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Abstract. As a Lagrangian mesh-free method, the Moving Particle Semi-implicit (MPS)[1] 

method is very suitable for simulating violent flows, such as breaking waves on free surface. 

However, despite its wide range of applicability, the original MPS algorithm suffers from 

some inherent difficulties in obtaining an accurate fluid pressure in both spatial and time 

domain. Different modifications to improve the method have been proposed [2-5] in the 

literature. In this paper, the authors developed a particle position shifting and collision 

handling technique which could effectively suppress the pressure fluctuation. In addition, a 

new version of “cell-link” neighbour particle searching strategy, which reduces about 7/9 

(~78%) of the searching area compared with traditional “cell-link” algorithm, is proposed.  

      The developed MPS method with the proposed modifications has been tested on two free 

surface flow problems: 2D dam break and liquid sloshing. The numerical results obtained are 

found to be in good agreement with the available numerical and experimental results. With 

the proposed modifications, the stability and accuracy of the pressure field are improved in 

spatial and time domains. 
 

1 INTRODUCTION 

For the numerical simulation of marine engineering problems, the capturing of highly-

deformed nonlinear free surface phenomena and predicting the consequent impact force to 

floating structures are very important and also quite challenging. In traditional mesh-based 

CFD approaches, the popular approaches to handle the free surface flow include VOF [6] 

(Volume of Fluid), LS [7] (Level Set), CIP[8] (Constrained Interpolation Profile) etc. These 

methods have been successfully applied to various problems. Although, it is also reported that 

they tend to suffer from the numerical diffusion issues[9].  

On the other hand, the emerging of the so-called particle methods such as SPH (Smoothed 

Particle Hydrodynamics) [10] and MPS (Moving Particle Semi-implicit)[1] provide an 

alternative to simulate the free surface flow with Lagrangian frame. The using of meshless 

mailto:zs2g12@soton.ac.uk
mailto:kdd@soton.ac.uk
mailto:jtxing@soton.ac.uk
mailto:A.Javed@soton.ac.uk
mailto:Fai.Cheng@lr.org


Zhe Sun, Kamal Djidjeli and Jing T. Xing et al. 

 2 

approach makes it more convenient to describe the violent fluid deformation and could avoid 

the distortion of mesh in grid-based methods. Additionally, the Lagrangian frame will also 

avoid the spatial discretization of the convection term in N-S equations, which will prevent 

the consequent diffusion.  

The original MPS method was proposed by koshizuka[1] to calculate the incompressible 

flow. It has been successfully applied to various problems[2, 4]. However, it suffers from 

some problems such as the non-physical pressure fluctuation and the falsely detected free 

surface particles. These defects hinder the application of MPS method to fluid-structure 

interaction simulations. Following the previous improving work done by other researchers[2-

5], the present study would illustrate some new modifications to remedy the standard MPS 

method, especially in the sense of suppressing the pressure fluctuation in both time and spatial 

domain. 

2 GOVERNING EQUATIONS  

The problems investigated in this paper are all marine related violent and rapid changing 

physical processes, which mean the viscosity effect is quite small. As a consequence, the 

Lagrangian form of incompressible and inviscid Navier-Stokes equations are employed here 

as the governing equations of the flow. 

 
  

  
   

  

 
     

 
(1) 

 

where,  ,   and   are the fluid velocity, pressure and density respectively,   is the 

acceleration of gravity. 

For the free surface particles, the pressure is taken as the atmospheric pressure (    =0)  

The solid boundary condition is described in Section 3.1. 

3 THE MPS METHODOLOGY 

In this section, the MPS method[1] is briefly described, containing the particle interaction 

model and time stepping procedure to enforce the incompressibility. 

3.1 Enforcing incompressibility---Projection method 

As a typical approach for the incompressible fluid computation, the two-step projection 

method, which is introduced by Chorin[11], is adopted here to decouple the velocity and 

pressure calculation: 

The first step is to calculate the intermediate velocity without considering pressure, and 

then move the particles to the intermediate location accordingly: 

 

{
         

          
 (2) 

 

A pressure Poisson equation is then derived as follows to solve the pressure field: 
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 (3) 

here, the term    and    are called “particle density”. The superscripts 0, n and * indicate the 

initial, n
th

 and intermediate states respectively. They are proportional to the physical density 

and the definition is provided in the next section. 

Similar to [4], the authors coupled the accumulated absolute density variation and the rate 

of density variation at the last time step to formulate a density error compensation term which 

is added in the r.h.s of Eqn. (3).  

For the solid boundary condition, the solid particles are also included in the pressure 

calculation. As a consequence, its pressure will repel the fluid particle which is too close to 

the solid, and this would avoid the penetrating of fluid particles into solid boundary. To 

compensate the deficiency of neighbour particles for the “near- solid” particles when 

calculating    , two additional layers of dummy particles are placed just outside the inner 

solid particle layer. In standard MPS method, these particles are only involved in the particle 

density calculation and do not take these dummy particles into account.  

For some complex geometrical boundaries, the use of dummy particles could make the 

particle distribution a bit tricky. In this paper, the following Neumann condition Eqn. (4) is 

applied on the solid boundary instead of Eqn. (3). The gradient of pressure is calculated 

between boundary particle and its nearest fluid particle, which means the particle density is 

not required to be calculated for boundary particles and consequently the layer of dummy 

particle is not necessary (although the support domain of fluid particles that are very close to 

boundary could also exceed the solid boundary layer; its particle density calculation would 

not be affected a lot, since the value of the weight function, i.e. Eqn. (9) drops rapidly for 

relatively far distance). 

                 ̇     (4) 

where  ̇ is the acceleration of the boundary. When the motion of the boundary is determined 

by the pressure of the surrounding fluid, the acceleration of next time step  ̇
   

 is unknown 

since the pressure has not been solved yet. As an approximation, the value of last time step  ̇
 
  

(or last iteration when iterative process is involved in the fluid structure interaction) is 

adopted instead. 

For the free surface condition, in order to identify the free surface particles, all the fluid 

particles are examined by the following equation. 

  
      (5) 

where   is a parameter slightly smaller than 1. Because of the deficiency of neighbour 

particles, particle density of free surface particles will drop dramatically, which means they 

will be selected out from this checking process.  

In this study, a simplified version of the method used by C. G. Koh et al [12] is adopted. 

Specifically, each particle is allocated a virtual circle, If the “circle” is completely covered by 

its neighbours, then it is recognized as an inner fluid particle, otherwise it is a free surface 

particle. The circle is discretized by 360 points which locate evenly along it. If all these points 

are covered, the circle is then regarded as being covered. 

After obtaining the pressure, the velocity and location are then updated as: 
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{
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3.2 Particle interaction model 

The gradient and Laplacian operator are discretized by a weighted average approach: 
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where   is the number of space dimension, M is particles number in the support domain.  (   ) 

is the weight function. 

 (   )  {

  
   

               

             

 
(9) 

where    is the radius of local support domain. The parameter   and particle density    are 

both related to  (   ) and are defined as: 

   ∑       
 

   
 (10) 

  
∑  (   )   
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4 THE PROPOSED MODIFICATIONS 

4.1 Particle shifting and collision handling 

The disorder of particle distribution is one of the main sources of pressure fluctuation 

suffered by particle method. Many researchers have developed different techniques to handle 

this problem [3,5, 13-16]. Among these improvements, rearranging the particle positions after 

each time step is considered to be a very effective one. It could stabilize the pressure 

calculation in both spatial and temporal domain[5, 15]. Here, a particle shifting method is 

proposed to improve the stability of computation.  

After each time step, the positions of particles are slightly shifted to regularize their 

distribution. Actually, this technique could be regarded as a re-meshing procedure. Moreover, 

because the amount of shifting is very small, not mapping the value onto the new positions 

will not corrupt the result. The amount of shifting is decided as: 

    ∑
     |   |

 
   

 
     

|   |
            |   |     (11) 

where    normally is set to be 99% of the initial particle distance. 

For the free surface particles which are far away from the main fluid body, their motion 

will barely be affected by pressure. Under some circumstances, they may get extremely close. 

This unusual and “suddenly-formed” very short distance between fluid particles will cause 

singularity problem when solving pressure Poisson Equations. This situation will not 

completely be eliminated by the aforementioned particle shifting. For example, the current 

distance between two particles are not very small (which will not activate the particle shifting 
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scheme), but they have large relative velocity which means they will get very close after 

prediction step. Therefore, similar to [12], a simple collision handling technique is applied 

here. The basic idea of this approach is that the relative velocities between particles are set to 

be zero when they are forecasted to be closer than the threshold before the prediction step. 

Accordingly, before the calculation of each time step, we apply the following velocity 

manipulation for each fluid particle: 

    ∑       

   

    
                        

         (12) 

where     
 is the tangential relative velocity between particle   and  . And      is the threshold 

to activate the scheme. It is selected as roughly 30% of the initial particle distance in this 

study. Parameter   depends on the property of particle  . If particle   is a fluid particle,   is 

equal to 0.5, otherwise, i.e. if it is a solid boundary particle,   is equal to 1.0. This kind of 

setting is to make sure that the solid particles velocity involved will not be affected while the 

relative velocity between its neighbour fluid particle will still be set to be zero. 

4.2 Neighbour particle searching strategy 
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Figure 1: Demonstration of the neighbour particle searching strategy 

This neighbour particle searching (which is required when discretizing gradient and Lapla-

cian operators) could be very time-consuming if not properly conducted. Traditionally, there 

are two ways to accelerate the generation of the neighbour particle list[17], instead of 

applying the primitive “all-pair” searching strategy. They are Cell-linked algorithm and Verlet 

list algorithm. In cell-linked method, all particles are distributed into a set of regular square 

cells which cover the entire computation domain. The length of the cell side is at least the cut-

off distance of supporting domain for Laplacian operator, i.e. four times of the initial particle 

distance. As a consequence, the neighbour searching for a particular particle could be 

conducted just within the surrounding cells (nine cells in 2D, i.e. area in black lines in Fig. 3). 

Alternatively, the Verlet list algorithm establishes a neighbour candidates list for each 

particle. This list contains all the particles with a larger distance from the concerned particle 

than the exact cut-off length of the Laplacian supporting domain. If this distance is chosen 
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properly, this list could be used for several time steps without the need of updating.  

Actually, the combination of these two methods is the most common practice. Namely, the 

cell-linked method with a larger cell length (e.g. five times of initial particle distance) is first 

employed to generate the Verlet list, and then the neighbour particle searching is just 

conducted based on the list, instead of the cells, for several following time steps. An optimal 

length of the cell (and correspondingly the time steps during which the cell do not need to be 

updated) could be found based on numerical practice for a particular particle number involved 

in the computation.  

The reason why this combination could improve the efficiency is that there are fewer 

candidates needed to be checked in the verlet list than in the nine cells in 2D. More 

specifically, the particles in the Verlet list equivalently lie within the inscribed circle of four 

adjacent cells (i.e. the circle in Fig. 3), which means it contains fewer particles. 

In this study, in order to reduce the computation burden in the process of Verlet list 

generation, this principle is further explored by making the cell smaller than the traditional 

one which is the initial particle distance, as shown in Fig. 1. This change means the searching 

for Verlet list could be performed just within the red line cover area instead of the green line 

covered area in Fig. 1. This reduces almost 5/9 of the searching area compared with the 

traditional cell.  

Another strategy[18] was also developed to avoid repetitive checking of pair. The core idea 

is that if particle j is in the Verlet list of particle i, particle i is obviously also in the Verlet list 

of particle j. Hence, the repeating of pair interaction could be avoided if the Verlet list is 

updated simultaneously for both of the particle pair when one of them is currently concerned 

as centre particle. And of course, this centre particle is then excluded during the following list 

generation process for the rest of particles. That means if the checking is conducted cell by 

cell (i.e. after the establishment of Verlet list is finished for all the particles in one cell, then 

move to the next cell), only the cells with higher indexes in the related neighbour cells are 

needed to be checked (the particles in the lower-index-cells have already been checked 

previously). This idea is also applicable to the new cell model aforementioned. If the cells are 

indexed vertically from bottom to top, the generation of Verlet list could be conducted just in 

the area covered by blue color in Fig. 1. This means the computation burden is further 

reduced by half. 

Over all, the searching area required by the proposed neighbour searching strategy which 

consists of the new smaller cell and the non-repeating particle pair checking is only about 2/9 

of the traditional cell-linked combined with Verlet list strategy. 

5 NUMERICAL RESULTS  

5.1 Efficiency test of neighbour searching strategy 

The efficiency of the proposed cell model is tested on the 2D dam-break with different 

particle numbers. The neighbour particle searching process for both new and traditional 

strategy in one single time step consists of the following steps:  

First the cell is established over the entire computation domain; then the Verlet list is 

generated for all the particles based on the neighbour cells. Finally, the neighbour particles list 

for each particle is generated twice, before and after the prediction step, by refining the 

searching based on the Verlet list.  
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Figure 2: Computation time per time step 

comparison of new and traditional neighb-

our search strategy 

Figure 3: Proportion of time consumed for each 

part of the new & traditional  neighbour search 

strategy 

The simulations were conducted on a computer with Intel(R) Core(TM) i5-2400 (duo 

3.1GHz) CPU, RAM 4.0 GB. As can be seen in Fig.2, using the new searching strategy, the 

computation time in one single time step has been reduced by 47.7%~55.3% compared with 

the traditional one. The efficiency of the neighbour particle searching has been improved 

remarkably. The proportion of the time cost by each part of the new and traditional neighbour 

search strategy is illustrated in Fig. 3. As is shown in Fig. 3, with the new cell model and the 

non-repeating pair checking technique, the time of Verlet list generation in the new strategy is 

only 17%~25% of the traditional one. This is consistent with the fact that the new searching 

area is about 22.2% (i.e. 2/9) of the traditional one. Moreover, as the cell generation part is 

almost neglectable in term of time consumed and the Verlet list generation part is much 

smaller than the refined neighbour particle searching part, the overall searching time could be 

further reduced by conducting two times cell updating and direct neighbour searching based 

on the proposed cell model and non-repeating pair checking (instead of aforementioned 

procedure). 

5.2 Dam-break simulation 

Table 1: Computation conditions for numercial simulations 

 Fluid particle Number  Initial particle spacing Max Time interval 

Dam-break (without obstacle) 7200 0.005 m 
0.001 s 

Sloshing 2440 0.005 m 

 

Dam-break problem is a common testing case to verify particle method. Probably because 

it includes various rapid free surface deformation situations such as splashing, water re-entry 

etc. Additionally, it also involves the impact between moving water and the wall, which is an 

important phenomenon in marine engineering. In this section, the 2D Dam-break model set-

up is shown in Fig. 4. The computation conditions (in all the following cases) are given in 

Table 1. For the time step, the CFL condition is applied with a maximum value of 0.001s. 

And it is selected in the same way for the following cases. 

Fig. 5 shows the pressure time history at four monitor point compared between experiment 
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by Lobovsky et al. 2013[19] and MPS with the proposed modifications (with and without 

particle shifting). The solutions obtained using the proposed modifications ( i.e. with the 

Neumann pressure boundary condition, additional source term in Poisson equation and 

particle shifting) agree well with the experiments results. Although there are still some 

fluctuations in the early period just after the impact, generally it is smooth enough to be used 

in the fluid structure interaction computation in the future research. Moreover, the results 

without particle shifting show a larger fluctuation, which demonstrates that the particle 

shifting technique is quite effective in reducing the non-physical, pressure fluctuation. 
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Figure 4: Sketch of the Dam-break calculation model 
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Figure 5: Pressure history monitored at P1~P4 
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The impact time and pressure peak value calculations match well with the experiments for 

points P1~P3. For sensor point P4, the peak pressure does not occur during the impact period, 

instead, it is caused by the falling back of the roll-up water along the wall in the later time, 

which is successfully captured by the computation. During the impact process, the 

computational pressure is found to be smaller than the experiment one at P4.  

5.3 Sloshing simulation 

A 2D sloshing phenomenon in partially filled tank is simulated in this section. The 

physical dimensions are shown in Fig.6.  
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Figure 6: Sketch of the sloshing model 

The tank moves sinusoidally in horizontal direction as:           , where   is the 

amplitude of motion and   is the circular frequency of the excitation. In this simulation, the 

frequency  = 4.8332 rad/s (period T is 1.3s) and the amplitude  = 0.05m. In order to simplify 

the coding, the equivalent acceleration, which is equal to the tank acceleration, is added into 

the right hand side of the governing equation (Eqn. (1)).  And the benefit is all the boundaries 

remain stationary.      
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Figure 7: Comparison between experimental and numerical results at 0.1T, 0.2T and 0.3T 

Fig. 7 shows the free surface profile, pressure contour of the numerical simulation and the 

comparison with experimental result at three time instants 0.1T, 0.2T and 0.3T (T is the 

period of sloshing).  Fig. 8 shows the comparison of pressure history monitored at the location 
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shown in Fig.6 between original MPS, experiment results and Improved MPS. The original 

MPS results are scanned from Ref[3]. And the experiment data is extracted from the paper of  

Kishev et al[20]. It is obvious that the fluctuation of pressure in the original MPS method is 

too large to be used for FSI application. In contrast, the Improved MPS could successfully 

capture the typical pressure characters. The period of the results also match well, although a 

shifting manipulation (also in Ref[3, 20]) is made to align the first impulse. This could be 

because the starting of the measuring time in the experiment is not exactly the start of the tank 

motion. The peak values of each impulse are not exactly the same as those in experiment 

results, but the overall maximum value, which is about 7000 Pa at around 2s and 10s, is 

successfully captured. 

6 CONCLUSIONS 

- Two efficient modifications have been proposed to improve the performance of 

standard MPS method, including a particle shifting technique and a more efficient 

neighbour particle searching method. 

- In order to show the effect of the aforementioned modifications, some 2D numerical 

examples, such as Dam-break simulation and sloshing are tested. The numerical 

results are also compared against numerical and experimental results from other 

researchers. As has been shown, the proposed modifications are found to be capable 

of producing smooth and stable velocity and pressure field for various free surface 

flow cases tested in this paper. 
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Figure 8: Pressure comparison with experiment of Kishev et al[20] and original MPS from B. H. Lee et al[3] 
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