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A solution scheme is presented to simulate incompressible viscous flow around moving 

boundaries using hybrid meshfree-Cartesian grid. The presented solution approach avoids 

intensive re-meshing and enhances computational efficiency by combining the advantages of 

both meshfree and mesh-based methods for flow around moving objects. The scheme 

employs a body conformal meshfree nodal cloud around the solid object which convects with 

the moving solid boundary. On the outer side, meshfree nodal cloud is surrounded and 

partially overlapped by a stationary Cartesian grid. Navier Strokes equations in Arbitrary-

Lagrangian-Eulerian (ALE) formulations are solved over moving nodal cloud using 

meshfree local Radial Basis Functions in finite difference Mode (RBF-FD). Eulerian form of 

flow equations are solved over static Cartesian grid using conventional finite difference 

scheme. Meshfree nodes can efficiently adapt to the moving boundary without necessitating 

re-meshing. Use of finite difference method over Cartesian grid allows faster computing and 

improves computational efficiency. Variation in computation time has been studied with 

corresponding change in size of meshfree and Cartesian grids. Significant reduction in 

computation time is achieved by reducing the size of meshfree cloud. The solution scheme is 

validated by simulating two dimensional flows around vibrating cylindrical objects. For this 

purpose, forced as well as vortex induced cylindrical vibration cases are investigated and 

solutions are compared with computational and experimental results available in literature. 

Nomenclature 

  = radial basis function 

r = radial distance 

  = RBF shape parameter 

P = pressure 

 ⃗  = flow velocity 

   = velocity of grid point 

   = time derivative 

Re = Reynolds number 

  = gradient operator 

t = time 

  = boundary 

  = outward normal direction to boundary 

x,y = Cartesian coordinates 

|| || = standard Euclidean norm 

  = differential operator 

  = RBF weight 

  = flow density 

  = dynamic viscosity 
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  = kinematic viscosity 

  = Diameter of cylinder 

  = free stream velocity 

   = coefficient of lift 

   = coefficient of drag 

  = frequency of solid vibration 

   = Strouhal frequency 

  = frequency ratio 

   = Strouhal number 

  = vibration amplitude 

 ( ) = vertical displacement at time   
  = mass of cylinder 

  = spring stiffness 

    
  = effective elasticity 

 

Subscripts 

j,k = node (particle) number 

 

Superscript 

n = Number of time iteration 

I. Introduction 

RADITIONAL mesh-based methods (Finite Element, Finite Volume, and Finite Difference) have widely been 

practiced for solving flow problems since the advent of Computational Fluid Dynamics (CFD). These methods 

have therefore evolved as well-developed and robust flow simulation techniques and are commercially employed 

worldwide. However, requirement of mesh (or grid), in these methods, imposes a pre-defined connectivity constraint 

amongst the nodes which strongly limits their utilization for problems involving moving boundaries and complex 

geometries.  

Over past two decades, meshfree methods have emerged as a class of promising computational techniques which 

can effectively overcome the limitations experienced by traditional mesh-based methods. Meshfree methods do not 

suffer from limitations associated grid connectivity. Without the constraints of grid, nodes can be moved, added or 

removed from domain more flexibly during the simulation process. Meshfree methods are therefore, considered to 

be a better choice for problems involving complex geometries, moving boundaries, large deformation and adaptive 

refinement. However, these methods suffer from reduced computational efficiency compared with their mesh-based 

counterparts. This is due to the requirement of increased number of neighboring particles to achieve required order 

of accuracy [1]. Therefore, the bandwidth of the matrices, representing the sets of algebraic equations increases. As 

a result, more computational resources are required to proceed with the solution. Moreover, calculation of shape / 

kernel functions, in meshfree methods, also increases the computational cost. On the contrary grid-based methods 

are low on computational resources and allow faster computing. Nevertheless, meshfree methods can effectively 

negotiate with moving boundaries without necessitating frequent re-meshing and are therefore better suited for flow 

around moving objects.       

Radial Basis Functions (RBFs) have historically been used for multidimensional interpolation over scattered data 

points. In early 90s, Kansa [2] proposed the use of RBFs for solution of Partial Differential Equation (PDEs) over 

scattered data points. Later, the researchers effectively applied RBFs, for global collocation in the evolving meshfree 

techniques [3-7]. Global RBFs however showed inaccuracies arising from ill-conditioned coefficient matrices, when 

dealing with large number of data points. The problem was later resolved by the use of local RBFs [1, 8, 9] which 

produce well-conditioned, sparse matrices to efficiently deal with non-linearities [10].  

RBF in Finite Difference Mode (RBF-FD) is a local RBF method which was independently proposed by 

Tolstykh et al [8] and Wright et al [1] for different set of applications. Local RBFs have been shown to be highly 

efficient in solving flow problem [9-13]. However, like other meshfree methods, RBF based methods are no 

exception to the limitation of high computational cost. 

Recently, Hybrid grid techniques have been used to deal with flow problems over moving boundaries. These 

methods attempt to limit the use of computationally expensive meshfree methods by coupling these with mesh-based 

methods. Ding et al [14] presented a hybrid FD/MLSFD method for solving the 2-D Navier Strokes equations in 

T 
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streamfunction-vorticity formulation. A Meshfree grid was generated around solid body and embedded over a non-

body conformal background Cartesian grid.  Later, Chew et al [15] extended similar scheme  for moving bodies by 

using ALE based formulation. Fries and Matthies [16] developed a stabilized solver for incompressible N-S 

equations by coupling meshfree Galerkin methods with mesh based finite element method. Javed et al. [17] 

proposed a coupled local RBF-FD scheme over 

meshfree zone and conventional Finite Difference 

(FD) scheme on meshed zone for flow around 

arbitrarily shaped stationary objects.  The scheme 

used a body conformal meshfree zone which was 

surrounded by Cartesian grid. Finite difference 

scheme was used over Cartesian mesh to achieve 

computational efficiency. The use of meshfree 

technique was limited to small meshfree zone 

around the solid object where it could efficiently 

deal with complex geometries in bargain of high 

computational cost. 

Here, a coupled meshfree and mesh-based 

solution scheme is presented for incompressible, 

viscous Navier Strokes equations in pressure-

velocity formulation over a hybrid grid to 

efficiently deal with flow around moving 

boundaries. For this purpose, a body conformal meshfree nodal cloud is generated around moving solid object. 

Meshfree nodes move and morph along with the solid body and are able to efficiently adapt to the moving 

boundaries. Movement of nodes is accounted for by using Arbitrary-Lagrangian-Eulerian (ALE) formulation of N-S 

 
 

Figure 1. Schematic of Hybrid meshfree / meshed domain 

 

 
 

Figure 2. Support Domain of a Reference Node in RBF-FD 

 

Table 1. Commonly used Radial Basis Functions 

Type of Basis Function Expression for  ( ) 

Multiquadric (MQ)  ( )  √      

Inverse Multiquadric  (IMQ)  ( )    √      

Inverse Quadric (IQ)  ( )    (     )  

Gaussian (GA)  ( )     ( (  ) ) 
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equation in Meshfree zone. ALE approach provides an elegant way of solving the equations over moving nodes (or 

grid points) by combining the features of Eulerian as well as Lagrangian approaches. A stationary Cartesian grid 

surrounds and partially overlaps the meshfree cloud. The meshfree nodes falling in overlapping zone are treated as 

‘inactive’ and do not participate in the computation process. These inactive meshfree nodes however, become active 

when they appear from behind the Cartesian zone during the movement of meshfree cloud. The detailed description 

of this mechanism is presented in section-II (B). Eulerian framework is applied over stationary Cartesian mesh to 

deal with N-S equations. Spatial discretization of governing flow Equations is achieved using Local Radial Basis 

Functions in Finite Difference Mode (RBF-FD) over meshfree nodes. Conventional 5-point central differencing is 

used for space splitting on Cartesian grid. Non-incremental pressure update fractional step scheme[18] is used for 

time discretization of N-S equations in the entire domain. Use of meshfree cloud allows the flexibility to deal with 

arbitrary shaped objects. Schematic of the proposed coupled approach is shown in Fig. 1. Meshfree nodes can also 

adapt to the moving boundaries without necessitating frequent re-meshing. On the other hand, Cartesian grid ensures 

faster computing by using conventional Finite difference scheme. The method thus benefits from the strengths of 

both meshfree and meshed approaches.  

II. Problem Formulation 

A. Governing Equations 

Non-dimensionalized, incompressible, transient, viscous Navier-Strokes equations in Arbitrary-Lagrangian-

Eulerian (ALE) and pressure-velocity  (   ⃗ ) form are expressed as [19]:  

   ⃗    (1)  

   ⃗      ( ⃗    )(   ⃗ )  (
 

  
)   ⃗  (2)  

 

For stationary Cartesian grid,     is set as zero resulting in Eulerian form of N-S equations. Pressure-velocity 

decoupling of momentum Eq. (1) is realized by fractional step scheme used by Kim and Moin [18]. It is a non-

incremental pressure update procedure which does not contain pressure term in the decoupled momentum equation 

for intermediate velocity  ⃗  .  The convective term of momentum Eq. (2) is treated with 2
nd

 order explicit Adam-

Bashforth scheme whereas viscous term is decomposed using 2
nd

 order implicit Crank-Nicholson scheme [18]. The 

momentum equation can therefore, be split in the following manner:  

( ⃗    ⃗  )        [ ( ⃗      )(   ⃗  )  ( ⃗          )(   ⃗    )]
   (   )[  ( ⃗    ⃗  )] (3)  

( ⃗      ⃗  )           (4)  
 

Applying divergence operator to Eq. (4) and enforcing continuity constraint (from Eq. (1)) on  ⃗     :  

       (    )   ⃗   (5)  
 

At every iteration, momentum Eq. (3) for intermediate velocity field is implicitly solved to get the nodal values 

of  ⃗   subject to following condition on the boundary   :  

 ⃗  |   ( 
         )   (6)  

 

Intermediate velocity field is then used to evaluate the value of      by solving Eq. (5). Velocity values at next 

time step  ⃗      are calculated using Eq. (4) subject to velocity boundary conditions  

 

 ⃗    |    ⃗    (7)  
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Discretization of spatial derivatives appearing in Eq. (3) - (6), for nodes falling in meshfree zone, is achieved 

using local RBF in finite difference Mode. RBF-FD is the generalization of conventional finite difference over 

scatted data points [10]. The scheme suggests setting up an RBF interpolation problem at each meshfree node, 

say   , for every spatial derivative  , using location of neighbouring nodes (or particles)     
          , in the 

local support domain, as shown in Fig. 2. Subsequently, RBF-FD weights ( (   )
( )

) are calculated   , corresponding 

to all neighbouring points. RBF-FD approximation of differential operator    of a field variable   then is given by 

weighted linear sum of values of same variable at the neighbouring nodes [20]:  

  (  )  ∑ (   )
( )
  (  )

 

   

 (8)  

 

Further detail of theory and formulation of RBF-FD can be found in literature [1, 8]. Some commonly used 

radial basis functions are shown in Table 1. Multiquadric (MQ) RBFs are used here. A time implicit scheme 

proposed by Javed et al. [12] is then used to solve the resulting system of equations at each time step. 

Classical 5-point finite difference stencil is used to approximate 2-D spatial derivatives over Cartesian grid. 

Separate matrix equations are formulated for governing equations at respective meshfree and Cartesian zones. Local 

RBF, as well as 5-point central difference scheme yield sparse matrix equations which are solved using Generalized 

Minimum Residual (GMRES) method [21].  Solution of these equations, subject to boundary conditions, yields 

velocity and pressure values at every time iteration.  

B. Treatment of Computational Domain 

Configuration of meshfree and Cartesian zones has been shown in Fig. 1 for flow around moving objects. Body 

conformal meshfree nodal cloud surrounds the solid. Rectangular (or square) shape of outer periphery of meshfree 

cloud enables it to communicate effectively with Cartesian grid. All the meshfree nodes exactly follow the motion of 

the solid objects. Therefore the arrangement of computational nodes, around the moving boundary, does not change 

over time. On the outer side, meshfree cloud is surrounded and partially overlapped by the Cartesian grid. The 

meshfree nodes ‘overshadowed’ by Cartesian grid are treated as ‘inactive’ and do not participate in the computation 

process. When the meshfree cloud moves along with solid object, some of the meshfree nodes will hide behind the 

stationary Cartesian grid and become ‘inactive’. At the same time, some meshfree nodes, on the other side of 

meshfree cloud, will appear from behind the overlapping region and will become ‘active’ to participate in the 

subsequent computation process. Pressure and velocity values are assigned to the ‘newly born’ nodes by 

approximating these values from surround nodes. These approximations can be worked out through a variety of 

interpolation techniques. RBF based interpolation is used here. Data available at active nodes falling in the support 

 

 
 

Figure 3. Hybrid Grid around cylinder 
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domain of newly born node is used for interpolation.  

The hybrid grid generated around cylindrical objects is shown in Fig. 3. Nodes are arranged radially around 

cylinder in meshfree zone. Radial displacement of nodes gradually increases as they move away from the cylinder. 

Cartesian grid around meshfree zone also refines gradually while going close to the cylinder. A closed in view in 

Fig. 4 shows nodal arrangement in meshfree zone and Cartesian grid around it.  

For the purpose of calculation, computational nodes have been divided into five different categories. Category-I 

is assigned to those of nodes of Cartesian grid which are at a reasonable distance from meshfree zone. Cartesian 

nodes which are expected to fall within the influence domain of some of the meshfree nodes due to proximity of 

meshfree zone are called Category-II nodes. Results at these nodes may influence the results of corresponding 

meshfree nodes. Category-III, IV and V are meshfree nodes. Category-III nodes fall exactly at the outer boundary of 

active meshfree zone. These nodes also act as boundary nodes for Cartesian grid.  Category-IV nodes fall inside the 

active meshfree zone. Category-V nodes are the meshfree nodes which are superimposed by Cartesian grid. These 

nodes are inactive and do not participate in calculation. Nodes in Category-I and II are part of ‘fixed’ Cartesian grid 

and are therefore kept stationary during simulation. Moreover, as Category-III nodes have to act as boundary nodes 

for stationary Cartesian grid; these nodes are also kept fixed so that they can effectively communicate with Cartesian 

Grid. Category-IV and V nodes however, move with the solid boundary.  

 By using RBF-FD scheme in meshfree zone and 5-point central differencing scheme in Cartesian Zone, separate 

systems of equations are formulated for each zone. Each system is independently solved at each time step. Cartesian 

and meshfree zones communicates with each other by influencing the other zone through their  

Category-II or Category-III nodes respectively.  

Process of activation and deactivation of meshfree nodes, as they move with the boundary during the simulation, 

is shown in Fig. 4. During upward motion of the cylindrical object, some of the nodes, near the upper edge of 

meshfree zone, move into Cartesian region and hide behind it. At the same time, ‘inactive’ nodes near the lower 

edge of active meshfree zone appear from behind the Cartesian zone and become active. Field variables at these 

nodes are assigned values by interpolating results from surrounding nodes. It is pertinent to note that the nodes at the 

boundary of active meshfree zone are not moving with the solid objects (though they are the part of meshfree zone). 

This feature makes sure that boundary nodes for Cartesian grid remain fixed and unchanged irrespective of the 

motion of meshfree zone.   

 

 
 

Figure 4. Activation and Deactivation of meshfree nodes during motion of nodal cloud along with the Solid 
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During this process, position and number of Cartesian nodes remains unchanged. This results in computational 

advantage as the coefficient matrices representing Eqs. (3) and (5) in Cartesian zone remain unchanged. Therefore, 

coefficient matrices representing equations in only meshfree zone need to be updated. In view of the fact, that 

Cartesian zone constitutes larger portion of the entire computational domain, significant computational time is saved 

using this approach.  

C. Computational Algorithm 

Following is the detail of computational process:  

1) At the start of simulation process, RBF-FD weights are calculated for all active meshfree nodes (Cat-III and 

IV nodes) at the start of simulation. Subsequently, coefficient matrices of Eq. (3) and (5) are formulated for 

meshfree and Cartesian zones separately.  

2) Intermediate momentum Eq. (3) is solved to calculate Intermediate velocity values ( ⃗  ) in meshfree zone. 

Boundary conditions defined in Eq. (6) are used.  

3) Pressure (    ) in meshfree zone is then calculated by solving Eq. (5). Pressure boundary conditions are 

derived from Eq. (4). Subsequently, velocity values for next time iteration ( ⃗    ) are calculated using Eq. 

(4). 

4) Similarly, Eqs. (3), (4) and (5) are solved for nodes in Cartesian zone. The spatial derivatives are obtained 

using five point central difference scheme. Velocity and pressure values on Cat-III nodes are used as 

boundary conditions for Cartesian nodes next to active meshfree zone. 

5) New position of moving boundary is worked out for current simulation time. For forced vibration case, the 

displacement-time equation of the moving body is used to calculate the position of boundary. For vortex 

induced vibration case, aerodynamic forces are calculated over the solid boundary using fluid pressure and 

velocity profiles. Equation of motion for the solid is then solved using explicit Runge-Kutta method to get 

the displacement value. 

6) Solid object along with the body conformal meshfree cloud are displaced to their new positions. 

7) Category of Cat-IV and Cat-V nodes is updated based on their new locations. If there are any ‘fresh’ nodes 

in Cat-III, they are assigned pressure and velocity values by RBF interpolation of the values on the 

surrounding nodes. 

8) RBF-FD weights are recalculated for all fresh nodes as well as for those meshfree nodes, the influence 

domains of which extend outside the active meshfree zone. Recalculation of RBF-FD Weights of these 

nodes is necessitated due to changed relative positions with respect to static nodes. 

9) Coefficient matrices are reformulated, in meshfree zone, according new RBF-FD weights. 

III. Numerical Tests 

The coupled meshfree-mesh based solver has been tested for performance and accuracy by simulating flow 

problems around cylindrical objects. Computational performance has been tested for stationary cylinder case. Other 

test cases include flow around stationary cylinder at various Reynolds numbers and flow around vibrating cylinder. 

Non-stationary cylinder cases include forced vertical vibration as well as vortex induced vertical vibration. The 

detailed descriptions are outlined in the following subsections. 

A. Computational Performance Test 

It is understood that meshfree methods are computationally more intensive due to several reasons which include 

expensive calculation of weights or kernels (often necessitating square root and matrix inversion operations) and 

requirement of larger number of neighboring particles to ensure required order of accuracy [1]. Larger number of 

neighboring particles results denser coefficient matrices which require more number of calculation operations to be 

solved [22]. 

The numerical experiment is performed to study the variation in computational time with changing size of 

meshfree zone. For this purpose, flow problem is solved around static cylinder using hybrid meshfree-Cartesian 

approach. Computational domain is rectangular in shape. Size of the domain is 16D X 32D. For performance test 

case only, cylinder is centered vertically as well as horizontally with the rectangular domain to allow larger variation 

in size of meshfree zone. 

Flow problem is solved at Reynolds number 100. Reynolds number is calculated as         . Free stream 

velocity boundary condition ( ⃗  (   )) is applied at the inlet. No slip boundary conditions have been introduced at 

the solid boundary     ( ⃗ |      )   Along top and bottom boundaries vertical derivative of velocity is assumed 
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zero (  ⃗      ). At the outlet boundary   , the so called ‘do-nothing’ boundary conditions are applied to ensure 

smooth propagation of wake. This boundary condition dictates   (      )     ⃗      , where      is the 

reference pressure.  

Computation time of first 500 iterations has been noted for different sizes of meshfree domain. Various sizes of 

active meshfree zone are tested ranging from 2D X 2D (containing 2116 nodes) to 6D X 6D (containing 11011 

nodes). Changing the size of meshfree zone therefore varied the percentage number of meshfree nodes in the entire 

computational domain. Variation of computation time with changing percentage of meshfree nodes is shown in Fig. 

5 (a). Increasing the proportion of meshfree nodes from 10.5% to 36.5% actually increased the computational cost 

by 2.3 times. During this change, computation time of meshfree solver also increased by almost 9.5 times. Increase 

in computation time is caused by increasing orders of coefficient matrices which happen to be more resource 

intensive during solution process. A plot of average computation time by each node in a single iteration is shown in 

Fig. 5 (b). Enlarging the meshfree zone increases average computational time by each meshfree node. On the 

contrary, average computation time of Cartesian nodes stays constant and significantly lower than their meshfree 

counterparts. Therefore, computationally efficient configuration would entail smaller sized meshfree zone in the 

entire domain.  

  
(a)                (b) 

 

Figure 5. Computational performance with changing size of meshfree zone. a) Total and meshfree 

computation time with increasing percentage of meshfree nodes in computational domain. b) Average 

computation time per node per iteration for meshfree and Cartesian zones 
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Figure 6. Results for steady flow cases around stationary cylinder (◊ Dennis and Chang [26], □ Takami and 

Keller[25], ∆ Tuann and Olson [27], ○ Present work). a) Drag Coefficient Vs Re . b) Separation angle Vs Re 
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B. Fixed Boundary Test Case 

Flow problems around stationary cylinder have been solved at Reynolds Numbers 10, 20, 40, 100 and 200. It is 

well known that, at low Reynolds number (Re<49), flow leaves the cylinder in a steady manner. However between 

Reynolds numbers 49 to 200, the flow becomes unsteady and forms oscillating vortices (so called Kamran vortices) 

downstream the cylinder. These type of flow problems have extensively been studied [14, 23-27] and their results 

are well established. The tests are therefore often simulated to validate newly presented numerical solution schemes.  

A rectangular domain of size 16DX38D is chosen for this problem. Cylinder is placed vertically in the middle of 

the domain and at a distance of 16D from inlet and 30D from outlet. This ensures that the flow near the solid is not 

affected by the boundary conditions at outer domain boundaries. The size of meshfree zone is 3DX3D. Therefore, 

active meshfree zone constitutes only 1.48% of the total domain size. A radial grid is generated in meshfree zone 

around cylinder. Number of nodes at cylindrical surface is 150. There are total of 26799 nodes in the entire domain 

out of which 4959 nodes fall in meshfree zone. Boundary conditions are the same as mentioned in Section III-B. 

Time step is kept as 5x10
-3

 sec for steady flow cases and 2.5x10
-3

 for unsteady cases. Lift and drag coefficients are 

calculated using following expressions:  

   
    

    
 (9)  

   
    

    
 (10)  

 

For steady flow cases (Re = 10, 20, 40), lift coefficient remains zero. However, resultant values of drag 

coefficients and separation angle are calculated and compared with solutions from previous researches [25-27] in 

Fig. 6. For Reynolds number 100 and 200, oscillating vortex also causes fluctuation in lift and drag profiles over 

time. As a result, lift coefficient oscillate around zero and drag coefficient fluctuate around a non-zero mean value. 

Frequency of wake oscillation can be characterized by Strouhal frequency which is the frequency of lift force 

oscillation. Strouhal number is then calculated using following equation: 

     
 

 
 (11)  

 

For unsteady flow cases (Re=100 and 200), resultant values of maximum lift coefficient (CLmax), mean drag 

coefficients (CDmean) and Strauhal numbers are compared with previous solutions [14, 23, 24] in Fig. 7. The results 

are found to be in good agreement with previous studies.  

 
(a)                (b)          (c) 

 

Figure 7. Results for unsteady flow cases around stationary cylinder (◊ Braza et al. [23], □ Liu et al. [24], ∆ 

Ding et al. [14], ○ Present work). a) CLmax Vs Re.  b) Mean CD angle Vs Re. c) St Vs Re 
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Figure 9. Vorticity profile around vibrating cylinder at Re100 (Y=0.25D, F=1.50) 

 

C. Forced Vibration Case 

Test cases are run for flow around cylinder which is forced to vibrate vertically with sinusoidal displacement 

profile over time. Vertical displacement of the solid about its mean position is expressed as:  

 

 ( )      (    ) (12)  
 

In order to allow cylindrical oscillation, length of meshfree zone along vertical axis is extended. Therefore, the 

size of meshfree zone around the cylinder is kept as 3DX5D 

for this case. Flow Reynolds number is set as 100. As 

mentioned before, period vortices are generated at this 

Reynolds number. Therefore, problem is often characterized 

by frequency ratio       . Computations are performed 

at an amplitude Y=0.25D and range of forced 

frequencies ( ).  
An important characteristic of these test cases is the 

presence of ‘lock-in’ zone which is defined as the domain of 

frequency ratios (F) and displacement amplitudes (Y), 

where vortex shedding frequency deviates from its original  

value and becomes equal to forced frequency [28].  Bounds 

of lock-in region on (Y,F) plane, defined experimentally by 

Koopman [29], at Re 100, at shown in Fig. 8.  Results from 

present simulations are also shown on the same plot and 

agree well with experimental data [29]. Screenshots of 

vorticity profile of the flow (Y=0.25D, F=0.50) at various 

time intervals are shown in Fig. 9. 

Presence of lock-in zone is identified by spectral 

analysis of time profile of lift coefficient. Time profiles of 

lift coefficients and their power spectral density (PSD) 

plots, for locked-in configurations, are shown in Fig. 10. As 

vortex frequency equalizes with frequency of forced oscillation, therefore Lift-time curves are purely sinusoidal and 

PSD plots show single peaks. On the contrary, in unlocked configuration, vortex shedding frequency retains its 

identity. As a results, lift fluctuation profiles over time deviate from their pure sinusoidal behavior [30] due to 

presence of multiple frequencies. PSD plot also shows two distinct peaks at frequencies   and   . The results for 

unlocked configurations are shown in Fig. 11. Non-sinusoidal response of lift curves on time plots and separate 

peaks of forced as well as vortex shedding frequency on PSD plots are clearly visible. 

 
 

Figure 8. Bounds of Lock-in zone at Re 100  

(* Experimental data [29], Unlocked results in 

present work,  Lock-in results in present work) 
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D. Vortex Induced Vibration Case  

Flow around spring mounted cylinder is solved to simulate vortex induced vibration. Presence of spring provides 

single Degree of Freedom (DoF) to the system by allowing the cylinder to vibrate vertically. Schematic of the 

problem is shown in Fig. 12. Vortices shedding downstream the cylinder produce time oscillating lift profile around 

cylinder. These forces induce vibratory motion in the spring mounted cylinder. The phenomenon has been 

characterized as ‘self-limiting’ by Mittal and Kumar [31]. This means that vibration amplitudes are restrained by 

inherent system parameters. The factors limiting the vibration amplitudes include reduction in lift force and 

appearance of additional frequencies in the oscillation profiles of aerodynamic forces [30]. Solid vibration is 

governed by following equation:  

 

  ̈          (13)  
 

 
Figure 10. Time series of CL and PSD plots (Lock-in configurations) 

 
Figure 11. Time series of CL and PSD plots (Unlocked configurations) 
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All parameters are used in their non-dimensionalized form in 

above equation. System response can be better expressed by 

defining a parameter called ‘effective elasticity’ (    
 ) which 

represents the unified effect of inertia and stiffness. Effective 

stiffness is expressed as [32]:  

 

    
            (14)  

 

In above equation    represents the non-dimensional reduced 

frequency defined as        . Here, a set of simulations are 

performed at Re 100. Lift force values obtained from fluid solver 

are plugged in Eq. (13). Runge-Kutta-4 Method is used to solve Eq. 

(13) to get the solid displacement about mean its position. Cases are 

studied by changing spring stiffness  . Mass value is set as 3.3. Vortex shedding at various time instances is shown 

in Fig. 13. Resultant vibrational amplitudes and frequencies are plotted against corresponding effective elasticity 

(    
 ) values and compared with the results of Shiels et al [32] as shown in Fig. 14 (a) and (b) respectively. The 

vibration amplitudes are found to be significantly high for       
      . In high amplitude zone, vibration 

frequency deviates from vortex shedding frequency and equalizes with the natural frequency of the cylinder (see 

Fig. 14 (b)) resulting in large amplitudes. This zone is therefore called ‘lock-in’ zone.  The amplitudes sharply 

reduce when effective elasticity is increased or decreased beyond this range.  

IV. Conclusion 

Current work aims to circumvent the performance related limitations of meshfree methods by restricting their 

use to the locations where these methods can supersede their mesh-based counterparts due to alleviation of nodal 

connectivity constraints. Presented scheme works well for both stationary and moving boundary cases. Phenomenon 

of locking-in was accurately predicted during forced and vortex induced vibration cases. Resultant amplitudes and 

frequencies of solid vibration were found in good agreement with previous solutions. Significant reduction in 

computational time can be achieved by limiting the size of meshfree zone in the domain. However, the size of active 

and inactive meshfree zone should still be large enough to allow the movement of solid boundary. In case of 

multiple moving bodies, separate nodal clouds can also be formed around each moving body. For multiple degrees 

of freedom systems, dimensions of meshfree zone may accordingly be adjusted to accommodate movement of 

boundary in more than one direction.      

 
Figure 13. Vortex shedding behind cylinder for VIV case (m=3.3, k=5) 

 
Figure 12. Schematic of flow induced 

vibration 
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