177 Assuming that the SN's transmitted signal and the noise are 178 independent, the RN's power can be calculated as,

$$
\begin{align*}
\mathbb{E}\left[\mathbf{y}_{f}^{H} \mathbf{y}_{f}\right] & =\operatorname{Tr}\left\{\mathbb{E}\left(\mathbf{A}_{\mathbf{F}}\left(\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r}\right)\left(\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r}\right)^{H} \mathbf{A}_{F}^{H}\right)\right\} \\
& =\operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{A}_{S} \mathbf{A}_{S}^{H} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \\
& \leq P_{r}, \tag{2}
\end{align*}
$$

TABLE I
Requirement of CSI at Various Nodes for MBER Criterion Based Relay Design

Relay design type	$S N$	$R N$	$D N$
RN-DN		$\mathbf{H}_{s r}, \mathbf{H}_{r d}$	$\mathbf{H}_{r d}$
SN-RN-DN (Sub-optimal)	$\mathbf{H}_{s r}$	$\mathbf{H}_{s r}, \mathbf{H}_{r d}$	$\mathbf{H}_{r d}$
SN-RN-DN (Optimal)		$\mathbf{H}_{s r}, \mathbf{H}_{r d}$	$\mathbf{H}_{r d}$

180 where $\mathbb{E}\left\{\mathbf{x x}^{H}\right\}=\sigma_{x}^{2} \mathbf{I}_{N_{x}}$. Now, the signal received at the DN, $181 \mathbf{y}_{d} \in \mathbb{C}^{N_{d} \times 1}$ is obtained as,

$$
\begin{align*}
\mathbf{y}_{d} & =\mathbf{H}_{r d} \mathbf{y}_{f}+\mathbf{n}_{d} \\
& =\mathbf{H}_{r d} \mathbf{A}_{F}\left(\mathbf{H}_{s r} \mathbf{s}+\mathbf{n}_{r}\right)+\mathbf{n}_{d} \\
& =\left\{\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \mathbf{A}_{S}\right\} \mathbf{x}+\left\{\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{n}_{r}+\mathbf{n}_{d}\right\} \\
& \triangleq \mathbf{H} \mathbf{x}+\mathbf{n} \tag{3}
\end{align*}
$$

182 where $\mathbf{H} \triangleq \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \mathbf{A}_{S}$ and $\mathbf{n} \triangleq \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{n}_{r}+\mathbf{n}_{d}$. The 183 new effective noise vector \mathbf{n} is a colored zero-mean Gaus184 sian vector with the distribution of $C N\left(\mathbf{0}, \mathbf{C}_{n}\right)$, where $\mathbf{C}_{n} \in$ $185 \mathbb{C}^{N_{d} \times N_{d}}$ is the new noise covariance matrix, which may be 186 expressed as,

$$
\begin{align*}
\mathbf{C}_{n} & =\mathbb{E}\left[\mathbf{n} \mathbf{n}^{H}\right] \\
& =\sigma_{d}^{2} \mathbf{I}_{N_{d}}+\sigma_{r}^{2} \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{A}_{F}^{H} \mathbf{H}_{r d}^{H} \tag{4}
\end{align*}
$$

187 At the DN, we employ a linear equalizer for detecting the 188 transmitted symbol x. We assume that the equalizer matrix at 189 the DN is $\mathbf{W}_{d} \in \mathbb{C}^{N_{x} \times N_{d}}$, hence the estimated value of \mathbf{x} is $190 \hat{\mathbf{x}}=\mathbf{W}_{d}^{H} \mathbf{y}_{d}$.
191 Note: The RN determines the $\mathbf{A}_{S}, \mathbf{A}_{F}$ and \mathbf{W}_{d} matrices 192 jointly. Thus, we assume that the RN has the complete knowl193 edge of $\mathbf{H}_{s r}$ and $\mathbf{H}_{r d}$, while the DN knows only $\mathbf{H}_{r d}$ and feeds 194 it back to the RN through a reliable communication channel. 195 The SN has to know the matrix $\mathbf{H}_{s r}$ only for the case of the sub196 optimal SN-RN-DN (SRD) relay design to be described later. 197 We refer "sub-optimal", when Singular-Value-Decomposition 198 (SVD) based structure is assumed for AF and source precoder 199 matrices. In this case, only the singular values of these matrices 200 need to be determined. By contrast, "optimal" refers to the case, 201 where full complex AF and source precoder matrices need to be 202 determined. Thus, for "optimal" case, SN need not to know the $203 \mathbf{H}_{s r}$ as the whole solution of the precoder will be sent back to 204 SN by RN. For the sub-optimal case, the SN needs to recon205 struct the precoder matrix from the SVD component of the $\mathbf{H}_{s r}$ 206 matrix. Table I shows the parameter knowledge requirements 207 at different nodes, which are consistent with [9], except for 208 our proposed optimal SN-RN-DN link design. We first develop 209 the RN-DN link and then extend it to the SN-RN-DN link. 210 For the RN-DN system, only the matrices \mathbf{A}_{F} and \mathbf{W}_{d} have 211 to be determined subject to the above RN power constraints. 212 By contrast, for the SN-RN-DN system, the matrices $\mathbf{A}_{S}, \mathbf{A}_{F}$ 213 and \mathbf{W}_{d} are determined subject to both the SN and the RN 214 power constraints.

III. MBER Based Relay-Destination Design

We first consider the RN-DN link design, which involves 216 the design of both the AF matrix \mathbf{A}_{F} and of the equalizer 217 matrix \mathbf{W}_{d}. Various existing CFs, such as the LMMSE [7], 218 the Maximum Capacity (MC) [11] have been considered to 219 design both \mathbf{A}_{F} and \mathbf{W}_{d}. In this treatise, we propose a solution 220 based on the MBER CF for jointly determining these matrices. 221 For the RN-DN link, the precoder matrix \mathbf{A}_{S} is fixed to $\mathbf{I}_{N_{s}} 222$ along with $N_{s}=N_{x}$. The total transmitted power is fixed to 223 $P_{t}=\sigma_{x}^{2} N_{s}$. The signals received at the RN and the DN are 224 $\mathbf{y}_{r}=\mathbf{H}_{s r} \mathbf{x}+\mathbf{n}_{r}$ and $\mathbf{y}_{d}=\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \mathbf{x}+\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{n}_{r}+\mathbf{n}_{d}, 225$ respectively. The RN's power becomes $\operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+226\right.\right.$ $\left.\left.\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\}$. In the current context, the MBER CF directly 227 minimizes the BER of the system at the DN. We first consider 228 the CF based on the BPSK constellation and then we extend it 229 to the M-QAM and M-PSK constellations.

Note: We will be formulating the cost function (CF) as the 231 symbol error ratio (SER). With a slight inaccuracy of terminol- 232 ogy, we refer to the MBER as that of minimizing the SER in the 233 subsequent sections. It is to be noted that minimizing SER will 234 also lead to minimization of BER as $B E R \approx S E R / \log _{2}(M) 235$ for most of the constellations [23].

A. Cost Function

Let us assume that $P_{e, i}$ denotes the SER, when detecting $x_{i} 238$ (the i th component of \mathbf{x}) at the DN. If every x_{i} is detected inde- 239 pendently, the average probability of a symbol error associated 240 with detecting the complete vector \mathbf{x} is given by,

$$
\begin{equation*}
P_{e}=\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} P_{e, i} \tag{5}
\end{equation*}
$$

We constrain the RN's transmission power to P_{r} and formulate 242 $P_{e, i}$ associated with various constellations. Furthermore, we 243 would simplify the expression of $P_{e, i}$ using various sub-optimal 244 approaches. The optimization problem is stated as follows: 245

$$
\begin{align*}
& \mathbf{A}_{F}^{m b e r}, \mathbf{W}_{d}^{m b e r}=\underset{\mathbf{A}_{F}, \mathbf{W}_{d}}{\arg \min } P_{e}\left(\mathbf{A}_{F}, \mathbf{W}_{d}\right) \\
& \text { s.t } \operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \leq P_{r} . \tag{6}
\end{align*}
$$

Note: Equation (6) describes a constrained optimization 246 problem, where the constraint is with respect to the RN's 247 transmitter power. Here, all $P_{e, i}$ for $i=1,2 \ldots, N_{s}$ are opti- 248 mized together to arrive at the optimized \mathbf{A}_{F} and \mathbf{W}_{d} matri- 249 ces. Explicitly, Equation (6) is simultaneously optimized over 250 $\left(N_{r}^{2}+N_{s} \times N_{d}\right)$ number of complex-valued variables. This is 251 because the \mathbf{A}_{F} matrix has N_{r}^{2} number of complex entries, 252 while the \mathbf{W}_{d} matrix has $\left(N_{s} \times N_{d}\right)$ complex entries. There- 253 fore, the related optimization problem has a high computational 254 complexity. Hence, we now propose a suboptimal technique for 255 reducing the number of variables to be optimized.

1) Sub-Optimal Approaches for Reducing Both the Number 257 of Variables and the Complexity: Let us first decompose $\mathbf{H}_{s r} 258$ and $\mathbf{H}_{r d}$ using the Singular Value Decomposition (SVD) as 259 $\mathbf{H}_{s r}=\mathbf{U}_{1} \boldsymbol{\Sigma}_{s r} \mathbf{V}_{1}^{H}$ and $\mathbf{H}_{r d}=\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \mathbf{V}_{2}^{H}$ respectively, where 260 $\mathbf{U}_{1} \in \mathbb{C}^{N_{r} \times N_{r}}, \mathbf{V}_{1} \in \mathbb{C}^{N_{s} \times N_{s}}, \mathbf{U}_{2} \in \mathbb{C}^{N_{d} \times N_{d}}, \mathbf{V}_{2} \in \mathbb{C}^{N_{r} \times N_{r}}$ are 261

262 unitary matrices, whereas $\boldsymbol{\Sigma}_{s r} \in \mathbb{R}^{N_{r} \times N_{S}}$ and $\boldsymbol{\Sigma}_{r d} \in \mathbb{R}^{N_{d} \times N_{r}}$ 263 are matrices having singular values of $\sigma_{s r, i}$ for $i=1,2, \ldots$, $264 \min \left(N_{r}, N_{s}\right)$ and $\sigma_{r d, i}$ for $i=1,2, \ldots, \min \left(N_{d}, N_{r}\right)$ in a de265 scending order on the main diagonal, respectively. We also 266 assume that \mathbf{w}_{i} is the i th column of \mathbf{W}_{d} for $i=0,1, \ldots, N_{d}-1$. 267 We now propose a pair of computational complexity reduc268 tion techniques. 298 ing $\mathbf{A}_{F}, \mathbf{H}$ can be reduced to

$$
\begin{align*}
\mathbf{H} & =\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{H}_{s r} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \mathbf{V} \mathbf{2}^{H} \mathbf{V}_{2} \boldsymbol{\Sigma}_{F} \mathbf{U} \mathbf{1}^{H} \mathbf{U}_{1} \boldsymbol{\Sigma}_{s r} \mathbf{V} \mathbf{1}^{H} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{s r} \mathbf{V} \mathbf{1}^{H} \\
& \triangleq \mathbf{U}_{2} \boldsymbol{\Sigma} \mathbf{V}_{1}^{H} \tag{8}
\end{align*}
$$

299 where $\boldsymbol{\Sigma} \triangleq \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{s r}$. Let us now compute the RN's power 300 under the assumed structure of \mathbf{A}_{F} as follows

$$
\begin{align*}
\mathbb{E}\left[\mathbf{y}_{f}^{H} \mathbf{y}_{f}\right] & =\operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \\
& =\operatorname{Tr}\left\{\mathbf{V}_{2} \boldsymbol{\Sigma}_{F}\left(\sigma_{x}^{2} \boldsymbol{\Sigma}_{s r} \boldsymbol{\Sigma}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \boldsymbol{\Sigma}_{F}^{H} \mathbf{V}_{2}^{H}\right\} \\
& =\operatorname{Tr}\left\{\boldsymbol{\Sigma}_{F}\left(\sigma_{x}^{2} \boldsymbol{\Sigma}_{s r} \boldsymbol{\Sigma}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \boldsymbol{\Sigma}_{F}^{H}\right\} \\
& =\sum_{i=1}^{N_{r}} \sigma_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right) \leq P_{r} . \tag{9}
\end{align*}
$$

Explicitly, the RN's power constraint becomes less complex, 301 since it does not involve any complex-valued matrix operations. 302 In a similar way, we now re-calculate the covariance matrix $\mathbf{C}_{n} 303$ of the composite noise, as perceived at the DN. Let us assume 304 that $\mathbf{A} \triangleq \mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{A}_{F}^{H} \mathbf{H}_{r d}$. Thus, we calculate \mathbf{A} as follows 305

$$
\begin{align*}
\mathbf{A} & =\mathbf{H}_{r d} \mathbf{A}_{F} \mathbf{A}_{F}^{H} \mathbf{H}_{r d} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \mathbf{V}_{2}^{H} \mathbf{V}_{2} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{H} \mathbf{V}_{2}^{H} \mathbf{V}_{2} \boldsymbol{\Sigma}_{r d}^{H} \mathbf{U}_{2}^{H} \\
& =\mathbf{U}_{2} \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{H} \boldsymbol{\Sigma}_{r d}^{H} \mathbf{U}_{2}^{H} \\
& \triangleq \mathbf{U}_{2} \boldsymbol{\Sigma}_{A} \mathbf{U}_{2}^{H}, \tag{10}
\end{align*}
$$

where $\boldsymbol{\Sigma}_{A} \triangleq \boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{H} \boldsymbol{\Sigma}_{r d}^{H}$. Upon substituting Equation (10) 306 into Equation (4), we arrive at $\mathbf{C}_{n}=\sigma_{d}^{2} \mathbf{I}_{N_{d}}+\sigma_{r}^{2} \mathbf{U}_{2} \boldsymbol{\Sigma}_{A} \mathbf{U}_{2}^{H} .307$ Our new optimization problem is then redefined as follows

$$
\begin{align*}
& \text { For } \mathrm{i}=\mathrm{k}: \\
& \qquad \begin{array}{l}
\boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{k}^{m b e r}= \\
\\
\\
\\
\text { s.t } \sum_{i=1}^{\boldsymbol{\Sigma}_{F}, \mathbf{w}_{k}} \arg \min P_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\boldsymbol{\Sigma}_{F}^{2}, \mathbf{w}_{k}\right) \leq P_{r}
\end{array}
\end{align*}
$$

For $\mathrm{i}=1,2,3, \ldots, \mathrm{k}-1, \mathrm{k}+1, \ldots, \mathrm{~N} _\mathrm{s}:$

$$
\begin{equation*}
\mathbf{w}_{i}^{m b e r}=\underset{\mathbf{w}_{i}}{\arg \min } P_{e, i}\left(\boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{i}\right) \tag{12}
\end{equation*}
$$

2) MBER CF Associated With the BPSK Constellation: We 309 first formulate the MBER CF for the BPSK constellation for the 310 sake of conceptual simplicity and then extend it to the M-QAM 311 and M-PSK constellations. Let us assume that \mathbf{w}_{i} is the i th 312 column of the DN's equalizer matrix \mathbf{W}_{d}. If \hat{x}_{i} is the estimate 313 of x_{i} for the BPSK constellation, we arrive at the expression of 314 $P_{e, i}^{B P S K}$ as follows [15]:

$$
\begin{align*}
P_{e, i}^{B P S K} & =P_{r}\left\{x_{i} \Re\left\{\hat{x}_{i}\right\}<0\right\} \\
& =P_{r}\left\{\Re\left\{x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}+x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{n}\right\}<0\right\} \\
& =\mathbb{E}_{\mathbf{x}}\left[P_{r}\left\{\Re\left\{x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}+x_{i}\left(\mathbf{w}_{i}\right)^{H} \mathbf{n}\right\}<0\right\} \mid \mathbf{x}\right] \\
& =\mathbb{E}_{\mathbf{x}}\left[Q\left(\frac{\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x} x_{i}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right] \\
& =\frac{1}{L} \sum_{j=1}^{L} Q\left(\frac{\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j} x_{i}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right) \tag{13}
\end{align*}
$$

where $L=2^{N_{s}}$ represents the total number of unique realiza- 316 tions of \mathbf{x}, while \mathbf{x}_{j} is the j th such realization of \mathbf{x}. 317
3) The MBER CF Associated With the M-QAM Con- 318 stellation: For the M-QAM constellation, we assume that 319 the distance between any two adjacent constellation points 320 along either the real or the imaginary axis is $2 a$ for $a>0.321$

322 The M-QAM constellation can thus be interpreted as a pair of 323 PAM sequences of length \sqrt{M} along the real and imaginary 324 axes. Thus, the SER of the M-QAM constellation is derived as,

$$
\begin{equation*}
P_{e, i}^{Q A M}=1-P_{c, i}^{R} \cdot P_{c, i}^{I} \tag{14}
\end{equation*}
$$

325 where $P_{c, i}^{R}, P_{c, i}^{I}$ are the probability of correct decision for the 326 QAM signal along the real and imaginary axes, respectively. 327 For computational simplicity, we assume that the decision 328 region of each point along either the real or imaginary axis 329 is bounded by the length $2 a$, though the terminal points have 330 larger range for decision region. This way, we only make each 331 decision region uniform and restrictive to an extent. Let us 332 now define $L_{1}=M^{\left(\left(N_{s}-1\right) / 2\right)}$. Now, $P_{c, i}^{R}, P_{c, i}^{I}$ are derived in 333 Equations (15) and (16), respectively (see equation at bottom 334 of page).
335 4) The MBER CF Associated With the M-PSK Constella336 tion: For the M-PSK signal constellation set, each point is 337 assumed to be on a unit circle and represented as $e^{j(2 \pi m / M)}$ for $338 m=0,1, \ldots, M-1$. Note that the real and imaginary compo339 nents of the DN's equalizer output noise, $\mathbf{w}_{i}^{H} \mathbf{n}$, are correlated 340 Gaussian random variables. For computational simplicity, we 341 invoke an approximation and we whiten the noise by assuming $342 \mathbf{A}_{F}$ to have the proposed SVD form of Equation (7). We 343 commence by using \mathbf{C}_{n} from Equation (4) as,

$$
\begin{equation*}
\mathbf{C}_{n}=\boldsymbol{\Sigma}_{r d} \boldsymbol{\Sigma}_{F} \boldsymbol{\Sigma}_{F}^{T} \boldsymbol{\Sigma}_{r d}^{T}+\sigma_{d}^{2} \mathbf{I}_{N_{d}} \tag{17}
\end{equation*}
$$

344 Thus, the i th diagonal element of \mathbf{C}_{n} is $\left[\mathbf{C}_{n}\right]_{i i}=\sigma_{d}^{2}+$ $345 \sigma_{r d, i}^{2} \sigma_{f, i}^{2}$. The noise whitening matrix is defined as $\mathbf{C}_{s} \triangleq$ $346 \mathbf{C}_{n}^{-(1 / 2)}$ with $\left[\mathbf{C}_{s}\right]_{i i}=\left(1 / \sqrt{\sigma_{d}^{2}+\sigma_{r d, i}^{2} \sigma_{f, i}^{2}}\right)$. Therefore, the 347 modified output vector received at the DN is defined as,

$$
\begin{align*}
\mathbf{y}_{s} & =\mathbf{C}_{s} \mathbf{y}_{d} \\
& =\mathbf{C}_{s} \mathbf{H} \mathbf{x}+\mathbf{n}_{s} \\
& =\mathbf{H}_{s} \mathbf{x}+\mathbf{n}_{s} \tag{18}
\end{align*}
$$

with $\mathbf{n}_{s} \in \mathbb{C}^{N_{s} \times 1}$ being the zero-mean i.i.d Gaussian random 348 vector with each component having a unit variance. Let us 349 assume that $\mu_{i}^{R} \triangleq \Re\left\{\mathbf{w}_{i}^{H} \mathbf{H}_{s} \mathbf{x}\right\}$ and $\mu_{i}^{I} \triangleq \Im\left\{\mathbf{w}_{i}^{H} \mathbf{H}_{s} \mathbf{x}\right\}$, where 350 \mathbf{w}_{i} is the i th equalizer as defined earlier. Let furthermore $r_{1} 351$ and r_{2} be the real and imaginary components of the equalizer 352 output. Their joint probability is calculated as [23],

$$
\begin{equation*}
p_{r_{1}, r_{2}, i}=\frac{1}{2 \pi \sigma^{2}} e^{-\left\{\left(r_{1}-\mu^{R}\right)^{2}+\left(r_{2}-\mu^{I}\right)^{2}\right\} / 2 \sigma^{2}} \tag{19}
\end{equation*}
$$

where $\sigma^{2}=(1 / 2) \mathbf{w}_{i}^{H} \mathbf{w}_{i}$. Let us now define $V \triangleq \sqrt{r_{1}^{2}+r_{2}^{2}} 354$ and the angle $\theta \triangleq \tan ^{-1}\left(\left(r_{2} / r_{1}\right)\right)$. Thus, the probability of $\theta 355$ for the i th symbol is obtained as [23]
$p_{\theta, i}=\frac{1}{2 \pi \sigma^{2}} e^{-\left(\mu_{i}^{R} \sin (\theta)-\mu_{i}^{I} \cos (\theta)\right)^{2} / 2 \sigma^{2}}$

$$
\begin{equation*}
\times \int_{0}^{\infty} V e^{-\left(V-\mu_{i}^{I} \sin (\theta)-\mu_{i}^{R} \cos (\theta)\right)^{2} / 2 \sigma^{2}} d V \tag{20}
\end{equation*}
$$

At the higher SNR values, an approximation has been proposed 357 for Equation (20) in [23] as follows, 358

$$
\begin{align*}
p_{\theta, i} \approx \frac{1}{\sqrt{2 \pi \sigma^{2}}}\left(\mu_{i}^{I} \sin (\theta)\right. & \left.+\mu_{i}^{R} \cos (\theta)\right) \\
& \times e^{-\left(\mu_{i}^{R} \sin (\theta)-\mu_{i}^{I} \cos (\theta)\right)^{2} / 2 \sigma^{2}} \tag{21}
\end{align*}
$$

with $|\theta| \leq \pi / 2$ and $|\theta| \ll 1$. Equation (21) is valid for $m=0.359$ This suggests that any constellation point at the i th position of 360 x can be rotated to the one corresponding to $m=0$. Hence, we 361 may conceive a scheme by exploiting the circular constellation 362 of M-PSK, where the SER has to be found for the constellation 363 point corresponding to $m=0$. Thus, \mathbf{w}_{i} is determined by min- 364 imizing the probability of this particular symbol error only. We 365 then create M rotated versions of \mathbf{y}_{d} as $\mathbf{y}_{d}^{m}=e^{-m \pi / M} \mathbf{I}_{N_{d}} \mathbf{y}_{d} 366$ for $m=0,1, \ldots, M-1$. The estimated constellation point 367 $\left(\mathbf{w}_{i}^{H} \mathbf{y}_{d}^{m}\right)$ is then the one corresponding to any of the M number 368 of \mathbf{y}_{d}^{m} variables giving the minimum absolute angle.

$$
\begin{align*}
P_{c, i}^{R}=\frac{1}{L_{1}} \sum_{j=1}^{L_{1}} \sum_{m=-(\sqrt{M}-1), m \text { odd }}^{\sqrt{M}-1} & {\left[Q\left(\frac{m a-a-\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right.} \\
& \left.-Q\left(\frac{m a+a-\Re\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right] \tag{15}\\
P_{c, i}^{I}=\frac{1}{L_{1}} \sum_{j=1}^{L_{1}} \sum_{m=-(\sqrt{M}-1), m \text { odd }}^{\sqrt{M}-1}[& {\left[\left(\frac{m a-a-\Im\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right.} \\
& \left.-Q\left(\frac{m a+a-\Im\left[\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j}\right]}{\sqrt{\frac{1}{2}\left(\mathbf{w}_{i}\right)^{H} \mathbf{C}_{n} \mathbf{w}_{i}}}\right)\right] \tag{16}
\end{align*}
$$

370 Note: This technique imposes a low computational complex371 ity for the following reasons.

381 The SER of the i th symbol of \mathbf{x} is then formulated for our 382 low-complexity method as

$$
\begin{align*}
P_{e, i}^{P S K}= & 1-\frac{1}{L_{2}} \sum_{l=1}^{L_{2}} \int_{-\pi / M}^{\frac{\pi}{M}} p_{\theta, i} d \theta \\
= & \frac{1}{L_{2}} \sum_{l=1}^{L_{2}} Q\left[\frac{\mu_{i, l}^{R} \sin \left(\frac{\pi}{M}\right)-\mu_{i, l}^{I} \cos \left(\frac{\pi}{M}\right)}{\sigma}\right] \\
& +\frac{1}{L_{2}} \sum_{l=1}^{L_{2}} Q\left[\frac{\mu_{i, l}^{I} \cos \left(\frac{\pi}{M}\right)+\mu_{i, l}^{R} \sin \left(\frac{\pi}{M}\right)}{\sigma}\right] \tag{22}
\end{align*}
$$

383 where $L_{2}=M^{N_{s}-1}$ and $\mu_{i, l}^{R}$ or $\mu_{i, l}^{I}$ represent the values of μ_{i}^{R} 384 or μ_{i}^{I} (as defined earlier) corresponding to the l th realization of 385 x , respectively.

386

$$
387
$$

IV. MBER Based Source-Relay-Destination Link Design

388 Let us now consider the design of the SRD link based on 389 the MBER CF. This involves a transmit precoder (TPC) matrix 390 design at the SN in addition to the AF matrix of the RN and 391 the equalizer matrix of the DN. We also have to obey the power 392 constraint at the SN involving the TPC matrix in addition to the 393 RN power constraint. The TPC, AF and equalizer matrices are 394 optimized jointly. The CFs are again those of Equations (13), 395 (15), (16), (22), i.e the same as in Section III for various con396 stellations. The optimization problem of the SRD link design 397 can be stated as,

$$
\begin{align*}
& \mathbf{A}_{S}^{m b e r}, \mathbf{A}_{F}^{m b e r}, \mathbf{W}_{d}^{m b e r}=\underset{\mathbf{A}_{S}, \mathbf{A}_{F}, \mathbf{W}_{d}}{\arg \min P_{e}\left(\mathbf{A}_{S}, \mathbf{A}_{F}, \mathbf{W}_{d}\right)} \\
& \text { s.t (1) } \operatorname{Tr}\left\{\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right\} \leq P_{r} \\
& \text { (2) } \sigma_{x}^{2} \operatorname{Tr}\left\{\mathbf{A}_{S}^{H} \mathbf{A}_{S}\right\} \leq P_{t}, \tag{23}
\end{align*}
$$

398 where P_{t} is the transmit power limit. Additionally, we also 399 consider a suboptimal structure for \mathbf{A}_{S} for the case of reducing 400 the number of variables during the optimization process. We 401 consider the SVD of \mathbf{A}_{S} with $\mathbf{A}_{S}=\mathbf{V}_{1} \boldsymbol{\Sigma}_{S}$, where \mathbf{V}_{1} is from 402 the SVD decomposition of $\mathbf{H}_{s r}$ and $\boldsymbol{\Sigma}_{S}$ is a diagonal matrix 403 having the singular values. We also use the parallel optimiza404 tion of $P_{e, i}$, as formulated in Section III. With these subop-
timal approaches in mind, the optimization problem can be 405 restated as,

For $\mathrm{i}=\mathrm{k}$:

$$
\begin{gather*}
\boldsymbol{\Sigma}_{S}^{m b e r}, \boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{k}^{m b e r}=\underset{\boldsymbol{\Sigma}_{S}, \boldsymbol{\Sigma}_{F}, \boldsymbol{w}_{k}}{\arg \min } P_{e, k}\left(\boldsymbol{\Sigma}_{S}, \boldsymbol{\Sigma}_{F}, \mathbf{w}_{k}\right) \\
\text { s.t (1) } \sum_{i=1}^{N_{r}} \sigma_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right) \leq P_{r}, \\
\text { (2) } \sigma_{x}^{2} \sum_{i=1}^{N_{s}} \sigma_{s, i}^{2} \leq P_{t} . \tag{24}
\end{gather*}
$$

For $\mathrm{i}=1,2, \ldots, \mathrm{k}-1, \mathrm{k}+1, \ldots, N_{x}$:
$\mathbf{w}_{i}^{m b e r}=\underset{\boldsymbol{w}_{i}}{\arg \min } P_{e, i}\left(\boldsymbol{\Sigma}_{S}^{m b e r}, \boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{i}\right)$,
where $\sigma_{s, i}$ represents the singular value of \mathbf{A}_{S}.
V. Solution of the MBER Optimization Problem

408
Remarks on CF

$$
409
$$

The MBER CF may have multiple local minima. As for 410 example, Fig. 2. plots a CF with respect to the equalizer weights 411 (Only the first equalizer \mathbf{w}_{1}) for $N_{s}=N_{r}=N_{d}=2$ for a 412 fixed real-valued channel and for fixed real-valued \mathbf{A}_{F} and 413 \mathbf{A}_{S} matrices for the BPSK signal sets. The equalizer length 414 is 2 . For this example, the real-valued channels are assumed 415 to be $\mathbf{H}_{s r}=\left[\begin{array}{cc}-1.12 & 0.74 \\ 0.41 & 0.90\end{array}\right]$ and $\mathbf{H}_{r d}=\left[\begin{array}{cc}-1.53 & -0.86 \\ 0.51 & -0.38\end{array}\right] \cdot 416$ Observe in Fig. 2 that the CF has several minima with respect 417 to the equalizer weight \mathbf{w}_{1}, hence conventional gradient-based 418 receivers might get stuck in a local optimum, depending on 419 where the search is started on this surface. It is also noted that 420 the solutions obtained from both the MBER and the LMMSE 421 methods are different $((3.4,8.2)$ and $(5.2,9.4)$ for MBER and 422 LMMSE, respectively), while the CF values are 7.8×10^{-3} and 423 1.1×10^{-2} for MBER and LMMSE methods, respectively. The 424 LMMSE solution might be a reasonable starting point [17]. 425 426
Binary Genetic Algorithm: Fortunately, random guided op- 427 timization methods, like Genetic Algorithms (GA) [21], Simu- 428 lated Annealing (SA) [24] etc. are capable of circumventing this 429 problem. In this work, we used the binary GA for finding $\mathbf{W}_{d}, 430$ \mathbf{A}_{F}. As this GA accepts only real-valued variables, we form 431 a vector $\mathbf{v} \in \mathbb{R}^{\left(N_{d} N_{x}+N_{r} N_{s}+N_{r}^{2}\right) \times 1}$ by stacking all the real and 432 imaginary components of the $\mathbf{W}_{d}, \mathbf{A}_{F}, \mathbf{A}_{S}$ matrices as follows 433

$$
\begin{align*}
\mathbf{v}= & {\left[\Re\left\{\operatorname{vec}\left(\mathbf{W}_{d}\right)\right\} \Im\left\{\operatorname{vec}\left(\mathbf{W}_{d}\right)\right\} \Re\left\{\operatorname{vec}\left(\mathbf{A}_{S}\right)\right\}\right.} \\
& \left.\Im\left\{\operatorname{vec}\left(\mathbf{A}_{S}\right)\right\} \Re\left\{\operatorname{vec}\left(\mathbf{A}_{F}\right)\right\} \Im\left\{\operatorname{vec}\left(\mathbf{A}_{F}\right)\right\}\right]^{T} . \tag{26}
\end{align*}
$$

Similarly, for the case of the suboptimal scenario, we would 434 form the vector as

$$
\begin{equation*}
\mathbf{v}=\left[\Re\left\{\operatorname{vec}\left(\mathbf{w}_{k}\right)\right\}\left\{\operatorname{vec}\left(\boldsymbol{\Sigma}_{S}\right)\right\}\left\{\operatorname{vec}\left(\boldsymbol{\Sigma}_{F}\right)\right\}\right]^{T} \tag{27}
\end{equation*}
$$

The vector \mathbf{v} is first converted to a binary string and then a 436 series of GA operations like "Parents selection", "Crossover" 437 and "Mutation" are invoked [21] for finding an improved 438

Fig. 2. Logarithm of CF from Equation (11) is plotted with respect to the first equalizer \mathbf{w}_{1}. Equalizer \mathbf{w}_{1} is real-valued and is of the length 2. $N_{s}=N_{r}=$ $N_{d}=2$ are associated with fixed \mathbf{A}_{F} and \mathbf{A}_{S} matrices and fixed real-valued channel. The signal set is assumed to be BPSK. The MBER solution (obtained from GA) of \mathbf{w}_{1} is $(3.4,8.2)$, while its LMMSE solution is (5.2, 9.4). The value of CF at the MBER solution is 7.8×10^{-3}, while it is 1.1×10^{-2} at the LMMSE solution.

Fig. 3. Complexity (in terms of multiplication) vs. N_{d} comparison with various optimization options for SRD link design fixing $N_{r}=2, N_{s}=2$, $N_{s}=N_{x}$ and QPSK data set.

439 solution. This binary string is also known as a chromosome. 440 We initially "seed" the GA with an initial solution consti441 tuted by the LMMSE one, so that the GA achieves a faster 442 convergence. Unlike any steepest descent method, GA would 443 search through various possible minima using "evolutionary" 444 techniques. Thus, it has a reduced chance of getting into a 445 local minimum compared to the case of completely random 446 initialization. We provide a brief description of the GA in 447 Appendix I. The procedure conceived for finding $\mathbf{A}_{F}, \mathbf{W}_{d}$
and \mathbf{A}_{S} with the aid of our constrained binary GA is given in 448 Algorithm. 1.

Algorithm 1: MBER based $\mathbf{A}_{F}, \mathbf{W}_{d}$ and \mathbf{A}_{F} design for the 450 relay link (Suboptimal).

1: Given: $N_{s}, N_{r}, N_{d}, \mathbf{H}_{s r}, \mathbf{H}_{r d}$ with SVD components $\sigma_{x}^{2}, 452$ $\sigma_{r}^{2}, \sigma_{d}^{2}$ and P_{r} along with LMMSE solutions of $\mathbf{W}_{d}, \mathbf{A}_{F}$ and 453 \mathbf{A}_{S} as initial "seed".

2: Obtain $\boldsymbol{\Sigma}_{F}^{m b e r}, \mathbf{w}_{k}^{m b e r}$ from Equation (11) using our 455 constrained binary GA.
3. for $i=1,2, \ldots, k=1, k+1, \ldots, N_{x}$

4: Substitute $\boldsymbol{\Sigma}_{F}^{m b e r}$ calculated for $i=k$ into $P_{e, i}$. 458
5: Find $\mathbf{w}_{i}^{m b e r}$ from Equation (12) using our binary GA. 459
end for 460
returnw $_{i}^{\text {mber }}$ for $i=1, \ldots, N_{x}$ and $\boldsymbol{\Sigma}_{F}^{m b e r}, \boldsymbol{\Sigma}_{S}^{m b e r}$.

Projected Steepest Descent method: We have also used tech- 462 niques, the low-complexity Projected Steepest Descent (PSD) 463 [22] optimization method, which is one of the steepest descent 464 conceived for constrained optimization [22]. We first form a 465 vector of all the variables of interest. In the case of the optimal 466 scenario, we stack all the complex components of the $\mathbf{W}_{d}, 467$ \mathbf{A}_{F} and \mathbf{A}_{S} matrices to form $\mathbf{v} \in \mathbb{C}^{\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right) \times 1}$ (the 468 variable of interest) as follows

$$
\begin{equation*}
\mathbf{v}=\left[\left\{\operatorname{vec}\left(\mathbf{W}_{d}\right)\right\}\left\{\operatorname{vec}\left(\mathbf{A}_{F}\right)\right\}\left\{\operatorname{vec}\left(\mathbf{A}_{S}\right)\right\}\right]^{T} \tag{28}
\end{equation*}
$$

For the PSD method, the updated vector at the j th iteration is 470 obtained as

$$
\begin{equation*}
\mathbf{v}_{j+1}=\mathbf{v}_{j}+\alpha \mathbf{s}_{j}-\mathbf{G}_{j}\left(\mathbf{G}_{j}^{H} \mathbf{G}_{j}\right)^{-1} \mathbf{g}_{j} \tag{29}
\end{equation*}
$$

where \mathbf{G}_{j} is the gradient of the feasible constraints, \mathbf{g}_{j} is the 472 stack of feasible constraints and can be defined as follows 473

$$
\mathbf{g}_{j}=\left[\begin{array}{c}
\left(T r\left(\mathbf{A}_{F}\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right) \mathbf{A}_{F}^{H}\right)-P_{r}\right) \tag{30}\\
\left(\sigma_{x}^{2}\left(\operatorname{Tr}\left(\mathbf{A}_{S}^{H} \mathbf{A}_{S}\right)\right)-P_{t}\right)
\end{array}\right]
$$

We also define \mathbf{s}_{j} as follows

$$
\begin{equation*}
\mathbf{s}_{j}=-\left[\mathbf{I}-\mathbf{G}_{j}\left(\mathbf{G}_{j}^{H} \mathbf{G}_{j}\right)^{-1} \mathbf{G}_{j}^{H}\right] \nabla f\left(\mathbf{x}_{j}\right) \tag{31}
\end{equation*}
$$

along with $\alpha=-\left(\gamma f\left(\mathbf{x}_{j}\right) / \mathbf{s}_{j}^{H} \nabla f\left(\mathbf{x}_{j}\right)\right)$, where γ is the desired 475 reduction factor, usually assumed to be 0.05 (5\%). For our 476 specific problem with the optimal case, \mathbf{G}_{j} will be obtained 477 as follows

$$
\mathbf{G}_{j}=\left[\begin{array}{cc}
\operatorname{vec}\left(\mathbf{0}_{N_{d} \times N_{x}}\right) & \operatorname{vec}\left(\mathbf{0}_{N_{d} \times N_{x}}\right) \tag{32}\\
\operatorname{vec}\left(\mathbf{A}_{F} \mathbf{A}_{1}\right) & \operatorname{vec}\left(\mathbf{0}_{N_{r} \times N_{r}}\right) \\
\operatorname{vec}\left(\mathbf{0}_{N_{s} \times N_{s}}\right) & \operatorname{vec}\left(\mathbf{A}_{S}\right)
\end{array}\right]
$$

where $\quad \mathbf{A}_{1} \triangleq\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right)\left(\sigma_{x}^{2} \mathbf{H}_{s r} \mathbf{H}_{s r}^{H}+\sigma_{r}^{2} \mathbf{I}_{N_{r}}\right)^{H} .479$ For the suboptimal case, \mathbf{G}_{j} would be obtained as follows 480

$$
\mathbf{G}_{j}^{s u b}=\left[\begin{array}{cc}
\operatorname{vec}\left(\mathbf{0}_{N_{d} \times 1}\right) & \operatorname{vec}\left(\mathbf{0}_{N_{d} \times 1}\right) \tag{33}\\
\mathbf{c}_{1} & \operatorname{vec}\left(\mathbf{0}_{N_{r} \times 1}\right) \\
\operatorname{vec}\left(\mathbf{0}_{N_{x} \times 1}\right) & \mathbf{c}_{2}
\end{array}\right]
$$

TABLE II
Computation Complexity Comparison Between the Proposed MBER Method With LMMSE Method for SRD Relay

Algorithm	MBER Complexity
GA	$N_{p o p} N_{g a}\left(4 N_{r} N_{d}\left(N_{r}+N_{s}\right)\right.$
(Multiplication)	$+4 N_{r} N_{s} N_{x}+4 N_{d} N_{r}^{2}+2 N_{d}^{2}$
(Optimal)	$+N_{x}\left(4 N_{d}^{2}+4 N_{d}\right)+4 N_{d} N_{s} N_{x}+8 N_{r}^{3}$
	$+2 N_{x} M^{N_{x}}\left(4 N_{x}+1+N_{Q}\right)+4 N_{r}^{2} N_{s}$
	$\left.+2 N_{r}^{2}+4 N_{s}^{2} N_{x}+1\right)$
GA	$N_{p o p} N_{g a}\left(2 N_{d}\left(N_{r}+N_{s}\right)\left(4 N_{r}-1\right)\right.$
(Total operations)	$+\left(8 N_{s}-2\right) N_{r} N_{x}+\left(8 N_{r}-2\right) N_{r} N_{d}$
(Optimal)	$+2 N_{d}^{2}+N_{d}+N_{x}\left(8 N_{d}^{2}+6 N_{d}-2\right)$
	$+4 N_{d} N_{s} N_{x}+2 N_{x} M^{N_{x}}\left(4 N_{x}+1+N_{Q}\right)$
	$+N_{r}^{2}\left(8 N_{s}+16 N_{r}-6\right)+2 N_{r}$
	$+2\left(N_{r}-1\right)+\left(8 N_{s}-2\right) N_{s} N_{x}-1$
(Multiplication)	$N_{p o p} N_{g a}\left(3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right)\right.$
(Sub-optimal)	$+2 N_{d} N_{x}+4 N_{d} N_{r}^{2}+2 N_{d}^{2}$
	$+N_{x}+N_{x}\left(4 N_{d}^{2}+4 N_{d}\right)+4 N_{d} N_{s} N_{x}$
	$\left.+2 N_{x} M^{N_{x}} N_{Q}+2 N_{r}+1\right)$
GA	$N_{p o p} N_{g a}\left(3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right)\right.$
(Total operations)	$+2 N_{d} N_{x}+\left(8 N_{r}-2\right) N_{r} N_{d}+2 N_{d}^{2}$
(Sub-optimal)	$+N_{x}\left(8 N_{d}^{2}+6 N_{d}-2\right)+4 N_{d} N_{s} N_{x}$
	$+2 N_{x} M^{\left.N_{x} N_{Q}+3 N_{r}+N_{s}+1+N_{d}\right)}$

481 where $\left[\mathbf{c}_{1}\right]_{i}=\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right)$ and $\left[\mathbf{c}_{2}\right]_{i}=\sigma_{x}^{2}$. For suboptimal 482 case, \mathbf{g}_{j} is defined as follows

$$
\mathbf{g}_{j}^{s u b}=\left[\begin{array}{c}
\left(\sum_{i=1}^{N_{r}} \sigma_{f, i}^{2}\left(\sigma_{x}^{2} \sigma_{s r, i}^{2}+\sigma_{r}^{2}\right)-P_{r}\right) \tag{34}\\
\left(\sigma_{x}^{2} \sum_{i=1}^{N_{s}} \sigma_{s, i}^{2}-P_{t}\right)
\end{array}\right]
$$

483 For all cases, the initial value of \mathbf{v} is chosen from the LMMSE 484 solution.

485

VI. Computational Complexity Analysis

486 Let us now approximate the computational complexity of the 487 relay link designs using the MBER CF. We express it in terms 488 of the number of operations, which can be addition, subtraction 489 and multiplication operations. We first quantify the complexity 490 in terms of the number of multiplications and then in terms of 491 all the operations. We found that the complexity is dominated 492 by the multiplications due to the associated matrix operations. 493 We have also considered the complexity separately for both the 494 optimal and sub-optimal approaches. Let us assume that $N_{p o p}$ 495 and $N_{g a}$ are the population size and the average number of GA 496 iterations, respectively. The complexity results are presented in 497 Table II for the SRD case. However, the details of the analysis 498 are given in Appendix II along with the RD case as well. We 499 have also analyzed the detailed complexity involving the PSD 500 optimization, albeit they are not given in the table due to space 501 limitations.

Notes:

1) An approximation for N_{Q} can be obtained in several ways. In practice, the $Q(\cdot)$-function is calculated using the look-up table. Ignoring the off-line calculations of its values at various data points, we need to compute the index of the discretized argument, which needs one unit of operation followed by a memory-read. The other
approach is constituted by the more accurate Taylor 509 series.

$$
\begin{equation*}
Q(x)=\frac{1}{2}-\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} \frac{(-1)^{(n)} x^{2 n+1}}{n!(2 n+1) 2^{n}} \tag{35}
\end{equation*}
$$

We note that typically $2 n$ is calculated by the left-shifting 511 of the binary string by one position and 2^{n} is simply a 512 binary number of length $(n+1)$ with only a single ' 1 ' at 513 the $(n+1)^{t h}$ position. Thus, we can ignore the complex- 514 ity involving these two operations. Now, we can calculate 515 the N_{Q} as $N_{Q} \approx 4 N_{\text {lim }}$ with multiplications and $N_{Q} \approx 516$ $5 N_{\text {lim }}$ with total operations, respectively, where $N_{\text {lim }} 517$ is a number for representing the limit of Taylor series 518 sum. Simulation shows that even $N_{\text {lim }} \geq 20$ gives a good 519 approximation with argument $x \leq 4$.
2) In the complexity analysis, another complexity compo- 521 nent involving the SVD decomposition of a matrix has 522 to be mentioned, which is required for both the LMMSE 523 algorithm and for our proposed low complexity solution. 524 For the channel matrices $\mathbf{H}_{s r}$ and $\mathbf{H}_{r d}$, the order of com- 525 plexity will be $O\left(4 N_{r}^{2} N_{s}+22 N_{s}^{3}\right)+O\left(4 N_{d}^{2} N_{r}+22 N_{r}^{3}\right) .526$
3) The computational complexity of the LMMSE solution 527 relying on ARITH-BER [9] has not been analyzed in [9], 528 hence we analyze it for comparison. The complexity in 529 terms of the multiplications is approximately $4 N_{s}^{2} N_{x}+530$ $8 N_{s}+4+19 N_{s}+2 N_{r}+4 N_{r}^{3}+4 N_{r} N_{s}^{2}+\left(32 N_{s}^{3}-531\right.$ $\left.12 N_{s}^{2}-2 N_{s}\right) / 6+3 \min \left(N_{d}, N_{s}, N_{r}, N_{x}\right)+2 N_{d} N_{x}+532$ $\left(32 N_{d}^{3}-12 N_{d}^{2}-2 N_{d}\right) / 6+4 N_{d} N_{r}^{2}+2 N_{d}^{2}+4 N_{d} N_{s} N_{x}+533$ $4 N_{s} N_{d}^{2}+2 N_{s} N_{d}$. The total complexity is approximately 534 $\left(8 N_{s}-2\right) N_{s} N_{x}+29 N_{s}+3+\left(8 N_{r}-2\right) N_{r}^{2}+2 N_{r}+535$ $\left(8 N_{s}-2\right) N_{r} N_{s}+\left(32 N_{s}^{3}+60 N_{s}^{2}-14 N_{s}\right) / 3+\left(8 N_{s}-536\right.$ 2) $N_{d} N_{x}+\left(8 N_{d}-2\right) N_{s} N_{d}+2 N_{s} N_{d}+4 N_{d}^{2}+\left(32 N_{d}^{3}+537\right.$ $\left.60 N_{d}^{2}-14 N_{d}\right) / 3+3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right) 2 N_{d} N_{x}+538$ $\left(8 N_{r}-2\right) N_{r} N_{d}+N_{d}$.

VII. Numerical Results

Let us now study the BER performance of the proposed 541 method against that of the LMMSE method [7]. Our simu- 542 lations are performed in two stages. During the first stage, 543 we use a known training sequence for determining both the 544 TPC as well as the AF and equalizer matrices of the $\mathrm{SN}, 545$ RN, DN respectively. In the second stage, the data sequence 546 is detected. We consider a flat Rayleigh fading i.i.d channel 547 with unit variance for each complex element of $\mathbf{H}_{s r}$ and $\mathbf{H}_{r d} .548$ Thus, the Channel Impulse Response (CIR) is a non-dispersive 549 Rayleigh-faded one. Most of the simulations are preformed 550 for $N_{s}=2, N_{r}=2, N_{d}=2$ with channel coding, which uses 551 Convolution Code (CC) of $(7,5)_{8}$. We have used the Soft- 552 Output Viterbi decoding [23]. The RN's SNR is defined as 553 $\mathrm{SNR}_{1}=10 \log _{10}\left(\left(\sigma_{x}^{2} / \sigma_{1}^{2}\right)\right) \mathrm{dB}$, where σ_{x}^{2} is the power of each 554 x_{i}, which is set to $\left(P_{t} / N_{x}\right)$ with $P_{t}=1 \mathrm{dBm}$. The DN's SNR 555 is defined as $\mathrm{SNR}_{2}=10 \log _{10}\left(\left(P_{r} / N_{r} \sigma_{2}^{2}\right)\right) \mathrm{dB}$, with the RN 556 power constraint of $P_{r}=5 \mathrm{dBm}$. Finally the SN's power is 557 constrained to $P_{t}=1 \mathrm{dBm}$ unless specified otherwise. The 558 SNR_{1} is kept at 20 dB . Our simulation results are averaged 559

TABLE III
GA Parameters

Parameters	Values
Population Size	50
GA maximum iteration limit	500
Mutation Type	Bit flipping
Probability of mutation	0.01
Binary string length per variable	16 bit
Initialization	LMMSE
Crossover type	Single point

Fig. 4. BER vs. SNR_{2} performance of the $\mathrm{RN}-\mathrm{DN}$ link design based on the MBER method (with full $\mathbf{A}_{F}, \mathbf{W}_{d}$ (equation (6)) and suboptimal methods (equations (11) and (12)) along with the LMMSE method over a flat Rayleigh fading channel. Performances with and without the channel estimation are presented. $N_{s}, N_{r}, N_{d}=2, P_{r}$ is constrained to 5 dBm and SNR_{1} is 20 dB . Convolution code of $(7,5)_{8}$ is used along with the GA optimization.

560 over 1000 channel realizations per SNR value. In all our sim561 ulation setup, we have assumed $N_{x}=N_{s}$, though any value 562 of N_{x} can be assumed. The GA related parameters are chosen 563 as per Table III.
564 Experiment 1: This experiment is for the RD link design. 565 The primary focus of this experiment is to characterize the BER 566 performance of the proposed MBER method against that of the 567 LMMSE benchmark [7]. We have also evaluated the BER per568 formance both with perfect and with estimated channel, where 569 the channel was also estimated using the LMMSE technique. 570 In the second part of the experiment, we characterized the 571 various suboptimal methods along with the original problem 572 formulation of Equation (6) for analyzing the effects of \mathbf{A}_{F} and $573 \mathbf{W}_{d}$. In this experiment, we have also shown the superiority 574 of the MBER method over a rank-deficient system, where 575 conventional LMMSE technique fails to perform adequately. 576 Remarks:

1) Fig. 4. plots the BER vs. SNR_{2} performance of both the MBER and LMMSE based RD link design. Observe in Fig. 4 that as the SNR increases, the MBER method increasingly outperforms the LMMSE method.

Fig. 5. BER vs. SNR_{2} performance of the rank-deficient RN-DN link design based on the MBER method (optimal) along with the LMMSE method over a flat Rayleigh fading perfect channel. $N_{s}=4$ and $N_{r}, N_{d}=2, P_{r}$ is constrained to 5 dBm and SNR_{1} is 20 dB . Convolution code of $(7,5)_{8}$ is used along with the GA optimization.

At $\mathrm{BER}=10^{-3}$ the MBER method requires an SNR 581 of approximately 19.5 dB (suboptimal, SVD based) 582 and 20.7 dB (optimal), respectively, while the LMMSE 583 method needs $\mathrm{SNR} \approx 26 \mathrm{~dB}$ for the perfectly known 584 channel. Thus, the MBER method attains an SNR gain of 585 approximately 5 dB (suboptimal) and 6.5 dB (optimal), 586 respectively for the scenario of $\mathrm{SNR}_{1}=20 \mathrm{~dB}$ and $P_{r}=587$ 5 dBm . The SNR gain of the LMMSE-estimated channel 588 remains almost $\geq 5 \mathrm{~dB}$ for the suboptimal MBER based 589 RN-DN link design.
2) Fig. 5 shows the BER performance of a rank-deficient 591 system. The $N_{s}=4$ with $N_{r}=2 N_{d}=2$. It shows that 592 at $\mathrm{BER}=4 \times 10^{-3}$, the MBER method gives a BER gain 593 of almost 5 dB , where conventional LMMSE method fails 594 to perform adequately.
3) Let us now consider both the SVD structure of \mathbf{A}_{F} and 596 its original non-decomposed structure. In both the cases, 597 we generate \mathbf{w}_{i} in both ways, first as in Equation (6) and 598 then as in Equations (11) and (12). Fig. 6 characterizes 599 all these cases. Observe that at $\mathrm{BER}=10^{-3}$, the SVD 600 structure based \mathbf{A}_{F} obtains a degraded SNR performance 601 of 1.5 dB compared to the case, where \mathbf{A}_{F} assumes no 602 SVD structure. It is also observed from Fig. 6 that the two 603 choices for determining the equalizer matrix \mathbf{W}_{d} do not 604 have severe impact on the performance. This implies that 605 \mathbf{A}_{F} dominates the CF compared to the equalizer matrix 606 \mathbf{W}_{d} in the MBER framework. This also highlights the 607 fact that our low-complexity solution of Equations (11) 608 and (12) conceived for determining the DN's equalizers 609 in parallel does not impose any substantial degradation 610 on the BER performance in Fig. 6.

Fig. 6. BER vs. SNR_{2} performance of the RD link design based on the MBER method with various options for \mathbf{A}_{F} and \mathbf{W}_{d} matrices (Various combinations of equations (6) and (11), (12)) with a flat Rayleigh fading channel. Channels are perfectly known. $N_{s}, N_{r}, N_{d}=2, P_{r}$ is constrained to 5 dBm and SNR_{1} is 20 dB with CC code of $(7,5)_{8}$.

$$
612
$$

628 function encapsulated in the CF is approximated by the less 629 complex function of $Q(x) \approx(1 / 2) e^{-x^{2} / 2}$ [23]. In Fig. 8 , we 630 only characterize the RD link, this investigation may be readily 631 extended to the SRD link design as well. Again, the chan632 nels are assumed to be perfectly known in this experiment. 633 Remarks:

1) Fig. 8 portrays the BER performance of the MBER method using the above-mentioned $Q(x) \approx(1 / 2) e^{-x^{2} / 2}$ approximation for the RD link, which reduces the complexity of the search from that of Equation (11) to Equation (12) imposed, when finding \mathbf{A}_{F} and \mathbf{W}_{d}. Observe in Fig. 8 that the performance penalty imposed by this approximation is negligible at higher SNR values ($>25 \mathrm{~dB}$), although at lower SNR values this degradation is non-negligible.
643 Experiment 4: In this experiment we consider the SRD link 644 using our proposed MBER based framework. We have also

Fig. 7. BER vs. SNR_{2} performance of the RD link design based on the MBER method over a flat Rayleigh fading channel with 8- and 16-PSK signal sets with CC code of $(7,5)_{8}$. Channels are perfectly known. $N_{s}, N_{r}, N_{d}=2$ with P_{r} and SNR_{1} being constrained to 5 dBm and 20 dB , respectively.

Fig. 8. BER vs. SNR_{2} performance of the RD link design based on the MBER method with the Gaussian error function Q (.)-function approximation to an exponential one over a flat Rayleigh fading channel. Channels are perfectly known. QPSK signal set is used with CC code of $(7,5)_{8} . N_{s}, N_{r}, N_{d}=2$ with P_{r} being constrained to 5 dBm .
considered a $4 \times 2 \times 2$ rank-deficient SRD case. We set the SN 645 and RN power constraints to be $P_{t}=5 \mathrm{dBm}$ and $P_{r}=5 \mathrm{dBm}, 646$ respectively. We do not invoke the SVD of the \mathbf{A}_{F} and $\mathbf{A}_{S} 647$ matrices in this experiment. The channels are assumed to be 648 perfectly known. We have used CC code of $(7,5)_{8}$. In this 649 experiment, we have used both GA with LMMSE "seed" and 650 PSD with LMMSE initial solution. Remarks:

1) Fig. 9 characterizes the BER performance of the SN-RN- 652 DN link using our MBER framework. With GA method, 653 at the $\operatorname{BER}=10^{-3}$, the MBER method requires an SNR 654

Fig. 9. BER vs. SNR_{2} performance of the SRD link design based on the MBER method over a flat Rayleigh fading channel. Channels are perfectly known. $N_{s}, N_{r}, N_{d}=2, P_{r}$ and P_{t} are constrained to 5 dBm and SNR_{1} is 20 dB . QPSK signal set is used with CC code of $(7,5)_{8}$. GA and PSD optimizations are used.

Fig. 10. BER vs. SNR $_{2}$ performance of a rank-deficient $4 \times 2 \times 2$ SRD link design based on the MBER method over a flat Rayleigh fading channel. Channels are perfectly known. $N_{s}=4, N_{r}, N_{d}=2, P_{r}$ and P_{t} are constrained to 5 dBm and SNR_{1} is 20 dB . QPSK signal set is used with CC code of $(7,5)_{8}$. PSD optimization is used.
of approximately 9.8 dB (optimal), while the LMMSE method needs 15 dB and ARITH-BER requires 13.5 dB , respectively. Thus, the MBER method attains an SNR gain of approximately 5.2 dB and 3.7 dB for the SRD link with respect to LMMSE and ARITH-BER, respectively. We observe that PSD gives a 0.7 dB SNR degradation.
2) Fig. 10 shows the BER performance of the rank-deficient case. It shows that we can still attain an SNR gain of almost 3.5 db at the $\mathrm{BER}=1 \times 10^{-3}$ with coded data along with the PSD optimization method.

New MBER-based TPC, AF and equalizer matrices were 666 designed for the RN-DN link and SN-RN-DN links. The CFs of 667 various constellations were derived and a solution was found for 668 the design of these matrices using the MBER framework. Sub- 669 optimal approaches have also been proposed for computational 670 complexity reduction. It was shown that the BER performance 671 of the proposed method is superior compared to the LMMSE 672 method, albeit this improved performance has been achieved at 673 an increased computational complexity.

Appendix I

Optimization Techniques
In this contribution, we have adopted two optimization meth- 677 ods, namely the binary GA [21] and the PSD [22]. Below we 678 provide a brief description of the GA technique in the context 679 of our problem.

A. Binary GA

 681The binary GA is a heuristic method of optimization [21]. 682 We form a vector also referred to as a chromosome from the 683 variables of interest by stacking all the variables' real and 684 imaginary components as defined in Equation (26).

1) Population selection GA commences its operation from 686 a set of initial chromosome values known as the initial 687 population having a size of $N_{\text {pop }}$. The initial solution can 688 be randomly generated or "seeded" with a better initial 689 choice. The second option leads to a faster convergence. 690 In our case, the "seed" is the "LMMSE" solution and 691 the initial population is generated with the aid of a slight 692 random variation around the "seed". Now, for every chro- 693 mosome in the population, a "fitness" value is obtained by 694 calculating the CF value against each of them. Then, the 695 Roulette-Wheel algorithm of [21] is invoked for selecting 696 the suitable parent solutions for generating child solutions 697 for the next iteration. A pair of techniques referred to 698 as crossover and mutation are invoked for generating 699 children from the parents.
2) Crossover The crossover operation is a chromosome "re- 701 production" technique by which an off-spring is gener- 702 ated upon picking various parts of its parent chromosome. 703 This method introduces a large amount of characteristic 704 variation into the off-spring. Let us consider the following 705 example. Let us assume that a random binary string, $B 1,706$ which has the same length as chromosome is created. We 707 also assume that two children, namely $C h 1$ and $C h 2$ have 708 to be created from two parent chromosomes $P 1$ and $P 2.709$ Then, if the i th position of $B 1$ is $0, C h 1$ and $C h 2$ would 710 fill up their i th position from the i th position of $P 1$ and 711 $P 2$, respectively. Otherwise, the i th position of $P 1$ would 712 populate $C h 2$ and that of $P 2$ would go to $C h 1$.

$$
\begin{align*}
& P 1=[11000110] ; \\
& P 2=[10111001] ; \\
& B 1=[00101011] ; \tag{36}
\end{align*}
$$

Hence, the children become

$$
\begin{align*}
& C h 1=[11101101] ; \\
& C h 2=[10010010] ; \tag{37}
\end{align*}
$$ 2) $M K$. Multiplication of a complex-valued matrix and a vector

736

737

738

743 ti
744 f
745 n

746

747 m

 748 7492 child $C h=[11000100]$. algorithm mentioned earlier. method. respectively. equalizers \mathbf{w}_{i}.Mutation Mutation is a relatively small-scale characteristic variational "reproduction" tool for off-spring generation. It introduces a bit flipping at a few randomly selected places of the chromosomes. For example, if a parent chromosome is $P=$ [11000110], a mutation at the 2nd Least-Significant-Bit (LSB) position generates a
3) Termination Using the crossover and mutation techniques, a new set of off-spring is generated along with their fitness value. If one of them satisfies the required fitness value, the process is terminated with that chromosome being the solution. The process is also terminated, if the maximum number of iterations is exceeded. If no sufficiently good fit is found at a given iteration (provided the maximum iteration number has not been reached), the algorithm goes ahead with the selection of parents from the current set of children using the Roulette-Wheel

Appendix II Detail Complexity Analysis

The CF of BPSK formulated in Equation (13) is considered here first for this calculation, which is readily extended to other constellations as well. However, it is noted that the overall complexity depends on the specific choice of optimization method. We first calculate the complexity of calculating the CF and constraints once, irrespective of the choice of optimization
$R N-D N$ Link: Let us commence with the BPSK CF Equation (13). Let us first consider the term $\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j} x_{i}$. The fundamental assumption is that multiplication of two complex numbers would take 4 real data multiplication and 6 total operation (2 extra additions are required). Hence, two complex matrices of orders $\mathbb{C}^{M \times N}$ and $\mathbb{C}^{N \times K}$ would take $4 M N K$ multiplications, whereas the total operation required is $(8 N-$ of order $\mathbb{C}^{M \times N}$ and $\mathbb{C}^{N \times 1}$ would require $4 M N$ multiplications and $(8 N-2) M$ total operations, respectively.

1) Thus, effective channel matrix \mathbf{H} takes $N_{1}^{m}=4 N_{r} N_{d}$ $\left(N_{r}+N_{s}\right)$ multiplications and $N_{1}^{t}=2 N_{d}\left(N_{r}+N_{s}\right)$ $\left(4 N_{r}-1\right)$ total operations respectively. Calculation of \mathbf{H} is common with all the equalizers \mathbf{w}_{i}.
2) $\left(\mathbf{w}_{i}\right)^{H} \mathbf{H} \mathbf{x}_{j} x_{i}$ requires $N_{2}^{m}=4 N_{d} N_{s}+4 N_{s}+1$ multiplications and $N_{2}^{t}=8 N_{s} N_{d}+6 N_{d}-1$ total operations,
3) Similarly, the noise covariance matrix \mathbf{C}_{n} (4) requires $N_{3}^{m}=4 N_{d} N_{r}^{2}+2 N_{d}^{2}$ multiplications and $N_{3}^{t}=$ $\left(8 N_{r}-2\right) N_{r} N_{d}+2 N_{d}^{2}+N_{d}$ total operations, respectively. It assumes that calculation of $\mathbf{H}_{r d} \mathbf{A}_{F}$ is already done with \mathbf{H}. Calculation of \mathbf{C}_{n} is common with all the
4) Thus, $\mathbf{w}_{i}^{H} \mathbf{C}_{n} \mathbf{w}_{i}$ requires $N_{4}^{m}=4 N_{d}^{2}+4 N_{d}$ multiplication 765 and $N_{4}^{t}=8 N_{d}^{2}+6 N_{d}-2$ total operations, respectively. 766
5) Assuming the square root and division as two unit of op- 767 erations, the total complexity of calculating the CF once 768 is $N_{5}^{m}=N_{1}^{m}+N_{3}^{m}+N_{x} N_{4}^{m}+4 N_{d} N_{s} N_{x}+N_{x} 2^{N_{x}} 769$ $\left(4 N_{x}+1+N_{Q}\right)$ (with only multiplication) and $N_{5}^{t}=770$ $N_{1}^{m}+N_{3}^{m}+N_{x} N_{4}^{t}+N x\left(8 N_{s} N_{d}-2 N s\right)+2^{N_{x}}\left(8 N_{x}+771\right.$ $1+N_{Q}$) (with total operations), respectively, where $N_{Q} 772$ is the complexity involving the $Q(\cdot)$-function.

773
6) If M-QAM is chosen, the complexity will be approx- 774 imately $\quad N_{5}^{m} \approx N_{1}^{m}+N_{3}^{m}+N_{x} N_{4}^{m}+4 N_{d} N_{s} N_{x}+775$ $2 N_{x} M^{N_{x}}\left(4 N_{x}+1+N_{Q}\right)$ with multiplication and $N_{5}^{t} \approx 776$ $N_{1}^{t}+N_{3}^{t}+N_{x} N_{4}^{t}+6 N_{s}^{2} N_{d}+2 N_{x} M^{N_{x}}\left(2 N_{x} N_{d}+6 N_{d}+777\right.$ N_{Q}) with the total complexity, respectively. For the 778 M-PSK case with the rotated constellation concept, 779 we need to multiply $\left(4 N_{x}+1+N_{Q}\right)$ with only 780 $2 N_{x} M^{N_{x}-1}\left(4 N_{x}+1+N_{Q}\right)$.

781
7) For the SVD-based approach, the complexity of 782 H requires $N_{1}^{m}=\min \left(N_{d}, N_{r}\right)+2 N_{d}^{2}+4 N_{d} N_{s}^{2}$ mul- 783 tiplications and $N_{1}^{t}=\min \left(N_{d}, N_{r}\right)+2 N_{d}^{2}+\left(8 N_{s}-784\right.$ 2) $N_{d} N_{s}$ total operations. 785
8) Let us calculate the complexity involving the constraints. 786 From equation (6), we obtain the complexity for con- 787 straints as $N_{1}^{m, c}=8 N_{r}^{3}+4 N_{r}^{2} N_{s}+2 N_{r}^{2}$ with multipli- 788 cation only and $N_{1}^{t, c}=N_{r}^{2}\left(8 N_{s}+16 N_{r}-6\right)+2 N_{r}+789$ $2\left(N_{r}-1\right)$ with total operations, respectively. For the 790 SVD approach, it would be $N_{1}^{m, c}=2 N_{r}$ with multipli- 791 cations and $N_{1}^{t, c}=3 N_{r}$ total operations, respectively. 792
SN-RN-DN Link: For the case of the SN-RN-DN link, we 793 have to additionally incorporate the calculation of the TPC 794 matrix \mathbf{A}_{S}.

795

1) We obtain the complexity for \mathbf{H} as $N_{1}^{m}=4 N_{r} N_{d}\left(N_{r}+796\right.$ $\left.N_{s}\right)+4 N_{r} N_{s} N_{x} \quad$ with multiplication and $N_{1}^{t}=797$ $2 N_{d}\left(N_{r}+N_{s}\right)\left(4 N_{r}-1\right)+\left(8 N_{s}-2\right) N_{r} N_{x}$ with total 798 operations, respectively. For the SVD-based approach, 799 we obtain $\quad N_{1}^{m}=3 \min \left(N_{d}, N_{r}, N_{s}, N_{x}\right)+2 N_{d} N_{x} 800$ for multiplications and $N_{1}^{t}=N_{1}^{m}$ as well for the total 801 operations.

802
2) An additional complexity for the source power constraint 803 may be calculated as $N_{2}^{m, c}=4 N_{s}^{2} N_{x}+1$ with multi- 804 plication and $N_{2}^{t, c}=\left(8 N_{s}-2\right) N_{s} N_{x}+2 N_{s}-1$ with 805 total computations, respectively. For the SVD-based ap- 806 proach, they become $N_{2}^{m, c}=1$ for multiplication and 807 $N_{2}^{t, c}=N_{s}+1$ for total operations, respectively. 808
Computational-Complexity, Specific to Optimization 809 Method: Computational complexity is also dependent on 810 the specific choice of optimization algorithm to determine 811 the parameters. For binary GA, time-complexity is more 812 appropriate. However, we try to give an approximate 813 computational-complexity for GA. The computational- 814 complexity for GA is dominated by the function and constraint 815 evaluations to determine the eligible population at each 816 iterations. Let us assume that total size of population is $N_{\text {pop }} 817$ and GA requires $N_{g a}$ iterations to converge. Then, total 818 complexity will be approximately $N_{\text {pop }} N_{g a}\left(N_{5}^{m}+N_{1}^{m, c}+819\right.$ $\left.N_{2}^{m, c}\right)$ with multiplication and $N_{\text {pop }} N_{g a}\left(N_{5}^{t}+N_{1}^{t, c}+N_{2}^{t, c}\right) 820$ with total operations, respectively.

For the PSD algorithm, we need to calculate the gradient 823 for both function and constraint. Gradient of CF is calculated 824 numerically.

1) Gradient of CF takes $N_{1}^{m, p s d}=2\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right) N_{5}^{m}$ multiplication and $N_{1}^{t, p s d}=2\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right) N_{5}^{t}$ total operations, if we use numerical method. For the SVD-based approach, it would be $N_{1}^{m, p s d}=2\left(N_{d}+\right.$ $\left.N_{x}+N_{r}\right) N_{5}^{m}$ with multiplication and $N_{1}^{t, p s d}=2\left(N_{d}+\right.$ $\left.N_{x}+N_{r}\right) N_{5}^{t}$ with total operations.
2) Per iteration, other steps require $N_{2}^{m, p s d}=18\left(N_{r}^{2}+\right.$ $\left.N_{s} N_{r}\right)+6\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right)+4\left(N_{r}^{2}+N_{s}^{2}\right)^{2}+9$ multiplications and $N_{2}^{t, p s d}=25\left(N_{r}^{2}+N_{s} N_{r}\right)+22+$ $10\left(N_{d} N_{x}+N_{r}^{2}+N_{s} N_{r}\right)+8\left(N_{r}^{2}+N_{s} N_{r}\right)^{2} \quad$ total operations. For sub-optimal case, it would be $N_{2}^{m, p s d}=$ $2\left(N_{r}^{2}+N_{s}^{2}\right)+3\left(N_{d}+N_{r}+N_{s}\right)+1+2\left(N_{d}+N_{s}\right)$ for multiplication and $N_{2}^{t, p s d}=6\left(N_{r}+N_{s}\right)-6+$ $7\left(N_{d}+N_{r}+N_{s}\right)$ for total operations.
3) If PSD takes an average iteration of $N_{p s d}$, the computational complexity may be approximated as $N_{p s d}\left(N_{1}^{m, p s d}+N_{2}^{m, p s d}\right)$ with multiplication and $N_{p s d}\left(N_{1}^{t, p s d}+N_{2}^{t, p s d}\right)$ with total operations.
Computational Complexity for LMMSE [9]-ARITH BER Case: We give an approximate computational complexity for e LMMSE case for comparison purpose.
4) The computation of precoder matrix \mathbf{A}_{S} requires $4 N_{s}^{2} N_{x}+$ $8 N_{s}+3$ multiplication and $\left(8 N_{s}-2\right) N_{s} N_{x}+5 N_{s}+1$ total operations.
5) The computation of AF matrix requires $19 N_{s}+1+2 N_{r}+$ $4 N_{r}^{3}+4 N_{r} N_{s}^{2}+\left(32 N_{s}^{3}-12 N_{s}^{2}-2 N_{s}\right) / 6$ multiplications and $24 N_{s}+2+\left(8 N_{r}-2\right) N_{r}^{2}+2 N_{r}+\left(8 N_{s}-\right.$ 2) $N_{r} N_{s}+\left(32 N_{s}^{3}+60 N_{s}^{2}-14 N_{s}\right) / 3$ total operations.
6) Computation of effective channel matrix and noise covariance matrix are already given.
7) Computation of equalizer matrix requires $4 N_{d} N_{s} N_{x}+$ $4 N_{s} N_{d}^{2}+2 N_{s} N_{d}+\left(32 N_{d}^{3}-12 N_{d}^{2}-2 N_{d}\right) / 6$ multiplications and $\left(8 N_{s}-2\right) N_{d} N_{x}+\left(8 N_{d}-2\right) N_{s} N_{d}+2 N_{s} N_{d}+$ $2 N_{d}^{2}+\left(32 N_{d}^{3}+60 N_{d}^{2}-14 N_{d}\right) / 3$ total operations.

ACKNOWLEDGMENT

The financial support of the DST, India and of the EPSRC, 861 UK under the auspices of the India-UK Advanced Technology 862 Centre (IUATC) is gratefully acknowledged.

REFERENCES

[1] Y. Rong, X. Tang, and Y. Hua, "A unified framework for optimizing linear nonregenerative multicarrier MIMO relay communication systems," IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4837-4851, Dec. 2009.
[2] Y. Rong, "Optimal linear non-regenerative multi-hop MIMO relays with MMSE-DFE receiver at the destination," IEEE Trans. Wireless Commun., vol. 9, no. 7, pp. 2268-2279, Jul. 2010.
[3] X. J. Zhang and Y. Gong, "Adaptive power allocation for multihop regenerative relaying with limited feedback," IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3862-3867, Sep. 2009.
[4] X. J. Zhang and Y. Gong, "Jointly optimizing power allocation and relay positions for multi-relay regenerative relaying with relay selection," in Proc. 4th ICSPCS, 2010, pp. 1-9.
[5] J. Zou, H. Luo, M. Tao, and R. Wang, "Joint source and relay optimization for non-regenerative MIMO two-way relay systems with imperfect CSI," IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3305-3315, Sep. 2012.
[6] W. Zhang, U. Mitra, and M. Chiang, "Optimization of amplify-and- for- 879 ward multicarrier two-hop transmission," IEEE Trans. Commun., vol. 59, 880 no. 5, pp. 1434-1445, May 2011.
[7] W. Guan and H. Luo, "Joint MMSE transceiver design in non- regenera- 882 tive MIMO relay systems," IEEE Commun. Lett., vol. 12, no. 7, pp. 517- 883 519, Jul. 2008.
[8] C. Jeong and H.-M. Kim, "Precoder design of non-regenerative relays 885 with covariance feedback," IEEE Commun. Lett., vol. 13, no. 12, pp. 920-886 922, Dec. 2009.
[9] C. Song, K.-J. Lee, and I. Lee, "MMSE based transceiver designs in 888 closed-loop non-regenerative MIMO relaying systems," IEEE Trans. 889 Wireless Commun., vol. 9, no. 7, pp. 2310-2319, Jul. 2010.890
[10] C. Xing, S. Ma, and Y.-C. Wu, "Robust joint design of linear relay pre- 891 coder and destination equalizer for dual-hop amplifyand- forward MIMO 892 relay systems," IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2273-893 2283, Apr. 2010.
[11] X. Tang and Y. Hua, "Optimal design of non-regenerative MIMO wireless 895 relays," IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1398-1407, 896 Apr. 2007.
[12] O. Munoz-Medina, J. Vidal, and A. Agustin, "Linear transceiver design 898 in nonregenerative relays with channel state information," IEEE Trans. 899 Signal Process., vol. 55, no. 6, pp. 2593-2604, Jun. 2007.
[13] B. Sainath and N. Mehta, "Generalizing the amplify-and-forward relay 901 gain model: An optimal SEP perspective," IEEE Trans. Wireless Com- 902 mun., vol. 11, no. 11, pp. 4118-4127, Nov. 2012.
[14] T. Peng, R. de Lamare, and A. Schmeink, "Joint minimum BER power al- 904 location and receiver design for distributed space-time coded cooperative 905 MIMO relaying systems," in Proc. Int. ITG WSA, 2012, pp. 225-229. 906
[15] C.-C. Yeh and J. Barry, "Adaptive minimum bit-error rate equalization for 907 binary signaling," IEEE Trans. Commun., vol. 48, no. 7, pp. 1226-1235, 908 Jul. 2000.
[16] W. Yao, S. Chen, and L. Hanzo, "Generalised vector precoding design 910 based on the MBER criterion for multiuser transmission," in Proc. IEEE 911 VTC-Fall, 2010, pp. 1-5.
[17] S. Chen, A. Livingstone, and L. Hanzo, "Minimum bit-error rate de- 913 sign for space-time equalization-based multiuser detection," IEEE Trans. 914 Commun, vol. 54, no. 5, pp. 824-832, May 2006.
[18] W. Yao, S. Chen, and L. Hanzo, "Generalized MBER-based vector pre- 916 coding design for multiuser transmission," IEEE Trans. Veh. Technol., 917 vol. 60, no. 2, pp. 739-745, Feb. 2011.
[19] W. Yao, S. Chen, and L. Hanzo, "A transceiver design based on uniform 919 channel decomposition and MBER vector perturbation," IEEE Trans. Veh. 920 Technol., vol. 59, no. 6, pp. 3153-3159, Jul. 2010.
[20] M. Alias, S. Chen, and L. Hanzo, "Multiple-antenna-aided OFDM em- 922 ploying genetic-algorithm-assisted minimum bit error rate multiuser de- 923 tection," IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1713-1721, 924 Sep. 2005.
[21] D. E. Goldberg., Genetic Algorithms in Search, Optimization, Machine 926 Learning. Boston, MA, USA: Addison-Wesley Longman Publishing 927 Co., Inc, 2009.
[22] D. H. Luenberger, Linear and Nonlinear Programming. Englewood 929 Cliffs, NJ, USA: Prentice-Hall, 1984.
[23] J. Proakis, Digital Communications., 4th ed. New York, NY, USA: 931 McGraw-Hill, 2000. 932
[24] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Appli- 933 cations. Norwell, MA, USA: Kluwer, 1987.

Amit Kumar Dutta (SM'XX) received the B.E. de- 935 gree in electronics and tele-communication engineer- 936 ing from Bengal Engineering and Science University, 937 India, in 2000. He is currently pursuing the Ph.D 938 degree at the Department of ECE, Indian Institute of 939 Science, India.
He worked in Texas Instrument (TI) Pvt. Ltd., 941 India, from 2000 to 2009. During his career at TI, 942 he worked on various design and test aspects of 943 communication and entertainment related System- 944 on-Chip. The works included digital VLSI design 945 and its test, validation and characterization.

He is interested in the applications of statistical signal processing algorithms 947 to wireless communication systems. His current research interests are on the 948 various parameter estimation and signal detection for MIMO wireless receiver 949 based on the Minimum Bit-Error-Ratio criterion.

962 ogy, Stockholm, Sweden.
963 He has been a visiting faculty member at Stanford University, KTH-Royal In964 stitute of Technology and Helsinki University of Technology (now Aalto Univ). 965 He also worked at DLRL, Hyderabad, and at the R\&D unit for Navigational 966 Electronics, Osmania University.
967 His research interests are in developing signal processing algorithms for 968 MIMO wireless communication systems, sparse signal recovery problems, 969 indoor positioning and DOA estimation.
970 During his work at Stanford University, he worked on MIMO wireless 971 channel modeling and is the coauthor of the WiMAX standard on wireless 972 channel models for fixed-broadband wireless communication systems which 973 proposed the Stanford University Interim (SUI) channel models. He is currently 974 an Editor of the EURASIP's Journal on Signal Processing published by Elsevier 975 and the Senior Associate Editor, Editorial Board of Sadhana (Indian Academy 976 of Science Proceedings in Engineering Sciences). He is also an academic 977 entrepreneur and is a cofounder of the company ESQUBE Communication 978 Solutions, Bangalore.

Lajos Hanzo (F'08) received the bachelor's degree 979 in electronics in 1976 and the doctoral degree in 980 1983. In 2009 he was awarded the honorary doc- 981 torate "Doctor Honoris Causa" by the Technical 982 University of Budapest. During his 37-year career 983 in telecommunications he has held various research 984 and academic posts in Hungary, Germany and the 985 UK. Since 1986 he has been with the School of 986 Electronics and Computer Science, University of 987 Southampton, U.K., where he holds the chair in 988 telecommunications. He has successfully supervised 989 more than 80 Ph. D. students, co-authored 20 John Wiley/IEEE Press books 990 on mobile radio communications totalling in excess of 10000 pages, published 991 1400+ research entries at IEEE Xplore, acted both as TPC and General Chair of 992 IEEE conferences, presented keynote lectures and has been awarded a number 993 of distinctions. Currently he is directing a 100-strong academic research team, 994 working on a range of research projects in the field of wireless multimedia 995 communications sponsored by industry, the Engineering and Physical Sciences 996 Research Council (EPSRC) UK, the European Research Council's Advanced 997 Fellow Grant and the Royal Society's Wolfson Research Merit Award. He is an 998 enthusiastic supporter of industrial and academic liaison and he offers a range of 999 industrial courses. He is also a Governor of the IEEE VTS. During 2008-2012 1000 he was the Editor-in-Chief of the IEEE Press and a Chaired Professor also at 1001 Tsinghua University, Beijing. His research is funded by the European Research 1002 Council's Senior Research Fellow Grant. For further information on research 1003 in progress and associated publications please refer to http://www-mobile.ecs. 1004 soton.ac.uk.Dr.Hanzohasmorethan20\ 000+citations.

1005

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Please provide membership history of author Amit Kumar Dutta.

END OF ALL QUERIES

[^0]: Manuscript received January 30, 2014; revised June 26, 2014; accepted August 12, 2014. The associate editor coordinating the review of this paper and approving it for publication was M. Uysal.
 A. K. Dutta and K. V. S. Hari are with the Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India (e-mail: amitkdatta@ece.iisc.ernet.in; hari@ece.iisc.ernet.in).
 L. Hanzo is with the Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail: 1h@ecs. soton.ac.uk).

 Digital Object Identifier 10.1109/TCOMM.2014.2350973

[^1]: Manuscript received January 30, 2014; revised June 26, 2014; accepted August 12, 2014. The associate editor coordinating the review of this paper and approving it for publication was M. Uysal.
 A. K. Dutta and K. V. S. Hari are with the Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India (e-mail: amitkdatta@ece.iisc.ernet.in; hari@ece.iisc.ernet.in).
 L. Hanzo is with the Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail: 1h@ecs. soton.ac.uk).

 Digital Object Identifier 10.1109/TCOMM.2014.2350973

