

Multi-trench Fiber for high power laser applications

Deepak Jain*, Timothy C. May-Smith, and Jayanta K. Sahu

Optoelectronics Research Center, University of Southampton, Southampton SO17 1BJ, UK
dj3g11@orc.soton.ac.uk

Abstract: Optical fibers have realized their immense potential for high power applications in the last decade. However, non-linearity still remains a challenge for power scaling for fiber lasers [1]. A large effective area of the fundamental mode of the optical fiber can increase the threshold of the non-linear effects [2]. However, simply increasing the core size leads to multi-mode operation and hence deteriorates the beam quality. Several novel optical fiber designs have been proposed to offer a large effective area of optical fibers such as Low NA Step index fibers, Photonic Crystal Fibers, Bragg Fibers, etc., while still maintaining single mode operation.

Recently, we proposed a novel multi-trench fiber (MTF) design for large effective mode area, as shown by a cross-section schematic and a refractive index profile design in Fig. 1. [3]. This fiber design offers advantages of relatively easy fabrication, splicing, and cleaving. Numerical simulations reveal that the MTF fiber geometry can provide single-mode operation with a core diameter as high as $100\mu\text{m}$ with an effective area of $\sim 10,000\mu\text{m}^2$ in a rod-type configuration and $\sim 800\mu\text{m}^2$ in a bend configuration. A $30\mu\text{m}$ diameter core MTF has been fabricated and the cross-section and measured refractive index profile is shown in Fig. 2. S^2 measurement shows $\sim 50\text{dB}$ suppression of higher order modes (HOM) in a one meter length of fiber. Also, an ytterbium-doped single-trench-fiber laser (slope efficiency $\sim 85\%$) with a $20\mu\text{m}$ diameter core has been experimentally demonstrated with very high suppression of HOM ($\sim 32\text{dB}$), which was also verified by S^2 measurement. The refractive index profile, plot of laser slope efficiency, an output beam profile and a laser output spectrum are shown in Fig. 3.

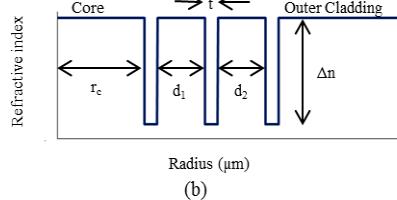


Fig. 1

Fig. 1. (a) Schematic cross-section of the proposed fiber structure. (b) Refractive index profile of the proposed optical fiber. Fig. 2 Shows the refractive index profile of the fabricated MTF. Inset shows the microscope image of the cleaved end of the fiber.

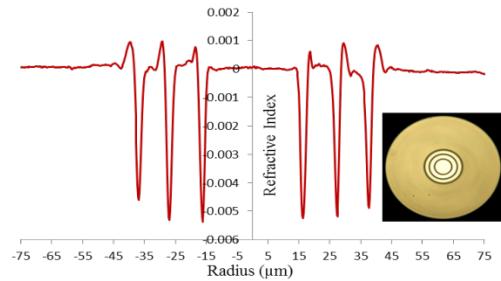


Fig. 2

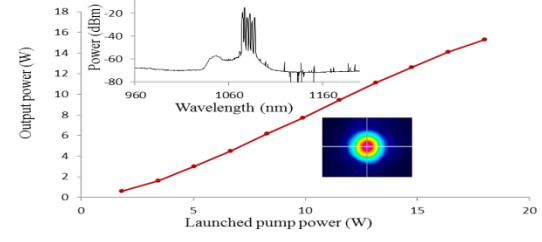
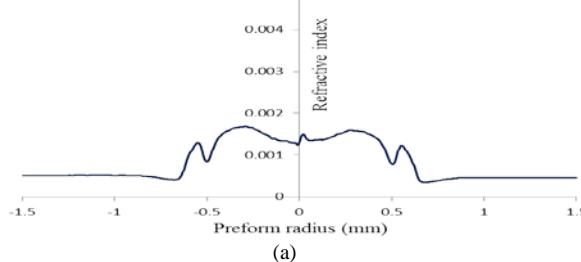



Fig. 3 (a). Refractive index profile of the fabricated Yb^{3+} and Al^{3+} doped preform. (b) Measured slope efficiency of the fabricated fiber. Inset image shows the output beam profile and inset graph shows the measured spectrum of the output beam.

References:

- [1] D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives [Invited]," *JOSA B*, vol. 27, no. 11, pp. B63-B92, Nov. 2010.
- [2] G. P. Agrawal, "Nonlinear Fiber optics", 4th edition, Academic Press, 2007.
- [3] D. Jain, C. Baskiotis, and J. K. Sahu, "Mode area scaling with Multi-trench rod-type fibers," *Opt. Exp.* vol. 21, no. 2, pp. 1448–1455, Jan. 2013.