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Abstract 

This paper presents a DSGE model in which long run inflation risk matters for social welfare. 

Optimal indexation of long-term government debt is studied under two monetary policy 

regimes: inflation targeting (IT) and price-level targeting (PT). Under IT, full indexation is 

optimal because long run inflation risk is substantial due to base-level drift, making indexed 

bonds a better store of value than nominal bonds. Under PT, where long run inflation risk is 

largely eliminated, optimal indexation is substantially lower because nominal bonds become 

a relatively better store of value. These results are robust to the PT target horizon, imperfect 

credibility of PT and model calibration, but the assumption that indexation is lagged is 

crucial. A key finding from a policy perspective is that indexation has implications for 

welfare comparisons of IT and PT. 
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1. Introduction 

Long-term government debt plays an important role in many developed economies. Since 

contracts of this kind are denominated in nominal terms or imperfectly indexed, unanticipated 

changes in inflation which are not reversed will lead to fluctuations in real wealth. These 

fluctuations are important for old generations because they rely on long-term contracts to 

fund their consumption in retirement. The magnitude of revaluations in long-term contracts 

due to unanticipated inflation depends crucially upon the amount of long run inflation risk in 

the economy. This observation motivates a comparison of the costs and benefits of inflation 

targeting (IT) and price-level targeting (PT) regimes. Under IT, unanticipated shocks to the 

price level are not reversed by policy, so there is base-level drift. As a result, inflation risk 

rises with the forecast horizon.
1
 By contrast, PT offsets unanticipated shocks to inflation in 

                                                           
1
 That is, the price level follows a random walk. Inflation risk increases with the forecast horizon in this case 

because inflation between period t and t+k depends on the ratio of the price level in period t+k to that in period t.  
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order to return the price level to a target path which is known ex ante. Hence, long run 

inflation risk is largely eliminated under a PT regime.  

In this paper, optimal indexation of long-term government debt is studied under IT and PT. 

Given that government debt accounts for a non-trivial fraction of net nominal wealth in 

developed economies (Doepke and Schneider, 2006; Meh and Terajima, 2011), this analysis 

may be important for comparing these two monetary policy regimes. In recent years, both 

policymakers and academics have become interested in this comparison. Several papers have 

shown that PT offers short-term stabilisation benefits over IT when agents are forward-

looking. Vestin (2006), for example, shows that in the standard New Keynesian model, PT 

reduces inflation variability for a given level of output gap variability if policy is 

discretionary. In the same model, optimal commitment implies a stationary price level 

(Clarida et al., 1999).
2
 In light of these results, the Bank of Canada recently conducted a 

detailed review of the costs and benefits of PT (see Bank of Canada, 2011).
3
 However, to the 

author’s knowledge, no paper has studied optimal indexation of long-term debt contracts 

under IT and PT in a DSGE model where long run inflation risk matters for social welfare. 

The main contribution of this paper is to provide an assessment of this kind. 

An overlapping generations (OG) model in the spirit of Diamond (1965) is calibrated to 

roughly match the UK economy. The model has two features that make it useful for 

investigating optimal indexation under long run inflation risk. First, long run inflation risk 

matters for social welfare because revaluations in the return on government debt due to 

unanticipated inflation have real implications for consumption. In the model, long run 

inflation risk affects social welfare by two distinct channels: (i) variations in the real return 

on government debt lead to variations in retirement consumption, and (ii) inflation risk 

affects the risk premium the government pays on debt, and therefore the level of taxes. By 

contrast, only short-term inflation risk matters for social welfare in the standard New 

Keynesian model (Woodford, 2003). Second, each period in the model lasts 20 years. As a 

result, inflation risk and equilibrium asset prices can be modelled over a long horizon without 

introducing a large number of state variables. This feature of the model is important because 

a second-order perturbation method is used to capture the implications of inflation risk for 

social welfare, making a numerical solution computationally-intensive.
4
  

The main finding of the paper is that full indexation of government debt is optimal under IT, 

whereas optimal indexation is substantially lower under PT. Intuitively, despite the fact that 

the payoff on indexed bonds is subject to inflation risk due to a one-year indexation lag, 

return risk on nominal bonds is much higher since IT implies that cumulative inflation risk 

over a 20-year horizon is approximately 20 times that at a yearly horizon (due to base-level 

drift). Under a PT regime, by contrast, long run inflation risk does not increase with the 

forecast horizon and is therefore kept at annual magnitudes. As a result, nominal bonds 

become a much better store of value relative to indexed bonds and optimal indexation is 

substantially lower. The indexation lag is crucial for explaining the lower level of optimal 

                                                           
2
 The issue of whether optimal policy in the New Keynesian model implies price stationarity is controversial. 

Negative results include Steinsson (2003), Levin et al. (2010) and Amano et al. (2012).  

3
 This work is surveyed in Ambler (2009), Crawford et al. (2009) and Bank of Canada (2011).   

4
 In linear or log-linearized models there is ‘certainty equivalence’ – i.e. the coefficients of policy functions do 

not depend on risk (shock volatility). As pointed out by Kim and Kim (2003), failure to account for the effects 

of risk can lead to spurious welfare reversals. 
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indexation under PT since substantially reducing long run inflation risk means that even a 

one-year indexation lag is sufficient to make return risk on indexed and nominal bonds 

comparable. It is important to note, however, that full indexation is optimal under both IT and 

PT if the assumption that indexation is lagged is dropped.
5
 

The analysis begins with a simplified version of the model in which full indexation is optimal 

under IT and zero indexation is optimal under PT. Later sections then extend the analysis to 

more realistic settings. Three main extensions are considered. First, the baseline case assumes 

that there is target horizon of one year under PT – i.e. policy aims to return the price level to 

its target path after one year. If this assumption is relaxed so that the price level is returned to 

target gradually over several years, optimal indexation remains somewhat lower under PT but 

rises to 44% with a 2-year target horizon, and 76% with a 4-year target horizon. Second, 

optimal indexation remains lower than 100% under a PT regime with imperfect credibility, 

but the differential is narrowed somewhat. In particular, optimal indexation rises to 66% 

under a PT regime with high credibility and 87% under a low credibility regime. Third, 

introducing moderate correlation of money supply shocks raises optimal indexation under PT 

to more than 40%, while full indexation remains optimal under IT. 

An important finding from a policy perspective is that the outcomes of welfare comparisons 

of IT and PT regimes can be sensitive to whether indexation is optimised or not. For instance, 

holding the share of indexed government debt fixed across regimes at the current UK level 

implies a welfare gain from PT of 0.15% of aggregate consumption, but social welfare is 

slightly higher under IT when indexation is optimised under both regimes. Moreover, 

although social welfare and real variables are somewhat less sensitive to the share of indexed 

government debt under a PT regime, the results suggest that accounting for optimal 

indexation would lead to more precise estimates of the aggregate and welfare effects of PT. 

More generally, the results of this study suggest that analyses of IT and PT may produce 

misleading conclusions if they assume that nominal contracting is fixed across regimes.   

The paper is related to two other strands of literature. The first is on the implications of 

unanticipated inflation. In a seminal paper, Doepke and Schneider (2006) document postwar 

nominal portfolios in the US and show that unanticipated inflation has substantial 

redistributional effects through revaluations of nominal assets and liabilities. Meh and 

Terajima (2011) later examined nominal portfolios in Canada. Building on these two papers, 

Meh et al. (2010) simulated aggregate and welfare effects from one-off episodes of 

unanticipated inflation in Canada under IT and PT in a quantitative OG model. They find that 

there are larger redistributional effects under IT because long-term nominal contracts undergo 

substantial revaluations due to base-level drift. Consequently, induced welfare effects are 

somewhat larger under IT. However, nominal portfolios are assumed to remain fixed across 

monetary regimes. As Meh et al. acknowledge, taking into account how nominal portfolios 

change under PT may be important to reach more precise estimates of its aggregate and 

welfare effects. Since the current paper allows nominal portfolios to vary, it should provide 

additional insight into these effects. It also provides a methodology for computing optimal 

indexation that could be extended to more realistic settings like quantitative OG models.   

                                                           
5
 In practice, the share of indexed government bonds is low in most developed economies. Campbell et al. 

(2009) report that, in 2008, indexed government bonds were 10% of marketable government debt in the US and 

around 30% in the UK. In Canada in 2008, indexed bonds were around 6% of marketable government debt and 

10% of the outstanding stock of bonds (Department of Finance Canada, 2008).        
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The second strand of literature to which the paper is related is on optimal indexation of wage 

contracts. In a seminal paper, Gray (1976) showed that optimal wage indexation increases 

with the nominal-to-real volatility ratio. More recently, Minford et al. (2003) build a model in 

which households have an incentive to insure against real wage fluctuations but cannot access 

financial markets. They find that optimal indexation is lower under a regime that aims at 

price rather than inflation stability, because nominal wage contracts become relatively better 

real wage stabilisers. Subsequently, Amano et al. (2007) showed that the same conclusion 

holds in a model with staggered cohorts of labour-differentiated wage-setters who have 

unrestricted access to financial markets. An important difference in this paper is that 

indexation of government debt has important implications for government finances – and 

hence taxes – through the inflation risk premium.
6
 In short, since the government must satisfy 

its budget constraint, inflation risk has knock-on effects on households and social welfare not 

present under wage indexation. This problem speaks to the need for a general equilibrium 

analysis that takes into account the main effects of inflation risk, including those for the 

government finances. This paper provides such an analysis. 

The remainder of the paper proceeds as follows. Sections 2 presents the model and Section 3 

describes the IT and PT monetary policy regimes. Section 4 discusses the optimal indexation 

problem and its numerical solution. In Section 5 the model is calibrated. Section 6 reports the 

optimal indexation results from the baseline model. Section 7 considers extensions of the 

baseline model and sensitivity tests. Finally, Section 8 concludes.  

2. Model 

The model is a version of Diamond’s (1965) model where the young save for old age using 

capital and government bonds. It contains three sectors: a household sector, a government 

sector, and a sector devoted to production of a single output good. Each sector is described 

below. This section also discusses equilibrium conditions and social welfare. 

2.1 Consumers 

An overlapping generations (OG) model with generations that live for two periods is 

considered. Each generation is modelled as a consumer who inelastically supplies a unit of 

labour when young and retires when old, leaving no bequests. Let subscripts {Y, O} denote, 

respectively, the young and the old. Each period lasts 20 years. The number of generations 

born per period is constant and normalized to 1. The real wage income of the young is taxed 

by the government at a constant rate τ. After-tax wage income is allocated to four assets: 

indexed government bonds, b
i
; nominal government bonds, b

n
; capital, k; and money, m.  

The young consume and choose an optimal portfolio of assets which pays off in old age. 

Capital earns a real return r
k
,
 
which is taxed by the government at a constant rate τ

k
. Indexed 

bonds pay a risky real return r
i 
as a result of a one-year indexation lag, and nominal bonds 

pay a risky real return r
n
. Nominal bonds are riskless but for unanticipated inflation over the 

holding horizon from youth to old age (i.e. 20 years). Consequently, the real return on 

nominal bonds is r
n
 = R/(1+π), where π is inflation between youth and old age and R is the 

gross nominal interest rate. Indexed bonds are subject to a one-year indexation lag, so they 

pay a gross real return r
i
 = r (1+ π

ind
)/(1+π), where π

ind 
is the inflation rate to which indexed 

                                                           
6
 For a recent survey of the inflation risk premium, see Bekaert and Wang (2010). In the model that follows, 

indexed debt is risky and the inflation risk premium is defined as the difference between the expected real return 

on nominal bonds and the expected real return on indexed bonds. Appendix A provides a formal definition. 
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bonds are linked and r is the ex-ante real interest rate. The interest rates R and r are 

endogenously determined and ensure that, for each bond, demand is equated to supply.  

Money pays a real return r
m 

=
 
1/(1+π). Positive money demand arises from the legal 

requirement that young agents hold real money balances of at least δ > 0, so that mt ≥ δ as in 

Champ and Freeman (1990). The main advantage of this constraint is that it provides a role 

for money without requiring that it offer explicit transactions services, so that any differential 

in optimal indexation under IT and PT can be attributed to the implications of these regimes 

for long run inflation risk and not the impact of policy on transactions costs or ease of 

exchange.
  
The constraint binds with equality if Rt  > 1 for all t, which is assumed to hold.

7
 

Hence we have that 
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The budget constraints faced by the generation born in period t are 
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where 0 ≤ v ≤ 1 is the share of indexed bonds in total bond portfolio, bt+1.
 8

 

Given the focus in this paper, it is important to use preferences that can potentially match 

household attitudes to risk. As is well known, standard CRRA preferences cannot match the 

risk-free rate and risk-premia since they imply that the elasticity of intertemporal substitution 

is the reciprocal of the coefficient of relative risk aversion. Consequently, Epstein and Zin 

(1989) and Weil (1989) preferences are used here. With these preferences, the elasticity of 

intertemporal substitution and the coefficient of relative risk aversion can be calibrated 

separately. In a recent paper, Rudebusch and Swanson (2012) show that this feature enables 

an otherwise standard New Keynesian model to match the 10-year term premium on nominal 

bonds without compromising its ability to fit key macro variables.   

Consumers solve a maximization problem of the form 
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7
 This condition is easy to prove (see Supplementary Appendix) and was comfortably satisfied in numerical 

simulations. Results for an economy without money are discussed in Section 7.4.1.  

8
 Since bonds have a fixed maturity of one period (i.e. 20 years), the model cannot be used to assess the optimal 

mix of short-term versus long-term government debt. This is a potentially important channel by which a change 

in regime from IT to PT could affect social welfare. The model also abstracts from the fact that bonds can be 

traded prior to maturity. This would enable consumers to avoid some of the inflation risk that a fixed 20-year 

holding period exposes them to, but a formal analysis of this issue is beyond the scope of this paper. 
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where z ≡ (k, b
i
, b

n
, m) is the vector of assets chosen by households, 0 < β < 1 is the private 

discount factor, γ is the coefficient of relative risk aversion, and 1/(1–ε) is the elasticity of 

intertemporal substitution.  

The first-order conditions are as follows:
9
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~  is the ratio of the Lagrange multiplier on the cash constraint to that on the budget 
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2.2 Firms 

The production sector consists of a representative firm which produces output using a Cobb-

Douglas production function. The share of capital in output is equal to α and the labour share 

is 1 – α. The firm hires capital and labour in competitive markets to maximise current profits. 

Total factor productivity, A, is stochastic and follows an AR(1) process (in logs).  

The real wage and the return on capital are given by  

  ttt

k

ttt kAkryw )1(           (9) 
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2.3 Government 

The government performs three functions. First, to meet government spending commitments, 

it taxes wage income of the young at a constant rate τ > 0 and capital income of the old at a 

constant rate τ
k
 > 0. Second, it conducts monetary policy by committing to a money supply 

rule. Third, it sets the total supply of government bonds and chooses the share of indexed 

debt to maximise social welfare, subject to the monetary policy regime in place. 

The government budget constraint is given by 
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9
 A full derivation of consumers’ first-order conditions is provided in the Supplementary Appendix. 

10
 The dating on R and r reflects the fact that these prices must clear the markets for nominal and indexed bonds 

at the date when bonds are purchased, that is, at the end of period t. Note that the inflation rate to which indexed 

bonds are linked is not equal to the previous period’s inflation rate because the indexation lag is one year, 

whereas each period in the model lasts 20 years. For expressions for π and π
ind

, see Section 3.  
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where the total supply of government bonds is b = b
i
 + b

n
, and the shares of indexed and 

nominal bonds in the total bond portfolio are constant and equal to v and 1–v, respectively.  

Since the tax rates on wage income and capital are constant, it follows that τ
k
 = aτ for some 

constant a > 0, so that tax policy can be described by the single tax rate τ. The government 

sets the total supply of bonds to facilitate consumption smoothing between youth and old age. 

In particular, the total supply of government debt is set so that  

 Et [sdft+1] = β                    (12) 

where Et is the conditional expectations operator.  

The bond supply rule in (12) implies a steady-state real interest rate of 1/β and hence perfect 

consumption smoothing in the deterministic steady-state. The government sets the nominal 

money supply according to an IT or PT rule, as discussed in Section 3. The constant tax rate τ 

is set to meet a long run target ratio of government spending to output:  

 E[gt/yt] = G* > 0                    (13) 

where E is the unconditional expectations operator.  

Although τ is constant over time, it will differ across IT and PT since these regimes affect the 

expected real returns payable on government debt. It should therefore be understood that the 

tax rate is regime-specific, though this dependence is suppressed in order to minimise 

notation. Taking into account the equilibrium conditions and the requirement that τ be set so 

that E[gt/yt] = G*, the objective of the government is to choose the share of indexed debt to 

maximise social welfare. The optimal indexation problem is discussed in Section 4.     

2.4 Market-clearing and equilibrium  

Capital depreciates fully within a period, an assumption which is empirically reasonable 

given that each period lasts 20 years. It follows that investment in period t is given by it = kt+1. 

Definition of equilibrium:
11

 

A set of allocations and prices k

t

k

tttt

s

t

d

tt

sn

t

dn

t

si

t

di

tOtYt wrrRgmmkbbbbcc   ,,,,, ,,,,,,,,,, ,,,,

,,  

with the following properties for all t:
 
 

(1) Allocations  d

tt

dn

t

di

tOtYt mkbbcc  , , , , , 1

,

1

,

1,1,   solve the maximization problem of the 

generation born at time t and factors of production are paid their marginal products; 

(2) The goods, money and bond markets clear:  

1,,  ttOtYtt kgccy  

s

t

d

t mm   
si

t

di

t bb ,,   

sn

t

dn

t bb ,,   

                                                           
11

 Note that d and s superscripts are introduced in this section to denote demand and supply values. These 

superscripts are omitted in other sections of the paper in order to avoid unnecessary notation.  
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(3) The government budget constraint and long run government spending target are satisfied: 
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2.5 Social welfare 

Welfare is given by the discounted sum of lifetime utilities across all young generations:
12
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where 0 <ω<1 is the social discount factor, and E is the unconditional expectations operator. 

It is clear from (14) that the social discount factor ω will not affect optimal indexation. 

Consequently, the social discount factor can be left unspecified. 

3. Monetary Policy and inflation 

The government conducts monetary policy using yearly money supply rules set with annual 

inflation in mind.
13

 It can commit to these rules but cannot control the money supply 

perfectly and so has imperfect control over inflation. To obtain money supply rules consistent 

with the 20-year horizon of the model, the implications of these rules are traced out over a 

20-year horizon. This section derives expressions for inflation and indexed inflation (π
ind

) 

under IT and PT. In the discussion that follows, Mn  is the nominal money stock at the end of 

year n, and εn is an IID-normal innovation in year n with mean zero and standard deviation σ.  

3.1 Inflation targeting (IT)  

Under IT, the yearly nominal money supply grows at the annual target inflation rate, π*, plus 

any deviation due to a yearly money supply innovation ε: 

   )1*)(1(1 nnn MM                                                                  (15) 

Substituting repeatedly for the past money supply, 

 


 
n

nj

jnn MM
19

20

20 )1(*)1(  .                                                                            (16) 

                                                           
12

 This social welfare function ignores the utility of the initial old, but this does not alter the main conclusions. 

The second equality in (14) will hold as long as Ut is stationary. In this paper, both Ut and the remaining 

equations of the model are approximated using a second-order perturbation method. 

13
 The focus on annual inflation is consistent with policymaking in practice and enables the model to capture 

base-level drift at a yearly horizon (under IT) and its absence (under PT). 
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It is clear from this equation that the IT money supply rule aims at a constant inflation target 

and does not attempt to offset past money supply shocks – i.e. ‘bygones are bygones’. Given 

that each period lasts 20 years and the nominal money supply is the end-of-year stock, the 

implied money supply rule in any period t is  




 
20
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20

1 )1(*)1(
j
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where the money innovations are indexed by j = 1,2,…,20 and Mt  is the nominal money stock 

at the end of period t.  

By money market equilibrium Mt = Pt mt, where mt = δ by the legal requirement on cash 

holdings. Hence Mt /Mt-1= Pt /Pt-1 = 1 + πt. Inflation is period t is therefore given by 

  



20
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,

20 )1(*)1(1
j

tjt                   (18) 

It is clear from (18) that there is base-level drift. As a result, inflation risk accumulates over a 

20-year horizon. Note that this rule would stabilise inflation perfectly at the long-term 

inflation target (1+π*)
20

 in the absence of money supply innovations, consistent with annual 

inflation of π* every year. Finally, notice that inflation expectations are anchored at target 

under IT: 20

1 *)1(1    ttE . 

Since indexed bonds are subject to a one-year indexation lag, the inflation rate to which 

indexed bond are linked is given by the one-year lag of (18): 
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Equation (19) shows that indexed inflation will covary strongly with actual inflation: they 

have 19 of 20 shocks in common, with the difference being accounted for by the one-year 

indexation lag. Consequently, indexed bonds will be excellent stabilisers of long run 

purchasing power under IT. This point is important for understanding the results that follow. 

3.2 Price-level targeting (PT) 

Under PT, policymakers aim to stabilise the price level around a target price path whose 

slope is consistent with an annual inflation target of π*. The crucial difference relative to IT 

is that past deviations from the inflation target are offset. The yearly money supply rule 

therefore includes a correction for the previous year’s money supply innovation:
14
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where the second equality follows from repeated substitution for the previous money supply.  

                                                           
14

 The intuition can be seen by taking logs: Mn ≈ Mn-1 + π* + εn  – εn-1. Mn  and εn are defined as above. 
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This equation implies a period-t money supply rule of the form:  
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Again, Mt /Mt-1= Pt /Pt-1 = 1 + πt, so inflation in period t is given by 
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where ε20,t is the money supply innovation in year 20 of period t. 

Notice that the PT money supply rule precludes base-level drift: money supply innovations 

have a temporary impact on the price level. As a result, long run inflation risk is somewhat 

lower than under IT.
15

 Intuitively, inflation in period t depends on the money supply 

innovation in year 20 because policy offsets innovations after one year and so cannot offset 

the innovation in year 20 (the final year of the current period) until the first year of the next 

period. Inflation in period t also depends on the money supply innovation in year 20 of period 

t–1, because this must be offset in year 1 of period t in order to correct the past deviation 

from the target price path. Since rational agents expect past deviations from the target price 

path to be offset, inflation expectations vary with the past money supply innovation under 

PT: 1

1,20

20

1 )1(*)1(1 

  tttE  . 

Since indexed bonds are subject to a one-year indexation lag, the inflation rate to which 

indexed bonds are linked is given by 
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The inflation rate in (23) will not covary with actual inflation at all, since yearly innovations 

to the money supply are uncorrelated.
16

 As a result, indexed bonds will tend to be poor 

stabilisers of purchasing power. The key point is that cumulative inflation over 20 years 

depends only on two yearly innovations, as all innovations in intervening years are offset in 

order to return the price level to its target path. Intuitively, because all inflation over period t 

comes from the innovations that hit the economy at the start and end of each 20 year period, 

these innovations are missed by indexed bonds due to the one-year indexation lag. 

4. Optimal indexation 

The government chooses the indexation share that maximises social welfare subject to 

generational budget constraints; the aggregate resource constraint; first-order conditions of 

households and firms; fiscal policy (i.e. the total bond supply equation and the long run 

government spending target); and the monetary policy regime in place. As discussed below, 

the model is solved using a second-order approximation.   
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 The unconditional inflation variance is approximately 10 times higher under IT, as shown in the 

Supplementary Appendix to this paper. 

16
 This assumption is relaxed in Section 7.3. Allowing for correlation between yearly innovations does not 

overturn the main results regarding optimal indexation unless innovations are highly positively correlated. 
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The optimal indexation problem of the government can be stated as follows: 
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The optimal indexation share that satisfies (24) is computed numerically. To do so, the model 

was solved using a second-order perturbation approximation in Dynare++ (Adjemian et al., 

2011). In particular, social welfare was computed for a discrete number of indexation shares 

in the interval [0,1]. This was achieved by looping over the parameter v in small steps in 

Dynare++, with the aid of an algorithm available on Wouter Den Haan’s personal webpage.
17

  

The problem in (24) is more complicated than might appear at first sight since the researcher 

must solve for an indexation share that maximises social welfare, subject to the constraint 

that (13) holds, which pins down a unique tax rate τ*(vk)  for each indexation share. The 

optimal indexation share was therefore computed by simultaneously looping over v and τ in 

discrete steps in order to find: (i) the tax rate τ*(vk) such that (13) holds for each discrete 

value of the indexation share v1, v2,…, vK in the interval [0,1]; and (ii) the indexation share 

v*(τ*(v*)) in the set {v1, v2,…, vK} that maximises social welfare. 

To increase computational efficiency, the tax rate that satisfies (13) for each indexation share 

vk was used as an initial guess for the tax rate that would satisfy it for the next indexation 

share vk+1. Moreover, for τ > τ*(vk), (13) is violated on the upside (i.e. E[gt/yt] > G*), so the 

loop over τ was ended as soon as τ ≤ τ*(vk) was breached. By setting the tolerance level 

E[gt/yt] – G* at a small positive number, this algorithm speeds up computation and pinpoints 

τ*(vk) to a good degree of accuracy by approximating it with the last tax rate in the loop.        

To understand the indexation results that follow, it is helpful to consider a second-order 

Taylor expansion of social welfare around the point ct,Y  = E[ct,Y ] and ct+1,O  = E[ct+1,O ]: 
18
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17

  The author would like to thank Wouter Den Haan for making this code publicly available. 

18
 This expression makes use of the fact that, under stationarity, E[ct+1,O ] = E[ct,O ] and var[ct+1,O] = var[ct,O]. The 

derivatives have the signs indicated under the calibrations considered in this paper. 
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where )(xabsx  ; xxU
~

is the second derivative of U with respect to x, evaluated at the point 

E[x]; and xyU
~

 is the cross-derivative of U with respect to x and y, evaluated at E[x] and E[y] . 

This expression shows that social welfare increases with mean consumption levels in youth 

and old age and falls with the consumption variances (due to risk-aversion). There is 

additionally a covariance term, which will also be driven by the consumption variances.
19

 

Consequently, any difference in optimal indexation under IT and PT will be due to their 

impact on mean consumption levels and the consumption variances. The numerical analysis 

therefore explains optimal indexation with reference to these unconditional moments.     

 

5. Calibration 

The model is calibrated for the UK economy. In particular, the parameters of the model are 

chosen to roughly match key ratios in the data. Expressions for these ratios at the 

deterministic steady-state are given in Appendix B. Since these ratios depend upon several 

different parameters, the calibration uses parameter values which are plausible and give good 

overall performance of the model against target ratios.
20 

Free parameters are calibrated to 

match standard values in the literature. The baseline calibration is listed in Table 1. 

Table 1 – Baseline calibrated values 

  α                 Capital share            0.263      G*     Target govt. spending-GDP ratio          0.11                    

  β         Private discount factor      0.70       π
* 
          Annual inflation target                      0.02                  

  γ                 Risk aversion              15         ρA                TFP persistence                           0.40                          

  ε                 EIS = 1/(1–ε)             0.74       σe                Std(TFP innov.)                          0.0557                       

  δ            Real money holdings     0.015      σ               Std (money innov.)                      0.0105                        

  a       Capital to labour tax ratio    2.3         v        Share of indexed government debt        0.25 

 

5.1 Aggregate uncertainty 

The model contains two aggregate shocks: a money supply shock and a productivity shock. 

Calibrating the money supply rule requires a standard deviation for the annual money supply 

innovation. This standard deviation was set at σ = 0.0105 to match the standard deviation of 

annual CPI inflation from 1997 to 2011 in data from the Office for National Statistics (ONS). 

This calibration should give the model a good chance of matching the amount of long run 

inflation risk that would be observed with typical price level shocks under an IT regime.
21

    

The productivity shock is given by 

 ttAmeanAt eAAA  1lnln)1(ln                                                                       (26) 

where et  is an IID-normal  innovation with mean zero and standard deviation σe. 

                                                           
19

 This point follows since cov[x, y] = corr[x, y](var[x])
1/2

(var[y])
1/2

. 

20
 In some models, key ratios are pinned down by a single parameter so that calibrated values can be set to 

match target ratios exactly. The model here does not have this property. 

21
 Note that, under IT, annualised inflation, (1+πt)

1/20
 has a standard deviation of approximately σ when π* ≈ 0. 
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Since there is no convincing empirical evidence that productivity is highly persistent over 

generational horizons, ρA was set at 0.40, which implies moderate persistence.  The 

innovation standard deviation σe was set equal to 0.0557. This relatively high value reflects 

the fact that et is the innovation to productivity at a generational horizon. As discussed below, 

the inclusion of aggregate productivity risk means that the coefficient of relative risk aversion 

can be calibrated to match the Sharpe ratio on capital. The main conclusions regarding 

optimal indexation are not sensitive to the inclusion of productivity risk.
22

    

5.2 The indexation lag 

As discussed above, there is a 1-year indexation lag in the model.  In the UK, all index-linked 

gilts issued up until September 2005 were indexed to the Retail Prices Index (RPI) with a lag 

of 8 months, but all index-linked gilts issued since this time have a 3-month lag. As a result, 

both types of gilts are currently in existence. The proportion of 8-month gilts will fall over 

time as debt issued prior to September 2005 reaches maturity. In fact, recent data suggests 

that around two-thirds of the market is in index-linked gilts with a 3-month indexation lag, 

and one-third in gilts with an 8-month indexation lag.
23

 Crucially, however, the main findings 

regarding optimal indexation would not be overturned if the indexation lag were one quarter, 

provided that inflationary shocks were assumed to hit the economy at a quarterly frequency. 

The baseline assumption of a one-year lag is made primarily to lower the number of money 

supply innovations, hence making a second-order approximation computationally feasible.           

5.3 Model parameters 

The preference parameter ε does not affect the deterministic steady-state of the model, as 

shown by the equations in Appendix B. It was therefore set at -0.35, which implies an 

elasticity of intertemporal substitution (EIS) of 0.74. This value is consistent with micro 

studies that estimate an EIS less than 1. The discount factor β was set at 0.70, implying an 

annual value of 0.982 and hence an annual real interest rate of 1.8% in the deterministic 

steady-state. The latter is relatively low because matching a real rate of (say) 3% would give 

an investment-GDP ratio somewhat lower than in the data (see Table 2).
24

  

The tax rate on capital (τ
k
 ) was set at 2.3 times the income tax rate (τ), i.e. a = 2.3. A 

substantially higher tax rate on capital is consistent with UK data from 1970-2005: 

Angelopoulos et al. (2012) report an average tax rate on capital of 0.44, compared to an 

average tax rate on labour of 0.27, implying that capital taxes should be around 1.6 times as 

high as labour taxes. The higher ratio of 2.3 used here ensures that the model does not 

substantially overshoot the target ratio of investment to GDP, since an increase in the capital 

tax lowers the demand for capital. The income tax rate τ is set so that the government 

spending to GDP target, G*, is met in the stochastic solution of the model. Since government 

spending is residually determined, G* was set at 0.11, a value which enables the model to get 

close to target ratios for consumption, investment and long-term debt (see Table 2). 

The parameter α was set at 0.263, implying a share of capital income in GDP of 26.3%. This 

value is on the low side of standard calibrations, but it helps the model get close to the target 

                                                           
22

 Section 7.4.2 discusses the case where productivity risk is absent. 

23
 See the UK Debt Management Office (DMO) website. The data was accessed on 10 May 2013. 

24
 Note that the steady-state nominal interest rate is 3.8% per annum due to the 2% inflation target. 



14 

 

ratio of long-term government debt to GDP of 0.10. The annual inflation target π* was set at 

0.02, consistent with the 2% inflation target for the Consumer Prices Index (CPI). The 

parameter δ was set at 0.015, so that money balances are 3% of steady-state GDP, consistent 

with UK data on notes and coins (see ONS, 2011). For the purpose of calibration, the 

indexation share v was set at 0.25, which is similar to the share of index-linked gilts in the 

UK (see DMO, 2012). It should be noted, however, that the ratios in Table 2 are not sensitive 

to the indexation share (to two decimal places).   

Finally, as shown in Appendix B, the coefficient of relative risk aversion γ does not affect the 

deterministic steady-state ratios. It was therefore calibrated to match the Sharpe ratio on 

capital, E[r
k
–r

i
]/std(r

k
–r

i
), in the stochastic solution of the model.

25
 The target was set at 0.43 

based on Constantinides et al. (2002), who estimate the Sharpe ratio using 20-year holding 

period returns on US equities and bonds. Accordingly, γ was set at 15, which implies a 

Sharpe ratio of 0.40. 

5.4 Model solution and key ratios 

The results in Table 2 show that the model does fairly well against target ratios. The UK 

investment-GDP ratio has been close to 15% over the past decade (see ONS, 2012) and over 

the same period the consumption share was around 65%, implying target ratios of 0.15 and 

0.65. The calibrated model gives ratios of 0.14 and 0.75 at the deterministic steady-state. The 

UK debt-to-GDP ratio has averaged around one-third from 2000 to 2011 (ONS, 2011). 

Together with a 2005 long-term government debt share of around 30%, this implies a target 

long-term government debt to GDP ratio of around 0.10.
26

 On this score, the model gives a 

ratio of 0.11. Finally, the ratio of cash to GDP matches the UK ratio of 0.03.  

Table 2 – Target versus model ratios 

Ratio           Target             Definition                 Deterministic    Stochastic            Notes 

   yb /             0.10      Long-term bonds/GDP              0.11                0.11           Target: UK data 

   yi /              0.15          Investment/GDP                    0.14                 0.13          Target: UK data 

    /)( ycc OY   0.65        Consumption/GDP                  0.75                0.76           Target: UK data 

   ym /             0.03       Notes and Coins/GDP              0.03                0.03           Target: UK data 

  
][

][
ik

ik

rrstd

rrE



     0.43      Sharpe ratio on capital               0                    0.40          Target: CDM (2002) 

         Note: CDM refers to Constantinides et al. (2002). The value of g/y is given by 1 – i/y – c/y. 

6. Baseline results 

The model was solved using a second-order perturbation in Dynare++ (see Adjemian et al., 

2011). The optimal indexation share under each regime is computed as described in Section 

4. To give the welfare results a meaningful interpretation, they are reported as percentage 

gains or losses in aggregate consumption relative to the case of zero indexation. Formally, the 

                                                           
25

 Returns are annualised here. The Sharpe ratio was computed using the after-tax return on capital.  

26
 See historical data on the DMO website. The DMO classifies gilts as ‘long-term’ if maturity exceeds 15 years. 
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welfare gain is the fractional increase in aggregate consumption, λ, that equates social welfare 

under zero indexation with that under indexation share v, i.e. SW(0) (1+λ)
1–γ 

= SW(v). The 

implications of the results for comparisons of IT and PT are also discussed in this section.  

Figure 1 shows the relationship between indexation and social welfare under IT and PT, and 

Figure 2 traces out the impact of indexation on real variables, including the unconditional 

means and variances of consumption that matter for social welfare; see Equation (25). 

 

Fig 1 – Social welfare gain relative to zero indexation. Figure reports the welfare gain or loss of indexation at 

x%, as compared to the case of zero indexation. Units: % of aggregate consumption under each regime. 

 

 

Fig 2 – Indexation and real variables under IT and PT. The inflation risk premium is defined as the 

difference between the expected real returns on nominal and indexed bonds (i.e. E(r
n
) – E(r

i
) ). Returns are non-

annualised gross returns and have not been converted into percent. All series are unconditional moments. 

6.1 Inflation targeting (IT) 

We can see from Figure 1 that social welfare increases under IT as the share of indexed debt 

is increased. As a result, full indexation is optimal. It is also notable that social welfare is 
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sensitive to changes in the indexation share: moving from zero indexation to full indexation 

raises social welfare by almost 0.35% of aggregate consumption.  

Figure 2 helps to shed light on why full indexation is optimal under IT. An important factor is 

consumption risk in retirement, which is minimised under full indexation and around one-

tenth lower than under zero indexation. Old-age consumption risk is important for two 

reasons. First, as highlighted by Equation (25), it has a negative impact on social welfare due 

to risk-aversion. Second, lowering old-age consumption risk by increasing indexation brings 

down the inflation risk premium because it implies a fall in the variance of the stochastic 

discount factor (sdf) and a weaker correlation between the real return on nominal debt and the 

sdf.
27

 As a result, lower indexation shares require higher taxes in order to meet the long run 

government spending target, so that mean consumption by the young and capital 

accumulation fall. Consequently, mean consumption by the young, capital accumulation and 

output are maximised at full indexation under IT.  

Consumption risk faced by the old is minimised under full indexation of government debt 

because, as explained in Section 3.1, indexed government debt provides far better insurance 

against unanticipated inflation than nominal debt under an IT regime. Intuitively, cumulative 

inflation risk over 20 years is (approximately) 20 times that at a yearly horizon due to base-

level drift, so the 1-year indexation lag on indexed debt exposes bondholders to only 1 year 

of inflation risk, as compared to the full 20 years in the case of nominal debt. To summarize, 

the young gain from higher mean consumption as indexation is increased, while the old gain 

from a reduction in consumption risk. And although mean consumption by the old falls as 

indexation is increased (because the positive inflation risk premium is foregone) and 

consumption risk for the young rises slightly, the rise in mean consumption by the young and 

the reduction in consumption risk for the old clearly dominate, so social welfare rises.
28

 

6.2 Price-level targeting (PT) 

It is clear from Figure 1 that zero indexation of government debt is optimal under PT. Zero 

indexation is optimal because, as shown by Figure 2, nominal bonds are better stabilisers of 

purchasing power than indexed bonds – i.e. they have lower return risk. The reasoning for 

indexed bonds being more risky is as follows. Under a PT regime, the real return on nominal 

bonds will vary with unanticipated money supply innovations in the final year of each period, 

as shown by Equation (22). Indexed bonds will also ‘miss’ such innovations but, due to the 

indexation lag, they will tend to exacerbate volatility on top of this because their return is 

linked to the money supply innovation in the penultimate year of each period (see Equation 

(23)), which is uncorrelated with the innovation in the final year. In other words, the 

indexation lag becomes an additional source of volatility when money supply innovations are 

uncorrelated. 

                                                           
27

 Appendix A provides an expression for the inflation risk premium and a brief discussion of the factors that 

affect its magnitude.   

28
 Consumption risk for the young rises as indexation is increased because the demand for indexed bonds is less 

stable from generation to generation than the demand for nominal bonds. This is because the one-year 

indexation lag implies variations in the expected real return on indexed bonds, whereas the expected real return 

on nominal bonds is more stable since expected inflation is constant under IT (see Section 3.1).    
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Due to the lower level of return risk on nominal bonds under a PT regime, consumption risk 

for the old is minimised near to zero indexation.
29

 The greater riskiness of indexed 

government debt means that there is a negative inflation risk premium. In other words, the 

expected real return on indexed debt is higher than the expected real return on nominal debt – 

in stark contrast to the IT case. As a result, the relationship between taxes and indexation is 

positive, so that mean consumption by the young is maximised under zero indexation. 

Because taxes rise as indexation is increased, both capital and output fall as the indexation 

share rises. In short, the main factors driving optimal indexation work in exactly the opposite 

direction under PT, because nominal debt is a better store of value than indexed debt.  

The one-year indexation lag is crucial in that, in the absence of any lag, full indexation is 

optimal under PT. The lag is central because cumulative inflation risk over a 20-year horizon 

is reduced to yearly magnitudes, due to the absence of base-level drift. This makes nominal 

government bonds rather effective stabilisers of long run purchasing power, while indexed 

inflation misses the shocks that matter for actual inflation. Lastly, it is important to note that 

real variables and social welfare are less sensitive to indexation under PT, due to the low 

level of long run inflation risk. For instance, moving from zero indexation (optimal) to full 

indexation of 100% (worst outcome) implies a welfare loss of less than 0.02% of aggregate 

consumption, and consumption risk in retirement rises only modestly.    

 

6.3 Implications of the optimal indexation results 

The results above highlight the importance of indexation of government debt for real 

variables and social welfare. In particular, changes in indexation are associated with 

substantial changes in real variables and social welfare under IT: moving from zero 

indexation to full indexation implies a social welfare gain of almost 0.35% of aggregate 

consumption and a reduction in consumption risk of around one-tenth in retirement.  

These figures suggest that moving to full indexation of indexation of government debt would 

raise social welfare non-trivially in IT economies. This result raises the question of why 

governments in IT economies issue mainly nominal debt (see Footnote 5). One possible 

reason to favour nominal debt is that indexed bonds tend to be less liquid due to the high 

proportion of buy-and-hold investors and a lack of direct hedging instruments; therefore, we 

would expect indexed bonds to pay a ‘liquidity premium’.
30

 In theory, the optimal indexation 

result could be reversed if the model included a liquidity premium that was sufficiently large. 

In practice, however, it seems unlikely that illiquidity of indexed bonds alone could account 

for the low indexation shares we observe, since average estimates of inflation risk premia are 

substantial and robustly positive in developed economies (Bekaert and Wang, 2010).     

Although social welfare and real variables are far less sensitive to indexation under PT, the 

effects do not appear to be sufficiently small that they could be safely ignored. It is also worth 

noting that the imperfect credibility results of Section 7.2 suggest that the aggregate and 

welfare effects of indexation under PT could be somewhat higher than in the baseline 

analysis. Lastly, it is important to note that indexation has implications for social welfare 

comparisons of IT and PT. For example, if the indexation share is fixed across regimes at 

                                                           
29

 More specifically, consumption risk in old age is minimised at an indexation share of 3%. Intuitively, holding 

a small share of indexed bonds diversifies risk because real returns are not strongly positively correlated. 

30
 For a discussion of this point in the context of the UK economy, see DMO (2012, p. 30). 
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25% (which is close to the current UK indexation share) the model implies a PT welfare gain 

of 0.15% of aggregate consumption, but IT fares slightly better with a welfare gain of almost 

0.05% of aggregate consumption when indexation is optimal under both regimes.  

7. Extensions 

The baseline model assumes that there is a PT target horizon of one year; that the PT regime 

has perfect credibility; and that money supply shocks are uncorrelated. In this section, these 

assumptions are relaxed and the implications for optimal indexation are assessed. 

7.1 A flexible target horizon under PT 

It has been argued that the short-term costs of undoing price level shocks could be reduced by 

restoring the price level to its target path gradually following deviations (see Gaspar et al., 

2007). The analysis in this section therefore assesses the implications for optimal indexation 

of a PT regime that aims to return the price level to target over several years, rather than after 

one year as in the baseline model. 

For the general case where the price level is returned to target in uniform steps over H years, 

the implied yearly money supply rule in year n is: 
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Note that innovations up to H years old enter in the denominator of this rule because each is 

offset only after H years in total, with a fraction 1/H offset each year.  

By substitution, and the fact that each period lasts 20 years, Equation (27) implies that 
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Inflation is therefore given by 
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Since the inflation rate to which indexed bonds are linked is the one-year lagged value of 

actual inflation, indexed inflation for a target horizon of H years is given by 
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                 (30) 

To see the implications of these expressions, consider setting H = 2. In this case, only money 

supply innovations in years 19 and 20 of period t matter for inflation because innovations in 

years 1 to 18 will have been offset fully by the end of the period t (i.e. by year 20), given that 

the target horizon is 2 years. Innovations in years 19 and 20 from the previous period enter in 

the denominator because they will not have been offset by the end of year 20 of period t–1 

and so must be offset at the start of period t to return the price level to its target path. 
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When H = 2, inflation and indexed inflation are given by
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                                                            (32) 

These equations show that a gradual return of the price level to target has two effects. First, 

long run inflation risk rises because the price level is allowed to deviate from its target path 

for longer. Second, actual and indexed inflation are positively correlated, because past 

deviations from the target price path are ‘smoothed’ back to target over several years. As a 

result, indexed bonds become better stabilisers relative to nominal bonds. The results for PT 

target horizons of 2 and 4 years are reported in Figures 3 and 4. 

 

Fig 3 – Social welfare gain relative to zero indexation and as PT target horizon H is varied. Figure reports 

the welfare gain or loss of indexation at x%, as compared to the case of zero indexation. Units: % of aggregate 

consumption and H is in years. All other parameters have the same values as in the baseline model. 

Optimal indexation rises from zero when the PT target horizon is 1 year (the baseline case) to 

44% under a target horizon of 2 years and 76% at a 4-year horizon. The reason is that 

indexed bonds become better stabilisers of purchasing power relative to nominal bonds as the 

target horizon is increased. This reduction in real return risk is reflected in an inflation risk 

premium which is initially positive but decreasing, so that substituting towards indexed debt 

enables taxes to be reduced and mean consumption by the young increased (see Fig 4). 

Due to the reduction in return risk on indexed bonds, consumption risk in retirement initially 

falls as the indexation share is increased, and it is minimised at approximately the optimal 

indexation shares, rather than at (approximately) zero as in the baseline model.
31

 Notably, it 

is approximately optimal to issue indexed debt up to the point where the inflation risk 

premium is zero – i.e. where the expected real returns on indexed and nominal debt are equal. 

Due to the reduction in the riskiness of indexed bonds, the inflation risk premium is initially 

positive, but it falls as the indexation share is increased because the correlation between the 

real return on nominal bonds (indexed bonds) and the stochastic discount factor (sdf) 

                                                           
31

 Although the return variances on indexed and nominal debt differ slightly, interior solutions minimise 

consumption risk in old age for diversification reasons – i.e. returns are less than perfectly correlated. 
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becomes weaker (stronger) as indexation increases, since retirement consumption becomes 

more dependent on the return on indexed bonds and less so on the return on nominal bonds.
32

 

When the risk premium is zero, taxes are minimised and mean consumption by the young is 

maximised. 

 

Fig 4 – Indexation and real variables as the PT target horizon H is varied. The inflation risk premium is the 

difference between the expected real returns on nominal and indexed bonds (i.e. E(r
n
) – E(r

i
) ). Returns are non-

annualised gross returns and have not been converted into percent. All series are unconditional moments. 

All parameters have the same values as in the baseline model. The PT target horizon H is in years.  

The intuition for optimal indexation being linked to the indexation share at which the 

inflation risk premium is zero is as follows.
33

 On the benefit side, the first-order conditions 

for bond holdings imply that both bonds offer the same degree of social insurance against 

inflation risk if and only if the inflation risk premium is zero (see Appendix A). On the cost 

side, an inflation risk premium of zero implies that the expected cost of issuing additional 

government debt is the same across bonds, so that the expected real repayment rate on debt, 

vE(r
i
 ) + (1–v)E(r

n
 ), will be minimised. As a result, optimal indexation implies that both 

bonds are equally attractive to households and that taxes are minimised.    

7.2 Imperfect credibility of PT 

The argument that PT would be imperfectly credible is appealing because this regime not 

been adopted in recent history. As such, imperfect credibility was an important consideration 

in the Bank of Canada’s recent deliberations about the merits of PT (Bank of Canada, 2011).  

                                                           
32

 See Appendix A for an expression for the inflation risk premium in terms of these correlations. 

33
 I am grateful to an anonymous referee for suggesting a discussion of this point. 
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Imperfect credibility of PT has been studied formally by Gaspar et al. (2007) and Masson and 

Shukayev (2011).
34

 Gaspar et al. argue that PT would experience an initial period of 

imperfect credibility when agents would learn about the new policy regime. They set-up a 

New Keynesian model with learning and find that an initial period of imperfect credibility is 

sufficient to turn the net welfare gains from PT negative if agents are slow to learn. Masson 

and Shukayev build a New Keynesian model where PT operates with an ‘escape clause’, such 

that sufficiently large shocks lead to rebasing of the target price path. There are two stable 

equilibria: one with a low probability of rebasing, and one with a high probability. 

Consequently, imperfectly-credible PT regimes are long run equilibrium outcomes.  

In contrast to these two papers, the model here concentrates on the long run inflation risk 

channel and is non-linear, so that imperfect credibility will influence aggregate outcomes 

through the inflation risk premium and not just via inflation expectations. In order to model 

imperfect credibility, it is assumed that young agents assign a constant probability pIT  to the 

event that that monetary policy will switch back to IT in the next period. Accordingly, agents 

assign a constant probability 1– pIT to the event that the current PT regime will remain in 

place. The probability pIT  can be taken as a measure of credibility of PT, with pIT  = 0 being 

the perfect credibility case of Section 6.2. It is important to note that although agents assign a 

positive probability to reversions to IT, no such reversions actually occur in equilibrium. 

Hence the analysis is one of imperfect credibility and not regime switching. 

Given beliefs over regimes s = {IT, PT} and period-t information Ωt, lifetime utility is 
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The first-order conditions are as follows:
35
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where SDFt+1(s) ≡ sdft+1(s)/(1+πt+1(s)), 
k

s  is the tax rate on capital in regime s, and 
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The model was simulated for two different values of pIT : 0.1 and 0.3. These values represent 

fixed beliefs that policy will revert to IT next period with probabilities of 10% and 30%. The 

                                                           
34

 See also Kryvtsov et al. (2008). 

35
 The government is assumed to set the total bond supply so that the conditionally expected stochastic discount 

factor across regimes is equal to β (a natural extension of (12)), which implies that 1 = βr in the deterministic 

steady-state. The first-order conditions under imperfect credibility are derived in the Supplementary Appendix.  
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former is interpreted as a situation where PT has high credibility and the latter as a situation 

of low credibility. The results for these two cases are reported in Figures 5 and 6. 

 

Fig 5 – Social welfare gain from indexation under imperfect credibility of PT. Figure reports the welfare 

gain or loss of indexation at x%, as compared to the case of zero indexation. Units: % of aggregate consumption 

under regime. All parameters have the same values as in the baseline model. Social welfare was defined as the 

unconditional expectation of Equation (33) in both the low and high credibility cases. 

 
 

Fig 6 – Indexation and real variables under imperfect credibility of PT. The inflation risk premium is 

defined as the difference between the expected real returns on nominal and indexed bonds (i.e. E(r
n
) – E(r

i
) ). 

Returns are non-annualised gross returns and have not been converted into percent. All series are unconditional 

moments. ‘High cred’ refers to the high credibility case: pIT  = 0.1. ‘Low cred’ refers to low credibility: pIT  = 0.3. 

Introducing imperfect credibility of PT in the baseline model makes it optimal to issue 

indexed debt. In particular, optimal indexation is 66% under a PT regime with high 

credibility and 87% under low credibility. Optimal indexation rises because imperfect 

credibility makes the inflation risk premium positive except at high indexation shares (see 

Figure 6). The reason is that households attach a positive probability to the event that 

monetary policy will revert to IT, where long run inflation risk is much higher and nominal 
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bonds are a poor store of value. Accordingly, they require additional risk compensation for 

holding nominal bonds. In turn, this increase in the inflation risk premium makes it more 

costly for the government to issue nominal rather than indexed debt, implying higher taxes to 

meet the long run government spending target and lower mean consumption by the young. 

The interior solutions for optimal indexation in Figure 5 balance the welfare loss from this 

increase in taxes against the welfare gain from the fact that nominal government debt will 

tend to stabilise old age consumption more effectively than indexed debt given that a PT 

regime is actually implemented. Intuitively, optimal indexation is higher under a PT regime 

with low credibility because more weight is attached to the possibility of reversion to IT, so 

that there is a larger rise in the inflation risk premium. As a result, the increase in taxes 

necessary to meet the long run government spending target is larger. To avoid this welfare 

loss, it is optimal to substitute from nominal to indexed debt as PT becomes less credible. 

Interestingly, social welfare is somewhat more sensitive to indexation under a PT regime with 

low credibility. For instance, moving from zero indexation to the optimal indexation share 

raises social welfare by around 0.06% of aggregate consumption. By comparison, moving 

from the optimal point of zero indexation to the lowest-welfare equilibrium at full indexation 

implied a welfare loss of 0.02% of aggregate consumption in the baseline model. Therefore, a 

high degree of imperfect credibility raises the welfare effects of indexation under a PT 

regime. The effects of indexation on real variables are also somewhat larger. 

7.3 Correlated money supply shocks 

The baseline model assumes that yearly money supply innovations are uncorrelated. This 

assumption is unlikely to be innocuous because it implies that current and past shocks to 

inflation are uncorrelated, so that indexing with a 1-year lag can potentially be quite costly. In 

this section, the assumption of uncorrelated innovations is relaxed. In particular, it is assumed 

that the money supply innovation in any year is positively correlated with the innovation in 

the previous year. Moderate correlations of 0.5 and 0.7 are considered because empirical 

evidence suggests that inflation persistence has fallen to moderate levels in the Great 

Moderation (e.g. Benati, 2008; Minford et al. 2009). Since optimal indexation under IT is 

unchanged at 100%, this section focuses on the impact of introducing correlated money 

supply innovations under PT. More specifically, the question is whether correlated 

innovations substantially close the optimal indexation gap between IT and PT.  

The optimal indexation results are reported in Figure 7, whereas Figure 8 shows the 

relationship between indexation and real variables. Optimal indexation is somewhat higher 

than in the baseline model at 46% with a correlation of 0.5 and 69% with a correlation of 0.7. 

Intuitively, correlated money supply innovations should make indexed bonds a better store of 

value, because they induce a positive correlation between the inflation rate to which bonds 

are indexed and actual inflation. The results in Figure 8 confirm this intuition: return risk on 

indexed debt falls as the correlation between money supply innovations is increased, and 

consumption risk in retirement is minimised at a higher indexation share as a result. Due to 

this reduction in risk, the inflation risk premium is higher for a correlation of 0.7 than 0.5, so 

that taxes can be reduced by substituting further towards indexed debt. As a result, both 

capital and output are higher when money supply innovations are more strongly correlated.     
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Fig 7 – Social welfare gain from indexation when money supply innovations are correlated (PT).  

Figure reports the welfare gain or loss of indexation at x%, as compared to the case of zero indexation. Units: % 

of aggregate consumption. All other parameters have the same values as in the baseline model.  

 

Fig 8 – Indexation and real variables when money supply innovations are positively correlated (PT).  

The inflation risk premium is defined as the difference between the expected real returns on nominal and 

indexed bonds (i.e. E(r
n
) – E(r

i
) ). Returns are non-annualised gross returns and have not been converted into 

percent. All series are unconditional moments. All parameters have the same values as in the baseline model. 

7.4 Sensitivity analysis  

This final section is concerned with robustness of results. It considers the cases where money 

does not enter the model and where productivity risk is absent. Sensitivity to calibrated 

parameters is also discussed.  
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7.4.1 Model without money
36

 

 

In the analysis thus far, money has entered the model due to the cash constraint mt  = δ. As a 

robustness test, the case where δ = 0 was considered, so that money is absent. It is instructive 

to consider this case as it seems likely that agents would change their money holdings in a 

regime that affects long run inflation risk. Therefore, the results presented above could 

potentially be biased. The numerical results for the baseline case are reported in the 

Supplementary Appendix. Optimal indexation remains at 100% under IT and at 0% under 

PT, and the quantitative effects on social welfare and real variables are quite similar to those 

in Figures 1 and 2. The findings of Section 7 are also robust in this direction. 

 

7.4.2 Model without productivity risk  

 

If productivity risk is absent, the real return on capital is known with certainty in the first 

period of life. As a result, households have access to a risk-free real asset. Does shutting 

down productivity risk have implications for optimal indexation?  In the baseline model, 

optimal indexation remains at 100% under IT and rises only marginally to 4% under PT 

(again, the full results are reported in the Supplementary Appendix). Likewise, the optimal 

indexation results of Section 7 are not sensitive to the inclusion of productivity risk.  

 

7.4.3 Parameter sensitivity analysis 

 

Experimentation with ‘high’ and ‘low’ calibrations of model parameters does not overturn the 

main conclusions regarding optimal indexation under IT and PT. We can therefore say that 

the finding that optimal indexation is substantially lower under PT is robust to realistic 

extensions of the model and alternative parameter calibrations.     

 

8. Conclusion 

  

This paper has investigated optimal indexation of long-term government debt under inflation 

targeting (IT) and price-level targeting (PT) monetary regimes. These two regimes have very 

different long run implications. Under IT, inflation risk increases with the forecast horizon, 

since there is base-level drift. By contrast, a PT regime rules out base-level drift by aiming at 

a predetermined target price path. As a result, long run inflation risk is largely eliminated 

under PT, implying that the purchasing power of nominal assets is maintained over long 

horizons. Optimal indexation was studied in the context of a simple overlapping generations 

(OG) model that was roughly calibrated to match the UK economy. The model is well-suited 

for this task because each period lasts 20 years and long run inflation risk matters for social 

welfare. In order to capture base-level drift under IT – and its absence under PT – the 

standard OG model was augmented with money supply shocks at a yearly horizon. 

 

The main finding was that if indexed government debt is subject to a one-year indexation lag, 

then full indexation is optimal under IT, while optimal indexation is substantially lower under 

PT. To demonstrate this result, the analysis began with a simple version of the model where 

full indexation is optimal under IT and zero indexation is optimal under PT. Intuitively, real 

return risk on long-term nominal debt is somewhat higher than on indexed debt under IT, 

                                                           
36

 The author is grateful to an anonymous referee for suggesting this robustness test. 



26 

 

because cumulative inflation risk over a 20-year horizon is approximately 20 times that at a 

yearly horizon due to base-level drift, while indexed bonds are subject to only a small amount 

of inflation risk due to the 1-year indexation lag. Under a PT regime, by contrast, cumulative 

inflation risk is lowered to annual magnitudes, because base-level drift is eliminated. As a 

result, the amount of risk in the real return on indexed bonds due to the one-year indexation 

lag can exceed that in the real return on nominal government debt. 

 

The result that optimal indexation is substantially lower under PT holds in more realistic 

versions of the model where the PT target horizon exceeds one year; PT is imperfectly 

credible; and where money supply innovations are positively correlated, so that indexing with 

a one-year lag is less costly than in the baseline model. In each case, moderate levels of 

indexation become optimal under PT. In the case of a low credibility PT regime there is quite 

a large impact: optimal indexation rises to 87%, since the belief that policy may revert to IT 

next period raises the inflation risk premium on government debt substantially. Robustness 

tests do not overturn these results, but it is important to note that relaxing the assumption that 

indexation is lagged makes full indexation of government debt optimal under both IT and PT.  

An additional finding is that welfare comparisons of IT and PT can be sensitive to whether 

indexation of government debt is optimised or not. Therefore, changes in bond portfolios may 

have important welfare implications for comparing IT and PT regimes. Policymakers and 

researchers should bear this in mind when assessing the case for a change in regime from IT 

to PT. More generally, the results in this paper suggest that it may be important to account for 

changes in the structure of nominal portfolios when comparing IT and PT.  

 

Acknowledgements: The author would like to thank Charles Nolan, Alfred Duncan, Patrick 

Minford, and two anonymous referees for helpful comments. This research was funded by 

postdoctoral fellowship PTA-026-27-2964 from the Economic and Social Research Council. 
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Appendix 

Appendix A – The inflation risk premium 

This Appendix shows that the difference in expected real returns on bonds can be interpreted 

as an inflation risk premium, and that this premium depends on consumption risk, return risk 

and the correlation between real returns and the stochastic discount factor. 

The first-order conditions for bond imply that 
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where )1/( 11   tt
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t Rr   and )1/()1( 111   t
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tt
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t rr   have been used. 

The expression in Equation (A3) can be interpreted as an inflation risk premium because, in 

general, it is non-zero unless (i) consumers are risk-neutral, or (ii) inflation risk is zero. The 

numerical analysis in the paper focuses on the unconditional expectation of Equation (A3).  

Using the same steps as above, but taking the unconditional expectation of (A1) and (A2) and 

dropping time subscripts for ease of interpretation, we have: 
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This equation shows that the unconditional inflation risk premium will be zero if and only if 

bonds offer the same degree of social insurance against inflation risk.  

Using the definition of a covariance, the right-hand side of Equation (A4) can be written as: 

   
][

]std[
  ]]std[,corr[]]std[,corr[ ][][  ) (

sdfE

sdf
rrsdfrrsdfrErE iinnin              (A5) 

where std[x] denotes the unconditional standard deviation of variable x and corr[x, y] is the 

correlation between variables x and y. 

Equation (A5) shows that the inflation risk premium depends on consumption risk (through 

the stochastic discount factor standard deviation), real return risk on nominal and indexed 

bonds, and the correlations between real bond returns and the stochastic discount factor.  



28 

 

Appendix B: Deterministic steady-state and steady-state ratios 

 

Deterministic steady-state 
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Supplementary/Online Appendix 

 (This Appendix is for publication online only) 

Section 1 – Derivations and proofs 

1.A – Derivation of first-order conditions (baseline model) 

Consumers solve a maximisation problem of the form 
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The Lagrangian for this problem is as follows: 
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First-order conditions are as follows: 
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By substitution, this system can be reduced to four Euler equations: 


























k

t

k

Ot

t

t

Yt

t r
c

U
E

c

U
1

,1,

)1(  ,         
























n

t

Ot

t

t

Yt

t r
c

U
E

c

U
1

,1,

, 






















i

t

Ot

t

t

Yt

t r
c

U
E

c

U
1

,1,

, 

t

m

t

Ot

t

t

Yt

t r
c

U
E

c

U


























1

,1,

                  

The partial derivatives of the utility function are as follows: 
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Dividing (A4) by (A3) gives 
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1.B – The binding legal constraint on money holdings 

Proposition: The constraint binds with strict equality when Rt > 1 

Proof. 

By equations (A7) and (A9), the Lagrange multiplier on the cash constraint is given by 
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since Rt  is known at the end of period t. 

 The Kuhn-Tucker conditions associated with μt are as follows: 
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The second condition in (B3) is the complementary slackness condition. It implies that the cash 

constraint will be strictly binding iff μt > 0 for all t.  

Dividing (B2) by ][][1 1111
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Since λt,Y > 0 (as the budget constraint of the young will always hold with equality), it follows that      

μt > 0 iff Rt > 1 for all t.      Q.E.D. 
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1.C – Approximate analytical expressions for long run inflation risk under IT and PT 

This appendix derives approximate expressions for the inflation variance under IT and PT. 

Inflation Targeting (IT) 

Under IT, inflation is period t is given by 
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where εj,t are IID-normal innovations with mean zero and variance σ
2
. 

A general non-linear function g(ε), where ε is a vector of variables, can be approximated by     

var(g(ε)) ≈ ∑[gj’(μ)]
2
var(εj) using the ‘Delta method’. Here, μ is the unconditional mean of the vector 

ε, and gj’ is the first derivative of g(ε) with respect to variable εj. 

The inflation variance under IT can therefore be approximated as follows: 
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Price-level targeting (PT) 

Under PT, inflation in period t is given by 
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where ε30,t and ε30,t-1 are IID-normal innovations with mean zero and variance σ
2
. 

Using the same approximation method as above, the inflation variance under PT is given by 
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Hence the unconditional variance of inflation under IT is (approx.) 10 times that under PT. 

 

1.D – First-order conditions under imperfect credibility 

In this case, consumers solve the following problem where s = {IT, PT}: 
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where ]|[ )(1 tstXE   is the expectation of Xt+1 under policy s, conditional upon period-t information, 

Ωt. 

The Lagrangian for this problem is as follows: 
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First-order conditions are as follows: 
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By substitution, this system can be reduced to four Euler equations: 
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The partial derivatives of the utility function are as follows: 
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where  
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Dividing (D8) by (D7) gives 
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Defining 
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  , the four Euler equations above can be written as 

)(  ]|[)1(]|[1 )(1)(1 tPTtITtITtITt SDFEpSDFEpR                                                     (D10) 

)(  ])1([)1(])1([1 )(1)(1)(1)(1 t

ind

PTtPTtITt

ind

ITtITtITt SDFEpSDFEpr                    (D11) 

)(  ]|[)1)(1(]|[)1([  1 1)(11)(1

1

1 ttPTt

k

PTITttITt

k

ITITt AsdfEpAsdfEpk  



  
      (D12) 

ttPTtITtITtIT SDFEpSDFEp ~ ]|[)1(]|[1 )( )(1)(1                                                    (D13) 

where SDFt+1(s) ≡ sdft+1(s)/(1+πt+1(s)) and Yttt ,
~   . 

 

End of analytical results; please turn over for the numerical results. 
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Section 2 – Numerical results 

2.A – Results for the baseline model without money 

 

Fig A1 – Social welfare gain from indexation (when money is absent from the model). Figure reports the 

welfare gain or loss of indexation at x%, as compared to the case of zero indexation. Units: % of aggregate 

consumption under each regime. All other parameters have the same values as in the baseline model. Optimal 

indexation shares are equal to 0% under PT and 100% under IT. 

 

 

Fig A2 – Indexation and real variables under IT and PT (when money is absent from the model). The 

inflation risk premium is the difference between the expected real returns on nominal and indexed bonds (i.e. 

E(r
n
) – E(r

i
) ). Returns are non-annualised gross returns and have not been converted into percent. All series are 

unconditional moments. All other parameters have the same values as in the baseline model. 
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2.B – Results for the baseline model without productivity risk 

.  
Fig B1 – Social welfare gain from indexation (excluding productivity risk from the model). Figure reports 

the welfare gain or loss of indexation at x%, as compared to the case of zero indexation. Units: % of aggregate 

consumption under each regime. All other parameters have the same values as in the baseline model. Optimal 

indexation shares are equal to 4% under PT and 100% under IT. 

 

 

Fig B2 – Indexation and real variables under IT and PT (excluding productivity risk from the model). 

The inflation risk premium is the difference between the expected real returns on nominal and indexed bonds 

(i.e. E(r
n
) – E(r

i
) ). Returns are non-annualised gross returns and have not been converted into percent. All series 

are unconditional moments. All other parameters have the same values as in the baseline model. 

 

 

 


